JPS5986155A - Manufacture of positive active substance for organic electrolyte battery - Google Patents

Manufacture of positive active substance for organic electrolyte battery

Info

Publication number
JPS5986155A
JPS5986155A JP57197016A JP19701682A JPS5986155A JP S5986155 A JPS5986155 A JP S5986155A JP 57197016 A JP57197016 A JP 57197016A JP 19701682 A JP19701682 A JP 19701682A JP S5986155 A JPS5986155 A JP S5986155A
Authority
JP
Japan
Prior art keywords
discharge
carbon fluoride
fluorocarbon
ultraviolet ray
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197016A
Other languages
Japanese (ja)
Inventor
Kenichi Morigaki
健一 森垣
Ryoji Okazaki
良二 岡崎
Hirofumi Oishi
大石 裕文
Hisaaki Otsuka
大塚 央陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57197016A priority Critical patent/JPS5986155A/en
Publication of JPS5986155A publication Critical patent/JPS5986155A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain carbon fluoride which shows good storing characteristic and flat discharge characteristic from the initial discharge by irradiating carbon fluoride with ultraviolet ray in the alkali alcohol solution in order to partly obtain fluorine. CONSTITUTION:Carbon fluoride is irradiated with the ultraviolet ray in the alkali alcohol solution in order to partly obtain fluorine. For example, carbon fluoride with content of fluorine of 62.5wt% and particle size of 45mu or less obtained from the raw material of petroleum coke is penetrated and suspended by a processing solution obtained by solving sodium hydrate of 1-equivalent into methanol ata the rate of 100g/l and is then irradiated with the ultraviolet ray for 1-5hr using a mercury lamp. After the washing and drying, the carbon fluoride is attached with acethylene black as the conductor material and stylenebutadiene rubber bonding material. The positive black mix pellet 5 thus obtained is used for configurating a flat type lithium battery.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム、ナトリウム、マグネシウム、アル
ミニウムなどの軽金属を負極活物質とし、有機電解質を
用いる、いわゆる有機電解質電池に関する。さらに詳し
くはこの電池の正極活物質であるフッ化炭素の製造法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a so-called organic electrolyte battery that uses a light metal such as lithium, sodium, magnesium, or aluminum as a negative electrode active material and an organic electrolyte. More specifically, the present invention relates to a method for producing fluorocarbon, which is the positive electrode active material of this battery.

従来例の構成とその問題点 フッ化炭素は、864mAH/gの大きな理論放 5電
容量密度を有し、化学的にも安定であるため、有機電解
液中での貯蔵性が良く、さらに、放電中の電圧の平坦性
が非常に良いことなどから、リチウム電池の正極活物質
として広く実用化されている。
Structure of conventional example and its problems Fluorinated carbon has a large theoretical discharge capacity density of 864 mAH/g and is chemically stable, so it has good storage properties in organic electrolytes. Because it has very good voltage flatness during discharge, it is widely used as a positive electrode active material for lithium batteries.

しかし、放電の初期における電圧は、放電中期の平坦な
電圧よりも若干低く、いわゆる電圧の立上り現象が見ら
れる(第2図のa)。リチウム電池の王な用途として、
例えば電卓や電子ウォッチ等の小型電子機器の電源があ
る。これらの電子機器の信頼性の維持向上を図るだめに
は電池の電圧変動が極力小さいことが要求され、フッ化
炭素/リチウム電池の放電初期の電圧の立ち上り現象を
極力少なくし、より安定した放電特性を得ることが望凍
れている。
However, the voltage at the beginning of the discharge is slightly lower than the flat voltage at the middle of the discharge, and a so-called voltage rise phenomenon is observed (a in FIG. 2). The main use of lithium batteries is
For example, there are power supplies for small electronic devices such as calculators and electronic watches. In order to maintain and improve the reliability of these electronic devices, battery voltage fluctuations are required to be as small as possible, and the phenomenon of voltage rise at the beginning of discharge of fluorocarbon/lithium batteries is minimized to ensure more stable discharge. It is hoped that the characteristics will be obtained.

従来、この特性を改良するため、界面活性剤の添加や、
初度の電圧がフッ化炭素よシも高い二酸化マンガンなど
の添加が提案されているが、電池系内に他の物質が入っ
た場合、副反応が生じたり、電解液との安定性など長期
間の保存性に問題がある。
Conventionally, in order to improve this property, the addition of surfactants,
Additions such as manganese dioxide, which has a higher initial voltage than fluorocarbon, have been proposed, but if other substances enter the battery system, side reactions may occur, and stability with the electrolyte may deteriorate over a long period of time. There is a problem with storage stability.

一方、フッ化炭素をアルコール中で処理する例として、
保存性の改良のために、アルカリ・酸、或いはヨウ化カ
リウムと処理することが知られている。しかし、これら
の反応たけでC」1、フッ化炭素に含まれている遊離フ
ッ素と呼ばれている弱いC・・・F結合は除去できるが
、共イj結合のC−F結合を切断するには至らず、放′
t1初期の顕著な改良には不十分であった。
On the other hand, as an example of treating fluorocarbon in alcohol,
It is known to treat with alkali/acid or potassium iodide to improve storage stability. However, these reactions alone can remove weak C...F bonds called free fluorine contained in fluorocarbons, but they also cleave C-F bonds, which are co-Ij bonds. It did not reach the point of
This was insufficient for significant improvement in the early stage of t1.

発明の目的 本発明は、このような放電初期の電圧の立上り現象を改
良するため、フッ化炭素の改質を行ない保存性か′良く
、かつ放電初期から・1佃■、な放電特性を示す正極活
物質としてのフッ化炭素を提供することを目的とするも
のである。
Purpose of the Invention The present invention aims to improve such a voltage rise phenomenon at the initial stage of discharge by modifying fluorocarbon, which has good storage stability and exhibits excellent discharge characteristics from the early stage of discharge. The purpose is to provide fluorocarbon as a positive electrode active material.

発明の構成 フッ化炭素は、C−C,C−F結合から成る層状構造を
有するが、層平面の末端には’::cp2゜−CF3基
が存在し、フッ化炭素中のフッ素含量が理論値61.3
重量%(F/C=1.0)よりも大きくなる場合は、こ
れらのフッ素が含まれているためと考えられている。十
分にフッ素化したフッ化炭素の粒子表面は、この”::
ay2.−CF3基の層で薄く覆われていると考えられ
る。そのため、フッ化炭素はポリテトラフロロエチレン
(PTFE) よりも低い表面エネルギーの物質となり
、有機溶媒に対しても濡れにくい物性となっている。
Constituent structure of the invention Fluorocarbon has a layered structure consisting of C-C, C-F bonds, but '::cp2゜-CF3 groups are present at the ends of the layer plane, and the fluorine content in the fluorocarbon is Theoretical value 61.3
If it is larger than % by weight (F/C=1.0), it is thought that this is due to the presence of these fluorines. The fully fluorinated fluorocarbon particle surface has this "::
ay2. It is thought that it is thinly covered with a layer of -CF3 groups. Therefore, fluorocarbon is a substance with a lower surface energy than polytetrafluoroethylene (PTFE), and has physical properties that make it difficult to wet with organic solvents.

また、リチウムとの放電反応機構は、フッ化炭素の層間
へ、Li+が侵入する機構と考えられているが、放電の
初期には、フッ化炭素粒子表面、即ち1.CF2.−C
F3基が大きく関与していると考えられる。
Furthermore, the discharge reaction mechanism with lithium is thought to be a mechanism in which Li+ invades between the layers of fluorocarbon, but at the beginning of discharge, the fluorocarbon particle surface, that is, CF2. -C
It is thought that the F3 group is largely involved.

本発明は、フッ化炭素を、アルカリ性アルコール溶液中
で紫外線を照射することによって、フッ飄 1 化炭素粒子表面の脱フッ素化、即ち−CF2.−CF3
基の還元を行ない、放電初期の特性が改良できることを
見い出したことを特徴とするものである。
The present invention involves defluorination of the surface of fluorinated carbon particles, that is, -CF2. -CF3
This method is characterized by the discovery that the characteristics at the initial stage of discharge can be improved by reducing the group.

実施例の説明 フッ化炭素は、石油コークスを原料としだもので、フッ
素含量62.6重量%2粒径46μ以下のものを用いた
。1規定(財)の水酸化ナトリウムをメタノール又はエ
タノールに溶解させたものを処理溶液とし、フッ化炭素
をこの溶液に100j;//1の割合で湿潤・懸濁させ
、木調ランプを用いて紫外線を一定時間照射した。
DESCRIPTION OF EXAMPLES The fluorinated carbon was made from petroleum coke and had a fluorine content of 62.6% by weight and a particle size of 46 μm or less. A treatment solution is prepared by dissolving 1N of sodium hydroxide in methanol or ethanol, and fluorocarbon is wetted and suspended in this solution at a ratio of 100J; UV rays were irradiated for a certain period of time.

次表に、各処理条件と処理後のフッ素含量及び色相の変
化を示した。なお、各処理は室温にて行なった。
The following table shows each treatment condition and the changes in fluorine content and hue after treatment. Note that each treatment was performed at room temperature.

各処理を行なったフッ化炭素は十分に水洗・乾燥後、第
1図に示す扁平形電池を試作し、特性評価を行なった。
The fluorinated carbon subjected to each treatment was thoroughly washed with water and dried, and then a flat battery shown in FIG. 1 was fabricated as a prototype, and its characteristics were evaluated.

図中1は封目板、2はリチウム負極、3はポリプロピレ
ン不織布製のセパレータ、4は樹脂製ガスケット、5は
各処理を行なったフッ化炭素100重量部と導電材のア
セチレンブラック1o重量部とスチレンブタジェンラバ
ー粘着材6重量部から成る直径14覇、厚み0.60+
n+nの正極合剤ペレット、6は正極集電体、7はケー
スである。電解液には、プロピレンカーボネイトとジメ
トキシエタンとの体積比1:1の混合溶媒にホウフッ化
リチウムを1モル/lの濃度に溶解させたものを用いた
In the figure, 1 is a sealing plate, 2 is a lithium negative electrode, 3 is a separator made of polypropylene nonwoven fabric, 4 is a resin gasket, and 5 is 100 parts by weight of fluorocarbon subjected to each treatment and 10 parts by weight of acetylene black as a conductive material. Made of 6 parts by weight of styrene-butadiene rubber adhesive, diameter 14mm, thickness 0.60+
n+n positive electrode mixture pellets, 6 a positive electrode current collector, and 7 a case. The electrolytic solution used was one in which lithium borofluoride was dissolved at a concentration of 1 mol/l in a mixed solvent of propylene carbonate and dimethoxyethane at a volume ratio of 1:1.

電池特性の評価は、20’Cの13にΩ定抵抗連続放電
試験にて行なった。電池の組立直後の放電   ′特性
を第2図に、また前記放電条件で終止電圧2.4vとし
だ時の放電容量とフッ素含量との関係を第3図に示した
。さらに、この電池を60℃で3ケ月間保存後、前記と
同一条件で放電を行なった結果を第4図に示した。
The battery characteristics were evaluated by a constant resistance continuous discharge test at 13 ohms at 20'C. Fig. 2 shows the discharge characteristics of the battery immediately after assembly, and Fig. 3 shows the relationship between the discharge capacity and the fluorine content when the final voltage was set to 2.4 V under the above-mentioned discharge conditions. Furthermore, after storing this battery at 60° C. for 3 months, it was discharged under the same conditions as above, and the results are shown in FIG.

第2図に示しだように、放電初期の’l!11’l &
Jアルカリ処理G)では、未処理(a)と変りはないが
紫外線処理を行なったものでは、顕著に改J’J ;〜
J−+ていることがわかる。まだ、放電初期の電圧は、
還元の程度が大きい程、即ちフッ素含量が減少する程、
高電圧となるが、フッ素含量が大きく低減した(d、e
)では明らかな容量の減少が見られる。
As shown in Figure 2, 'l!' in the early stage of discharge. 11'l &
In the case of J alkali treatment G), there is no difference from untreated (a), but in the case of ultraviolet treatment, there is a noticeable change in J'J ;~
It can be seen that it is J-+. However, the voltage at the initial stage of discharge is
The greater the degree of reduction, i.e. the lower the fluorine content, the more
Although the voltage is high, the fluorine content is greatly reduced (d, e
), a clear decrease in capacity can be seen.

このフッ素含量と放電容量との関係を示した第3図から
、未処理(a)と同等以上の放電容量・が得られるのは
、フッ素含量が59重@φ以上であることがわかる。第
3図に見られるように、放電容量がフッ素含量に比例し
て変化していないのill、本発明の紫外線照射処理を
行なったことに」Sす、放電利用率が向上するだめと考
えらノする。従って、より利用率が良い、低負荷放電て
の賓:i4: li、第3図とは異なった傾向が見られ
ると考えられる。しかしフッ素含量に比例すると仮定し
ても、69市量チ程度のフッ素含量のものは、6%程度
の容量減少にとどまり、従来の未処理のものを用いた場
合に、電子機器に実装後、電圧安定化に要した放電容量
と大差がなく、実使用時の容量減少はほとんどない。
From FIG. 3, which shows the relationship between the fluorine content and the discharge capacity, it can be seen that a discharge capacity equal to or higher than that of the untreated (a) can be obtained when the fluorine content is 59 g@φ or more. As can be seen in Figure 3, the discharge capacity does not change in proportion to the fluorine content, and it is thought that the ultraviolet irradiation treatment of the present invention will improve the discharge utilization rate. No. Therefore, it is thought that a different trend from that shown in Fig. 3 can be seen for guests with low load discharge, which has a better utilization rate: i4: li. However, even if it is assumed that the fluorine content is proportional to the fluorine content, a product with a fluorine content of about 69 cm will only reduce the capacity by about 6%. There is no significant difference from the discharge capacity required for voltage stabilization, and there is almost no decrease in capacity during actual use.

また、紫外線照射処理及びアルカリ処理を行なったフッ
化炭素の高温保存後の放電特性を第4図に示している。
Further, FIG. 4 shows the discharge characteristics of fluorocarbons subjected to ultraviolet irradiation treatment and alkali treatment after high temperature storage.

未処理(a)、処理例(b−CI)ともに組立直後の放
電よりも、放電開始電圧は低下しているが、この開始電
圧の低下は、処理例b−qでは、未処理のaと同等かそ
れよりも小さくなっており、負極リチウム側の要因も考
えられるので、各処理を行なったフッ化炭素の保存性は
、放電初期においては未処理と同等かそれ以上に良いと
考えられる。さらに、放電初期と放電中期の平坦部との
電圧差は、aでは組立直後の放電よりも顕著に表われて
いるが、紫外線照射を行なっだb−fでは非常に小さい
ことがわかる。また、保存による放電容量の減少は、e
のみがaよりも大きく減少しているが、他の処理例b−
d、f、qでは同程度である。従って、紫外線照射処理
を行なったフッ化炭素の保存性は、フッ素含量が59重
量%(b、c、f)程度までであれば、未処理と同等で
あることがわかる。
In both untreated (a) and treated example (b-CI), the discharge starting voltage is lower than the discharge immediately after assembly, but this decrease in starting voltage is different from untreated a and treated example b-q. It is the same or smaller, and the negative electrode lithium side is also considered to be a factor, so it is thought that the storage stability of fluorocarbon treated with each treatment is equal to or better than untreated at the early stage of discharge. Further, it can be seen that the voltage difference between the flat part in the early stage of discharge and the flat part in the middle stage of discharge is more pronounced in case a than in the discharge immediately after assembly, but it is very small in cases b to f where ultraviolet rays were irradiated. In addition, the decrease in discharge capacity due to storage is e
However, in other processing example b-
d, f, and q are at the same level. Therefore, it can be seen that the storage stability of fluorocarbon treated with ultraviolet rays is equivalent to that of untreated carbon when the fluorine content is up to about 59% by weight (b, c, f).

発明の効果 本発明により、第2〜4図に見られるように、アルカリ
性アルコール溶液中で紫外線照射を行ない、わずかに表
面が還元されたフッ化炭素を用いることにより、放電初
期の電圧特性を改良でき、放電初期から電圧平坦性の良
く、かつまた保存性の良い電池を提供することができる
Effects of the Invention According to the present invention, as shown in Figures 2 to 4, the voltage characteristics at the initial stage of discharge are improved by irradiating ultraviolet rays in an alkaline alcohol solution and using fluorocarbon whose surface has been slightly reduced. Therefore, it is possible to provide a battery that has good voltage flatness from the initial stage of discharge and also has good storage stability.

この効果は、フッ化炭素粒子表面を紫外線照射により還
元、即ち〕CF2.−CF3基を取り除いたことにより
、有機電解液に対する濡れ性が良く、リチウムの層間へ
の拡散が容へ易となったためと考えられる。なおアルカ
リは、上記紫外線による一〇F2 などからの脱フツ素
反応を促進する働きがあると考えられる。
This effect is caused by reduction of the surface of fluorocarbon particles by ultraviolet irradiation, that is, CF2. This is thought to be due to the fact that by removing the -CF3 group, the wettability with respect to the organic electrolyte was good, and lithium was easily diffused between the layers. It is believed that the alkali has the function of promoting the defluorination reaction from 10F2 and the like caused by the above-mentioned ultraviolet rays.

また、照射処理後のフッ化炭素のn−ブタノールに対す
る湿間熱が10〜60%増大していること、放電初期の
Li+のフッ化炭素層間への拡散係数が数倍〜数十倍大
きくなっていることなどがわかっており、上記者えを支
持するものと考えられる。。
In addition, the wet heat of fluorocarbon relative to n-butanol after irradiation treatment increases by 10 to 60%, and the diffusion coefficient of Li+ between fluorocarbon layers at the beginning of discharge increases several times to several tens of times. This seems to support the above hypothesis. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における扁平形電池の断面図、
第2図は本発明電池の組立直後の放電特性を示す図、第
3図は同じくフッ素含量と放電容量との関係を示す図、
第4図は同じく60℃3ケ月保存後の放電特性を示す図
である。 1・°“°・封口板、2・・・・・・負極、3・・・・
・・セノくレータ、6・・・・・・正極、7・・・・・
・ケース。
FIG. 1 is a cross-sectional view of a flat battery in an embodiment of the present invention;
FIG. 2 is a diagram showing the discharge characteristics of the battery of the present invention immediately after assembly, and FIG. 3 is a diagram showing the relationship between fluorine content and discharge capacity.
FIG. 4 is a diagram showing the discharge characteristics after storage at 60° C. for 3 months. 1・°“°・Sealing plate, 2... Negative electrode, 3...
・・・Senokurator, 6・・・Positive electrode, 7・・・・・・
·Case.

Claims (2)

【特許請求の範囲】[Claims] (1)  フッ化炭素を、アルカリ性アルコール溶液中
で紫外線照射処理を行ない、部分的に脱フッ素化するこ
とを特徴とする有機電#li!(電池用正極活物質の製
造法。
(1) An organic electrode #li! characterized by partially defluorinating fluorinated carbon by subjecting it to ultraviolet irradiation treatment in an alkaline alcohol solution. (Production method of positive electrode active material for batteries.
(2)  フッ化炭素の脱フツ素化処理後のフッ素含有
量が59重量係以上である特許+f!’j求のrlij
’j囲第1項記載の有機電解質電池用正極活物1jj■
の製バ′j法。
(2) A patent in which the fluorine content after defluorination treatment of fluorocarbon is 59% by weight or more +f! 'j seeking rlij
'jCathode active material for organic electrolyte batteries described in item 1 1jj■
The manufacturing method.
JP57197016A 1982-11-10 1982-11-10 Manufacture of positive active substance for organic electrolyte battery Pending JPS5986155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197016A JPS5986155A (en) 1982-11-10 1982-11-10 Manufacture of positive active substance for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197016A JPS5986155A (en) 1982-11-10 1982-11-10 Manufacture of positive active substance for organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS5986155A true JPS5986155A (en) 1984-05-18

Family

ID=16367373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197016A Pending JPS5986155A (en) 1982-11-10 1982-11-10 Manufacture of positive active substance for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5986155A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791038A (en) * 1986-10-09 1988-12-13 Allied-Signal Inc. Inhibiting voltage suppression in lithium/fluorinated carbon batteries
JP2006059732A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution battery
CN106663806A (en) * 2014-07-08 2017-05-10 心脏起搏器股份公司 Method to stabilize lithium / carbon monofluoride battery during storage
CN112875679A (en) * 2021-01-29 2021-06-01 电子科技大学 Method for modifying carbon fluoride by ultraviolet radiation and application of carbon fluoride in lithium primary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791038A (en) * 1986-10-09 1988-12-13 Allied-Signal Inc. Inhibiting voltage suppression in lithium/fluorinated carbon batteries
JP2006059732A (en) * 2004-08-23 2006-03-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte solution battery
CN106663806A (en) * 2014-07-08 2017-05-10 心脏起搏器股份公司 Method to stabilize lithium / carbon monofluoride battery during storage
JP2017523564A (en) * 2014-07-08 2017-08-17 カーディアック ペースメイカーズ, インコーポレイテッド Method for stabilizing lithium / carbon monofluoride batteries during recharging
US10396359B2 (en) 2014-07-08 2019-08-27 Cardiac Pacemakers, Inc. Method to stabilize lithium / carbon monofluoride battery during storage
CN106663806B (en) * 2014-07-08 2019-11-26 心脏起搏器股份公司 For making lithium/stabilized method of carbon monofluoride battery during storage
CN112875679A (en) * 2021-01-29 2021-06-01 电子科技大学 Method for modifying carbon fluoride by ultraviolet radiation and application of carbon fluoride in lithium primary battery

Similar Documents

Publication Publication Date Title
US11430614B2 (en) Modified activated carbon and method for producing same
WO2021120040A1 (en) Method for preparing high-density aluminum-doped cobalt oxide
CN1237804A (en) Activation method for fuel battery
JP2009152174A (en) Nonaqueous electrolyte battery
CN110371934B (en) Preparation method of carbon-based sulfur molybdenum selenide composite material
CN105355843A (en) Method for modifying high-specific-energy lithium ion cell cathode material
Bao et al. Sulfation on coated carbon related to lead ion and its effect on the performance of advanced ultra-battery at high rate
Kosacki et al. The effect of various graphite additives on positive active mass utilization of the lead-acid battery
JPS5986155A (en) Manufacture of positive active substance for organic electrolyte battery
JPS5987762A (en) Organic electrolyte battery
TW201212354A (en) Negative electrode mix for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112117136B (en) GO-CS coated potassium ferrate material and preparation method and application thereof
Opra et al. Fabrication of battery cathode material based on hydrolytic lignin
CN109301187B (en) Carbon-coated SnO applied to lithium ion battery cathodexPreparation method of quantum dot/graphene composite
KR20180049891A (en) Method of manufacturing the active material using a spray-dried, thereby the active material and energy storage device including the active material
CN105762344A (en) Electrode and preparation method of electrode material
JPH03122968A (en) Manufacture of manganese dioxide for lithium primary battery
KR20140100782A (en) Active material for anode of lithium ion capacitor, manufacturing method for the same and lithium ion capacitor comprising the same
TWI521776B (en) Carbon/metal composite and method of fabricating the same
JPS58123663A (en) Nonaqueous electrolyte battery
US20200227720A1 (en) Method for forming lead-carbon compound interface layer on lead-based substrate
JPS5887766A (en) Manufacture of organic electrolyte battery
JPH10214628A (en) Lead acid-battery and its manufacture
JPS5826457A (en) Manufacture of positive pole active substance for non-acqueous electrolytic cell
KR20080055533A (en) Method for manufacturing positive plate 0f storage battery