JP4281029B2 - Evaporation source - Google Patents

Evaporation source Download PDF

Info

Publication number
JP4281029B2
JP4281029B2 JP21346998A JP21346998A JP4281029B2 JP 4281029 B2 JP4281029 B2 JP 4281029B2 JP 21346998 A JP21346998 A JP 21346998A JP 21346998 A JP21346998 A JP 21346998A JP 4281029 B2 JP4281029 B2 JP 4281029B2
Authority
JP
Japan
Prior art keywords
resistor
evaporation
container
resistance heating
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21346998A
Other languages
Japanese (ja)
Other versions
JP2000034558A (en
Inventor
均 中河原
宏治 下川
崇行 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP21346998A priority Critical patent/JP4281029B2/en
Publication of JP2000034558A publication Critical patent/JP2000034558A/en
Application granted granted Critical
Publication of JP4281029B2 publication Critical patent/JP4281029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸発源に関し、特に、真空容器内で高蒸気圧材料を蒸発させ基板に薄膜を形成する成膜装置に使用され、生産用装置に適した、抵抗加熱の原理を応用してなる蒸発源に関する。
【0002】
【従来の技術】
高蒸気圧材料(有機EL用有機物等)を蒸発させて基板に成膜を行う成膜装置(蒸着装置)に使用される従来の蒸発源は、抵抗体を使用する抵抗加熱蒸発源と、ルツボの周囲に発熱線を巻いたセルタイプの蒸発源に大別される。従来の抵抗加熱蒸発源とセルタイプ蒸発源を図を参照して説明する。
【0003】
図6は抵抗加熱蒸発源の代表的構成を示す。図6に示すごとく、成膜装置を形成する真空容器71の中で、下方位置に抵抗加熱蒸発源72が設けられ、上方位置にホルダ73に支持された基板74が配置される。ホルダ73はリング形状であり、基板74の下面が下方に臨み、この下面に、蒸発して下方から到来する高蒸気圧材料が成膜される。基板74の近傍には、抵抗加熱蒸発源72における材料の蒸発量を制御するための検出信号を出力する水晶振動子式膜厚計75の検出器76が配置される。抵抗加熱蒸発源72から矢印77のごとく放出された蒸発粒子は、基板74の下面の他、膜厚計75の検出器76にも付着する。抵抗加熱蒸発源72は、下側のボート状抵抗体78と、上側の蓋状抵抗体79と、両者の間に介設される板状抵抗体80とからなり、3つの抵抗体は図示されるごとく重ね合わされ、両端部を電極部81,82で挟持され固定されている。ボート状抵抗体78は蒸発材料83を充填する容器として機能する。蓋状抵抗体79と板状抵抗体80には、蒸発材料83の蒸発粒子が通過する吹出し孔79a,80aが形成されている。抵抗加熱蒸発源72の各抵抗体78,79,80には電源84から電極部81,82を介して電流が供給され、抵抗体が発熱する。電源84から供給される電流の量は、膜厚計75からの検出信号に基づき制御される。抵抗体78,79,80が発熱すると、ボート状抵抗体78に充填された蒸発材料83は材料固有の温度で蒸発を開始する。蒸発材料83の蒸発粒子は抵抗体80,79に形成された吹出し孔80a,79aを通って抵抗加熱蒸発源72の周囲の空間に放出される。こうして放出された蒸発粒子は前述のごとく基板74の下面および検出器76の下面に堆積する。上記の水晶振動子式膜圧計75は、蒸発粒子が検出器76に付着することにより発振周波数が変化することを利用して、蒸発量を制御する機器である。膜厚計75は、検出器76の蒸発粒子の付着量を監視しながら、所望の蒸発量になるように電源84に信号ケーブルを介して信号を送り、電源84の出力を変化させることで抵抗体78〜80の発熱量を変化させ、蒸発材料83の蒸発量を制御する。
【0004】
次に図7はセルタイプ蒸発源の代表的構成を示す。図7において、図6で説明した要素と実質的に同一の要素には同一の符号を付している。図7に示すごとく、成膜装置を形成する真空容器71の中で、下方位置にセルタイプ蒸発源85が設けられ、上方位置にホルダ73に支持された基板74が配置される。ホルダ73を介して基板74の下面が下方に臨み、この下面に、蒸発して下方から到来する高蒸気圧材料が成膜される。セルタイプ蒸発源85はルツボ86と、ルツボ86の下部周囲に巻かれた発熱線87から構成され、電源88から発熱線87に電流を流すことでこの発熱線87が発熱し、その輻射熱でルツボ86の温度を上昇させることでルツボ86内に充填された材料83は材料固有の温度で蒸発を始める。ルツボ86の材料が石英等の赤外波長を透過しやすい物質でできている場合は、発熱線87からの輻射熱で直接に材料83を加熱することとなる。蒸発粒子は、ルツボ86の開口86aから蒸発源の周囲空間に矢印89のごとく放出される。放出された蒸発粒子は、一部が基板74の表面に到達する。蒸発量の制御は、ルツボ86の外側に設置された熱電対による温調計90でルツボ温度を監視し電源88の出力を変化させることで行われる。
【0005】
【発明が解決しようとする課題】
従来の抵抗加熱蒸発源は、抵抗体の熱容量が小さく、抵抗体の電流値の変化に対する材料の温度変化の応答性がよく、蒸発量の制御性に優れている。その反面、このような特長を発揮させる観点から蒸発材料を充填するボート状抵抗体78の形態が定められているので、蒸発材料を多く充填できず、このため長時間蒸発させることは難しく、生産装置には向いていないという欠点を有している。
【0006】
一方、従来のセルタイプ蒸発源は、構造的に蒸発材料を大量に充填できるため、生産装置には向いているという特長を有する。しかし、蒸発材料が大量であるため熱容量が大きいことと、ルツボ外側からの熱輻射で材料の蒸発制御を行っていることで、発熱線87を流れる電流値の変化に対する材料の温度変化の応答性が悪く、特に高い蒸発速度での制御が難しいという欠点を有している。さらにルツボ86の外周部分の温度変化を監視しているために、ルツボ内の材料の量の変化に伴い、材料の温度が異なり、蒸発量が異なるという欠点を有している。
【0007】
現在のところ蒸発源としては生産装置の適した材料の充填量の観点からセルタイプが主流である。しかしながら、上記欠点を有することから、さらに蒸発速度の制御性が高い蒸発源が望まれている。
【0008】
本発明の目的は、上記問題を解決することにあり、大量の蒸発材料を充填できて生産用成膜装置に適し、さらに有機物材料等の高蒸気圧材料で蒸発量の制御に優れた蒸発源を提供することにある。
【0009】
【課題を解決するための手段および作用】
本発明に係る蒸発源は上記目的を達成するために次のように構成される。
第1の蒸発源(請求項1に対応)は、抵抗体からなる抵抗加熱容器を有し、膜厚計からの検出信号で制御された電流を抵抗体に流し発熱させて蒸発材料を蒸発させ、抵抗加熱容器に設けた吹出し孔から蒸発粒子を放出するように構成され、さらに、抵抗加熱容器は、蒸発材料を充填する絶縁性の材料容器を具備し、材料容器は下部開口部を有し、下部開口部は、抵抗加熱容器の内部に位置し、下部開口部と抵抗体の間に隙間が形成されている。
本発明に係る蒸発源では、抵抗加熱型の蒸発源の構成をベースとして容積の大きい材料容器を付設することより多量の蒸発材料を蒸発させることができ、生産装置として適した構成を有する。さらに材料容器に充填された多量の蒸発材料が材料容器の外側へ出るとき、その一部が抵抗体に接触し、部分的に蒸発を発生させる。これによって多量の蒸発材料を偏ることなく、蒸発させることが可能となる。さらに抵抗加熱蒸発源の構造を利用するため、蒸発量に高い制御を行うことが可能となる。
第2の蒸発源(請求項2に対応)は、上記第1の構成において、上記抵抗加熱容器が板状抵抗体と上蓋抵抗体からなり、上蓋抵抗体に材料容器が備えられると共に吹出し孔が形成され、材料容器の下部開口部が板状抵抗体に近づけて設けられるように構成される。蒸発材料が充填された材料容器は逆さに配置され、材料容器の下部開口部は、板状抵抗体に接近させて設けられる。材料容器内の蒸発材料は下方に移動し、もっとも下側に位置する蒸発材料が板状抵抗体に接触する。
第3の蒸発源(請求項3に対応)は、上記第1の構成において、抵抗加熱容器が、材料容器を備えた上蓋抵抗体と、吹出し孔を有するボート状抵抗体と、上蓋抵抗体とボート状抵抗体の間に設けられ蒸発粒子の通過孔を有する板状抵抗体とからなり、材料容器の下部開口部が板状抵抗体に近づけて設けられるように構成される。この構成によれば、多量の蒸発材料を充填できる材料容器を備え、生産装置に適したデポダウン構造の蒸発源が実現される。
第4の蒸発源(請求項4に対応)は、抵抗体からなる抵抗加熱容器を有し、抵抗加熱容器に設けた吹出し孔から蒸発粒子を放出する蒸発源において、さらに抵抗加熱容器は蒸発材料を充填する絶縁性の材料容器を具備し、材料容器は上部開口部を有し、上部開口部は、抵抗加熱容器の内部に設けられ、かつ抵抗加熱容器は、吹出し孔を有する上蓋抵抗体と、材料容器を備えたボート状抵抗体と、上蓋抵抗体とボート状抵抗体の間に設けられ蒸発粒子の通過孔を有する板状抵抗体とからなり、材料容器の上部開口部が板状抵抗体に近づけて設けられ、材料容器に、温調計からの検出信号で制御された電流で発熱し蒸発材料を蒸発させる発熱線が設けられるように構成される。この蒸発源は、抵抗加熱の構造とセルタイプの構造を組み合わせ、多量の蒸発材料を用意して生産装置に適し、かつ蒸発材料の蒸発量の制御を高めることができる。
の蒸発源(請求項に対応)は、上記の各構成において、材料容器は絶縁性を有するルツボであることが好ましい。
【0010】
【発明の実施の形態】
以下に、本発明の好適な実施形態を添付図面に基づいて説明する。
【0011】
図1〜図3は本発明に係る蒸発源の第1の実施形態を示す。図1は上方斜めから見た容器部分の外観を示し、図2は内部構造を示し、図3は図2におけるA−A線断面の図を示している。この実施形態による蒸発源は抵抗加熱蒸発源を応用した構成を有している。蒸発源の容器11は、底部を形成する板状抵抗体12と、上蓋抵抗体13とから構成される抵抗加熱容器である。板状抵抗体12では中央部に仕切り壁14が形成されている。上蓋抵抗体13には、従来の抵抗加熱蒸発源の蓋状抵抗体と同じ形態を有し、かつ長手方向の一方の側に上方向に立てた姿勢で長形の材料容器15が設けられている。板状抵抗体12と上蓋抵抗体13は、電流を流すと熱を発する高融点金属(タングステン、モリブデン等)で作製され、材料容器15は例えば絶縁性のある石英で形成されている。図2に示されるごとく材料容器15の上端は閉じられており、下端は開いている。下端の開口部は材料容器15内に蒸発材料16を充填する口として、および蒸発させるときの蒸発材料16が取り出される口として使用される。板状抵抗体12と上蓋抵抗体13は図2に示されるごとく重ね合わされて使用され、容器11が形成される。上蓋抵抗体13に設けられた材料容器15は、その下端の開口部が板状抵抗体12に接近し、重ね合わせたときには所望の隙間が形成されるようになっている。また材料容器15の長さは充填しようとする蒸発材料16の量に対応させて決められる。板状抵抗体12と上蓋抵抗体13を重ね合わせて蒸発源の容器11を形成したとき、材料容器15は、板状抵抗体12の仕切り壁14の一方の側(図2中左側)に位置するように構成されている。また上蓋抵抗体13には、仕切り壁14を境として材料容器15とは反対側の部分に、蒸発材料16から蒸発した粒子が容器11の周囲空間に放出されるための例えば1つの吹出し孔17が形成されている。板状抵抗体12の仕切り壁14と上蓋抵抗体13との間には隙間18が形成されている。蒸発粒子は、矢印19に示されるごとく移動して吹出し孔17から放出されることになる。仕切り板14を設けた理由は、蒸発粒子の通路のコンダクタンスを小さくして圧力勾配をつけることにある。圧力勾配がつけられると、蒸発粒子の拡散が顕著になる。
【0012】
図2に示されるように、重ね合わされた板状抵抗体12と上蓋抵抗体13は、その両端が重ね合わされ、電極部20,21によって固定される。電極部20,21は各々2枚の板材を重ねてネジ等で固定する構造を有し、それにより上記両端を挟み込み、固定する。図に示すように板状抵抗体12と上蓋抵抗体13は各々の周縁部が接触した状態に保持されるが、板状抵抗体12の上で溶融し蒸発する蒸発材料16が外部に漏れないように両者は密閉した状態で保持されている。この密閉状態を作るために、板状抵抗体12あるいは上蓋抵抗体13の縁部に折返し部を設けることも好ましい。
【0013】
上記構成を有する蒸発源は、図6で説明した従来の成膜装置と同様な装置に使用される。すなわち蒸発源の板状抵抗体12と上蓋抵抗体13には、電極部20,21を介して電源22から電流が供給される。板状抵抗体12と上蓋抵抗体13に電流が流れると、材料容器15に充填された多量の蒸発材料16のうち、板状抵抗体12に接触する最下位に位置する蒸発材料の部分から溶融し蒸発する。蒸発した粒子は矢印19のごとく移動し、吹出し孔17から周囲の空間に放出される。容器11の上蓋抵抗体13の吹出し孔17から放出された蒸発粒子は上昇し、図6で示されたように基板74の下面に付着し成膜される。蒸発源における蒸発材料16の蒸発量の制御は従来と同じであり、水晶振動子式薄膜計からの検出信号に基づき抵抗体に流す電流量を調整することにより制御される。本実施形態による蒸発源によれば、多くの蒸発材料を充填することができ、かつ下部の蒸発材料から次第に蒸発するように構成したため、長時間の連続成膜が可能になり、生産装置への利用が可能であると共に、蒸発量の適切に制御することができ、さらに低電力で蒸発を行うことができる。
【0014】
上記実施形態において、材料容器15の上部を開口し、蒸発材料16を適宜に供給できる構造を設けることも可能である。
【0015】
図4を参照して本発明に係る蒸発源の第2の実施形態を説明する。この実施形態は第1実施形態の変形例であり、図4は上記図2に対応する図である。この実施形態による蒸発源は、下方に蒸発粒子を放出するデポダウン構造を有している。図4において、前述の実施形態で説明された要素と同一の要素には同一の符号を付している。蒸発源の容器(抵抗加熱容器)31は、上側の上蓋抵抗体32と、容器の下側部分を形成するボート状抵抗体33と、その中間に位置する板状抵抗体34とから構成される。上蓋抵抗体32と板状抵抗体34の基本的形態は第1実施形態のものと似ている。ボート状抵抗体33の基本的形態は従来技術のものと似ている。上蓋抵抗体32にはそのほぼ中央の位置に前述した材料容器15が設けられている。板状抵抗体34の両側に蒸発粒子の通路としての少なくとも2つの孔35が形成されている。ボート状抵抗体33のほぼ中央に少なくとも1つの吹出し孔36が形成されている。材料容器15に多量の蒸発材料16が充填されている点、蒸発材料16の下側部分から部分的に蒸発する点は、第1実施形態と同じである。さらにその他の構成については第1実施形態で説明した構成と同じである。
【0016】
本実施形態によれば、デポダウン構造の抵抗加熱蒸発源を実現できると共に、さらに前述の第1実施形態と同等の効果を発揮させることができる。すなわち大量の蒸発材料を充填でき、長時間の連続成膜ができ、生産装置へ利用できると共に、蒸発量の適切に制御することができる。
【0017】
前述の第1および第2の実施形態による構造は有機物材料等の昇華性物質で特に有効である。また材料容器15と板状抵抗体12の間の隙間、あるいは材料容器15と板状抵抗体34の間の隙間を調整することにより、溶融する材料16においても表面張力の効果で流れ出すことなく同じ効果が得られる。
【0018】
次に図5を参照して本発明に係る蒸発源の第3の実施形態を説明する。この実施形態による蒸発源は、抵抗加熱蒸発源の構造とセルタイプ蒸発源の構造を組み合わせて構成される。図5は蒸発源の構成と蒸発を制御するシステムの構成を示している。なお図5において、前述の各実施形態で説明した要素と実質的に同一の要素には同一の符号を付している。
【0019】
成膜装置を形成する真空容器41において、下方位置に本実施形態による蒸発源42が設けられ、上方位置にリング形状のホルダ43に支持された基板44が配置される。ホルダ43上の基板44は、その下面が下方に臨み、この下面に高蒸気圧材料が成膜される。基板44の近傍には、蒸発源42における材料の蒸発量を制御するための検出信号を出力する水晶振動子式膜厚計45の検出器46が配置される。蒸発源42から放出された蒸発粒子は基板44の下面と検出器46の検出面に付着する。
【0020】
蒸発源42の抵抗加熱容器は、上側の上蓋抵抗体47と、下側のボート状抵抗体48と、両者の間に介設される板状抵抗体49とからなり、3つの抵抗体は図示されるごとく重ね合わされ、両端部を前述の電極部20,21で挟持され固定されている。ボート状抵抗体48は、そのほぼ中央位置に多量の蒸発材料16を充填できる材料容器15が設けられる。材料容器15は開口部が上側に位置するように使用される。また上蓋抵抗体47と板状抵抗体49には、蒸発材料16からの蒸発粒子が通過する吹出し孔50,51が形成されている。蒸発源42の各抵抗体47,48,49には電源52から電極部20,21を介して電流が供給され、発熱が生じる。電源52から供給される電流の量は、膜厚計45からの検出信号に基づき制御される。各抵抗体47,48,49を図示のごとく組み付けた状態で、材料容器15の上端開口部と板状抵抗体49の間には所望の隙間が形成されている。
【0021】
材料容器15は、必要とされる蒸発材料16を収容する十分な容積を有し、例えば石英で作られている。材料容器15に関する構成には、さらにセルタイプの蒸発源の構成が付加される。すなわち材料容器15はルツボとして機能し、その下部には発熱線53が巻かれている。発熱線53は電源54に接続され、電源54から発熱線53に電流を流すことでこの発熱線53が発熱し、その輻射熱で材料容器15の温度を上昇させることで材料容器15内に充填された蒸発材料16は材料固有の温度で蒸発する。また材料容器15は赤外波長を透過しやすい石英で作られているので、発熱線53からの輻射熱で直接に蒸発材料16は加熱される。蒸発粒子は、材料容器15の上端開口部から放出される。材料容器15からの蒸発量の制御は、材料容器15の外部に設置された熱電対による温調計55で温度を監視し電源54の出力を変化させることで行われる。
【0022】
さらに材料容器15の上端開口部から放出された蒸発粒子は、矢印56のごとく、板状抵抗体49の吹出し孔51および上蓋抵抗体47の吹出し孔50を通過して外部の周囲空間へ放出される。このとき抵抗体47,48,49は発熱状態にある。こうして放出された蒸発粒子は前述のごとく基板44の下面および膜厚計45の検出器46の検出面に堆積する。水晶振動子式膜圧計45は、蒸発粒子が検出器46に付着することにより発振周波数が変化することを利用して、蒸発量を制御する。この膜厚計45は、検出器46における蒸発粒子の付着量を監視しながら、所望の蒸発量になるように電源52に信号を送り、電源52の出力を変化させることで抵抗体47,48,49の発熱量を変化させ、蒸発材料16の蒸発量を制御する。
【0023】
上記第3の実施形態によれば、材料容器15に充填された蒸発材料16は発熱線53の発熱作用に基づきその固有の温度で蒸発を始める。蒸発材料16からの蒸発粒子は材料容器15の上側にあるボート状抵抗体48と板状抵抗体49の表面に付着するが、これらの抵抗体からの熱を受けて再度蒸発し、矢印56のごとく移動して上蓋抵抗体47の吹出し孔50から外部の空間へ放出される。放出された蒸発粒子は基板44や検出器46に付着する。水晶振動子式膜圧計45は得られた情報に基づき電源52に信号を送り、その出力を変化させることで、抵抗体47,48,49の発熱量を変化させ、蒸発量を制御する。蒸発量を抵抗体に直接電流を流すことによる温度変化で制御しているため、蒸発速度の変化に対する応答性がよく、さらに材料容器15内に多くの材料を充填できるため、生産装置での利用に適している。
【0024】
【発明の効果】
以上の説明で明らかなように本発明によれば、抵抗体からなる抵抗加熱容器と多量の蒸発材料を充填できる材料容器を組み合わせて構成し、かつ蒸発材料を蒸発させるとき一部の蒸発材料が抵抗体に接触するように構成したため、長時間安定して蒸発材料を蒸発させることができ、また蒸発量の制御を有効に行うことができる。従って生産装置に適した蒸発源を実現することができる。さらにデポダウン構造の蒸発源を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る蒸発源の第1実施形態を示し、上方斜めから見た容器部分の外観図である。
【図2】第1実施形態による蒸発源の内部構造を示す縦断面図である。
【図3】図2におけるA−A線断面図である。
【図4】本発明の第2実施形態による蒸発源の内部構造を示す縦断面図である。
【図5】本発明の第3実施形態による蒸発源の構造および装置の全体を示す構成図である。
【図6】従来の抵抗加熱蒸発源の構成図である。
【図7】従来のセルタイプ蒸発源の構成図である。
【符号の説明】
11 容器(抵抗加熱容器)
12 板状抵抗体
13 上蓋抵抗体
15 材料容器
16 蒸発材料
17 吹出し孔
20,21 電極部
31 容器(抵抗加熱容器)
32 上蓋抵抗体
33 ボート状抵抗体
34 板状抵抗体
41 真空容器
42 蒸発源
44 基板
46 検出器
47 上蓋抵抗体
48 ボート状抵抗体
49 板状抵抗体
53 発熱線
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an evaporation source, and more particularly, to an evaporation source that is used in a film forming apparatus for forming a thin film on a substrate by evaporating a high vapor pressure material in a vacuum vessel, and is applied to a production apparatus and applying the principle of resistance heating. Regarding the source.
[0002]
[Prior art]
A conventional evaporation source used in a film formation apparatus (evaporation apparatus) that forms a film on a substrate by evaporating a high vapor pressure material (organic material for organic EL, etc.) includes a resistance heating evaporation source using a resistor, a crucible Is roughly divided into cell-type evaporation sources with heating wires around them. A conventional resistance heating evaporation source and cell type evaporation source will be described with reference to the drawings.
[0003]
FIG. 6 shows a typical configuration of a resistance heating evaporation source. As shown in FIG. 6, a resistance heating evaporation source 72 is provided at a lower position in a vacuum vessel 71 forming a film forming apparatus, and a substrate 74 supported by a holder 73 is arranged at an upper position. The holder 73 has a ring shape, and the lower surface of the substrate 74 faces downward, and a high vapor pressure material that evaporates and arrives from below is formed on the lower surface. In the vicinity of the substrate 74, a detector 76 of a quartz vibrator type film thickness meter 75 that outputs a detection signal for controlling the evaporation amount of the material in the resistance heating evaporation source 72 is disposed. The evaporated particles emitted from the resistance heating evaporation source 72 as indicated by the arrow 77 adhere to the detector 76 of the film thickness meter 75 in addition to the lower surface of the substrate 74. The resistance heating evaporation source 72 includes a lower boat-like resistor 78, an upper lid-like resistor 79, and a plate-like resistor 80 interposed therebetween, and the three resistors are illustrated. The two end portions are sandwiched and fixed by the electrode portions 81 and 82. The boat-like resistor 78 functions as a container for filling the evaporation material 83. The lid-like resistor 79 and the plate-like resistor 80 are formed with blowing holes 79a and 80a through which the evaporated particles of the evaporation material 83 pass. A current is supplied from the power source 84 via the electrode portions 81 and 82 to the resistors 78, 79, and 80 of the resistance heating evaporation source 72, and the resistors generate heat. The amount of current supplied from the power supply 84 is controlled based on the detection signal from the film thickness meter 75. When the resistors 78, 79, and 80 generate heat, the evaporation material 83 filled in the boat-like resistor 78 starts to evaporate at a temperature specific to the material. The evaporated particles of the evaporation material 83 are discharged into the space around the resistance heating evaporation source 72 through the blowing holes 80a and 79a formed in the resistors 80 and 79. The evaporated particles thus discharged are deposited on the lower surface of the substrate 74 and the lower surface of the detector 76 as described above. The quartz vibrator type membrane pressure meter 75 is a device that controls the evaporation amount by utilizing the fact that the oscillation frequency changes due to the evaporation particles adhering to the detector 76. The film thickness meter 75 sends a signal to the power source 84 via a signal cable so as to obtain a desired evaporation amount while monitoring the amount of evaporated particles adhering to the detector 76, and changes the output of the power source 84 to change the resistance. The amount of heat generated by the bodies 78 to 80 is changed, and the amount of evaporation of the evaporation material 83 is controlled.
[0004]
Next, FIG. 7 shows a typical configuration of a cell type evaporation source. In FIG. 7, elements that are substantially the same as those described in FIG. 6 are given the same reference numerals. As shown in FIG. 7, in the vacuum vessel 71 forming the film forming apparatus, a cell type evaporation source 85 is provided at a lower position, and a substrate 74 supported by a holder 73 is arranged at an upper position. The lower surface of the substrate 74 faces downward through the holder 73, and a high vapor pressure material that evaporates and arrives from below is formed on this lower surface. The cell type evaporation source 85 is composed of a crucible 86 and a heating wire 87 wound around the lower portion of the crucible 86. When the current is passed from the power source 88 to the heating wire 87, the heating wire 87 generates heat, and the radiant heat generates the crucible. By raising the temperature of 86, the material 83 filled in the crucible 86 starts to evaporate at a temperature specific to the material. When the material of the crucible 86 is made of a substance that easily transmits infrared wavelengths, such as quartz, the material 83 is directly heated by radiant heat from the heating wire 87. The evaporated particles are discharged from the opening 86a of the crucible 86 into the space around the evaporation source as indicated by an arrow 89. Part of the emitted evaporated particles reaches the surface of the substrate 74. The amount of evaporation is controlled by monitoring the crucible temperature with a temperature controller 90 using a thermocouple installed outside the crucible 86 and changing the output of the power supply 88.
[0005]
[Problems to be solved by the invention]
The conventional resistance heating evaporation source has a small heat capacity of the resistor, has a good responsiveness to a temperature change of the material with respect to a change in the current value of the resistor, and has excellent controllability of the evaporation amount. On the other hand, since the form of the boat-like resistor 78 filled with the evaporation material is determined from the viewpoint of exhibiting such features, it is difficult to fill the evaporation material for a long time, and it is difficult to evaporate for a long time. It has the disadvantage that it is not suitable for the device.
[0006]
On the other hand, the conventional cell-type evaporation source has a feature that it is suitable for a production apparatus because it can structurally fill a large amount of evaporation material. However, since the amount of evaporation material is large, the heat capacity is large, and the evaporation of the material is controlled by heat radiation from the outside of the crucible, so that the response of the temperature change of the material to the change of the current value flowing through the heating wire 87. However, it is difficult to control at a particularly high evaporation rate. Further, since the temperature change of the outer peripheral portion of the crucible 86 is monitored, there is a disadvantage that the temperature of the material is different and the evaporation amount is different with the change of the amount of the material in the crucible.
[0007]
At present, the cell type is mainly used as the evaporation source from the viewpoint of the filling amount of the material suitable for the production apparatus. However, due to the above disadvantages, an evaporation source with higher controllability of evaporation rate is desired.
[0008]
An object of the present invention is to solve the above-described problem, and is an evaporation source that can be filled with a large amount of evaporation material and is suitable for a film forming apparatus for production, and that is excellent in controlling the evaporation amount with a high vapor pressure material such as an organic material. Is to provide.
[0009]
[Means and Actions for Solving the Problems]
The evaporation source according to the present invention is configured as follows to achieve the above object.
The first evaporation source (corresponding to claim 1) has a resistance heating container made of a resistor, and causes the current controlled by the detection signal from the film thickness meter to flow through the resistor to generate heat to evaporate the evaporation material. The resistance heating container includes an insulating material container filled with the evaporation material, and the material container has a lower opening. The lower opening is located inside the resistance heating container, and a gap is formed between the lower opening and the resistor.
The evaporation source according to the present invention has a configuration suitable as a production apparatus because a larger amount of evaporation material can be evaporated than a large-volume material container provided on the basis of the configuration of the resistance heating type evaporation source. Further, when a large amount of the evaporating material filled in the material container goes out of the material container, a part of the material comes into contact with the resistor and partially evaporates. This makes it possible to evaporate a large amount of evaporation material without bias. Furthermore, since the structure of the resistance heating evaporation source is utilized, it is possible to perform high control on the evaporation amount.
The second evaporation source (corresponding to claim 2) is that, in the first configuration, the resistance heating container is composed of a plate-shaped resistor and an upper lid resistor, and the upper lid resistor is provided with a material container and has an outlet hole. The lower opening of the material container is formed so as to be close to the plate resistor. The material container filled with the evaporation material is arranged upside down, and the lower opening of the material container is provided close to the plate resistor. The evaporating material in the material container moves downward, and the evaporating material located on the lowermost side contacts the plate resistor.
According to a third evaporation source (corresponding to claim 3), in the first configuration, the resistance heating container includes an upper lid resistor including a material container, a boat-shaped resistor having a blowout hole, and an upper lid resistor. It consists of a plate-like resistor provided between the boat-like resistors and having a passage hole for evaporated particles, and is configured such that the lower opening of the material container is provided close to the plate-like resistor. According to this configuration, an evaporation source having a deposition down structure suitable for a production apparatus is realized, which includes a material container that can be filled with a large amount of evaporation material.
Fourth evaporation source (corresponding to claim 4) has a resistance heating vessel comprising a resistor, in the evaporation source emitting vapor particles from the outlets provided in the resistance heating vessel further resistive heating vessel evaporation comprising an insulating material container to be filled with material, the material container has a top opening, the upper opening is provided inside the resistance heating vessel, and the resistance heating vessel upper lid resistor having a blow hole Body, a boat-like resistor having a material container, and a plate-like resistor provided between the upper lid resistor and the boat-like resistor and having a passage hole for evaporated particles, the upper opening of the material container being a plate The heat generating line is provided in the material container so as to generate heat by the current controlled by the detection signal from the temperature controller and evaporate the evaporation material. This evaporation source combines a resistance heating structure and a cell type structure, prepares a large amount of evaporation material, is suitable for a production apparatus, and can increase the control of the evaporation amount of the evaporation material.
In the fifth evaporation source (corresponding to claim 5 ), the material container is preferably an insulating crucible in each of the above configurations.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[0011]
1 to 3 show a first embodiment of an evaporation source according to the present invention. FIG. 1 shows the appearance of the container portion as viewed obliquely from above, FIG. 2 shows the internal structure, and FIG. 3 shows a cross-sectional view taken along line AA in FIG. The evaporation source according to this embodiment has a configuration in which a resistance heating evaporation source is applied. The evaporation source container 11 is a resistance heating container including a plate-like resistor 12 that forms the bottom and an upper lid resistor 13. In the plate resistor 12, a partition wall 14 is formed at the center. The upper lid resistor 13 is provided with a long material container 15 that has the same form as a lid-like resistor of a conventional resistance heating evaporation source and that stands up on one side in the longitudinal direction. Yes. The plate resistor 12 and the upper lid resistor 13 are made of a refractory metal (tungsten, molybdenum, etc.) that generates heat when an electric current is passed, and the material container 15 is made of, for example, insulating quartz. As shown in FIG. 2, the upper end of the material container 15 is closed and the lower end is open. The opening at the lower end is used as an opening for filling the material container 15 with the evaporating material 16 and as an opening for taking out the evaporating material 16 when evaporating. The plate resistor 12 and the upper lid resistor 13 are used as overlapped as shown in FIG. The material container 15 provided in the upper lid resistor 13 has an opening at the lower end thereof approaching the plate resistor 12 so that a desired gap is formed when they are overlapped. The length of the material container 15 is determined in accordance with the amount of the evaporation material 16 to be filled. When the plate resistor 12 and the upper lid resistor 13 are overlapped to form the evaporation source container 11, the material container 15 is positioned on one side (left side in FIG. 2) of the partition wall 14 of the plate resistor 12. Is configured to do. In addition, the upper lid resistor 13 has, for example, one blowout hole 17 for discharging particles evaporated from the evaporation material 16 to the surrounding space of the container 11 at a portion opposite to the material container 15 with the partition wall 14 as a boundary. Is formed. A gap 18 is formed between the partition wall 14 of the plate resistor 12 and the upper lid resistor 13. The evaporated particles move as indicated by the arrow 19 and are discharged from the blowout hole 17. The reason why the partition plate 14 is provided is that the conductance of the passage of the evaporated particles is reduced to create a pressure gradient. When a pressure gradient is applied, the diffusion of evaporated particles becomes significant.
[0012]
As shown in FIG. 2, the overlapped plate resistor 12 and upper lid resistor 13 are overlapped at both ends and fixed by the electrode portions 20 and 21. Each of the electrode portions 20 and 21 has a structure in which two plate members are stacked and fixed with screws or the like, whereby the both ends are sandwiched and fixed. As shown in the figure, the plate resistor 12 and the upper lid resistor 13 are held in contact with their peripheral portions, but the evaporation material 16 that melts and evaporates on the plate resistor 12 does not leak to the outside. Thus, both are held in a sealed state. In order to make this sealed state, it is also preferable to provide a folded portion at the edge of the plate resistor 12 or the upper lid resistor 13.
[0013]
The evaporation source having the above configuration is used in an apparatus similar to the conventional film forming apparatus described with reference to FIG. That is, a current is supplied from the power source 22 to the plate resistor 12 and the upper lid resistor 13 as the evaporation source through the electrode portions 20 and 21. When a current flows through the plate resistor 12 and the upper lid resistor 13, of the large amount of evaporation material 16 filled in the material container 15, the material is melted from the portion of the evaporation material located at the lowest position in contact with the plate resistor 12. Then evaporate. The evaporated particles move as indicated by an arrow 19 and are discharged from the blowout hole 17 to the surrounding space. Evaporated particles discharged from the blowout holes 17 of the upper lid resistor 13 of the container 11 rise, adhere to the lower surface of the substrate 74 and form a film as shown in FIG. The amount of evaporation of the evaporation material 16 in the evaporation source is controlled in the same manner as before, and is controlled by adjusting the amount of current flowing through the resistor based on the detection signal from the quartz crystal thin film meter. According to the evaporation source according to the present embodiment, since a large amount of evaporation material can be filled and the evaporation material is gradually evaporated from the lower evaporation material, continuous film formation for a long time becomes possible, and the production apparatus In addition to being usable, it is possible to appropriately control the evaporation amount and to perform evaporation with low power.
[0014]
In the above embodiment, it is also possible to provide a structure in which the upper portion of the material container 15 is opened and the evaporation material 16 can be appropriately supplied.
[0015]
A second embodiment of the evaporation source according to the present invention will be described with reference to FIG. This embodiment is a modification of the first embodiment, and FIG. 4 corresponds to FIG. The evaporation source according to this embodiment has a deposition down structure that emits evaporated particles downward. In FIG. 4, the same elements as those described in the above embodiment are denoted by the same reference numerals. The evaporation source container (resistance heating container) 31 includes an upper lid resistor 32, a boat-like resistor 33 that forms a lower portion of the container, and a plate-like resistor 34 located in the middle thereof. . The basic form of the upper lid resistor 32 and the plate resistor 34 is similar to that of the first embodiment. The basic form of the boat-like resistor 33 is similar to that of the prior art. The upper lid resistor 32 is provided with the material container 15 described above at a substantially central position. At least two holes 35 as passages for the evaporated particles are formed on both sides of the plate resistor 34. At least one blowing hole 36 is formed in the approximate center of the boat-like resistor 33. The point that the material container 15 is filled with a large amount of the evaporation material 16 and the point that the material container 15 partially evaporates from the lower part of the evaporation material 16 are the same as in the first embodiment. Other configurations are the same as those described in the first embodiment.
[0016]
According to the present embodiment, a resistance heating evaporation source having a deposition down structure can be realized, and further, the same effect as that of the first embodiment can be exhibited. That is, it can be filled with a large amount of evaporation material, can be continuously formed for a long time, can be used in a production apparatus, and the evaporation amount can be controlled appropriately.
[0017]
The structures according to the first and second embodiments described above are particularly effective for sublimable substances such as organic materials. Further, by adjusting the gap between the material container 15 and the plate-like resistor 12 or the gap between the material container 15 and the plate-like resistor 34, the molten material 16 is the same without flowing out due to the effect of surface tension. An effect is obtained.
[0018]
Next, a third embodiment of the evaporation source according to the present invention will be described with reference to FIG. The evaporation source according to this embodiment is configured by combining the structure of the resistance heating evaporation source and the structure of the cell type evaporation source. FIG. 5 shows the configuration of the evaporation source and the configuration of the system for controlling evaporation. In FIG. 5, elements that are substantially the same as those described in the above-described embodiments are denoted by the same reference numerals.
[0019]
In a vacuum container 41 forming a film forming apparatus, an evaporation source 42 according to the present embodiment is provided at a lower position, and a substrate 44 supported by a ring-shaped holder 43 is disposed at an upper position. The lower surface of the substrate 44 on the holder 43 faces downward, and a high vapor pressure material is deposited on this lower surface. In the vicinity of the substrate 44, a detector 46 of a quartz vibrator type film thickness meter 45 that outputs a detection signal for controlling the amount of evaporation of the material in the evaporation source 42 is disposed. The evaporated particles emitted from the evaporation source 42 adhere to the lower surface of the substrate 44 and the detection surface of the detector 46.
[0020]
The resistance heating container of the evaporation source 42 includes an upper lid resistor 47, a lower boat resistor 48, and a plate resistor 49 interposed therebetween, and the three resistors are illustrated. They are overlapped as they are, and both end portions are sandwiched and fixed by the electrode portions 20 and 21 described above. The boat-like resistor 48 is provided with a material container 15 that can be filled with a large amount of the evaporation material 16 at a substantially central position. The material container 15 is used so that the opening is located on the upper side. The upper lid resistor 47 and the plate-like resistor 49 are formed with blowout holes 50 and 51 through which evaporated particles from the evaporation material 16 pass. A current is supplied from the power source 52 to the resistors 47, 48, and 49 of the evaporation source 42 through the electrode portions 20 and 21, and heat is generated. The amount of current supplied from the power source 52 is controlled based on the detection signal from the film thickness meter 45. A desired gap is formed between the upper end opening of the material container 15 and the plate resistor 49 in a state where the resistors 47, 48 and 49 are assembled as shown in the figure.
[0021]
The material container 15 has a sufficient volume to accommodate the required evaporation material 16 and is made of, for example, quartz. A configuration of a cell type evaporation source is further added to the configuration related to the material container 15. That is, the material container 15 functions as a crucible, and a heating wire 53 is wound around the lower portion. The heating wire 53 is connected to a power source 54. When a current flows from the power source 54 to the heating wire 53, the heating wire 53 generates heat, and the material container 15 is filled by raising the temperature of the material container 15 by the radiant heat. The evaporated material 16 evaporates at a temperature specific to the material. Further, since the material container 15 is made of quartz that easily transmits infrared wavelengths, the evaporation material 16 is directly heated by radiant heat from the heating wire 53. The evaporated particles are discharged from the upper end opening of the material container 15. The amount of evaporation from the material container 15 is controlled by monitoring the temperature with a temperature controller 55 using a thermocouple installed outside the material container 15 and changing the output of the power supply 54.
[0022]
Further, the evaporated particles discharged from the upper end opening of the material container 15 pass through the blowing hole 51 of the plate resistor 49 and the blowing hole 50 of the upper lid resistor 47 as shown by the arrow 56 and are discharged to the external surrounding space. The At this time, the resistors 47, 48 and 49 are in a heat generating state. The evaporated particles thus released are deposited on the lower surface of the substrate 44 and the detection surface of the detector 46 of the film thickness meter 45 as described above. The quartz vibrator type membrane pressure gauge 45 controls the evaporation amount by utilizing the fact that the oscillation frequency changes due to the evaporation particles adhering to the detector 46. The film thickness meter 45 sends a signal to the power source 52 so as to achieve a desired evaporation amount while monitoring the amount of evaporated particles adhering to the detector 46, and changes the output of the power source 52 to change the resistances 47 and 48. , 49 is changed, and the evaporation amount of the evaporation material 16 is controlled.
[0023]
According to the third embodiment, the evaporating material 16 filled in the material container 15 starts to evaporate at its own temperature based on the heat generating action of the heating wire 53. The evaporated particles from the evaporation material 16 adhere to the surface of the boat-like resistor 48 and the plate-like resistor 49 on the upper side of the material container 15, but are evaporated again by receiving heat from these resistors, It moves like this and is discharged from the blowing hole 50 of the upper lid resistor 47 to the outside space. The emitted evaporated particles adhere to the substrate 44 and the detector 46. The quartz vibrator type membrane pressure gauge 45 sends a signal to the power source 52 based on the obtained information and changes its output, thereby changing the heat generation amount of the resistors 47, 48 and 49 and controlling the evaporation amount. Since the evaporation amount is controlled by the temperature change caused by direct current flow through the resistor, the responsiveness to the change in the evaporation rate is good, and more material can be filled in the material container 15, so that it can be used in production equipment. Suitable for
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, a resistance heating container made of a resistor and a material container that can be filled with a large amount of evaporation material are combined. Since it is configured to come into contact with the resistor, the evaporation material can be stably evaporated for a long time, and the evaporation amount can be controlled effectively. Therefore, an evaporation source suitable for the production apparatus can be realized. Furthermore, an evaporation source having a deposition down structure can be obtained.
[Brief description of the drawings]
FIG. 1 is an external view of a container portion according to a first embodiment of an evaporation source according to the present invention, viewed obliquely from above.
FIG. 2 is a longitudinal sectional view showing the internal structure of the evaporation source according to the first embodiment.
FIG. 3 is a cross-sectional view taken along line AA in FIG.
FIG. 4 is a longitudinal sectional view showing an internal structure of an evaporation source according to a second embodiment of the present invention.
FIG. 5 is a block diagram showing the overall structure and apparatus of an evaporation source according to a third embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional resistance heating evaporation source.
FIG. 7 is a configuration diagram of a conventional cell type evaporation source.
[Explanation of symbols]
11 Container (resistance heating container)
12 Plate Resistor 13 Upper Lid Resistor 15 Material Container 16 Evaporating Material 17 Blowout Holes 20 and 21 Electrode Unit 31 Container (Resistance Heating Container)
32 Upper lid resistor 33 Boat resistor 34 Plate resistor 41 Vacuum container 42 Evaporation source 44 Substrate 46 Detector 47 Upper lid resistor 48 Boat resistor 49 Plate resistor 53 Heating wire

Claims (5)

抵抗体からなる抵抗加熱容器を有し、膜厚計からの検出信号で制御された電流を前記抵抗体に流し発熱させて蒸発材料を蒸発させ、前記抵抗加熱容器に設けた吹出し孔から蒸発粒子を放出する蒸発源において、
さらに、前記抵抗加熱容器は、蒸発材料を充填する絶縁性の材料容器を具備し、前記材料容器は下部開口部を有し、
前記下部開口部は、前記抵抗加熱容器の内部に位置し、前記下部開口部と前記抵抗体の間に隙間が形成されていることを特徴とする蒸発源。
Having a resistance heating container made of a resistor, a current controlled by a detection signal from a film thickness meter is caused to flow through the resistor to generate heat, evaporate the evaporation material, and evaporate particles from a blowout hole provided in the resistance heating container In the evaporation source that emits
Further, the resistance heating container includes an insulating material container filled with an evaporation material, and the material container has a lower opening,
The lower opening is located inside the resistance heating container, and a gap is formed between the lower opening and the resistor.
前記抵抗加熱容器は、板状抵抗体と上蓋抵抗体からなり、前記上蓋抵抗体に、前記材料容器が備えられると共に、前記吹出し孔が形成され、前記材料容器の前記下部開口部が、前記板状抵抗体に近づけて設けられていることを特徴とする請求項1記載の蒸発源。The resistance heating container, a plate-shaped resistor and the upper lid resistor, said upper lid resistor, together with the material container is provided, wherein the outlet and the hole is formed, the lower opening of the material container, wherein The evaporation source according to claim 1, wherein the evaporation source is provided close to the plate resistor. 前記抵抗加熱容器は、前記材料容器を備えた上蓋抵抗体と、前記吹出し孔を有するボート状抵抗体と、前記上蓋抵抗体と前記ボート状抵抗体の間に設けられ前記蒸発粒子の通過孔を有する板状抵抗体とからなり、前記材料容器の前記下部開口部が前記板状抵抗体に近づけて設けられていることを特徴とする請求項1記載の蒸発源。The resistance heating container includes an upper lid resistor provided with the material container, a boat-like resistor having the blowout hole, and a passage hole for the evaporated particles provided between the upper lid resistor and the boat-like resistor. evaporation source composed of a plate-shaped resistor, the lower opening of the material container, characterized in that it is provided close to the plate shaped resistor claim 1 Symbol placement with. 抵抗体からなる抵抗加熱容器を有し、前記抵抗加熱容器に設けた吹出し孔から蒸発粒子を放出する蒸発源において、
さらに前記抵抗加熱容器は蒸発材料を充填する絶縁性の材料容器を具備し、前記材料容器は上部開口部を有し、前記上部開口部は、前記抵抗加熱容器の内部に設けられ
かつ前記抵抗加熱容器は、前記吹出し孔を有する上蓋抵抗体と、前記材料容器を備えたボート状抵抗体と、前記上蓋抵抗体と前記ボート状抵抗体の間に設けられ前記蒸発粒子の通過孔を有する板上抵抗体とからなり、前記材料容器の前記上部開口部が前記板状抵抗体に近づけて設けられ、前記材料容器に、温調計からの検出信号で制御された電流で発熱し前記蒸発材料を蒸発させる発熱線が設けられた
ことを特徴とする蒸発源。
In an evaporation source having a resistance heating container made of a resistor and discharging evaporated particles from a blow-out hole provided in the resistance heating container,
Further, the resistive heating vessel comprising an insulating material container filling the evaporation material, said material container has an upper opening, the front SL upper opening, provided inside the resistance heating vessel,
The resistance heating container includes an upper lid resistor having the blowout hole, a boat-like resistor having the material container, and a passage hole for the evaporated particles provided between the upper lid resistor and the boat-like resistor. The upper opening of the material container is provided close to the plate resistor, and the material container generates heat with a current controlled by a detection signal from a temperature controller. An evaporation source, wherein a heating line for evaporating the evaporation material is provided .
前記材料容器は絶縁性を有するルツボであることを特徴とする請求項1〜4のいずれか1項に記載の蒸発源。  The evaporation source according to any one of claims 1 to 4, wherein the material container is a crucible having insulating properties.
JP21346998A 1998-07-13 1998-07-13 Evaporation source Expired - Fee Related JP4281029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21346998A JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346998A JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Publications (2)

Publication Number Publication Date
JP2000034558A JP2000034558A (en) 2000-02-02
JP4281029B2 true JP4281029B2 (en) 2009-06-17

Family

ID=16639729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346998A Expired - Fee Related JP4281029B2 (en) 1998-07-13 1998-07-13 Evaporation source

Country Status (1)

Country Link
JP (1) JP4281029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712646B2 (en) * 2001-08-03 2005-11-02 株式会社エイコー・エンジニアリング Molecular beam cell for thin film deposition
KR100685431B1 (en) * 2004-11-26 2007-02-22 삼성에스디아이 주식회사 Vapor deposition source for organic material
CN107267924B (en) * 2016-04-08 2020-07-10 清华大学 Evaporation source for vacuum evaporation, vacuum evaporation apparatus and method
JP6828731B2 (en) * 2018-12-20 2021-02-10 井関農機株式会社 Grain dryer

Also Published As

Publication number Publication date
JP2000034558A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4897190B2 (en) Heating container for organic thin film forming equipment
KR101225867B1 (en) Device for Vacuum Deposition with Recharging Reservoir and Corresponding Vacuum Deposition Method
JP4281029B2 (en) Evaporation source
KR20010083127A (en) Plasma-enhanced vacuum vapor deposition systems including systems for evaporation of a solid, producing an electric arc discharge and measuring ionization and evaporation
JP2005511218A5 (en)
EP0491811A1 (en) Deposition heaters.
US11169059B2 (en) Chemical substance concentrator and chemical substance detection device
US20220136989A1 (en) Measuring device having an electrothermal transducer for adjusting a thermal resistance, and method of operating the same
JPS6325293A (en) Cell for epitaxy by molecular jet and related methods
US20210364458A1 (en) Gas sensor
US3715563A (en) Contact heaters for quartz crystals in evacuated enclosures
US3634647A (en) Evaporation of multicomponent alloys
US5944903A (en) Effusion cell crucible with thermocouple
US5016566A (en) Apparatus for forming films by evaporation in vacuum
JP2014181387A (en) Evaporation source, and vacuum vapor deposition apparatus using the evaporation source
KR100889760B1 (en) Heating crucible for forming apparatus of organic thin film
JP3046419B2 (en) Smoke generator
JP2004346371A (en) Film deposition method and system
JPS6233280Y2 (en)
JPH07126838A (en) Vapor-deposition boat
JP4996452B2 (en) Deposition source, deposition system
KR100951686B1 (en) Apparatus For Supplying Source Gas
JPH08166270A (en) Flow rate sensor and installation method therefor
KR100898072B1 (en) Heating crucible of organic thin film forming apparatus
JPS59113174A (en) Method and device for forming thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees