JP2000035410A - Measuring method of metal deposit quantity on wafer - Google Patents

Measuring method of metal deposit quantity on wafer

Info

Publication number
JP2000035410A
JP2000035410A JP10203230A JP20323098A JP2000035410A JP 2000035410 A JP2000035410 A JP 2000035410A JP 10203230 A JP10203230 A JP 10203230A JP 20323098 A JP20323098 A JP 20323098A JP 2000035410 A JP2000035410 A JP 2000035410A
Authority
JP
Japan
Prior art keywords
metal
wafer
water
soluble salt
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10203230A
Other languages
Japanese (ja)
Inventor
Yoshikazu Tomizawa
美和 冨沢
Kiyoshi Kuroda
潔 黒田
Norio Nakamura
典夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEMC Japan Ltd
Original Assignee
MEMC Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEMC Japan Ltd filed Critical MEMC Japan Ltd
Priority to JP10203230A priority Critical patent/JP2000035410A/en
Priority to EP99937277A priority patent/EP1105921A1/en
Priority to KR1020007014851A priority patent/KR20010071617A/en
Priority to PCT/US1999/016109 priority patent/WO2000004579A1/en
Priority to CN99808750A priority patent/CN1350700A/en
Priority to TW088112167A priority patent/TW416116B/en
Publication of JP2000035410A publication Critical patent/JP2000035410A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly measure the deposit quantity of metal by mixing water solution containing water soluble salt of desired metal with an organic solvent selected from lower alcohol, ketone, or the like, and using a specimen adhering with metal by soaking a virgin wafer in this mixed liquid. SOLUTION: Water soluble salt of target metal, for example water soluble salt of metal such as zinc, nickel, copper, iron, calcium, or chrome, is dissolved in pure water so as to become fixed concentration. Next, the water solution is mixed with organic solvent such as lower alcohol or ketone of high compatibility with water and high evaporation rate, so that the target quantity of metal becomes sufficient concentration to deposit on a wafer, and after soaking a virgin wafer in the mixed liquid for a fixed time, it is naturally dried to make a standard specimen uniformly deposited on the metal. The metal on the standard specimen is measured by the use of a total reflection fluorescent X-ray device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 この発明は、例えば半導体
基板の表面に付着している金属の分析方法に関するもの
で、特にシリコンウエハ表面に付着した金属の濃度を分
析する場合に用いられるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a method for analyzing metal adhering to the surface of a semiconductor substrate, and more particularly to a method for analyzing the concentration of metal adhering to a silicon wafer surface.

【0002】[0002]

【従来の技術】 ウエハ表面の金属不純物は、たとえ微
量であったとしてもデバイスの電気的特性に影響するこ
とが知られている。このような不純物の制御は、デバイ
スの高密度化・高集積化にともなって、益々、厳しいも
のが要求されるようになってきている。従って、それら
極微量の不純物を高感度かつ高精度で分析することが必
要不可欠となっている。ウエハ表面に付着している金属
不純物の濃度を分析する方法としては、例えばウエハ表
面に、酸溶液を滴下して金属不純物を溶解させ、溶解し
た金属不純物を含む酸溶液を回収し、その回収液中の金
属不純物の量をフレームレス原子吸光装置などの化学分
析装置を用いて測定する方法などが使用されている。
2. Description of the Related Art It is known that metal impurities on a wafer surface affect the electrical characteristics of a device, even if the amount is small. Such control of impurities is increasingly required to be strict with the increase in density and integration of devices. Therefore, it is essential to analyze these trace impurities with high sensitivity and high accuracy. As a method of analyzing the concentration of the metal impurities attached to the wafer surface, for example, an acid solution is dropped on the wafer surface to dissolve the metal impurities, the acid solution containing the dissolved metal impurities is collected, and the collected solution is collected. A method of measuring the amount of metal impurities therein by using a chemical analyzer such as a flameless atomic absorption spectrometer has been used.

【0003】 しかしながら、上記した従来方法の場
合、金属不純物溶出のために酸溶液が滴下された領域内
の不純物を平均化しているため、ウエハ表面での金属不
純物の分布状態を調べることは不可能であった。近年
は、上記の欠点を補う金属濃度測定方法として全反射蛍
光X線装置を用いる方法も活用されている。上記装置を
用いて金属量を定量するための方法として、標準試料を
用いて作成した検量線を利用する方法がある。しかしな
がら、この方法の欠点としては、定量分析を行うために
使用する標準試料の作成が困難なことが挙げられる。標
準試料として要求される要件の一つとして、付着金属の
均一性の問題がある。各種金属の付着量を充分均一とす
るためには、調製方法が複雑となり、加えて、その調製
方法の複雑さに比較して検査用として使用するには充分
に均一な水準にまで達していないことが挙げられ、した
がって、検査現場で手軽に調製できる方法の提供が強く
望まれている。市販の標準試料もあるが、必ずしもウエ
ハの製造現場の状況にあったものではないので、高価な
割には必ずしも所定の測定精度を上げることができない
のが現状である。
However, in the case of the above-described conventional method, since the impurities in the region where the acid solution is dropped for eluting the metal impurities are averaged, it is impossible to examine the distribution state of the metal impurities on the wafer surface. Met. In recent years, a method using a total reflection fluorescent X-ray apparatus has been utilized as a metal concentration measuring method for compensating the above-mentioned disadvantages. As a method for quantifying the amount of metal using the above apparatus, there is a method using a calibration curve created using a standard sample. However, a disadvantage of this method is that it is difficult to prepare a standard sample used for performing quantitative analysis. One of the requirements required as a standard sample is the problem of uniformity of the deposited metal. In order to make the adhesion amounts of various metals sufficiently uniform, the preparation method becomes complicated, and, in addition, compared to the complexity of the preparation method, it has not reached a sufficiently uniform level to be used for inspection. Therefore, it is strongly desired to provide a method that can be easily prepared at the inspection site. Although there is a commercially available standard sample, it is not always suitable for the situation of the wafer manufacturing site, so that at present, it is not always possible to increase the predetermined measurement accuracy in spite of the high cost.

【0004】 さらに、シリコンウエハの性能検査の方
法として金属のゲッタリング効果を調査する場合がある
が、この場合にも比較対照とする標準試料の入手が困難
である。そのために、より正確さを期すために、ICP
−MS、フレームレス原子吸光等の手段を用いてクロス
チェックする必要があり、必ずしも簡便な方法とはいえ
ないのが現状である。
[0004] Furthermore, there is a case where the gettering effect of a metal is investigated as a method of inspecting the performance of a silicon wafer. In this case, however, it is difficult to obtain a standard sample as a control for comparison. Therefore, in order to be more accurate, ICP
It is necessary to perform a cross-check using a method such as -MS, frameless atomic absorption, or the like, and at present it is not always a simple method.

【0005】[0005]

【発明が解決しようとする課題】 全反射蛍光X線装置
を用いて、ウエハ表面の金属の分布状況をより精密に検
査するための手段を提供しようとするものである。即
ち、より簡便な方法を用いて、製造現場の状況や、ゲッ
タリングされた金属の量に対応した形で比較対照として
使用する標準試料を調製し、これを用いて金属のウエハ
表面上の分布状況を検査する方法を提供するものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a means for inspecting the distribution of metals on a wafer surface more precisely by using a total reflection X-ray fluorescence apparatus. That is, using a simpler method, prepare a standard sample to be used as a comparison control in a form corresponding to the situation of the manufacturing site and the amount of gettered metal, and use this to distribute the metal on the wafer surface. It provides a way to check the situation.

【0006】[0006]

【課題を解決するための手段】 本発明者は、製造現場
の状況やゲッタリングする金属の種類や量に応じて精密
な標準試料を調製する方法を見い出すべく種々検討の結
果、特定濃度の所望とする金属の水溶性塩を含む水溶液
を作成し、次いでこの水溶液を低級アルコールやアセト
ンなどの水との相互溶解性が高く、かつ一定以上の蒸発
性を有する有機溶媒に目的とする金属量を標準試料に吸
着させるために充分な濃度となるように混合し、この混
合液を使用することにより上記目的を達成することがで
きることを見い出し、本発明を完成させたものである。
Means for Solving the Problems The present inventors have conducted various studies to find a method for preparing a precise standard sample according to the situation at the manufacturing site and the type and amount of metal to be gettered. An aqueous solution containing a water-soluble salt of a metal is prepared, and then the aqueous solution is mixed with water such as lower alcohol or acetone, and the amount of the target metal is reduced to an organic solvent having a certain or more evaporability. The inventors have found that the above object can be achieved by mixing the mixture so as to have a concentration sufficient for adsorption to a standard sample, and using this mixed solution, thereby completing the present invention.

【0007】[0007]

【発明の実施の形態】 本発明は、全反射蛍光X線装置
を用いたウエハ上の金属の量を測定する方法において、
標準試料として信頼性の高いものを使用することをその
特徴とする。標準試料の調製は以下の通りの手順で行
う。目的とする金属の水溶性塩、例えば亜鉛、ニッケ
ル、銅、鉄、カルシウム、クロムなどの金属の水溶性塩
を一定の濃度となるように純水に溶解させ、得られた水
溶液を低級アルコールやケトンなどの水と相溶性が高
く、かつ蒸発速度が速い有機溶媒に目的とする量の金属
がウエハに付着するに充分な濃度となるように混合し、
次いでこの混合液にヴァージンウエハを一定時間浸漬
し、自然乾燥させる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of metal on a wafer using a total reflection X-ray fluorescence apparatus,
It is characterized by using a highly reliable standard sample. Preparation of a standard sample is performed in the following procedure. A water-soluble salt of a target metal, for example, a water-soluble salt of a metal such as zinc, nickel, copper, iron, calcium, and chromium is dissolved in pure water so as to have a certain concentration, and the obtained aqueous solution is dissolved in a lower alcohol or Highly compatible with water, such as ketones, and mixed with an organic solvent having a high evaporation rate so that the desired amount of metal has a concentration sufficient to adhere to the wafer,
Next, the virgin wafer is immersed in the mixed solution for a certain period of time and air-dried.

【0008】 使用する有機溶媒としては、水との相溶
性が高く、かつ蒸発速度の速い低級アルコールやケトン
が使用される。低級アルコールとしては、メタノール、
エタノール、イソプロパノール、プロパノールなどの炭
素数3以下のアルコールが好適に使用される。ケトンと
してはアセトンが好適に使用される。中でもイソプロパ
ノールが蒸発速度などとの関係で容易に均一な金属の付
着が達成されるので好ましい。
As the organic solvent to be used, lower alcohols and ketones having high compatibility with water and having a high evaporation rate are used. As lower alcohols, methanol,
Alcohols having 3 or less carbon atoms such as ethanol, isopropanol and propanol are preferably used. Acetone is preferably used as the ketone. Above all, isopropanol is preferred because uniform metal deposition can be easily achieved in relation to the evaporation rate.

【0009】 使用する金属塩としては、亜鉛、ニッケ
ル、銅、鉄、カルシウム、クロムなどの水溶性の塩であ
れば特に限定されない。なお、ヴァージンウエハは厳密
な条件下で製造されたものを使用する。金属を含有する
水溶液と上記有機溶媒との混合比は所望とする金属付着
量により適宜選定すれば良いが、通常は水溶液1に対し
て容量比で有機溶媒の量が1〜99の範囲内である。
The metal salt used is not particularly limited as long as it is a water-soluble salt such as zinc, nickel, copper, iron, calcium and chromium. Note that a virgin wafer manufactured under strict conditions is used. The mixing ratio between the aqueous solution containing the metal and the organic solvent may be appropriately selected depending on the desired amount of the metal to be attached. Usually, the amount of the organic solvent is in the range of 1 to 99 in volume ratio to the aqueous solution 1. is there.

【0010】 この混合液へのウエハの浸漬時間は、通
常1分〜10分程度で充分である。浸漬後よく余分な浸
漬液は、クリーンルーム内で室温(22℃前後)で乾燥
させる。上記有機溶媒は乾燥速度が速いので、通風など
による強制乾燥の必要はない。なお、測定に使用される
全反射蛍光X線装置としては特に制限はないが、例え
ば、テクノス社(大阪)製のTREX610T等を使用
すればよい。
The immersion time of the wafer in the mixed solution is usually about 1 minute to 10 minutes. After immersion, excess immersion liquid is dried in a clean room at room temperature (about 22 ° C.). Since the drying speed of the organic solvent is high, there is no need for forced drying by ventilation or the like. The total reflection X-ray fluorescence apparatus used for the measurement is not particularly limited. For example, TREX610T manufactured by Technos (Osaka) may be used.

【0011】 以下、本発明に係る標準試料の調製例に
ついて説明するが、勿論本発明はこれらの例により何ら
限定されるものではない。
Hereinafter, preparation examples of the standard sample according to the present invention will be described, but of course, the present invention is not limited to these examples.

【0012】(標準試料の調製例)Fe、Cu、Ni、
Zn、Cr及びCaの10ppm標準液をそれぞれ0〜
200ccづつ正確にメスシリンダ−で量り採り、これ
にイソプロパノールをそれぞれ加えて全量が1000c
cとした。この混合液を充分に振とう撹拌後、浸漬槽に
入れ、その浸漬槽に充分に洗浄した6インチのウエハを
3分間浸漬し、浸漬後余分な浸漬液を除き、次いでクリ
ーンルーム内で室温で乾燥させて標準試料を調製した。
(Preparation Example of Standard Sample) Fe, Cu, Ni,
Each of 10 ppm standard solutions of Zn, Cr and Ca was
Measure exactly 200cc each with a graduated cylinder, add isopropanol to each, add 1000c
c. After thoroughly stirring this mixed solution, put it into an immersion tank, immerse a sufficiently washed 6-inch wafer in the immersion tank for 3 minutes, remove excess immersion liquid after immersion, and dry at room temperature in a clean room. To prepare a standard sample.

【0013】 上記の標準試料上の金属の付着状況を付
着量の均一性が高く、化学分析においても安定した分析
が可能なNiの付着量をテクノス社製TREX610T
を用いてウェハ上の任意の点9カ所を選択し、各点毎に
測定し、その積分付着量をヒストグラムを用いて図1に
示す。又、スピンコ−ト法により調製された市販の標準
試料上のNiの付着量も同様に測定し、その結果は図2
に示す。この二つの図面に示した結果から明らかな通
り、上記の方法により調製した標準試料のNi付着量は
市販品であるスピンコート法で調製されたものよりも均
一性が高く、定量分析の際の検量線作成用の標準品とし
て充分に実用に供せられるものであることが判る。
The amount of Ni deposited on the above standard sample is determined by the TREX610T manufactured by Technos Co., Ltd.
Are used to select nine arbitrary points on the wafer, measurement is performed for each point, and the integrated adhesion amount is shown in FIG. 1 using a histogram. In addition, the amount of Ni deposited on a commercially available standard sample prepared by the spin coating method was measured in the same manner.
Shown in As is clear from the results shown in these two drawings, the Ni adhesion amount of the standard sample prepared by the above method is higher in uniformity than that prepared by the spin coating method which is a commercially available product, It can be seen that the product is sufficiently practical for use as a standard product for preparing a calibration curve.

【0014】 上記の方法により調製した標準試料と市
販品であるスピンコート法を用いて製造された標準試料
上の金属付着量をテクノス社製全反射蛍光X線装置を用
い測定して、以下の表1に示す結果を得た。
The amount of metal adhered on the standard sample prepared by the above method and a standard sample manufactured by using a commercially available spin coating method was measured using a total reflection fluorescent X-ray apparatus manufactured by Technos, and the following was measured. The results shown in Table 1 were obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】 上記の表1に示された結果から、本発明
に係る方法はウエハ上の金属付着量の測定用の標準試料
として優れていることが明らかである。このものを使用
して、実際に測定したところ再現性の高い測定結果が得
られた。
From the results shown in Table 1 above, it is clear that the method according to the present invention is excellent as a standard sample for measuring the amount of metal adhesion on a wafer. When this was used for actual measurement, a highly reproducible measurement result was obtained.

【0017】[0017]

【発明の効果】 上記の如く、特定の有機溶媒を使用し
て所定の金属量となるように亜鉛、ニッケル、銅、鉄、
カルシウム及びクロムをヴァージンウエハに付着させた
標準試料を用いて、全反射蛍光X線による金属付着量を
測定することにより、より正確な金属の付着量の測定が
可能となり、シリコンウエハの製造工場の製品検査品質
検査などをより容易に行うことができるという効果が得
られる。
Effect of the Invention As described above, zinc, nickel, copper, iron,
Using a standard sample in which calcium and chromium are adhered to a virgin wafer, the amount of adhered metal is measured by total reflection X-ray fluorescence. The effect is obtained that product inspection and quality inspection can be performed more easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明において使用する方法により調製し
たレファレンスウエハ上の金属の代表として検査したN
iの付着量の分布状態をヒストグラムで示した図であ
る。
FIG. 1: N tested as representative of metal on a reference wafer prepared by the method used in the present invention.
It is the figure which showed the distribution state of the adhesion amount of i by the histogram.

【図2】 スピンコ−ト法により調製したレファレンス
ウエハ上の金属の代表として検査したNiの付着量の分
布状態をヒストグラムで示した図である。
FIG. 2 is a histogram showing a distribution state of an attached amount of Ni inspected as a representative of metal on a reference wafer prepared by a spin coating method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 典夫 栃木県宇都宮市清原工業団地11番2 エ ム・イー・エム・シー株式会社内 Fターム(参考) 2G001 AA01 BA04 CA01 FA02 GA01 GA13 KA01 LA11 NA09 NA10 NA11 NA13 NA17 RA02 RA03 RA20 4M106 AA01 AA07 AB16 AB17 CB01 DH25 DJ18  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Norio Nakamura 11-2 Kiyohara Industrial Park, Utsunomiya City, Tochigi Prefecture F-term in MMC Corporation (reference) 2G001 AA01 BA04 CA01 FA02 GA01 GA13 KA01 LA11 NA09 NA10 NA11 NA13 NA17 RA02 RA03 RA20 4M106 AA01 AA07 AB16 AB17 CB01 DH25 DJ18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 全反射蛍光X線を用いてウエハ上の金属
付着量を測定する方法において、標準試料として、所望
の金属の水溶性塩を含有する水溶液を低級アルコール又
はケトン類から選択された有機溶媒に混合し、この混合
液にヴァージンウエハを一定時間浸漬し、次いで乾燥さ
せて調製したものを用いることを特徴とする上記方法。
In a method for measuring the amount of metal adhered on a wafer using total reflection X-ray fluorescence, an aqueous solution containing a water-soluble salt of a desired metal is selected from lower alcohols or ketones as a standard sample. The above-mentioned method, wherein the mixture is mixed with an organic solvent, a virgin wafer is immersed in the mixed solution for a certain period of time, and then dried and used.
【請求項2】 請求項1において有機溶媒としてイソプ
ロパノールを用いる方法。
2. The method according to claim 1, wherein isopropanol is used as the organic solvent.
JP10203230A 1998-07-17 1998-07-17 Measuring method of metal deposit quantity on wafer Pending JP2000035410A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10203230A JP2000035410A (en) 1998-07-17 1998-07-17 Measuring method of metal deposit quantity on wafer
EP99937277A EP1105921A1 (en) 1998-07-17 1999-07-16 Process for mapping metal contaminant concentration on a silicon wafer surface
KR1020007014851A KR20010071617A (en) 1998-07-17 1999-07-16 Process for mapping metal contaminant concentration on a silicon wafer surface
PCT/US1999/016109 WO2000004579A1 (en) 1998-07-17 1999-07-16 Process for mapping metal contaminant concentration on a silicon wafer surface
CN99808750A CN1350700A (en) 1998-07-17 1999-07-16 Process for mapping metal contaminant concentration on a silicon wafer surface
TW088112167A TW416116B (en) 1998-07-17 1999-08-05 Process for mapping metal contaminant concentration on a silicon wafer surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10203230A JP2000035410A (en) 1998-07-17 1998-07-17 Measuring method of metal deposit quantity on wafer

Publications (1)

Publication Number Publication Date
JP2000035410A true JP2000035410A (en) 2000-02-02

Family

ID=16470614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10203230A Pending JP2000035410A (en) 1998-07-17 1998-07-17 Measuring method of metal deposit quantity on wafer

Country Status (6)

Country Link
EP (1) EP1105921A1 (en)
JP (1) JP2000035410A (en)
KR (1) KR20010071617A (en)
CN (1) CN1350700A (en)
TW (1) TW416116B (en)
WO (1) WO2000004579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312545B1 (en) 2012-01-04 2013-09-30 주식회사 엘지실트론 Standard wafer and method for manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102062733B (en) * 2010-12-09 2012-05-23 浙江昱辉阳光能源有限公司 Method for detecting surface residues of solar silicon wafer after cleaning
CN104165922B (en) * 2013-05-17 2016-09-28 无锡华润上华半导体有限公司 The measuring method of silicon chip surface metallic element
CN108735575A (en) * 2017-04-18 2018-11-02 上海新昇半导体科技有限公司 Wafer processing method
WO2019150967A1 (en) * 2018-01-31 2019-08-08 富士フイルム株式会社 Analysis method, liquid medicine, and method for manufacturing liquid medicine
CN109632855B (en) * 2018-11-15 2020-05-05 北京大学 Method for detecting impurity defect concentration substituting for cation position in compound semiconductor
CN112539982B (en) * 2020-12-03 2023-11-03 西安奕斯伟材料科技股份有限公司 Manufacturing method of silicon wafer sample and silicon wafer sample

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144151A (en) * 1990-09-21 1992-05-18 Mitsubishi Materials Corp Measurement of wafer surface impurity concentration
US5418172A (en) * 1993-06-29 1995-05-23 Memc Electronic Materials S.P.A. Method for detecting sources of contamination in silicon using a contamination monitor wafer
JPH1164180A (en) * 1997-08-27 1999-03-05 Shin Etsu Handotai Co Ltd Method and equipment for producing silicon wafer quantitatively contaminated sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312545B1 (en) 2012-01-04 2013-09-30 주식회사 엘지실트론 Standard wafer and method for manufacturing the same

Also Published As

Publication number Publication date
KR20010071617A (en) 2001-07-28
WO2000004579A9 (en) 2001-07-05
WO2000004579A1 (en) 2000-01-27
TW416116B (en) 2000-12-21
CN1350700A (en) 2002-05-22
EP1105921A1 (en) 2001-06-13

Similar Documents

Publication Publication Date Title
Li et al. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy
CN109342387B (en) Method for detecting ketoconazole based on surface Raman enhancement of nano-silver colloid
JP2000035410A (en) Measuring method of metal deposit quantity on wafer
Marple et al. Polarographic Studies with Stationary Mercury-Plated Platinum Electrode
JP2013167635A (en) Liquid-particle analysis of metal materials
JP2009511906A (en) Method for measuring hexavalent chromium in electronic parts and electronic assemblies
Dao et al. Fabrication of uniform arrays of silver nanoparticles on silicon by electrodeposition in ethanol solution and their use in SERS detection of difenoconazole pesticide
Di Marco et al. Metal ion release from fine particulate matter sampled in the Po Valley to an aqueous solution mimicking fog water: kinetics and solubility
CN111077136A (en) Method for measuring contents of iron and manganese in electro-galvanizing pre-plating solution by ICP-OES
CN113495066A (en) Method for carrying out sensitive SERS (surface enhanced Raman Scattering) detection on micro-plastic by gold-assembled sponge with bowl-shaped structure
CN114813698A (en) Method for detecting phosphate in aquaculture water based on surface enhanced Raman spectroscopy
Dolgin et al. Quantification of trace metals in water using complexation and filter concentration
JPH06249764A (en) Preparation of standard sample for analysis of metal contamination on surface of silicon wafer
JP2001223251A (en) Method for analyzing metal contained in quartz
KR100203749B1 (en) Measuring method for metal contamination of poly silicon layer
CN112683889B (en) Binary chromogenic test paper and method for rapidly and semi-quantitatively detecting Cd (II)
DE102005060211B4 (en) Method for determining the surface coverage of a quartz glass component
KR100919226B1 (en) Electro-chemical process for evaluating thickness of metal plated-layer
CN113281326A (en) Characterization method of thickness of galvanized passivation film
WO2022180229A1 (en) Method of measuring the content of a chemical element in a coating
CN108872213B (en) Method for measuring high-content nickel element in Au82Ni alloy
SU1684628A1 (en) Method of checking quality of electrodeposited coating
CN116179188A (en) Ferrocenyl-containing ketene pair Fe 3+ Should specifically recognize
CN104897664A (en) Visual detection method for trace copper ions
Stapleton Quality Control of Electroless Nickel Deposits