JP2008169420A - Vacuum deposition system - Google Patents

Vacuum deposition system Download PDF

Info

Publication number
JP2008169420A
JP2008169420A JP2007002663A JP2007002663A JP2008169420A JP 2008169420 A JP2008169420 A JP 2008169420A JP 2007002663 A JP2007002663 A JP 2007002663A JP 2007002663 A JP2007002663 A JP 2007002663A JP 2008169420 A JP2008169420 A JP 2008169420A
Authority
JP
Japan
Prior art keywords
opening
evaporation source
vapor deposition
cylindrical body
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007002663A
Other languages
Japanese (ja)
Other versions
JP5044223B2 (en
Inventor
Taisuke Nishimori
泰輔 西森
Takao Miyai
隆雄 宮井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007002663A priority Critical patent/JP5044223B2/en
Publication of JP2008169420A publication Critical patent/JP2008169420A/en
Application granted granted Critical
Publication of JP5044223B2 publication Critical patent/JP5044223B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum deposition system capable of correctly performing the control of a vapor deposition rate to the body to be vapor-deposited. <P>SOLUTION: Regarding the vacuum deposition system, an evaporation source 2 and the body 3 to be vapor-deposited are arranged in a vacuum chamber 1, further, a space between the evaporation source 2 and the body 3 to be vapor-deposited is surrounded by a cylindrical body 4 heated at a temperature in which a substance in the vapor deposition source 2 is vaporized, and, in a state where the evaporation source 2 and the body 3 to be vapor-deposited are relatively moved, the substance 9 vaporized from the evaporation source 2 is made to arrive at the surface of the body 3 to be vapor-deposited through the cylindrical body 4, and vapor deposition is performed. The vacuum deposition system further comprises: breaking-down bodies 12 provided at the opening part 5 opposite to the body 3 to be vapor-deposited in the cylindrical body 4, and capable of being broken toward the inside of the opening part 5; vapor deposition thickness measurement means 7 vapor-depositing the substance 9 vaporized from the evaporation source 2 and measuring the vapor deposition thickness thereof; and a breaking-down controlling means 13 controlling the degree of the breaking-down of the breaking-down bodies 12 in accordance with the vapor deposition thickness measured by the vapor deposition thickness measurement means 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、真空雰囲気中で蒸発源を気化させると共に気化物質を被蒸着体に蒸着させるようにした真空蒸着装置に関するものである。   The present invention relates to a vacuum deposition apparatus in which an evaporation source is vaporized in a vacuum atmosphere and a vaporized substance is deposited on a deposition target.

真空蒸着装置は、真空チャンバー内に蒸発源と被蒸着体とを配置し、真空チャンバー内を減圧した状態で、蒸発源を加熱して、蒸発源を溶融させて蒸発させるか、もしくは蒸発源を昇華させるかして、気化させ、この気化させた物質を被蒸着体の表面に堆積させて蒸着するようにしたものである。そして加熱されて蒸発源から発生する気化物質は蒸発源から法線方向に直進的に放出されるが、放出空間は真空に保たれているため気化物質は直進し、蒸発源と対向して配置される被蒸着体の表面に付着して蒸着されるものである。   A vacuum deposition apparatus arranges an evaporation source and a deposition target in a vacuum chamber and heats the evaporation source in a state where the inside of the vacuum chamber is depressurized to melt and evaporate the evaporation source. The vaporized material is sublimated or vaporized, and the vaporized material is deposited on the surface of the vapor deposition target for vapor deposition. The vaporized material generated from the evaporation source when heated is discharged straight from the evaporation source in the normal direction, but the vaporization material goes straight because the discharge space is kept in a vacuum, and is placed facing the evaporation source. It adheres and deposits on the surface of the to-be-deposited body.

しかしこのように気化物質は蒸発源から法線方向に直進的に放出されるので、被蒸着体へ向かって進行しない気化物質が多く、このように被蒸着体へ向かって進行しない気化物質は被蒸着体の表面に付着しないものであり、蒸発源の歩留まりが低くなると共に被蒸着体の表面への蒸着速度が遅くなる等の問題があった。   However, since the vaporized material is released straightly from the evaporation source in the normal direction, there are many vaporized materials that do not travel toward the deposition target, and the vaporized material that does not travel toward the deposition target as described above. There is a problem that it does not adhere to the surface of the vapor deposition body, and the yield of the evaporation source is lowered and the vapor deposition rate on the surface of the vapor deposition body is slow.

そこで、真空チャンバー内に配置した蒸発源と被蒸着体が対向する空間を筒状体で囲み、蒸発源から気化した物質を筒状体内を通して被蒸着体の表面に蒸着させるようにした真空蒸着装置が提案されている(例えば特許文献1等参照)。   Therefore, a vacuum deposition apparatus that surrounds the space where the evaporation source disposed in the vacuum chamber and the deposition target face with a cylindrical body, and vaporizes the material evaporated from the evaporation source on the surface of the deposition target through the cylindrical body. Has been proposed (see, for example, Patent Document 1).

図5はその一例を示すものであり、真空チャンバー1内に上下に開口する筒状体4が配設してあり、この筒状体4の下部内に蒸発源2を配置し、発熱体21で加熱して蒸発源2を気化させることができるようにしてある。また筒状体4にはヒーター20が巻いてあって筒状体4を加熱できるようにしてある。被蒸着体3は筒状体4の上端の開口の上方に配置してある。22は真空チャンバー1内を排気して真空雰囲気にする真空ポンプである。   FIG. 5 shows an example of this. A cylindrical body 4 that opens up and down is disposed in the vacuum chamber 1. The evaporation source 2 is disposed in the lower portion of the cylindrical body 4, and a heating element 21. The evaporation source 2 can be vaporized by heating. In addition, a heater 20 is wound around the cylindrical body 4 so that the cylindrical body 4 can be heated. The deposition target 3 is disposed above the opening at the upper end of the cylindrical body 4. A vacuum pump 22 evacuates the vacuum chamber 1 to create a vacuum atmosphere.

このものにあって、真空チャンバー1内を真空にすると共に蒸発源2を発熱体21で加熱して気化させると、蒸発源2から気化した物質9が筒状体4内を飛翔して通過し、筒状体4の上端の開口を通って被蒸着体3の表面に付着し、被蒸着体3にこの気化物質9を堆積させて蒸着を行なうことができるものである。そしてこのものでは、蒸発源2と被蒸着体3が対向する空間が筒状体4で囲まれているので、蒸発源2から発生する気化物質9を筒状体4内に囲った状態で、この気化物質を筒状体4の内面で反射させながら被蒸着体3の方向へ進ませることができ、蒸発源2から発生する気化物質9の多くを被蒸着体3の表面に到達させることができるものであり、被蒸着体3に付着せずに逃げる量を少なくして歩留まり高く蒸着を行なうことができるものである。また筒状体4はヒーター20で加熱されており、気化物質9が筒状体4の内面に付着しても再加熱されて再気化し、この再気化した物質は被蒸着体3に到達して蒸着層を形成するものであり、筒状体4に気化物質9が堆積して歩留まりを低下させるようなことはないものである。
特開2002−080961号公報
In this case, when the inside of the vacuum chamber 1 is evacuated and the evaporation source 2 is heated and vaporized by the heating element 21, the substance 9 evaporated from the evaporation source 2 flies through the cylindrical body 4 and passes through. The vapor deposition material 9 can be deposited by depositing the vaporized substance 9 on the deposition target body 3 through the opening at the upper end of the cylindrical body 4 and adhering to the surface of the deposition target body 3. And in this thing, since the space which the evaporation source 2 and the to-be-deposited body 3 oppose is surrounded by the cylindrical body 4, in the state which surrounded the vaporization substance 9 generated from the evaporation source 2 in the cylindrical body 4, The vaporized substance can be advanced toward the deposition target 3 while being reflected by the inner surface of the cylindrical body 4, and most of the vaporized substance 9 generated from the evaporation source 2 can reach the surface of the deposition target 3. It is possible to perform deposition with a high yield by reducing the amount of escape without adhering to the deposition target 3. Further, the cylindrical body 4 is heated by the heater 20, and even if the vaporized substance 9 adheres to the inner surface of the cylindrical body 4, it is reheated and revaporized, and this revaporized substance reaches the deposition target 3. Thus, a vapor deposition layer is formed, and the vaporized substance 9 is not deposited on the cylindrical body 4 to reduce the yield.
JP 2002-080961 A

ここで、被蒸着体3への蒸着速度の制御は、発熱体21の発熱温度を調整して、蒸発源2の気化速度を制御し、被蒸着体3への気化物質9の移動量を制御することによって行なうことができる。   Here, the control of the vapor deposition rate on the deposition target 3 is performed by adjusting the heat generation temperature of the heating element 21, controlling the vaporization rate of the evaporation source 2, and controlling the movement amount of the vaporized substance 9 to the deposition target 3. It can be done by doing.

しかし、上記のように蒸発源2と被蒸着体3の間の空間を加熱された筒状体4で囲んでいると、発熱体21の温度の他に、筒状体4からの輻射熱が蒸発源2に作用するので、発熱体21の発熱温度を制御しても、蒸発源2の加熱温度を迅速に且つ正確に調整することはできない。従って、発熱体21の発熱温度の制御によって蒸発源2から被蒸着体3への気化物質9の移動量を正確に制御することはできず、蒸着速度を制御することが難しいという問題があった。   However, if the space between the evaporation source 2 and the deposition target 3 is surrounded by the heated cylindrical body 4 as described above, the radiant heat from the cylindrical body 4 evaporates in addition to the temperature of the heating element 21. Since it acts on the source 2, the heating temperature of the evaporation source 2 cannot be adjusted quickly and accurately even if the heating temperature of the heating element 21 is controlled. Therefore, there is a problem in that it is difficult to control the deposition rate because the movement amount of the vaporized substance 9 from the evaporation source 2 to the deposition target 3 cannot be accurately controlled by controlling the heating temperature of the heating element 21. .

本発明は上記の点に鑑みてなされたものであり、被蒸着体への蒸着速度の制御を正確に行なうことができる真空蒸着装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a vacuum vapor deposition apparatus capable of accurately controlling the vapor deposition rate on the vapor deposition target.

本発明の請求項1に係る真空蒸着装置は、真空チャンバー1内に蒸発源2と被蒸着体3とを配置すると共に蒸発源2と被蒸着体3の間の空間を蒸発源2の物質が気化される温度で加熱された筒状体4で囲み、蒸発源2と被蒸着体3を相対的に移動させた状態で、蒸発源2から気化した物質9を筒状体4内を通して被蒸着体3の表面に到達させて蒸着させるようにした真空蒸着装置において、筒状体4の被蒸着体3と対向する開口部5に設けられ、開口部5の内側へ向けて折れ込み可能な折れ込み体12と、蒸発源2から気化した物質9を蒸着させてその蒸着厚みを計測する蒸着厚み計測手段7と、蒸着厚み計測手段7で計測される蒸着厚みに応じて折れ込み体12の折れ込みの程度を制御する折れ込み制御手段13と、を備えて成ることを特徴とするものである。   In the vacuum vapor deposition apparatus according to claim 1 of the present invention, the evaporation source 2 and the deposition target 3 are disposed in the vacuum chamber 1 and the substance of the evaporation source 2 is placed in the space between the evaporation source 2 and the deposition target 3. Surrounded by the cylindrical body 4 heated at the temperature to be vaporized, the vaporized substance 9 from the evaporation source 2 is vapor-deposited through the cylindrical body 4 with the evaporation source 2 and the vapor-deposited body 3 relatively moved. In the vacuum vapor deposition apparatus that reaches the surface of the body 3 for vapor deposition, the tube 4 is provided in the opening 5 facing the deposition target body 3 and can be folded toward the inside of the opening 5. The body 12, the deposition thickness measuring means 7 for depositing the vaporized substance 9 from the evaporation source 2 and measuring the deposition thickness, and the folding body 12 being folded according to the deposition thickness measured by the deposition thickness measuring means 7. And a folding control means 13 for controlling the degree of indentation. It is an.

筒状体4の開口部5に設けた折れ込み体12の内側への折れ込みの程度によって開口部5の開口面積を調整することができ、筒状体4から開口部5を通過して被蒸着体3へと移動する気化物質9の量を制御することができるものであり、蒸着厚み計測手段7で計測された蒸着厚みに応じて、折れ込み体12の折れ込みの程度を折れ込み制御手段13で制御して、気化物質9が開口部5を通過する量を制御することによって、被蒸着体3への気化物質9の移動量を蒸着厚みに応じて制御することができるものである。   The opening area of the opening 5 can be adjusted according to the degree of folding inside the folding body 12 provided in the opening 5 of the cylindrical body 4, and passes through the opening 5 from the cylindrical body 4 to be covered. The amount of the vaporized substance 9 moving to the vapor deposition body 3 can be controlled, and the degree of folding of the folding body 12 is controlled according to the vapor deposition thickness measured by the vapor deposition thickness measuring means 7. By controlling by means 13 and controlling the amount of vaporized substance 9 passing through opening 5, the amount of vaporized substance 9 moving to vapor-deposited body 3 can be controlled according to the deposition thickness. .

また請求項2の発明は、請求項1において、蒸発源2から気化した物質を連通口14を通過させた後に筒状体4内を通して被蒸着体3の表面に到達させるようにし、この連通口14の開口度を調整可能な開閉手段6と、上記の蒸着厚み計測手段7で計測される蒸着厚みに応じて開閉手段6による連通口14の開口度を調整する開閉制御手段8とを備えて成ることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the substance vaporized from the evaporation source 2 is allowed to reach the surface of the deposition target 3 through the cylindrical body 4 after passing through the communication port 14. An opening / closing means 6 capable of adjusting the opening degree of the opening 14, and an opening / closing control means 8 for adjusting the opening degree of the communication port 14 by the opening / closing means 6 according to the deposition thickness measured by the deposition thickness measuring means 7. It is characterized by comprising.

この発明によれば、蒸着厚み計測手段7で計測された蒸着厚みに応じて、連通口14の開口度を調整する開閉手段6を開閉制御手段8で制御することによって、気化物質9が連通口14を通過する量を制御することができ、被蒸着体3への気化物質9の移動量を蒸着厚みに応じてより迅速に制御することができるものである。   According to this invention, the vaporizing substance 9 is connected to the communication port by controlling the opening / closing means 6 for adjusting the opening degree of the communication port 14 according to the vapor deposition thickness measured by the vapor deposition thickness measuring unit 7. 14 can be controlled, and the amount of movement of the vaporized substance 9 to the deposition target 3 can be controlled more quickly according to the deposition thickness.

また請求項3の発明は、請求項1又は2において、筒状体4の温度を調整する温度調整手段10と、上記の蒸着厚み計測手段7で計測される蒸着厚みに応じて、温度調整手段10で調整される筒状体4の温度を制御する温度制御手段11とを備えて成ることを特徴とするものである。   According to a third aspect of the present invention, in the first or second aspect, the temperature adjusting means 10 for adjusting the temperature of the cylindrical body 4 and the temperature adjusting means according to the vapor deposition thickness measured by the vapor deposition thickness measuring means 7. And a temperature control means 11 for controlling the temperature of the cylindrical body 4 adjusted at 10.

この発明によれば、蒸着厚み計測手段7で計測された蒸着厚みに応じて、温度調整手段10で調整される筒状体4の温度を温度制御手段11で制御することによって、蒸発源2の気化速度を制御することができ、蒸発源2の気化速度を正確に制御して被蒸着体3への気化物質9の移動量をより正確に制御することができるものである。   According to the present invention, the temperature of the cylindrical body 4 adjusted by the temperature adjusting means 10 is controlled by the temperature control means 11 in accordance with the vapor deposition thickness measured by the vapor deposition thickness measuring means 7. The vaporization rate can be controlled, and the vaporization rate of the evaporation source 2 can be accurately controlled to more accurately control the movement amount of the vaporized substance 9 to the deposition target 3.

本発明によれば、蒸着厚み計測手段7で計測された蒸着厚みに応じて、折れ込み体12の折れ込みの程度を折れ込み制御手段13で制御することによって、気化物質9が開口部5を通過する量を制御することができ、被蒸着体3への気化物質9の移動量を蒸着厚みに応じて制御することができるものであり、被蒸着体への蒸着速度の制御を正確に行なうことができるものである。   According to the present invention, the vaporizing substance 9 causes the opening 5 to be formed by controlling the degree of folding of the folded body 12 by the folding control means 13 according to the deposition thickness measured by the deposition thickness measuring means 7. The passing amount can be controlled, and the amount of the vaporized substance 9 moving to the deposition target 3 can be controlled according to the deposition thickness, and the deposition rate to the deposition target is accurately controlled. It is something that can be done.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明の実施の形態の一例を示すものであり、真空チャンバー1は真空ポンプ22で排気することによって真空状態に減圧することができるようにしてある。この真空チャンバー1内には筒状体4が配設してある。   FIG. 1 shows an example of an embodiment of the present invention. The vacuum chamber 1 can be decompressed to a vacuum state by evacuating with a vacuum pump 22. A cylindrical body 4 is disposed in the vacuum chamber 1.

筒状体4は上面が開口する筒状に形成されるものであり、上面の開口部5は多数の貫通孔28を設けた分散板29で塞ぐようにしてある。筒状体4の外周にはシーズヒーターなどのヒーター20が巻き付けてあり、ヒーター20に接続した電源26から給電してヒーター20を発熱させることによって、筒状体4を加熱することができるようにしてある。筒状体4の下端部内には坩堝などの加熱容器31が配設してあり、加熱容器31に蒸発源2をセットするようにしてある。この蒸発源2としては任意の材料を用いることができるが、例えば有機エレクトロルミネッセンス材料などの有機材料を用いることができる。加熱容器31には発熱体21が付設してあり、発熱体21に接続した電源などの発熱源36を制御して発熱体21を発熱させることによって、加熱容器31内の蒸発源2を加熱することができるようにしてある。   The cylindrical body 4 is formed in a cylindrical shape having an upper surface opened, and the opening 5 on the upper surface is closed with a dispersion plate 29 provided with a large number of through holes 28. A heater 20 such as a sheathed heater is wound around the outer periphery of the cylindrical body 4. The cylindrical body 4 can be heated by supplying power from a power source 26 connected to the heater 20 to generate heat. It is. A heating container 31 such as a crucible is disposed in the lower end portion of the cylindrical body 4, and the evaporation source 2 is set in the heating container 31. Although any material can be used as the evaporation source 2, for example, an organic material such as an organic electroluminescence material can be used. A heating element 21 is attached to the heating container 31, and the heating source 36 such as a power source connected to the heating element 21 is controlled to cause the heating element 21 to generate heat, thereby heating the evaporation source 2 in the heating container 31. I can do it.

また筒状体4の上面の開口部5には折れ込み体12が設けてある。折れ込み体12は開口部5の全周に沿って設けられるものであり、例えば、周方向に複数に分割した板材の間を伸縮自在な板材で接続して形成してある。上記のヒーター20は折れ込み体12にも設けてある。この折れ込み体12はその下端を開口部5の上端縁にヒンジなどの枢支具38で回動自在に取り付けてあり、筒状体4の壁面の延長上方へ立ち上がる状態と、筒状体4の開口部5の内方へ折れ込まれて開口部5の開口面と平行になる状態の間で回動されるようにしてある。折れ込み体12のこの回動は、モータなどで駆動されるリンク機構などを備えた回動駆動部39によって行なわれるようにしてある。この回動駆動部39はCPUやメモリー等を備えて形成される折れ込み制御手段13に電気的に接続してあり、折れ込み制御手段13から出力される制御信号によって回動制御手段39の作動を制御し、折れ込み体12の内方への折れ込みの角度を調整することができるようにしてある。   A folded body 12 is provided in the opening 5 on the upper surface of the cylindrical body 4. The folding body 12 is provided along the entire circumference of the opening 5, and is formed, for example, by connecting a plurality of plates divided in the circumferential direction with a stretchable plate. The heater 20 is also provided in the folding body 12. The folded body 12 has its lower end rotatably attached to the upper end edge of the opening 5 by a pivotal support 38 such as a hinge, and rises above the wall surface of the tubular body 4 and the tubular body 4. It is made to rotate between the state which is folded inward of the opening part 5 and becomes parallel to the opening surface of the opening part 5. This rotation of the folding body 12 is performed by a rotation drive unit 39 including a link mechanism driven by a motor or the like. The rotation drive unit 39 is electrically connected to the folding control means 13 formed with a CPU, a memory, and the like, and the operation of the rotation control means 39 is controlled by a control signal output from the folding control means 13. And the angle of folding inward of the folding body 12 can be adjusted.

蒸着を行なう基板などの被蒸着体3は、筒状体4の上端の開口部5に対向させて、筒状体4の上方に配置されるものである。この被蒸着体3は開口部5を横切る方向に水平に移動させるようにしてある。このように被蒸着体3を移動させる手段としては、プーリとベルトを備えた搬送装置など任意のものを用いることができる。またこのように被蒸着体3を移動させるかわりに、筒状体4を移動させるようにしてもよく、被蒸着体3と筒状体4は相対的に移動されるようにすればよいものである。   A deposition target 3 such as a substrate on which vapor deposition is performed is arranged above the cylindrical body 4 so as to face the opening 5 at the upper end of the cylindrical body 4. The deposition target 3 is moved horizontally in a direction across the opening 5. As a means for moving the deposition target 3 in this manner, an arbitrary device such as a conveying device including a pulley and a belt can be used. Further, instead of moving the deposition target 3 as described above, the cylindrical body 4 may be moved, and the deposition target 3 and the cylindrical body 4 may be moved relative to each other. is there.

また被蒸着体3の近傍に蒸着厚み計測手段7が設けてある。蒸着厚み計測手段7は蒸発源2と被蒸着体3の間、またはその近傍に配置されていればよいが、被蒸着体3への蒸着膜厚をより正確に測定するためには、被蒸着体3の近傍に配置するのが好ましい。蒸着厚み計測手段7としては特に限定されるものではないが、水晶振動子膜厚計など、表面に蒸着して付着される膜厚を自動計測することができる膜厚計を用いることができる。この蒸着厚み計測手段7は上記の折れ込み制御手段13に電気的に接続してあり、蒸着厚み計測手段7で測定された蒸着膜厚のデータが折れ込み制御手段13に入力されるようにしてある。そして折れ込み制御手段13に入力されるこの蒸着膜厚のデータに基づいて、折れ込み体12の折れ込み角度の調整が制御されるようになっている。   Further, a deposition thickness measuring means 7 is provided in the vicinity of the deposition target 3. The vapor deposition thickness measuring means 7 may be disposed between or near the evaporation source 2 and the vapor deposition target 3, but in order to measure the vapor deposition film thickness on the vapor deposition target 3 more accurately, It is preferable to arrange in the vicinity of the body 3. The deposition thickness measuring means 7 is not particularly limited, but a film thickness meter that can automatically measure the film thickness deposited and deposited on the surface, such as a quartz crystal resonator thickness meter, can be used. The vapor deposition thickness measuring means 7 is electrically connected to the folding control means 13 so that the vapor deposition film thickness data measured by the vapor deposition thickness measuring means 7 is input to the folding control means 13. is there. The adjustment of the folding angle of the folding body 12 is controlled based on the vapor deposition film thickness data input to the folding control means 13.

上記のように形成される真空蒸着装置で蒸着を行なうにあたっては、まず、蒸発源2を加熱容器31に充填してセットすると共に、被蒸着体3を筒状体4の上端の開口部5の上方に水平にセットする。次に、真空ポンプ22を作動させて真空チャンバー1内を真空状態に減圧し、発熱体21を発熱させて蒸発源2を加熱すると共にヒーター25によって筒状体4を加熱する。筒状体4の加熱温度は、蒸発源2から気化した物質9が筒状体4に付着しても再度蒸発等して気化し、且つ分解されない温度に設定されるものである。   In performing vapor deposition with the vacuum vapor deposition apparatus formed as described above, first, the evaporation source 2 is filled and set in the heating container 31, and the vapor deposition target 3 is placed in the opening 5 at the upper end of the cylindrical body 4. Set horizontally upward. Next, the vacuum pump 22 is operated to reduce the pressure in the vacuum chamber 1 to a vacuum state, the heating element 21 is heated to heat the evaporation source 2, and the cylindrical body 4 is heated by the heater 25. The heating temperature of the cylindrical body 4 is set to a temperature at which the substance 9 evaporated from the evaporation source 2 evaporates and vaporizes again even if it adheres to the cylindrical body 4 and is not decomposed.

そして上記のように真空チャンバー1内を減圧して発熱体21で蒸発源2を加熱すると、蒸発源2は溶融・蒸発、あるいは昇華して気化し、蒸発源2から発生するこの気化物質9は筒状体4内を直進する。気化物質9が進む蒸発源2と被蒸着体3の間の空間は筒状体4で囲まれており、気化物質9は筒状体4内に閉じ込められた状態にあるので、図1に示すように気化物質9は筒状体4の内面で反射して上端の開口部5へ向けて進む。このとき、筒状体4の上端の開口は多数の貫通孔28を設けた分散板29で塞がれているので、筒状体4内の気化物質9は分散板29の貫通孔28を通過した後に、筒状体4の上端の開口部5から出て被蒸着体3の表面に到達し、被蒸着体3の表面に気化物質9を堆積させて蒸着させることができるものである。このように気化物質9は分散板29の複数箇所の貫通孔28を通過して被蒸着体3へと進むので、均一な分布で被蒸着体3に気化物質9を到達させることができ、均一な膜厚で被蒸着体3に蒸着を行なうことができるものである。   When the inside of the vacuum chamber 1 is depressurized and the evaporation source 2 is heated by the heating element 21 as described above, the evaporation source 2 is vaporized by melting, evaporation, or sublimation, and the vaporized substance 9 generated from the evaporation source 2 is It goes straight inside the cylindrical body 4. A space between the evaporation source 2 through which the vaporized substance 9 travels and the deposition target 3 is surrounded by a cylindrical body 4, and the vaporized substance 9 is confined in the cylindrical body 4, and therefore, as shown in FIG. Thus, the vaporized substance 9 is reflected by the inner surface of the cylindrical body 4 and proceeds toward the opening 5 at the upper end. At this time, since the opening at the upper end of the cylindrical body 4 is closed by the dispersion plate 29 provided with a large number of through holes 28, the vaporized substance 9 in the cylindrical body 4 passes through the through holes 28 of the dispersion plate 29. After that, it comes out of the opening 5 at the upper end of the cylindrical body 4, reaches the surface of the deposition target 3, and the vaporized substance 9 can be deposited on the surface of the deposition target 3 for vapor deposition. Thus, since the vaporized substance 9 passes through the plurality of through holes 28 of the dispersion plate 29 and proceeds to the vapor deposition target 3, the vaporized substance 9 can reach the vapor deposition target 3 with a uniform distribution. It can vapor-deposit on the to-be-deposited body 3 with a sufficient film thickness.

また、上記のように蒸発源2から気化した物質9は筒状体4内で規制されており、気化物質9が四方八方へ飛散することを防ぐことができるものであり、蒸発源2から発生する気化物質9の多くを被蒸着体3の表面に到達させて付着させることができるものである。従って蒸発源2から発生する気化物質9の多くが被蒸着体3の表面に付着して成膜に寄与することになって無効材料が少なくなり、蒸発源2の材料利用効率が高くなって歩留まりの高い蒸着が可能になると共に、被蒸着体3の表面の成膜速度を速くすることができるものである。また筒状体4は加熱されていてホットウォールになっているために、気化物質9が筒状体4の表面に付着しても、付着物は筒状体4で再加熱されて気化し、このように再気化した気化物質9は上記と同様にして被蒸着体3の表面に蒸着されるものである。折れ込み体12もヒーター20で加熱されており、また筒状体4の内周に接して取り付けられた分散板29は筒状体4からの伝熱や輻射熱で加熱されており、蒸発源2から気化した物質9が折れ込み体12や分散板29に付着しても再度蒸発等して気化して、被蒸着体3の表面に蒸着される。従って筒状体4、折れ込み体12、分散板29に気化物質9が堆積して蒸着に使用されなくなることを防ぐことができ、蒸着の歩留まりが低下するようなことはないものである。   Further, the substance 9 vaporized from the evaporation source 2 as described above is regulated in the cylindrical body 4, and the vaporized substance 9 can be prevented from scattering in all directions and is generated from the evaporation source 2. Most of the vaporized substance 9 to be reached can reach the surface of the deposition target 3 and be attached thereto. Therefore, most of the vaporized substance 9 generated from the evaporation source 2 adheres to the surface of the deposition target 3 and contributes to the film formation, thereby reducing the ineffective material, increasing the material utilization efficiency of the evaporation source 2 and increasing the yield. Can be deposited at a high rate, and the film forming speed on the surface of the deposition target 3 can be increased. Moreover, since the cylindrical body 4 is heated and becomes a hot wall, even if the vaporized substance 9 adheres to the surface of the cylindrical body 4, the deposit is reheated and vaporized by the cylindrical body 4, The vaporized substance 9 thus re-vaporized is deposited on the surface of the deposition target 3 in the same manner as described above. The folded body 12 is also heated by the heater 20, and the dispersion plate 29 attached in contact with the inner periphery of the cylindrical body 4 is heated by heat transfer or radiant heat from the cylindrical body 4. Even if the vaporized substance 9 adheres to the folded body 12 or the dispersion plate 29, it vaporizes again by evaporation or the like, and is deposited on the surface of the deposition target 3. Therefore, it is possible to prevent the vaporized substance 9 from being deposited on the cylindrical body 4, the folded body 12, and the dispersion plate 29 and not being used for vapor deposition, and the yield of vapor deposition is not reduced.

ここで、気化物質9は被蒸着体3の表面に到達して堆積すると同時に、蒸着厚み計測手段7にも到達して堆積し、被蒸着体3に蒸着される膜厚と相関をもった膜厚で蒸着厚み計測手段7に蒸着が行なわれる。従って、蒸着厚み計測手段7で蒸着膜厚を計測することによって、被蒸着体3に蒸着された膜厚を検知することができ、また蒸着厚み計測手段7で単位時間当たりの蒸着膜厚、すなわち蒸着速度を計測することによって、被蒸着体3への蒸着速度を検知することができるものである。   Here, the vaporized substance 9 reaches the surface of the deposition target 3 and deposits, and at the same time reaches the deposition thickness measuring means 7 and deposits, and has a correlation with the film thickness deposited on the deposition target 3. The vapor deposition is performed on the vapor deposition thickness measuring means 7 by the thickness. Therefore, by measuring the vapor deposition film thickness with the vapor deposition thickness measuring means 7, it is possible to detect the film thickness deposited on the deposition target 3, and with the vapor deposition thickness measuring means 7, the vapor deposition film thickness per unit time, that is, By measuring the deposition rate, the deposition rate on the deposition target 3 can be detected.

また筒状体4内の蒸発源2から気化した物質9は、開口部5を通過した後に被蒸着体3へと移動し、被蒸着体3に蒸着される。そしてこの開口部5の開口面積は折れ込み体12の折れ込み角度によって調整することができる。折れ込み体12の内方への折れ込みの角度が大きいと開口部5の開口面積は小さくなり、折れ込み体12の内方への折れ込みの角度が小さいと開口部5の開口面積は大きくなる。このように折れ込み体12の内方への折れ込みの程度によって開口部5の開口面積を調整することができるものであり、開口部5を通過して被蒸着体3へと移動する気化物質9の量を調整することができる。すなわち、気化物質9は気体であるために、開口部5の開口面積を小さくすると、開口部5を通過して移動する気化物質9の量が減り、逆に開口部5の開口面積を大きくすると、開口部5を通過して移動する気化物質9の量が多くなる。また開口部5の開口面積を小さくすると、蒸発源2からの気化量が減って開口部5を通過する気化物質9の量も少なくなり、開口部5の開口面積を大きくすると、蒸発源2からの気化量が多くなって開口部5を通過する気化物質の9の量も多くなる。   The substance 9 evaporated from the evaporation source 2 in the cylindrical body 4 moves to the deposition target 3 after passing through the opening 5 and is deposited on the deposition target 3. The opening area of the opening 5 can be adjusted by the folding angle of the folding body 12. When the folding angle of the folding body 12 is large, the opening area of the opening 5 is small. When the folding angle of the folding body 12 is small, the opening area of the opening 5 is large. Become. As described above, the opening area of the opening 5 can be adjusted according to the degree of inward folding of the folded body 12, and the vaporized substance that passes through the opening 5 and moves to the deposition target 3. The amount of 9 can be adjusted. That is, since the vaporized substance 9 is a gas, if the opening area of the opening 5 is reduced, the amount of the vaporized substance 9 that moves through the opening 5 decreases, and conversely, if the opening area of the opening 5 is increased. The amount of the vaporized substance 9 that moves through the opening 5 increases. Further, when the opening area of the opening 5 is reduced, the amount of vaporization from the evaporation source 2 is reduced and the amount of the vaporized substance 9 passing through the opening 5 is reduced. When the opening area of the opening 5 is increased, the evaporation source 2 The amount of vaporized substance 9 increases and the amount of the vaporized substance 9 passing through the opening 5 also increases.

そこで本発明では、蒸着厚み計測手段7で蒸着厚み及び蒸着速度を測定し、この測定データに基づいて、折れ込み制御手段13で折れ込み体12の折れ込みの程度を制御して筒状体4の開口部5の開口面積を調整することによって、開口部5を通過して被蒸着体3へと移動する気化物質9の量を制御することができ、被蒸着体3への蒸着厚み及び蒸着速度を制御することができるものである。   Therefore, in the present invention, the vapor deposition thickness measuring means 7 measures the vapor deposition thickness and vapor deposition rate, and the folding control means 13 controls the degree of folding of the folded body 12 based on the measured data, thereby the cylindrical body 4. By adjusting the opening area of the opening 5, the amount of the vaporized substance 9 that passes through the opening 5 and moves to the deposition target 3 can be controlled, and the deposition thickness and deposition on the deposition target 3 can be controlled. The speed can be controlled.

この蒸着厚み及び蒸着速度の制御を具体的に説明する。まず、真空チャンバー1内の真空度、ヒーター20による筒状体4の加熱温度、発熱体21による蒸発源2の加熱温度を、実際に蒸着を行なう際の条件と同じに設定し、折れ込み体12の折れ込み角度によって調整される筒状体4の開口部5の開口面積と、蒸着厚み計測手段7で計測される蒸着速度との相関データを求める予備試験を行なう。また蒸発源2の物質量が気化により減少するのに従って気化量は減少するので、蒸着厚み計測手段7で計測される蒸着速度の時間変化に合わせて、相関データを補正する。このようにして得られた筒状体4の開口部5の開口面積と蒸着速度との相関データは、折れ込み制御手段13のメモリーに保存される。   The control of the deposition thickness and the deposition rate will be specifically described. First, the degree of vacuum in the vacuum chamber 1, the heating temperature of the cylindrical body 4 by the heater 20, and the heating temperature of the evaporation source 2 by the heating element 21 are set to the same conditions as in actual vapor deposition, and the folded body A preliminary test is performed to obtain correlation data between the opening area of the opening 5 of the cylindrical body 4 adjusted by the folding angle of 12 and the deposition rate measured by the deposition thickness measuring means 7. Further, since the amount of vaporization decreases as the amount of substance in the evaporation source 2 decreases due to vaporization, the correlation data is corrected in accordance with the time change of the deposition rate measured by the deposition thickness measuring means 7. Thus obtained correlation data between the opening area of the opening 5 of the cylindrical body 4 and the deposition rate is stored in the memory of the folding control means 13.

そして被蒸着体3に実際に蒸着を行なう際には、被蒸着体3への蒸着速度の目標値に対応する筒状体4の開口部5の開口面積となるように、折れ込み制御手段13で折れ込み体12の折れ込み角度を制御して、蒸着を行なうものである。またこのように蒸着を行なう途中で、蒸着厚み計測手段7で計測される蒸着速度が目標値よりも大きくなると、折れ込み制御手段13で折れ込み体12の折れ込み角度が大きくなるように制御して開口部5の開口面積を小さくし、また蒸着厚み計測手段7で計測される蒸着速度が目標値よりも小さくなると、折れ込み制御手段13で折れ込み体12の折れ込み角度が小さくなるように制御して開口部5の開口面積を大きくし、このように開口部5の開口面積をフィードバック制御して、目標値の蒸着速度が維持されるようにするものである。このとき、折れ込み体12の折れ込み角度を大きくして筒状体4の開口部5の開口面積が小さくなるようにすると、開口部5は被蒸着体3の一部のみに対向することになることがあり、開口部5を通過する気化物質9は被蒸着体3の一部に偏って蒸着されるおそれがある。このため、被蒸着体3を開口部5を横切る方向に移動させて、被蒸着体3と筒状体4が相対的に移動されるようにし、開口部5の上方を被蒸着体3が横切る際に、被蒸着体3の全面に均一に蒸着が行なわれるようにしてある。   When actually depositing the deposition target 3, the folding control means 13 is adjusted so that the opening area of the opening 5 of the cylindrical body 4 corresponds to the target value of the deposition rate on the deposition target 3. The vapor deposition is performed by controlling the folding angle of the folding body 12. Further, during the vapor deposition, when the vapor deposition rate measured by the vapor deposition thickness measuring means 7 becomes larger than the target value, the folding control means 13 controls the folding body 12 so that the folding angle becomes large. Thus, when the opening area of the opening 5 is reduced and the vapor deposition rate measured by the vapor deposition thickness measuring means 7 is smaller than the target value, the folding control means 13 reduces the folding angle of the folding body 12. The opening area of the opening 5 is controlled to increase the opening area of the opening 5 in this manner, and the opening area of the opening 5 is feedback-controlled in this way so that the target deposition rate is maintained. At this time, if the folding angle of the folding body 12 is increased so that the opening area of the opening 5 of the cylindrical body 4 is reduced, the opening 5 faces only a part of the deposition target 3. In some cases, the vaporized substance 9 passing through the opening 5 may be deposited on a part of the body 3 to be deposited. For this reason, the vapor-deposited body 3 is moved in a direction crossing the opening 5 so that the vapor-deposited body 3 and the cylindrical body 4 are moved relatively, and the vapor-deposited body 3 crosses the upper portion of the opening 5. At this time, vapor deposition is uniformly performed on the entire surface of the deposition target 3.

上記のように、蒸着厚み計測手段7で蒸着厚みや蒸着速度を計測しながら、折れ込み制御手段13で折れ込み体12の折れ込み角度を制御して、筒状体4の開口部5の開口面積を調整することによって、蒸着厚みや蒸着速度に応じて気化物質9が開口部5を通過して被蒸着体3へと移動する量を制御することができるものであり、蒸発源2から被蒸着体3への気化物質9の移動量を制御し、正確に蒸着厚みや蒸着速度を制御しながら蒸着を行なうことができるものである。   As described above, the folding angle of the folding body 12 is controlled by the folding control means 13 while the deposition thickness measuring means 7 measures the deposition thickness and deposition rate, and the opening of the opening 5 of the cylindrical body 4 is controlled. By adjusting the area, it is possible to control the amount of the vaporized substance 9 that passes through the opening 5 and moves to the deposition target 3 according to the deposition thickness and deposition rate. Vapor deposition can be performed while controlling the amount of vaporized substance 9 transferred to the vapor deposition body 3 and accurately controlling the vapor deposition thickness and vapor deposition rate.

図2は本発明の他の実施の形態を示すものであり、筒状体4の底面に、筒状体4の一部をなす蒸発源収容室24が設けてある。蒸発源収容室24は上端の連通口14で筒状体4内に連通する他は、密閉された有底の筒状に形成されるものである。ヒーター20はこの蒸発源収容室24にも設けてある。蒸発源2をセットする加熱容器31は蒸発源収容室24の下端部内に配設してあり、また蒸発源2の上側において、連通口14に開閉手段6が設けてある。開閉手段6は電動バルブや電動シャッターなどで形成されるものであり、連通口14の開口度を調整することができるようにしてある。この開閉手段6はCPUやメモリー等を備えて形成される開閉制御手段8に電気的に接続してあり、開閉制御手段8から出力される制御信号によって開閉手段6の開口度が制御されるようになっている。また蒸着厚み計測手段7で測定された蒸着膜厚のデータは開閉制御手段8に入力されるようにしてあり、開閉制御手段8に入力されるこの蒸着膜厚のデータに基づいて、開閉手段6による連通口14の開口度が制御されるものである。図2の実施の形態では、開閉制御手段8は上記の折れ込み制御手段13と兼用されるように形成してある。その他の構成は図1のものと同じである。   FIG. 2 shows another embodiment of the present invention, in which an evaporation source accommodating chamber 24 forming a part of the cylindrical body 4 is provided on the bottom surface of the cylindrical body 4. The evaporation source accommodating chamber 24 is formed in a closed bottomed cylindrical shape except that it communicates with the inside of the cylindrical body 4 through the communication port 14 at the upper end. The heater 20 is also provided in the evaporation source accommodation chamber 24. The heating container 31 for setting the evaporation source 2 is disposed in the lower end portion of the evaporation source storage chamber 24, and the opening / closing means 6 is provided at the communication port 14 above the evaporation source 2. The opening / closing means 6 is formed by an electric valve, an electric shutter, or the like, so that the opening degree of the communication port 14 can be adjusted. The opening / closing means 6 is electrically connected to an opening / closing control means 8 formed with a CPU, a memory and the like so that the opening degree of the opening / closing means 6 is controlled by a control signal output from the opening / closing control means 8. It has become. The vapor deposition film thickness data measured by the vapor deposition thickness measuring means 7 is inputted to the opening / closing control means 8, and the opening / closing means 6 is based on the vapor deposition film thickness data inputted to the opening / closing control means 8. The degree of opening of the communication port 14 is controlled. In the embodiment of FIG. 2, the opening / closing control means 8 is formed so as to be used also as the folding control means 13. Other configurations are the same as those in FIG.

このものにあって、蒸発源収容室24内の蒸発源2から気化した物質9は、連通口14を通過した後に筒状体4を通って移動し、さらに開口部5を通過して被蒸着体3に蒸着される。そしてこの連通口14の開口度を開閉手段6で調整することによって、連通口14を通過する気化物質9の量を調整することができる。すなわち、気化物質9は気体であるために、連通口14の開口度を小さくすると、連通口14を通過して被蒸着体3へと移動する気化物質9の量が減り、逆に連通口14の開口度を大きくすると、連通口14を通過して被蒸着体3へと移動する気化物質9の量が多くなる。また連通口14の開口度を小さくすると、蒸発源2からの気化量が減って連通口14を通過する気化物質9の量も少なくなり、連通口14の開口度を大きくすると、蒸発源2からの気化量が多くなって連通口14を通過する気化物質9の量も多くなる。   In this material, the substance 9 evaporated from the evaporation source 2 in the evaporation source storage chamber 24 moves through the cylindrical body 4 after passing through the communication port 14, and further passes through the opening 5 to be deposited. Deposited on the body 3. The amount of the vaporized substance 9 passing through the communication port 14 can be adjusted by adjusting the opening degree of the communication port 14 with the opening / closing means 6. That is, since the vaporized substance 9 is a gas, if the opening degree of the communication port 14 is reduced, the amount of the vaporized substance 9 that passes through the communication port 14 and moves to the deposition target 3 decreases, and conversely the communication port 14. When the opening degree of the is increased, the amount of the vaporized substance 9 that passes through the communication port 14 and moves to the deposition target 3 increases. Further, when the opening degree of the communication port 14 is reduced, the amount of vaporization from the evaporation source 2 is reduced and the amount of the vaporized substance 9 passing through the communication port 14 is also reduced. When the opening degree of the communication port 14 is increased, the evaporation source 2 The amount of vaporized substance 9 increases and the amount of vaporized substance 9 passing through the communication port 14 also increases.

そこで、蒸着厚み計測手段7で蒸着厚み及び蒸着速度を計測し、この計測データに基づいて、開閉制御手段8で開閉手段6を制御して蒸発源収容室24の連通口14の開口度を調整することによって、連通口14を通過して被蒸着体3へと移動する気化物質9の量を制御することができ、被蒸着体3への蒸着厚み及び蒸着速度を制御することができるものである。   Therefore, the deposition thickness measuring means 7 measures the deposition thickness and the deposition rate, and the opening / closing means 6 is controlled by the opening / closing control means 8 to adjust the opening degree of the communication port 14 of the evaporation source accommodation chamber 24 based on the measurement data. By doing so, the amount of the vaporized substance 9 that passes through the communication port 14 and moves to the deposition target 3 can be controlled, and the deposition thickness and deposition rate on the deposition target 3 can be controlled. is there.

この蒸着厚み及び蒸着速度の制御を具体的に説明する。まず、真空チャンバー1内の真空度、筒状体4の加熱温度、蒸発源2の加熱温度、折れ込み体12による開口部の開口面積を、実際に蒸着を行なう際の条件と同じに設定し、開閉手段6によって調整される連通口14の開口度と、蒸着厚み計測手段7で計測される蒸着速度との相関データを求める予備試験を行なう。また蒸発源2の物質量が気化により減少するのに従って気化量は減少するので、蒸着厚み計測手段7で計測される蒸着速度の時間変化に合わせて、相関データを補正する。このようにして得られた連通口14の開口度と蒸着速度との相関データは、開閉制御手段8のメモリーに保存される。   The control of the deposition thickness and the deposition rate will be specifically described. First, the degree of vacuum in the vacuum chamber 1, the heating temperature of the cylindrical body 4, the heating temperature of the evaporation source 2, and the opening area of the opening portion by the folding body 12 are set to the same conditions as when performing actual vapor deposition. Then, a preliminary test is performed to obtain correlation data between the degree of opening of the communication port 14 adjusted by the opening / closing means 6 and the deposition rate measured by the deposition thickness measuring means 7. Further, since the amount of vaporization decreases as the amount of substance in the evaporation source 2 decreases due to vaporization, the correlation data is corrected in accordance with the time change of the deposition rate measured by the deposition thickness measuring means 7. Thus obtained correlation data between the degree of opening of the communication port 14 and the vapor deposition rate is stored in the memory of the open / close control means 8.

そして被蒸着体3に実際に蒸着を行なう際には、被蒸着体3への蒸着速度の目標値に対応する連通口14の開口度となるように、開閉制御手段8で開閉手段6を制御し、蒸着を行なうものである。またこのように蒸着を行なう途中で、蒸着厚み計測手段7で計測される蒸着速度が目標値よりも大きくなると、開閉制御手段8で開閉手段6を制御して連通口14の開口度を小さくし、また蒸着厚み計測手段7で計測される蒸着速度が目標値よりも小さくなると、開閉制御手段8で開閉手段6を制御して連通口14の開口度を大きくし、このように連通口14の開口度をフィードバック制御して、目標値の蒸着速度が維持されるようにするものである。   When actually depositing on the deposition target 3, the opening / closing control unit 8 controls the opening / closing unit 6 so that the degree of opening of the communication port 14 corresponding to the target value of the deposition rate on the deposition target 3 is obtained. Then, vapor deposition is performed. Further, during the vapor deposition, when the vapor deposition rate measured by the vapor deposition thickness measuring means 7 becomes larger than the target value, the open / close control means 8 controls the open / close means 6 to reduce the opening degree of the communication port 14. When the vapor deposition rate measured by the vapor deposition thickness measuring means 7 becomes smaller than the target value, the open / close control means 8 controls the open / close means 6 to increase the opening degree of the communication port 14. The opening degree is feedback-controlled so that the target deposition rate is maintained.

このような蒸発源収容室24の連通口14の開口度の制御を、上記の筒状体4の開口部5の開口面積の制御と併用することによって、蒸発源2から被蒸着体3への気化物質9の移動量の制御がより正確になり、正確に蒸着厚みや蒸着速度を制御しながら蒸着を行なうことができるものである。   By controlling the degree of opening of the communication port 14 of the evaporation source storage chamber 24 together with the control of the opening area of the opening 5 of the cylindrical body 4 described above, the evaporation source 2 to the deposition target 3 can be controlled. The movement amount of the vaporized substance 9 can be controlled more accurately, and vapor deposition can be performed while accurately controlling the vapor deposition thickness and vapor deposition rate.

図3は本発明の他の実施の形態を示すものであり、筒状体4の外周に、上記のヒーター20の代わりに温度調整手段10が設けてある。温度調整手段10は、シーズヒーターなどで形成される発熱体10aと、冷媒が通される冷却管などで形成される冷却体10bとを備えるものであり、発熱体10aと冷却体10bとを筒状体4の外周に交互にスパイラル状に巻くことによって、筒状体4に温度調整手段10を設けるようにしてある。発熱体10aは電源などで形成される発熱源34を制御することによって、発熱温度を調整することができるものであり、冷却体10bは冷媒冷却・送り出し装置などで形成される冷却源35を制御することによって、冷却温度を調整することができるものである。図3の実施の形態では、上記の図2と同様な蒸発源収容室24を設けて、蒸発源2を蒸発源収容室24内に配置するようにしてあり、筒状体4の一部をなすこの蒸発源収容室24の外周にも温度調整手段10を設けるようにしてある。また温度調整手段10は折れ込み体12にも設けてある。尚、図3の実施の形態では図2の開閉手段6は設けられていない。その他の構成は図1や図2のものと同じである。   FIG. 3 shows another embodiment of the present invention. A temperature adjusting means 10 is provided on the outer periphery of the cylindrical body 4 instead of the heater 20 described above. The temperature adjusting means 10 includes a heating element 10a formed by a sheathed heater or the like, and a cooling body 10b formed by a cooling pipe or the like through which a refrigerant is passed, and the heating element 10a and the cooling element 10b are connected to the cylinder. The temperature adjusting means 10 is provided on the cylindrical body 4 by alternately spirally winding the outer periphery of the cylindrical body 4. The heating element 10a can adjust the heat generation temperature by controlling the heat source 34 formed by a power source or the like, and the cooling body 10b controls the cooling source 35 formed by a refrigerant cooling / feeding device or the like. By doing so, the cooling temperature can be adjusted. In the embodiment of FIG. 3, an evaporation source accommodation chamber 24 similar to that of FIG. 2 is provided, and the evaporation source 2 is disposed in the evaporation source accommodation chamber 24, and a part of the cylindrical body 4 is disposed. The temperature adjusting means 10 is also provided on the outer periphery of the evaporation source accommodating chamber 24. The temperature adjusting means 10 is also provided on the folding body 12. In the embodiment of FIG. 3, the opening / closing means 6 of FIG. 2 is not provided. Other configurations are the same as those in FIGS. 1 and 2.

上記の温度調整手段10の発熱源34と冷却源35、及び発熱体21の発熱源36はそれぞれ、CPUやメモリー等を備えて形成される温度制御手段11に電気的に接続してあり、温度制御手段11から出力される制御信号によって、発熱源34及び冷却源35を制御して発熱体10aの発熱温度や冷却体10bの冷却温度を制御し、発熱体10aと冷却体10bからなる温度調整手段10で筒状体4の温度を調整することができるようになっている。また温度制御手段11から出力される制御信号によって、発熱源36を制御して発熱体21の発熱温度を制御し、発熱体21による蒸発源2の加熱温度を調整することができるようになっている。また、蒸着厚み計測手段7で測定された蒸着膜厚のデータは温度制御手段11に入力されるようにしてあり、温度制御手段11に入力されるこの蒸着膜厚のデータに基づいて、温度調整手段10による筒状体4の温度調整や、発熱体21による蒸発源2の加熱温度の調整が制御されるようになっている。図3の実施の形態では、温度制御手段11は上記の折れ込み制御手段13と兼用されるように形成してある。   The heating source 34 and the cooling source 35 of the temperature adjusting means 10 and the heating source 36 of the heating element 21 are each electrically connected to a temperature control means 11 formed with a CPU, a memory and the like. In accordance with a control signal output from the control means 11, the heat source 34 and the cooling source 35 are controlled to control the heat generation temperature of the heat generating body 10a and the cooling temperature of the cooling body 10b, thereby adjusting the temperature composed of the heat generating body 10a and the cooling body 10b. The temperature of the cylindrical body 4 can be adjusted by the means 10. Further, the heating signal is controlled by the control signal output from the temperature control means 11 to control the heating temperature of the heating element 21 and the heating temperature of the evaporation source 2 by the heating element 21 can be adjusted. Yes. The vapor deposition film thickness data measured by the vapor deposition thickness measuring means 7 is inputted to the temperature control means 11, and the temperature adjustment is performed based on the vapor deposition film thickness data inputted to the temperature control means 11. The temperature adjustment of the cylindrical body 4 by means 10 and the adjustment of the heating temperature of the evaporation source 2 by the heating element 21 are controlled. In the embodiment of FIG. 3, the temperature control means 11 is formed so as to be used also as the folding control means 13 described above.

上記のように形成される真空蒸着装置にあって、発熱体21を発熱させて蒸発源2を加熱すると共に、温度調整手段10の発熱体10aを発熱させて筒状体4を加熱して、上記と同様にして蒸着を行なうことができる。そして上記のように蒸着厚み計測手段7で蒸着厚みや蒸着速度を計測し、このように計測された蒸着厚みや蒸着速度に応じて、発熱体21による蒸発源2の加熱温度を温度制御手段11で制御することによって、蒸発源2からの気化速度を調整し、蒸発源2から被蒸着体3への気化物質9の移動量を調整して蒸着速度を制御することができる。しかし、筒状体4からの輻射熱が気化物質9に作用する場合は、筒状体4内の気化物質9の運動速度は変化しにくく、被蒸着体3への気化物質9の移動量の変化は、微少なものであった。そこで本実施の形態では、筒状体4の温度を調整することによって、筒状体4内に存在する気化物質9の量を制御するようにしている。   In the vacuum deposition apparatus formed as described above, the heating element 21 is heated to heat the evaporation source 2, and the heating element 10a of the temperature adjusting means 10 is heated to heat the cylindrical body 4, Vapor deposition can be performed in the same manner as described above. Then, the vapor deposition thickness and the vapor deposition rate are measured by the vapor deposition thickness measuring unit 7 as described above, and the temperature control unit 11 controls the heating temperature of the evaporation source 2 by the heating element 21 according to the vapor deposition thickness and vapor deposition rate thus measured. Thus, the vaporization rate can be controlled by adjusting the vaporization rate from the evaporation source 2 and adjusting the amount of the vaporized substance 9 transferred from the evaporation source 2 to the deposition target 3. However, when the radiant heat from the cylindrical body 4 acts on the vaporized substance 9, the movement speed of the vaporized substance 9 in the cylindrical body 4 is unlikely to change, and the change in the amount of movement of the vaporized substance 9 to the deposition target body 3 occurs. Was very small. Therefore, in the present embodiment, the amount of the vaporized substance 9 present in the cylindrical body 4 is controlled by adjusting the temperature of the cylindrical body 4.

すなわち、筒状体4の温度は、温度調整手段10の発熱体10aによる加熱と冷却体10bによる冷却を制御することによって、蒸発源2の物質が気化し且つ分解しない高温の温度と、蒸発源2の物質が気化しない低温の温度との広い温度範囲で、調整することができるようにしてある。筒状体4は熱容量が大きいが、このように発熱体10aと冷却体10bを備えることによって、温度調整を迅速に行なうことができるものである。そして蒸着厚み計測手段7で計測される蒸着速度が目標値より大きいときには、例えば冷却体10bによる冷却を優先させるように温度制御手段11で温度調整手段10を制御することによって、筒状体4の温度を蒸着源2の物質が気化しない温度以下に低下させて筒状体4の内面に蒸着源2の物質を析出させ、被蒸着体3への気化物質9の移動量を減少させるように制御するものである。筒状体4の温度を蒸発源2の物質が気化しない温度以下に下げると、筒状体4の内周に気化物質9が固体又は液体となって析出することになるが、筒状体4の温度を上げることによって再度気化するので、蒸着の歩留まりが低下するようなことはない。   That is, the temperature of the cylindrical body 4 is controlled by controlling the heating by the heating element 10a of the temperature adjusting means 10 and the cooling by the cooling body 10b. The temperature can be adjusted over a wide temperature range from a low temperature at which the second substance does not vaporize. Although the cylindrical body 4 has a large heat capacity, the temperature adjustment can be performed quickly by providing the heating element 10a and the cooling body 10b in this way. And when the vapor deposition rate measured by the vapor deposition thickness measuring means 7 is larger than the target value, the temperature control means 11 is controlled by the temperature control means 11 so as to give priority to the cooling by the cooling body 10b, for example. Control is performed such that the temperature of the vapor deposition source 2 is lowered below the temperature at which the material of the vapor deposition source 2 is not vaporized to deposit the material of the vapor deposition source 2 on the inner surface of the cylindrical body 4 and the movement amount of the vaporized material 9 to the vapor deposition target 3 is reduced. To do. If the temperature of the cylindrical body 4 is lowered below the temperature at which the substance of the evaporation source 2 is not vaporized, the vaporized substance 9 is deposited as a solid or liquid on the inner periphery of the cylindrical body 4. Since the vaporization is performed again by raising the temperature, the deposition yield does not decrease.

このようにして被蒸着体3への気化物質9の移動量を制御する他に、次のようにして制御を行なうこともできる。まず、蒸着厚み計測手段7で計測される蒸着速度が目標値よりも小さいときには、例えば発熱体10aによる加熱を優先させるように温度制御手段11で温度調整手段10を制御することによって、筒状体4の温度を上昇させて高い温度の輻射熱を蒸発源2に作用させるようにし、短時間で蒸発源2の温度を上昇させるように制御するものである。また蒸着厚み計測手段7で計測される蒸着速度が目標値よりも大きいときには、例えば冷却体10bによる冷却を優先させるように温度制御手段11で温度調整手段10を制御することによって、筒状体4の温度を低下させて輻射熱が蒸発源2に作用しないようにし、短時間で蒸発源2の温度を下降させるように制御するものである。   In addition to controlling the movement amount of the vaporized substance 9 to the deposition target 3 in this way, the control can be performed as follows. First, when the vapor deposition rate measured by the vapor deposition thickness measuring means 7 is smaller than the target value, for example, the temperature control means 11 controls the temperature adjusting means 10 so as to give priority to heating by the heating element 10a. The temperature of 4 is raised so that high-temperature radiant heat acts on the evaporation source 2, and the temperature of the evaporation source 2 is controlled to rise in a short time. When the vapor deposition rate measured by the vapor deposition thickness measuring means 7 is larger than the target value, for example, the temperature control means 11 is controlled by the temperature control means 11 so as to give priority to the cooling by the cooling body 10b, so that the cylindrical body 4 Is controlled so that the radiant heat does not act on the evaporation source 2 and the temperature of the evaporation source 2 is decreased in a short time.

このように、筒状体4の温度を温度調整手段10で調整して、蒸発源2に作用する輻射熱の影響を制御することによって、蒸発源2の加熱温度を迅速に且つ正確に制御することができるものであり、この制御を上記の筒状体4の開口部5の開口面積の制御と併用することによって、蒸発源2から被蒸着体3への気化物質9の移動量の制御がより正確になり、正確に蒸着厚みや蒸着速度を制御しながら蒸着を行なうことができるものである。   In this way, by adjusting the temperature of the cylindrical body 4 with the temperature adjusting means 10 and controlling the influence of the radiant heat acting on the evaporation source 2, the heating temperature of the evaporation source 2 can be controlled quickly and accurately. By using this control together with the control of the opening area of the opening 5 of the cylindrical body 4, it is possible to control the amount of the vaporized substance 9 transferred from the evaporation source 2 to the deposition target 3. It becomes accurate, and vapor deposition can be performed while accurately controlling the vapor deposition thickness and vapor deposition rate.

図4は本発明の他の実施の形態の一例を示すものであり、図3の実施の形態において、図2の実施の形態の開閉手段6を蒸発源収容室24に設けるようにしたものである。その他の構成は図1〜図3のものと同じであり、開閉制御手段8や温度制御手段11を折れ込み制御手段13で兼用するようにしてある。   FIG. 4 shows an example of another embodiment of the present invention. In the embodiment of FIG. 3, the opening / closing means 6 of the embodiment of FIG. is there. Other configurations are the same as those in FIGS. 1 to 3, and the opening / closing control means 8 and the temperature control means 11 are also used as the folding control means 13.

このものにあって、図1の実施の形態で説明したように、蒸着厚み計測手段7で計測される蒸着速度のデータに基づいて、折れ込み制御手段13で折れ込み体12の折れ込みの程度を制御して筒状体4の開口部5の開口面積を調整することによって、開口部5を通過して被蒸着体3へと移動する気化物質9の量を制御することができ、被蒸着体3への蒸着厚み及び蒸着速度を制御することができる。また図2の実施の形態で説明したように、蒸着厚み計測手段7で計測される蒸着速度の計測データに基づいて、開閉制御手段8で開閉手段6を制御して蒸発源収容室24の連通口14の開口度を調整することによって、連通口14を通過して被蒸着体3へと移動する気化物質9の量を制御することができ、被蒸着体3への蒸着厚み及び蒸着速度を制御することができる。さらに図3の実施の形態で説明したように、蒸着厚み計測手段7で計測される蒸着速度のデータに基づいて、温度制御手段11で温度調整手段10による筒状体4の温度調整を制御することによって、蒸発源2から被蒸着体3への気化物質9の移動量の制御がより正確になる。従って、これらの制御を併用することによって、蒸発源2から被蒸着体3への気化物質9の移動量の制御がより正確になり、正確に蒸着厚みや蒸着速度を制御しながら蒸着を行なうことができるものである。   In this case, as described in the embodiment of FIG. 1, the degree of folding of the folding body 12 by the folding control unit 13 based on the deposition rate data measured by the deposition thickness measuring unit 7. By controlling the opening area of the opening 5 of the cylindrical body 4, the amount of the vaporized substance 9 that passes through the opening 5 and moves to the deposition target 3 can be controlled. The vapor deposition thickness and vapor deposition rate on the body 3 can be controlled. In addition, as described in the embodiment of FIG. 2, the open / close control means 8 controls the open / close means 6 based on the vapor deposition rate measurement data measured by the vapor deposition thickness measuring means 7 to communicate the evaporation source accommodation chamber 24. By adjusting the opening degree of the port 14, the amount of the vaporized substance 9 that passes through the communication port 14 and moves to the deposition target 3 can be controlled, and the deposition thickness and deposition rate on the deposition target 3 can be controlled. Can be controlled. Further, as described in the embodiment of FIG. 3, based on the deposition rate data measured by the deposition thickness measuring unit 7, the temperature control unit 11 controls the temperature adjustment of the cylindrical body 4 by the temperature adjusting unit 10. Thereby, the control of the amount of movement of the vaporized substance 9 from the evaporation source 2 to the deposition target 3 becomes more accurate. Therefore, by using these controls in combination, the movement amount of the vaporized substance 9 from the evaporation source 2 to the vapor deposition target 3 becomes more accurate, and vapor deposition is performed while accurately controlling the vapor deposition thickness and vapor deposition rate. It is something that can be done.

本発明の実施の形態の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 本発明の実施の形態の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of embodiment of this invention. 従来例を示す概略断面図である。It is a schematic sectional drawing which shows a prior art example.

符号の説明Explanation of symbols

1 真空チャンバー
2 蒸発源
3 被蒸着体
4 筒状体
5 開口部
6 開閉手段
7 蒸着厚み計測手段
8 開閉制御手段
9 気化物質
10 温度調整手段
11 温度制御手段
12 折れ込み体
13 折れ込み制御手段
14 連通口
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation source 3 Deposited body 4 Cylindrical body 5 Opening part 6 Opening / closing means 7 Deposition thickness measurement means 8 Opening / closing control means 9 Vaporized substance 10 Temperature adjusting means 11 Temperature control means 12 Folding body 13 Folding control means 14 Communication port

Claims (3)

真空チャンバー内に蒸発源と被蒸着体とを配置すると共に蒸発源と被蒸着体の間の空間を蒸発源の物質が気化される温度で加熱された筒状体で囲み、蒸発源と被蒸着体を相対的に移動させた状態で、蒸発源から気化した物質を筒状体内を通して被蒸着体の表面に到達させて蒸着させるようにした真空蒸着装置において、筒状体の被蒸着体と対向する開口部に設けられ、開口部の内側へ向けて折れ込み可能な折れ込み体と、蒸発源から気化した物質を蒸着させてその蒸着厚みを計測する蒸着厚み計測手段と、蒸着厚み計測手段で計測される蒸着厚みに応じて折れ込み体の折れ込みの程度を制御する折れ込み制御手段と、を備えて成ることを特徴とする真空蒸着装置。   The evaporation source and the deposition target are arranged in the vacuum chamber, and the space between the evaporation source and the deposition target is surrounded by a cylindrical body heated at a temperature at which the substance of the evaporation source is vaporized. In a vacuum deposition apparatus in which a substance evaporated from an evaporation source reaches the surface of the deposition target through the cylindrical body and is deposited while the body is relatively moved, facing the deposition target of the cylindrical body A foldable body provided in the opening and capable of folding toward the inside of the opening, a deposition thickness measuring means for depositing a vaporized substance from the evaporation source and measuring the deposition thickness, and a deposition thickness measuring means. And a folding control means for controlling the degree of folding of the folded body in accordance with the measured deposition thickness. 蒸発源から気化した物質を連通口を通過させた後に筒状体内を通して被蒸着体の表面に到達させるようにし、この連通口の開口度を調整可能な開閉手段と、上記の蒸着厚み計測手段で計測される蒸着厚みに応じて開閉手段による連通口の開口度を調整する開閉制御手段とを備えて成ることを特徴とする請求項1に記載の真空蒸着装置。   The vaporized material from the evaporation source is allowed to reach the surface of the deposition target through the cylindrical body after passing through the communication port, and the opening / closing means capable of adjusting the opening degree of the communication port and the above-described vapor deposition thickness measuring unit. The vacuum deposition apparatus according to claim 1, further comprising an opening / closing control means for adjusting an opening degree of the communication port by the opening / closing means in accordance with the measured deposition thickness. 筒状体の温度を調整する温度調整手段と、上記の蒸着厚み計測手段で計測される蒸着厚みに応じて、温度調整手段で調整される筒状体の温度を制御する温度制御手段とを備えて成ることを特徴とする請求項1又は2に記載の真空蒸着装置。   Temperature adjusting means for adjusting the temperature of the cylindrical body, and temperature control means for controlling the temperature of the cylindrical body adjusted by the temperature adjusting means according to the vapor deposition thickness measured by the vapor deposition thickness measuring means. The vacuum vapor deposition apparatus according to claim 1 or 2, wherein
JP2007002663A 2007-01-10 2007-01-10 Vacuum deposition equipment Expired - Fee Related JP5044223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002663A JP5044223B2 (en) 2007-01-10 2007-01-10 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002663A JP5044223B2 (en) 2007-01-10 2007-01-10 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2008169420A true JP2008169420A (en) 2008-07-24
JP5044223B2 JP5044223B2 (en) 2012-10-10

Family

ID=39697796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002663A Expired - Fee Related JP5044223B2 (en) 2007-01-10 2007-01-10 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP5044223B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204101A (en) * 2012-03-29 2013-10-07 Hitachi Zosen Corp Vapor deposition apparatus
KR20150121895A (en) * 2014-04-22 2015-10-30 한밭대학교 산학협력단 Nozzle apparatus for vertical type parylene monomer
JP2020521038A (en) * 2017-05-22 2020-07-16 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Vapor deposition equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299353A (en) * 1993-04-09 1994-10-25 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum deposition device
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299353A (en) * 1993-04-09 1994-10-25 Ishikawajima Harima Heavy Ind Co Ltd Continuous vacuum deposition device
JP2002348659A (en) * 2001-05-23 2002-12-04 Junji Kido Continuous vapor deposition apparatus, vapor deposition apparatus and vapor deposition method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013204101A (en) * 2012-03-29 2013-10-07 Hitachi Zosen Corp Vapor deposition apparatus
KR20150121895A (en) * 2014-04-22 2015-10-30 한밭대학교 산학협력단 Nozzle apparatus for vertical type parylene monomer
KR101579679B1 (en) * 2014-04-22 2015-12-22 한밭대학교 산학협력단 Nozzle apparatus for vertical type parylene monomer
JP2020521038A (en) * 2017-05-22 2020-07-16 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Vapor deposition equipment
JP7136699B2 (en) 2017-05-22 2022-09-13 京東方科技集團股▲ふん▼有限公司 Evaporation equipment

Also Published As

Publication number Publication date
JP5044223B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4966028B2 (en) Vacuum deposition equipment
JP4402016B2 (en) Vapor deposition apparatus and vapor deposition method
JP2011256427A (en) Method for evaporating/sublimating evaporation material in vacuum deposition apparatus and crucible device for vacuum deposition
JP5044223B2 (en) Vacuum deposition equipment
JP2007224393A (en) Vapor deposition source cell, thin film deposition method, aperture diaphragm member, and vapor deposition source heater
KR20160042570A (en) Physical vapor deposition apparatus and method of depositing phase-change materials using the same
US20130160712A1 (en) Evaporation cell and vacuum deposition system the same
KR101284394B1 (en) A molecular beam source for use of thin-film accumulation and a method for controlling volume of molecular beam
JP4139158B2 (en) Vacuum deposition method
JP5180469B2 (en) Vacuum deposition equipment
JP4535926B2 (en) Vapor deposition material evaporation equipment
JP2011162846A (en) Vacuum evaporation source
TWI447246B (en) Vacuum evaporation device
JP4830847B2 (en) Vacuum deposition equipment
KR100656181B1 (en) System for continuous deposiotion in OLED process
JP3684343B2 (en) Molecular beam source cell for thin film deposition
JP2006111961A (en) Vapor deposition source system
WO2006053017A1 (en) Method and apparatus for controlling the vaporization of organic material
JP2009299115A (en) Vapor deposition apparatus
KR20130046541A (en) Thin film depositing apparatus and method of depositing the fhin film using the same
JP2003034591A (en) Molecular beam source cell for depositing thin film
US20090258134A1 (en) Method for controlling thin-film forming velocity, method for manufacturing thin-film using the same and system for manufacturing a thin-film using the same
KR20070051639A (en) Vacuum deposition apparatus of organic substances
JP2005097730A5 (en)
JP5796168B2 (en) In-line type vapor deposition equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees