JP2000034558A - Evaporating source - Google Patents

Evaporating source

Info

Publication number
JP2000034558A
JP2000034558A JP10213469A JP21346998A JP2000034558A JP 2000034558 A JP2000034558 A JP 2000034558A JP 10213469 A JP10213469 A JP 10213469A JP 21346998 A JP21346998 A JP 21346998A JP 2000034558 A JP2000034558 A JP 2000034558A
Authority
JP
Japan
Prior art keywords
resistor
evaporation
evaporation source
container
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10213469A
Other languages
Japanese (ja)
Other versions
JP4281029B2 (en
Inventor
Hitoshi Nakakawara
均 中河原
Koji Shimokawa
宏治 下川
Takayuki Moriwaki
崇行 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP21346998A priority Critical patent/JP4281029B2/en
Publication of JP2000034558A publication Critical patent/JP2000034558A/en
Application granted granted Critical
Publication of JP4281029B2 publication Critical patent/JP4281029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporating source capable of charging a large quantity of evaporating material, suitable for a film forming device for production and moreover excellent in the control of the amt. to be evaporated by a high vapor pressure material such as an organic material or the like. SOLUTION: This source has a resistance heating vessel 11 composed of a planar resistor 12 and an upper cover resistor 13, the electric current controlled by a detected signal from a crystal oscillator type film thickness instrument is made to flow to each resistor to generate heat, by which an evaporating material 16 is evaporated, and the evaporated particles are released from a blow-off hole 17 disposed on the resistance heating vessel, moreover, the resistance heating vessel is provided with a material vessel 15 large in volume, this material vessel is filled with a large quantity of evaporating material 16, and, a part of the charged evaporating material is brought into contact with the planar resistor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蒸発源に関し、特
に、真空容器内で高蒸気圧材料を蒸発させ基板に薄膜を
形成する成膜装置に使用され、生産用装置に適した、抵
抗加熱の原理を応用してなる蒸発源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporation source, and more particularly, to a resistance heating device suitable for a production apparatus, which is used in a film forming apparatus for forming a thin film on a substrate by evaporating a material having a high vapor pressure in a vacuum vessel. It relates to an evaporation source applying the principle.

【0002】[0002]

【従来の技術】高蒸気圧材料(有機EL用有機物等)を
蒸発させて基板に成膜を行う成膜装置(蒸着装置)に使
用される従来の蒸発源は、抵抗体を使用する抵抗加熱蒸
発源と、ルツボの周囲に発熱線を巻いたセルタイプの蒸
発源に大別される。従来の抵抗加熱蒸発源とセルタイプ
蒸発源を図を参照して説明する。
2. Description of the Related Art A conventional evaporation source used in a film forming apparatus (evaporation apparatus) for forming a film on a substrate by evaporating a material having a high vapor pressure (such as an organic substance for organic EL) is a resistance heating using a resistor. Evaporation sources and cell-type evaporation sources with a heating wire wound around a crucible are roughly classified. A conventional resistance heating evaporation source and a cell type evaporation source will be described with reference to the drawings.

【0003】図6は抵抗加熱蒸発源の代表的構成を示
す。図6に示すごとく、成膜装置を形成する真空容器7
1の中で、下方位置に抵抗加熱蒸発源72が設けられ、
上方位置にホルダ73に支持された基板74が配置され
る。ホルダ73はリング形状であり、基板74の下面が
下方に臨み、この下面に、蒸発して下方から到来する高
蒸気圧材料が成膜される。基板74の近傍には、抵抗加
熱蒸発源72における材料の蒸発量を制御するための検
出信号を出力する水晶振動子式膜厚計75の検出器76
が配置される。抵抗加熱蒸発源72から矢印77のごと
く放出された蒸発粒子は、基板74の下面の他、膜厚計
75の検出器76にも付着する。抵抗加熱蒸発源72
は、下側のボート状抵抗体78と、上側の蓋状抵抗体7
9と、両者の間に介設される板状抵抗体80とからな
り、3つの抵抗体は図示されるごとく重ね合わされ、両
端部を電極部81,82で挟持され固定されている。ボ
ート状抵抗体78は蒸発材料83を充填する容器として
機能する。蓋状抵抗体79と板状抵抗体80には、蒸発
材料83の蒸発粒子が通過する吹出し孔79a,80a
が形成されている。抵抗加熱蒸発源72の各抵抗体7
8,79,80には電源84から電極部81,82を介
して電流が供給され、抵抗体が発熱する。電源84から
供給される電流の量は、膜厚計75からの検出信号に基
づき制御される。抵抗体78,79,80が発熱する
と、ボート状抵抗体78に充填された蒸発材料83は材
料固有の温度で蒸発を開始する。蒸発材料83の蒸発粒
子は抵抗体80,79に形成された吹出し孔80a,7
9aを通って抵抗加熱蒸発源72の周囲の空間に放出さ
れる。こうして放出された蒸発粒子は前述のごとく基板
74の下面および検出器76の下面に堆積する。上記の
水晶振動子式膜圧計75は、蒸発粒子が検出器76に付
着することにより発振周波数が変化することを利用し
て、蒸発量を制御する機器である。膜厚計75は、検出
器76の蒸発粒子の付着量を監視しながら、所望の蒸発
量になるように電源84に信号ケーブルを介して信号を
送り、電源84の出力を変化させることで抵抗体78〜
80の発熱量を変化させ、蒸発材料83の蒸発量を制御
する。
FIG. 6 shows a typical configuration of a resistance heating evaporation source. As shown in FIG. 6, a vacuum vessel 7 for forming a film forming apparatus
1, a resistance heating evaporation source 72 is provided at a lower position,
A substrate 74 supported by the holder 73 is disposed at an upper position. The holder 73 has a ring shape, and the lower surface of the substrate 74 faces downward, and a high vapor pressure material that evaporates and arrives from below is formed on the lower surface. In the vicinity of the substrate 74, a detector 76 of a quartz oscillator type film thickness meter 75 for outputting a detection signal for controlling the amount of evaporation of the material in the resistance heating evaporation source 72.
Is arranged. Evaporated particles emitted from the resistance heating evaporation source 72 as indicated by an arrow 77 adhere to the detector 76 of the film thickness meter 75 in addition to the lower surface of the substrate 74. Resistance heating evaporation source 72
Are the lower boat-shaped resistor 78 and the upper lid-shaped resistor 7
9 and a plate-shaped resistor 80 interposed therebetween, the three resistors are overlapped as shown in the figure, and both ends are sandwiched and fixed between the electrode portions 81 and 82. The boat-shaped resistor 78 functions as a container for filling the evaporation material 83. In the lid-shaped resistor 79 and the plate-shaped resistor 80, blowout holes 79a, 80a through which the evaporated particles of the evaporation material 83 pass.
Are formed. Each resistor 7 of the resistance heating evaporation source 72
Current is supplied to the power supply 8, 79, 80 from the power supply 84 via the electrode portions 81, 82, and the resistor generates heat. The amount of current supplied from the power supply 84 is controlled based on a detection signal from the film thickness meter 75. When the resistors 78, 79, and 80 generate heat, the evaporation material 83 filled in the boat-shaped resistor 78 starts to evaporate at a temperature unique to the material. The evaporating particles of the evaporating material 83 are blown out from the blowing holes 80a, 7
It is discharged to the space around the resistance heating evaporation source 72 through 9a. The evaporating particles thus emitted are deposited on the lower surface of the substrate 74 and the lower surface of the detector 76 as described above. The quartz-crystal vibrating tonometer 75 is a device that controls the amount of evaporation by utilizing the fact that the oscillation frequency changes when the evaporated particles adhere to the detector 76. The film thickness meter 75 sends a signal to the power supply 84 via a signal cable so as to obtain a desired evaporation amount while monitoring the amount of the evaporated particles attached to the detector 76, and changes the output of the power supply 84 to change the resistance. Body 78 ~
The amount of heat generated by the evaporating material 83 is controlled by changing the amount of heat generated by the evaporator 80.

【0004】次に図7はセルタイプ蒸発源の代表的構成
を示す。図7において、図6で説明した要素と実質的に
同一の要素には同一の符号を付している。図7に示すご
とく、成膜装置を形成する真空容器71の中で、下方位
置にセルタイプ蒸発源85が設けられ、上方位置にホル
ダ73に支持された基板74が配置される。ホルダ73
を介して基板74の下面が下方に臨み、この下面に、蒸
発して下方から到来する高蒸気圧材料が成膜される。セ
ルタイプ蒸発源85はルツボ86と、ルツボ86の下部
周囲に巻かれた発熱線87から構成され、電源88から
発熱線87に電流を流すことでこの発熱線87が発熱
し、その輻射熱でルツボ86の温度を上昇させることで
ルツボ86内に充填された材料83は材料固有の温度で
蒸発を始める。ルツボ86の材料が石英等の赤外波長を
透過しやすい物質でできている場合は、発熱線87から
の輻射熱で直接に材料83を加熱することとなる。蒸発
粒子は、ルツボ86の開口86aから蒸発源の周囲空間
に矢印89のごとく放出される。放出された蒸発粒子
は、一部が基板74の表面に到達する。蒸発量の制御
は、ルツボ86の外側に設置された熱電対による温調計
90でルツボ温度を監視し電源88の出力を変化させる
ことで行われる。
Next, FIG. 7 shows a typical configuration of a cell type evaporation source. In FIG. 7, elements substantially the same as the elements described in FIG. 6 are denoted by the same reference numerals. As shown in FIG. 7, in a vacuum vessel 71 forming a film forming apparatus, a cell type evaporation source 85 is provided at a lower position, and a substrate 74 supported by a holder 73 is arranged at an upper position. Holder 73
The lower surface of the substrate 74 faces downward through the substrate, and a high vapor pressure material that evaporates and arrives from below is formed on the lower surface. The cell-type evaporation source 85 is composed of a crucible 86 and a heating wire 87 wound around the lower part of the crucible 86. When a current is passed from the power supply 88 to the heating wire 87, the heating wire 87 generates heat. By raising the temperature of the material 86, the material 83 filled in the crucible 86 starts to evaporate at a material-specific temperature. When the material of the crucible 86 is made of a substance that easily transmits infrared wavelengths, such as quartz, the material 83 is directly heated by radiant heat from the heating wire 87. The evaporating particles are emitted from the opening 86a of the crucible 86 into the space around the evaporation source as indicated by an arrow 89. Part of the released evaporating particles reaches the surface of the substrate 74. The evaporation amount is controlled by monitoring the crucible temperature with a temperature controller 90 using a thermocouple installed outside the crucible 86 and changing the output of the power supply 88.

【0005】[0005]

【発明が解決しようとする課題】従来の抵抗加熱蒸発源
は、抵抗体の熱容量が小さく、抵抗体の電流値の変化に
対する材料の温度変化の応答性がよく、蒸発量の制御性
に優れている。その反面、このような特長を発揮させる
観点から蒸発材料を充填するボート状抵抗体78の形態
が定められているので、蒸発材料を多く充填できず、こ
のため長時間蒸発させることは難しく、生産装置には向
いていないという欠点を有している。
The conventional resistance heating evaporation source has a small heat capacity of the resistor, a good response to a change in the temperature of the material with respect to a change in the current value of the resistor, and an excellent controllability of the evaporation amount. I have. On the other hand, from the viewpoint of exhibiting such features, since the form of the boat-shaped resistor 78 for filling the evaporating material is determined, a large amount of evaporating material cannot be filled, and it is difficult to evaporate for a long time. It has the disadvantage of not being suitable for devices.

【0006】一方、従来のセルタイプ蒸発源は、構造的
に蒸発材料を大量に充填できるため、生産装置には向い
ているという特長を有する。しかし、蒸発材料が大量で
あるため熱容量が大きいことと、ルツボ外側からの熱輻
射で材料の蒸発制御を行っていることで、発熱線87を
流れる電流値の変化に対する材料の温度変化の応答性が
悪く、特に高い蒸発速度での制御が難しいという欠点を
有している。さらにルツボ86の外周部分の温度変化を
監視しているために、ルツボ内の材料の量の変化に伴
い、材料の温度が異なり、蒸発量が異なるという欠点を
有している。
On the other hand, the conventional cell-type evaporation source has a feature that it is suitable for a production apparatus because it can structurally fill a large amount of evaporation material. However, due to the large amount of evaporating material, the heat capacity is large, and the evaporation of the material is controlled by heat radiation from the outside of the crucible. And it is difficult to control at a particularly high evaporation rate. Further, since the temperature change of the outer peripheral portion of the crucible 86 is monitored, there is a drawback that the temperature of the material is different and the evaporation amount is different with the change of the amount of the material in the crucible.

【0007】現在のところ蒸発源としては生産装置の適
した材料の充填量の観点からセルタイプが主流である。
しかしながら、上記欠点を有することから、さらに蒸発
速度の制御性が高い蒸発源が望まれている。
At present, a cell type is mainly used as an evaporation source from the viewpoint of a filling amount of a material suitable for a production apparatus.
However, because of the above-mentioned drawbacks, an evaporation source with higher controllability of the evaporation rate is desired.

【0008】本発明の目的は、上記問題を解決すること
にあり、大量の蒸発材料を充填できて生産用成膜装置に
適し、さらに有機物材料等の高蒸気圧材料で蒸発量の制
御に優れた蒸発源を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and it is possible to fill a large amount of evaporating material, so that it is suitable for a film forming apparatus for production. To provide an evaporation source.

【0009】[0009]

【課題を解決するための手段および作用】本発明に係る
蒸発源は上記目的を達成するために次のように構成され
る。第1の蒸発源(請求項1に対応)は、抵抗体からな
る抵抗加熱容器を有し、水晶振動子式の膜厚計からの検
出信号で制御された電流を抵抗体に流し発熱させて蒸発
材料を蒸発させ、抵抗加熱容器に設けた吹出し孔から蒸
発粒子を放出するように構成され、さらに抵抗加熱容器
に容積の大きい材料容器を設け、この材料容器に蒸発材
料を多量に充填し、かつ充填された蒸発材料の一部が上
記抵抗体に接触するように構成される。本発明に係る蒸
発源では、抵抗加熱型の蒸発源の構成をベースとして容
積の大きい材料容器を付設することより多量の蒸発材料
を蒸発させることができ、生産装置として適した構成を
有する。さらに材料容器に充填された多量の蒸発材料が
材料容器の外側へ出るとき、その一部が抵抗体に接触
し、部分的に蒸発を発生させる。これによって多量の蒸
発材料を偏ることなく、蒸発させることが可能となる。
さらに抵抗加熱蒸発源の構造を利用するため、蒸発量に
高い制御を行うことが可能となる。第2の蒸発源(請求
項2に対応)は、上記第1の構成において、上記抵抗加
熱容器が板状抵抗体と上蓋抵抗体からなり、上蓋抵抗体
に材料容器を備えると共に吹出し孔を形成し、材料容器
の下部開口部を板状抵抗体に近づけて設けるように構成
される。蒸発材料が充填された材料容器は逆さに配置さ
れ、材料容器の開口部は下部に位置し、板状抵抗体に接
近させて設けられる。材料容器内の蒸発材料は下方に移
動し、もっとも下側に位置する蒸発材料が板状抵抗体に
接触する。第3の蒸発源(請求項3に対応)は、上記第
1の構成において、抵抗加熱容器が、材料容器を備えた
上蓋抵抗体と、吹出し孔を有するボート状抵抗体と、上
蓋抵抗体とボート状抵抗体の間に設けられ蒸発粒子の通
過孔を有する板状抵抗体とからなり、材料容器の下部開
口部を板状抵抗体に近づけて設けるように構成される。
この構成によれば、多量の蒸発材料を充填できる材料容
器を備え、生産装置に適したデポダウン構造の蒸発源が
実現される。第4の蒸発源(請求項4に対応)は、上記
第1の構成において、抵抗加熱容器が、吹出し孔を有す
る上蓋抵抗体と、材料容器を備えたボート状抵抗体と、
上蓋抵抗体とボート状抵抗体の間に設けられ蒸発粒子の
通過孔を有する板状抵抗体とからなり、材料容器の上部
開口部を板状抵抗体に近づけて設け、かつ材料容器に、
温調計からの検出信号で制御された電流で発熱し蒸発材
料を蒸発させる発熱線を設けるように構成される。この
蒸発源は、抵抗加熱の構造とセルタイプの構造を組み合
わせ、多量の蒸発材料を用意して生産装置に適し、かつ
蒸発材料の蒸発量の制御を高めることができる。第5の
蒸発源(請求項5に対応)は、上記の各構成において、
材料容器は絶縁性を有するルツボであることが好まし
い。
The evaporation source according to the present invention is constituted as follows to achieve the above object. The first evaporation source (corresponding to claim 1) has a resistance heating container formed of a resistor, and causes a current controlled by a detection signal from a quartz oscillator type film thickness meter to flow through the resistor to generate heat. It is configured to evaporate the evaporating material and discharge the evaporating particles from the blowing holes provided in the resistance heating container, and further provide a large-capacity material container in the resistance heating container, and fill the material container with a large amount of the evaporating material, And it is comprised so that a part of filled evaporation material may contact the said resistor. The evaporation source according to the present invention can evaporate a large amount of evaporation material by providing a large-capacity material container based on the configuration of the resistance heating type evaporation source, and has a configuration suitable as a production device. Further, when a large amount of evaporating material filled in the material container goes out of the material container, a part of the material comes into contact with the resistor and causes partial evaporation. This makes it possible to evaporate a large amount of evaporating material without bias.
Further, since the structure of the resistance heating evaporation source is used, it is possible to perform high control on the evaporation amount. In the second evaporation source (corresponding to claim 2), in the first configuration, the resistance heating container includes a plate-shaped resistor and an upper lid resistor, and the upper lid resistor includes a material container and forms a blowing hole. Then, the lower opening of the material container is provided close to the plate-shaped resistor. The material container filled with the evaporating material is arranged upside down, and the opening of the material container is located at the lower part and is provided close to the plate-shaped resistor. The evaporative material in the material container moves downward, and the evaporative material located at the lowest position contacts the plate-shaped resistor. In a third evaporation source (corresponding to claim 3), in the first configuration, the resistance heating container includes an upper lid resistor having a material container, a boat-shaped resistor having a blowing hole, and an upper lid resistor. It is provided with a plate-shaped resistor provided between the boat-shaped resistors and having a passage hole for evaporating particles. The lower opening of the material container is provided close to the plate-shaped resistor.
According to this configuration, an evaporation source having a depot-down structure suitable for a production apparatus is provided, including a material container capable of filling a large amount of evaporation material. In a fourth evaporation source (corresponding to claim 4), in the first configuration, the resistance heating container has an upper lid resistor having a blowing hole, a boat-shaped resistor having a material container,
Consisting of a plate-shaped resistor provided between the upper lid resistor and the boat-shaped resistor and having a passage hole for evaporating particles, the upper opening of the material container is provided close to the plate-shaped resistor, and the material container has
A heating wire is provided to generate heat with a current controlled by a detection signal from the temperature controller to evaporate the evaporation material. This evaporation source combines a resistance heating structure and a cell type structure, prepares a large amount of evaporation material, is suitable for a production apparatus, and can enhance the control of the evaporation amount of the evaporation material. The fifth evaporation source (corresponding to claim 5) may be configured such that:
The material container is preferably a crucible having insulation properties.

【0010】[0010]

【発明の実施の形態】以下に、本発明の好適な実施形態
を添付図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1〜図3は本発明に係る蒸発源の第1の
実施形態を示す。図1は上方斜めから見た容器部分の外
観を示し、図2は内部構造を示し、図3は図2における
A−A線断面の図を示している。この実施形態による蒸
発源は抵抗加熱蒸発源を応用した構成を有している。蒸
発源の容器11は、底部を形成する板状抵抗体12と、
上蓋抵抗体13とから構成される抵抗加熱容器である。
板状抵抗体12では中央部に仕切り壁14が形成されて
いる。上蓋抵抗体13には、従来の抵抗加熱蒸発源の蓋
状抵抗体と同じ形態を有し、かつ長手方向の一方の側に
上方向に立てた姿勢で長形の材料容器15が設けられて
いる。板状抵抗体12と上蓋抵抗体13は、電流を流す
と熱を発する高融点金属(タングステン、モリブデン
等)で作製され、材料容器15は例えば絶縁性のある石
英で形成されている。図2に示されるごとく材料容器1
5の上端は閉じられており、下端は開いている。下端の
開口部は材料容器15内に蒸発材料16を充填する口と
して、および蒸発させるときの蒸発材料16が取り出さ
れる口として使用される。板状抵抗体12と上蓋抵抗体
13は図2に示されるごとく重ね合わされて使用され、
容器11が形成される。上蓋抵抗体13に設けられた材
料容器15は、その下端の開口部が板状抵抗体12に接
近し、重ね合わせたときには所望の隙間が形成されるよ
うになっている。また材料容器15の長さは充填しよう
とする蒸発材料16の量に対応させて決められる。板状
抵抗体12と上蓋抵抗体13を重ね合わせて蒸発源の容
器11を形成したとき、材料容器15は、板状抵抗体1
2の仕切り壁14の一方の側(図2中左側)に位置する
ように構成されている。また上蓋抵抗体13には、仕切
り壁14を境として材料容器15とは反対側の部分に、
蒸発材料16から蒸発した粒子が容器11の周囲空間に
放出されるための例えば1つの吹出し孔17が形成され
ている。板状抵抗体12の仕切り壁14と上蓋抵抗体1
3との間には隙間18が形成されている。蒸発粒子は、
矢印19に示されるごとく移動して吹出し孔17から放
出されることになる。仕切り板14を設けた理由は、蒸
発粒子の通路のコンダクタンスを小さくして圧力勾配を
つけることにある。圧力勾配がつけられると、蒸発粒子
の拡散が顕著になる。
1 to 3 show a first embodiment of an evaporation source according to the present invention. FIG. 1 shows the external appearance of the container portion viewed obliquely from above, FIG. 2 shows the internal structure, and FIG. 3 shows a cross-sectional view taken along line AA in FIG. The evaporation source according to this embodiment has a configuration in which a resistance heating evaporation source is applied. The evaporation source container 11 includes a plate-shaped resistor 12 forming a bottom,
This is a resistance heating container composed of the upper lid resistor 13.
In the plate-like resistor 12, a partition wall 14 is formed at the center. The upper lid resistor 13 has the same form as the lid resistor of the conventional resistance heating evaporation source, and is provided with an elongated material container 15 in an upright posture on one side in the longitudinal direction. I have. The plate-shaped resistor 12 and the upper lid resistor 13 are made of a high melting point metal (tungsten, molybdenum or the like) that generates heat when an electric current is applied, and the material container 15 is made of, for example, quartz having an insulating property. Material container 1 as shown in FIG.
The upper end of 5 is closed and the lower end is open. The opening at the lower end is used as a port for filling the material container 15 with the evaporating material 16 and as a port for taking out the evaporating material 16 when evaporating. The plate-shaped resistor 12 and the upper cover resistor 13 are used by being overlapped as shown in FIG.
The container 11 is formed. The material container 15 provided in the upper lid resistor 13 has an opening at the lower end thereof close to the plate-shaped resistor 12, and a desired gap is formed when they are overlapped. The length of the material container 15 is determined according to the amount of the evaporating material 16 to be filled. When the plate resistor 12 and the upper lid resistor 13 are overlapped to form the evaporation source container 11, the material container 15
The second partition wall 14 is configured to be located on one side (the left side in FIG. 2). In addition, the upper lid resistor 13 is provided at a portion opposite to the material container 15 with the partition wall 14 as a boundary,
For example, one blowout hole 17 for discharging particles evaporated from the evaporation material 16 to the space around the container 11 is formed. Partition wall 14 of plate-shaped resistor 12 and upper lid resistor 1
3, a gap 18 is formed. Evaporated particles are
It moves as indicated by the arrow 19 and is discharged from the blowout hole 17. The reason why the partition plate 14 is provided is that the conductance of the passage of the evaporated particles is reduced to provide a pressure gradient. When a pressure gradient is applied, the diffusion of the evaporated particles becomes remarkable.

【0012】図2に示されるように、重ね合わされた板
状抵抗体12と上蓋抵抗体13は、その両端が重ね合わ
され、電極部20,21によって固定される。電極部2
0,21は各々2枚の板材を重ねてネジ等で固定する構
造を有し、それにより上記両端を挟み込み、固定する。
図に示すように板状抵抗体12と上蓋抵抗体13は各々
の周縁部が接触した状態に保持されるが、板状抵抗体1
2の上で溶融し蒸発する蒸発材料16が外部に漏れない
ように両者は密閉した状態で保持されている。この密閉
状態を作るために、板状抵抗体12あるいは上蓋抵抗体
13の縁部に折返し部を設けることも好ましい。
As shown in FIG. 2, both ends of the superposed plate-shaped resistor 12 and upper cover resistor 13 are superposed and fixed by the electrode portions 20 and 21. Electrode part 2
Reference numerals 0 and 21 each have a structure in which two plate members are stacked and fixed with screws or the like, thereby sandwiching and fixing the both ends.
As shown in the figure, the plate-shaped resistor 12 and the upper lid resistor 13 are held in a state where their respective peripheral portions are in contact with each other.
Both are kept closed so that the evaporating material 16 that melts and evaporates on the two does not leak outside. In order to create this closed state, it is also preferable to provide a folded portion at the edge of the plate-shaped resistor 12 or the upper lid resistor 13.

【0013】上記構成を有する蒸発源は、図6で説明し
た従来の成膜装置と同様な装置に使用される。すなわち
蒸発源の板状抵抗体12と上蓋抵抗体13には、電極部
20,21を介して電源22から電流が供給される。板
状抵抗体12と上蓋抵抗体13に電流が流れると、材料
容器15に充填された多量の蒸発材料16のうち、板状
抵抗体12に接触する最下位に位置する蒸発材料の部分
から溶融し蒸発する。蒸発した粒子は矢印19のごとく
移動し、吹出し孔17から周囲の空間に放出される。容
器11の上蓋抵抗体13の吹出し孔17から放出された
蒸発粒子は上昇し、図6で示されたように基板74の下
面に付着し成膜される。蒸発源における蒸発材料16の
蒸発量の制御は従来と同じであり、水晶振動子式薄膜計
からの検出信号に基づき抵抗体に流す電流量を調整する
ことにより制御される。本実施形態による蒸発源によれ
ば、多くの蒸発材料を充填することができ、かつ下部の
蒸発材料から次第に蒸発するように構成したため、長時
間の連続成膜が可能になり、生産装置への利用が可能で
あると共に、蒸発量の適切に制御することができ、さら
に低電力で蒸発を行うことができる。
The evaporation source having the above configuration is used in an apparatus similar to the conventional film forming apparatus described with reference to FIG. That is, current is supplied from the power source 22 to the plate-shaped resistor 12 and the upper lid resistor 13 of the evaporation source via the electrode portions 20 and 21. When an electric current flows through the plate-shaped resistor 12 and the upper lid resistor 13, the lowermost portion of the evaporated material 16 in contact with the plate-shaped resistor 12 melts out of the large amount of the evaporated material 16 filled in the material container 15. And evaporate. The evaporated particles move as indicated by an arrow 19, and are discharged from the outlet 17 into the surrounding space. The evaporating particles released from the blowing hole 17 of the upper lid resistor 13 of the container 11 rise and adhere to the lower surface of the substrate 74 as shown in FIG. The control of the amount of evaporation of the evaporation material 16 in the evaporation source is the same as in the prior art, and is controlled by adjusting the amount of current flowing through the resistor based on the detection signal from the crystal unit thin film meter. According to the evaporation source according to the present embodiment, it is possible to fill a large amount of evaporation material, and it is configured to gradually evaporate from the lower evaporation material. It can be used, can appropriately control the amount of evaporation, and can perform evaporation with low power.

【0014】上記実施形態において、材料容器15の上
部を開口し、蒸発材料16を適宜に供給できる構造を設
けることも可能である。
In the above embodiment, it is also possible to provide a structure in which the upper part of the material container 15 is opened and the evaporation material 16 can be supplied appropriately.

【0015】図4を参照して本発明に係る蒸発源の第2
の実施形態を説明する。この実施形態は第1実施形態の
変形例であり、図4は上記図2に対応する図である。こ
の実施形態による蒸発源は、下方に蒸発粒子を放出する
デポダウン構造を有している。図4において、前述の実
施形態で説明された要素と同一の要素には同一の符号を
付している。蒸発源の容器(抵抗加熱容器)31は、上
側の上蓋抵抗体32と、容器の下側部分を形成するボー
ト状抵抗体33と、その中間に位置する板状抵抗体34
とから構成される。上蓋抵抗体32と板状抵抗体34の
基本的形態は第1実施形態のものと似ている。ボート状
抵抗体33の基本的形態は従来技術のものと似ている。
上蓋抵抗体32にはそのほぼ中央の位置に前述した材料
容器15が設けられている。板状抵抗体34の両側に蒸
発粒子の通路としての少なくとも2つの孔35が形成さ
れている。ボート状抵抗体33のほぼ中央に少なくとも
1つの吹出し孔36が形成されている。材料容器15に
多量の蒸発材料16が充填されている点、蒸発材料16
の下側部分から部分的に蒸発する点は、第1実施形態と
同じである。さらにその他の構成については第1実施形
態で説明した構成と同じである。
Referring to FIG. 4, the second embodiment of the evaporation source according to the present invention will be described.
An embodiment will be described. This embodiment is a modification of the first embodiment, and FIG. 4 is a view corresponding to FIG. The evaporation source according to this embodiment has a deposit down structure that emits evaporation particles downward. In FIG. 4, the same elements as those described in the above embodiment are denoted by the same reference numerals. An evaporation source container (resistance heating container) 31 includes an upper lid resistor 32, a boat-shaped resistor 33 forming a lower portion of the container, and a plate-shaped resistor 34 located in the middle.
It is composed of The basic forms of the upper lid resistor 32 and the plate-shaped resistor 34 are similar to those of the first embodiment. The basic configuration of the boat-shaped resistor 33 is similar to that of the prior art.
The upper lid resistor 32 is provided with the aforementioned material container 15 at a substantially central position thereof. At least two holes 35 are formed on both sides of the plate-shaped resistor 34 as passages for evaporated particles. At least one blowout hole 36 is formed substantially at the center of the boat-shaped resistor 33. The point that the material container 15 is filled with a large amount of the evaporation material 16
This is the same as the first embodiment in that a part of the solvent evaporates from the lower part. Other configurations are the same as those described in the first embodiment.

【0016】本実施形態によれば、デポダウン構造の抵
抗加熱蒸発源を実現できると共に、さらに前述の第1実
施形態と同等の効果を発揮させることができる。すなわ
ち大量の蒸発材料を充填でき、長時間の連続成膜がで
き、生産装置へ利用できると共に、蒸発量の適切に制御
することができる。
According to the present embodiment, a resistance heating evaporation source having a deposit down structure can be realized, and further, the same effect as that of the first embodiment can be exerted. That is, a large amount of evaporating material can be filled, continuous film formation can be performed for a long time, and it can be used for a production apparatus, and the amount of evaporation can be appropriately controlled.

【0017】前述の第1および第2の実施形態による構
造は有機物材料等の昇華性物質で特に有効である。また
材料容器15と板状抵抗体12の間の隙間、あるいは材
料容器15と板状抵抗体34の間の隙間を調整すること
により、溶融する材料16においても表面張力の効果で
流れ出すことなく同じ効果が得られる。
The structures according to the first and second embodiments are particularly effective for sublimable substances such as organic materials. Also, by adjusting the gap between the material container 15 and the plate-shaped resistor 12 or the gap between the material container 15 and the plate-shaped resistor 34, the same can be achieved without flowing out even in the molten material 16 due to the effect of surface tension. The effect is obtained.

【0018】次に図5を参照して本発明に係る蒸発源の
第3の実施形態を説明する。この実施形態による蒸発源
は、抵抗加熱蒸発源の構造とセルタイプ蒸発源の構造を
組み合わせて構成される。図5は蒸発源の構成と蒸発を
制御するシステムの構成を示している。なお図5におい
て、前述の各実施形態で説明した要素と実質的に同一の
要素には同一の符号を付している。
Next, a third embodiment of the evaporation source according to the present invention will be described with reference to FIG. The evaporation source according to this embodiment is configured by combining the structure of the resistance heating evaporation source and the structure of the cell type evaporation source. FIG. 5 shows the configuration of an evaporation source and the configuration of a system for controlling evaporation. In FIG. 5, the same reference numerals are given to substantially the same elements as those described in the above-described embodiments.

【0019】成膜装置を形成する真空容器41におい
て、下方位置に本実施形態による蒸発源42が設けら
れ、上方位置にリング形状のホルダ43に支持された基
板44が配置される。ホルダ43上の基板44は、その
下面が下方に臨み、この下面に高蒸気圧材料が成膜され
る。基板44の近傍には、蒸発源42における材料の蒸
発量を制御するための検出信号を出力する水晶振動子式
膜厚計45の検出器46が配置される。蒸発源42から
放出された蒸発粒子は基板44の下面と検出器46の検
出面に付着する。
In a vacuum vessel 41 forming a film forming apparatus, an evaporation source 42 according to the present embodiment is provided at a lower position, and a substrate 44 supported by a ring-shaped holder 43 is disposed at an upper position. The lower surface of the substrate 44 on the holder 43 faces downward, and a high vapor pressure material is formed on the lower surface. In the vicinity of the substrate 44, a detector 46 of a quartz oscillator type film thickness meter 45 that outputs a detection signal for controlling the amount of evaporation of the material in the evaporation source 42 is arranged. Evaporated particles emitted from the evaporation source 42 adhere to the lower surface of the substrate 44 and the detection surface of the detector 46.

【0020】蒸発源42の抵抗加熱容器は、上側の上蓋
抵抗体47と、下側のボート状抵抗体48と、両者の間
に介設される板状抵抗体49とからなり、3つの抵抗体
は図示されるごとく重ね合わされ、両端部を前述の電極
部20,21で挟持され固定されている。ボート状抵抗
体48は、そのほぼ中央位置に多量の蒸発材料16を充
填できる材料容器15が設けられる。材料容器15は開
口部が上側に位置するように使用される。また上蓋抵抗
体47と板状抵抗体49には、蒸発材料16からの蒸発
粒子が通過する吹出し孔50,51が形成されている。
蒸発源42の各抵抗体47,48,49には電源52か
ら電極部20,21を介して電流が供給され、発熱が生
じる。電源52から供給される電流の量は、膜厚計45
からの検出信号に基づき制御される。各抵抗体47,4
8,49を図示のごとく組み付けた状態で、材料容器1
5の上端開口部と板状抵抗体49の間には所望の隙間が
形成されている。
The resistance heating vessel of the evaporation source 42 includes an upper lid resistor 47, a lower boat-shaped resistor 48, and a plate-shaped resistor 49 interposed therebetween. The bodies are overlapped as shown in the figure, and both ends are sandwiched and fixed between the above-mentioned electrode portions 20 and 21. The boat-shaped resistor 48 is provided with a material container 15 in which a large amount of the evaporating material 16 can be filled at a substantially central position. The material container 15 is used such that the opening is located on the upper side. In addition, the upper cover resistor 47 and the plate-shaped resistor 49 are formed with blowout holes 50 and 51 through which evaporated particles from the evaporation material 16 pass.
A current is supplied from the power source 52 to the resistors 47, 48, and 49 of the evaporation source 42 via the electrode portions 20 and 21 to generate heat. The amount of current supplied from the power supply 52 is
Is controlled based on the detection signal from Each resistor 47, 4
8 and 49 are assembled as shown in FIG.
A desired gap is formed between the upper end opening of the fifth resistor 5 and the plate-shaped resistor 49.

【0021】材料容器15は、必要とされる蒸発材料1
6を収容する十分な容積を有し、例えば石英で作られて
いる。材料容器15に関する構成には、さらにセルタイ
プの蒸発源の構成が付加される。すなわち材料容器15
はルツボとして機能し、その下部には発熱線53が巻か
れている。発熱線53は電源54に接続され、電源54
から発熱線53に電流を流すことでこの発熱線53が発
熱し、その輻射熱で材料容器15の温度を上昇させるこ
とで材料容器15内に充填された蒸発材料16は材料固
有の温度で蒸発する。また材料容器15は赤外波長を透
過しやすい石英で作られているので、発熱線53からの
輻射熱で直接に蒸発材料16は加熱される。蒸発粒子
は、材料容器15の上端開口部から放出される。材料容
器15からの蒸発量の制御は、材料容器15の外部に設
置された熱電対による温調計55で温度を監視し電源5
4の出力を変化させることで行われる。
The material container 15 contains the required evaporating material 1.
6 has a sufficient capacity to accommodate 6 and is made of, for example, quartz. A configuration of a cell type evaporation source is further added to the configuration related to the material container 15. That is, the material container 15
Functions as a crucible, and a heating wire 53 is wound thereunder. The heating wire 53 is connected to a power source 54,
When the current flows through the heating wire 53, the heating wire 53 generates heat, and the radiant heat raises the temperature of the material container 15 so that the evaporating material 16 filled in the material container 15 evaporates at a temperature unique to the material. . Further, since the material container 15 is made of quartz that easily transmits infrared wavelengths, the evaporating material 16 is directly heated by radiant heat from the heating wire 53. The evaporating particles are emitted from the upper end opening of the material container 15. The amount of evaporation from the material container 15 is controlled by monitoring the temperature with a temperature controller 55 using a thermocouple installed outside the material container 15 and controlling the power supply 5.
4 is changed.

【0022】さらに材料容器15の上端開口部から放出
された蒸発粒子は、矢印56のごとく、板状抵抗体49
の吹出し孔51および上蓋抵抗体47の吹出し孔50を
通過して外部の周囲空間へ放出される。このとき抵抗体
47,48,49は発熱状態にある。こうして放出され
た蒸発粒子は前述のごとく基板44の下面および膜厚計
45の検出器46の検出面に堆積する。水晶振動子式膜
圧計45は、蒸発粒子が検出器46に付着することによ
り発振周波数が変化することを利用して、蒸発量を制御
する。この膜厚計45は、検出器46における蒸発粒子
の付着量を監視しながら、所望の蒸発量になるように電
源52に信号を送り、電源52の出力を変化させること
で抵抗体47,48,49の発熱量を変化させ、蒸発材
料16の蒸発量を制御する。
Further, the evaporated particles released from the upper end opening of the material container 15 are, as indicated by an arrow 56, a plate-like resistor 49.
Through the air outlet 51 of the upper cover resistor 47 and the air outlet 50 of the upper lid resistor 47. At this time, the resistors 47, 48, and 49 are in a heating state. The evaporating particles thus released are deposited on the lower surface of the substrate 44 and the detection surface of the detector 46 of the film thickness gauge 45 as described above. The crystal oscillator type film pressure gauge 45 controls the amount of evaporation by utilizing the fact that the oscillation frequency changes when the evaporated particles adhere to the detector 46. The film thickness meter 45 sends a signal to the power supply 52 so as to obtain a desired evaporation amount while monitoring the amount of the evaporated particles attached to the detector 46, and changes the output of the power supply 52 to change the resistors 47 and 48. , 49 to control the amount of evaporation of the evaporation material 16.

【0023】上記第3の実施形態によれば、材料容器1
5に充填された蒸発材料16は発熱線53の発熱作用に
基づきその固有の温度で蒸発を始める。蒸発材料16か
らの蒸発粒子は材料容器15の上側にあるボート状抵抗
体48と板状抵抗体49の表面に付着するが、これらの
抵抗体からの熱を受けて再度蒸発し、矢印56のごとく
移動して上蓋抵抗体47の吹出し孔50から外部の空間
へ放出される。放出された蒸発粒子は基板44や検出器
46に付着する。水晶振動子式膜圧計45は得られた情
報に基づき電源52に信号を送り、その出力を変化させ
ることで、抵抗体47,48,49の発熱量を変化さ
せ、蒸発量を制御する。蒸発量を抵抗体に直接電流を流
すことによる温度変化で制御しているため、蒸発速度の
変化に対する応答性がよく、さらに材料容器15内に多
くの材料を充填できるため、生産装置での利用に適して
いる。
According to the third embodiment, the material container 1
The evaporating material 16 filled in 5 starts to evaporate at its own temperature based on the heat generating action of the heat generating wire 53. The evaporating particles from the evaporating material 16 adhere to the surfaces of the boat-shaped resistor 48 and the plate-shaped resistor 49 on the upper side of the material container 15, but receive the heat from these resistors and evaporate again. It moves like this and is discharged from the outlet hole 50 of the upper lid resistor 47 to the outside space. The released evaporating particles adhere to the substrate 44 and the detector 46. The crystal oscillator type film pressure gauge 45 sends a signal to the power supply 52 based on the obtained information and changes the output to change the amount of heat generated by the resistors 47, 48 and 49 and control the amount of evaporation. Since the amount of evaporation is controlled by a temperature change caused by passing a current directly to the resistor, the responsiveness to a change in the evaporation rate is good, and the material container 15 can be filled with a large amount of material. Suitable for.

【0024】[0024]

【発明の効果】以上の説明で明らかなように本発明によ
れば、抵抗体からなる抵抗加熱容器と多量の蒸発材料を
充填できる材料容器を組み合わせて構成し、かつ蒸発材
料を蒸発させるとき一部の蒸発材料が抵抗体に接触する
ように構成したため、長時間安定して蒸発材料を蒸発さ
せることができ、また蒸発量の制御を有効に行うことが
できる。従って生産装置に適した蒸発源を実現すること
ができる。さらにデポダウン構造の蒸発源を得ることが
できる。
As is apparent from the above description, according to the present invention, when a resistance heating container comprising a resistor and a material container capable of filling a large amount of evaporating material are combined, and the evaporating material is evaporated, Since the evaporating material in the portion is configured to be in contact with the resistor, the evaporating material can be stably evaporated for a long time, and the amount of evaporation can be effectively controlled. Therefore, an evaporation source suitable for a production device can be realized. Further, an evaporation source having a deposit-down structure can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る蒸発源の第1実施形態を示し、上
方斜めから見た容器部分の外観図である。
FIG. 1 shows a first embodiment of an evaporation source according to the present invention, and is an external view of a container portion viewed obliquely from above.

【図2】第1実施形態による蒸発源の内部構造を示す縦
断面図である。
FIG. 2 is a longitudinal sectional view showing the internal structure of the evaporation source according to the first embodiment.

【図3】図2におけるA−A線断面図である。FIG. 3 is a sectional view taken along line AA in FIG. 2;

【図4】本発明の第2実施形態による蒸発源の内部構造
を示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing an internal structure of an evaporation source according to a second embodiment of the present invention.

【図5】本発明の第3実施形態による蒸発源の構造およ
び装置の全体を示す構成図である。
FIG. 5 is a configuration diagram showing the entire structure and apparatus of an evaporation source according to a third embodiment of the present invention.

【図6】従来の抵抗加熱蒸発源の構成図である。FIG. 6 is a configuration diagram of a conventional resistance heating evaporation source.

【図7】従来のセルタイプ蒸発源の構成図である。FIG. 7 is a configuration diagram of a conventional cell-type evaporation source.

【符号の説明】[Explanation of symbols]

11 容器(抵抗加熱容器) 12 板状抵抗体 13 上蓋抵抗体 15 材料容器 16 蒸発材料 17 吹出し孔 20,21 電極部 31 容器(抵抗加熱容器) 32 上蓋抵抗体 33 ボート状抵抗体 34 板状抵抗体 41 真空容器 42 蒸発源 44 基板 46 検出器 47 上蓋抵抗体 48 ボート状抵抗体 49 板状抵抗体 53 発熱線 DESCRIPTION OF SYMBOLS 11 Container (resistance heating container) 12 Plate-shaped resistor 13 Upper resistor 15 Material container 16 Evaporation material 17 Blow-out hole 20, 21 Electrode part 31 Container (resistance heating container) 32 Upper lid resistor 33 Boat-shaped resistor 34 Plate-shaped resistor Body 41 Vacuum container 42 Evaporation source 44 Substrate 46 Detector 47 Upper lid resistor 48 Boat resistor 49 Plate resistor 53 Heating wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 崇行 東京都府中市四谷5丁目8番1号 アネル バ株式会社内 Fターム(参考) 4K029 DB12 DB13 DB18  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takayuki Moriwaki 5-8-1, Yotsuya, Fuchu-shi, Tokyo Anelva Corporation F-term (reference) 4K029 DB12 DB13 DB18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 抵抗体からなる抵抗加熱容器を有し、膜
厚計からの検出信号で制御された電流を前記抵抗体に流
し発熱させて蒸発材料を蒸発させ、前記抵抗加熱容器に
設けた吹出し孔から蒸発粒子を放出する蒸発源におい
て、 前記抵抗加熱容器に容積の大きい材料容器を設け、前記
材料容器に前記蒸発材料を多量に充填し、かつ充填され
た前記蒸発材料の一部が前記抵抗体に接触するようにし
たことを特徴とする蒸発源。
1. A resistance heating container comprising a resistor, wherein a current controlled by a detection signal from a film thickness meter is passed through the resistor to generate heat and evaporate an evaporation material. In the evaporation source that emits evaporation particles from the blowing holes, a large-capacity material container is provided in the resistance heating container, a large amount of the evaporation material is filled in the material container, and a part of the filled evaporation material is the An evaporation source characterized by contacting a resistor.
【請求項2】 前記抵抗加熱容器は板状抵抗体と上蓋抵
抗体からなり、前記上蓋抵抗体に前記材料容器を備える
と共に前記吹出し孔を形成し、前記材料容器の下部開口
部を前記板状抵抗体に近づけて設けたことを特徴とする
請求項1記載の蒸発源。
2. The resistance heating container comprises a plate-shaped resistor and an upper-lid resistor, the upper-lid resistor being provided with the material container and forming the blowout hole, and a lower opening of the material container being formed in the plate-shaped resistor. 2. The evaporation source according to claim 1, wherein the evaporation source is provided close to the resistor.
【請求項3】 前記抵抗加熱容器は、前記材料容器を備
えた上蓋抵抗体と、前記吹出し孔を有するボート状抵抗
体と、前記上蓋抵抗体と前記ボート状抵抗体の間に設け
られ前記蒸発粒子の通過孔を有する板状抵抗体とからな
り、前記材料容器の下部開口部を前記板状抵抗体に近づ
けて設けたことを特徴とする請求項1記載の蒸発源。
3. The resistance heating container is provided with an upper lid resistor provided with the material container, a boat-shaped resistor having the blowout hole, and provided between the upper lid resistor and the boat-shaped resistor. The evaporation source according to claim 1, comprising a plate-shaped resistor having a hole for passing particles, wherein a lower opening of the material container is provided close to the plate-shaped resistor.
【請求項4】 前記抵抗加熱容器は、前記吹出し孔を有
する上蓋抵抗体と、前記材料容器を備えたボート状抵抗
体と、前記上蓋抵抗体と前記ボート状抵抗体の間に設け
られ前記蒸発粒子の通過孔を有する板状抵抗体とからな
り、前記材料容器の上部開口部を前記板状抵抗体に近づ
けて設け、かつ前記材料容器に、温調計からの検出信号
で制御された電流で発熱し前記蒸発材料を蒸発させる発
熱線を設けたことを特徴とする請求項1記載の蒸発源。
4. The resistance heating container includes an upper lid resistor having the blowout hole, a boat-shaped resistor provided with the material container, and the evaporator provided between the upper lid resistor and the boat-shaped resistor. A plate-shaped resistor having a passage hole for particles, an upper opening of the material container provided close to the plate-shaped resistor, and a current controlled by a detection signal from a temperature controller in the material container. 2. The evaporation source according to claim 1, further comprising: a heating wire for generating heat by evaporating the evaporation material.
【請求項5】 前記材料容器は絶縁性を有するルツボで
あることを特徴とする請求項1〜4のいずれか1項に記
載の蒸発源。
5. The evaporation source according to claim 1, wherein the material container is a crucible having an insulating property.
JP21346998A 1998-07-13 1998-07-13 Evaporation source Expired - Fee Related JP4281029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21346998A JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346998A JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Publications (2)

Publication Number Publication Date
JP2000034558A true JP2000034558A (en) 2000-02-02
JP4281029B2 JP4281029B2 (en) 2009-06-17

Family

ID=16639729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346998A Expired - Fee Related JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Country Status (1)

Country Link
JP (1) JP4281029B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113465A (en) * 2001-08-03 2003-04-18 Eiko Engineering Co Ltd Molecular beam cell for depositing thin film
CN101445909B (en) * 2004-11-26 2011-06-22 三星移动显示器株式会社 Evaporation source and vapor deposition apparatus provided with it
TWI585226B (en) * 2016-04-08 2017-06-01 鴻海精密工業股份有限公司 Vacuum evaporation source, apparatus and method
JP2019066176A (en) * 2018-12-20 2019-04-25 井関農機株式会社 Grain dryer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113465A (en) * 2001-08-03 2003-04-18 Eiko Engineering Co Ltd Molecular beam cell for depositing thin film
CN101445909B (en) * 2004-11-26 2011-06-22 三星移动显示器株式会社 Evaporation source and vapor deposition apparatus provided with it
CN101445908B (en) * 2004-11-26 2011-06-22 三星移动显示器株式会社 Evaporation source and vapor deposition apparatus provided with it
TWI585226B (en) * 2016-04-08 2017-06-01 鴻海精密工業股份有限公司 Vacuum evaporation source, apparatus and method
JP2019066176A (en) * 2018-12-20 2019-04-25 井関農機株式会社 Grain dryer

Also Published As

Publication number Publication date
JP4281029B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4897190B2 (en) Heating container for organic thin film forming equipment
US6988826B2 (en) Nano-calorimeter device and associated methods of fabrication and use
JP4444906B2 (en) Heating container and vapor deposition apparatus equipped with the same
JP2000034558A (en) Evaporating source
JPS6325293A (en) Cell for epitaxy by molecular jet and related methods
TWI429772B (en) A vapor deposition apparatus, a vapor deposition method, and a memory medium of a memory program
US6390668B1 (en) Blackbody source using a heat pipe principle and transition region
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP2009149968A (en) Vacuum deposition system controllable of source amount
JP3189038B2 (en) Material supply equipment for vacuum film forming equipment
JP2000009641A (en) Flow rate detection element for infrared gas analyzer and its manufacture
KR101713113B1 (en) Deposition material supply apparatus
Goodman et al. Simultaneous stress and mass change measurements arising from laser induced detuning of a quartz crystal microbalance
JPS5943873A (en) Vessel for storing material to be evaporated
JP2006225706A (en) Vapor deposition apparatus
JP2008169420A (en) Vacuum deposition system
JPH07126838A (en) Vapor-deposition boat
JPH077421A (en) Frequency reference cell
JPH0534426B2 (en)
KR100889760B1 (en) Heating crucible for forming apparatus of organic thin film
JPS6299459A (en) Evaporating source for vacuum deposition
JPS6233280Y2 (en)
JPS58204173A (en) Device and method for vapor deposition
RU43959U1 (en) DEVICE FOR MEASURING THICKNESS SPRAYED ON THE SUBSTANCE OF THE CONDUCTING FILMS
JP2003297565A (en) Vapor deposition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees