JP2000033241A - Operation of membrane separator - Google Patents

Operation of membrane separator

Info

Publication number
JP2000033241A
JP2000033241A JP11131026A JP13102699A JP2000033241A JP 2000033241 A JP2000033241 A JP 2000033241A JP 11131026 A JP11131026 A JP 11131026A JP 13102699 A JP13102699 A JP 13102699A JP 2000033241 A JP2000033241 A JP 2000033241A
Authority
JP
Japan
Prior art keywords
filtration
water
membrane
constant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11131026A
Other languages
Japanese (ja)
Inventor
Shinichi Minegishi
進一 峯岸
Masahide Taniguchi
雅英 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11131026A priority Critical patent/JP2000033241A/en
Publication of JP2000033241A publication Critical patent/JP2000033241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the stable operation of a membrane separator which is characterized by good washing recovery of a separation membrane, long service life of the separation membrane, easy maintenance, and cost merits. SOLUTION: In a method for operating a membrane separator which allows raw water to pass through a separation membrane to remove impurities, the total amount of filtrate until the necessity of chemical cleaning is generated is calculated by using the relationship between the quantity of soluble components contained in the raw water and the turbidity, the time of chemical cleaning is determined on the basis of the calculation results, and the chemical cleaning is carried out at the time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は膜分離装置およびそ
の運転方法、さらには透過水の製造方法に関する。詳し
くは、膜分離装置の被処理水の水質からろ過抵抗の経時
変化を予測し、薬液洗浄を行う必要が生じるまでの総ろ
過水量Vを算出し、総ろ過水量Vの被処理水を処理した
時点で薬液洗浄を行うことにより、分離膜の洗浄回復性
が良く、分離膜の寿命が長くなり、維持管理が容易でコ
ストの面からも有利な膜分離装置およびその運転方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device and a method for operating the same, and further relates to a method for producing permeated water. In detail, the change in filtration resistance with time is predicted from the quality of the water to be treated in the membrane separation apparatus, the total filtered water amount V until the necessity of performing the chemical cleaning is calculated, and the treated water having the total filtered water amount V is treated. The present invention relates to a membrane separation apparatus which is excellent in terms of washing and recovery properties of a separation membrane, has a long life of the separation membrane, is easy to maintain and manage, and is advantageous in terms of cost by performing chemical cleaning at a point in time, and an operation method thereof.

【0002】[0002]

【従来の技術】精密ろ過膜や限外ろ過膜などの分離膜は
食品工業や医療分野、用水製造、排水処理分野等をはじ
めとして様々な方面で利用されている。特に近年では、
飲料水製造分野すなわち浄水処理過程においても分離膜
が使われるようになってきている。
2. Description of the Related Art Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, the medical field, water production, and wastewater treatment. Especially in recent years,
Separation membranes have been used in the field of drinking water production, that is, in the purification process.

【0003】用水製造や排水処理などの水処理に用いら
れる精密ろ過膜や限外ろ過膜は、圧力差を駆動力に分離
を行う。ろ過には、ろ過流量が一定でろ過差圧が変化す
る定流量ろ過と、ろ過差圧が一定でろ過流量が変化する
定圧ろ過とがある。ろ過を継続し、分離膜面および分離
膜の細孔内に汚れが蓄積していくと、分離膜のろ過抵抗
Rが増加する。一般に実プロセスでは、決められた量の
水を処理する場合が多いので、定流量ろ過が行われるこ
とが多いが、この場合、一定量のろ過水を得るために
は、ろ過差圧を制御しなければならない。また、定圧ろ
過の場合、ろ過の継続に伴いろ過流量が低下していく。
[0003] Microfiltration membranes and ultrafiltration membranes used for water treatment such as water production and wastewater treatment separate pressure difference into driving force. There are two types of filtration: constant-flow filtration in which the filtration flow rate is constant and the filtration differential pressure changes, and constant-pressure filtration in which the filtration pressure is constant and the filtration flow rate changes. As the filtration is continued and the dirt accumulates on the separation membrane surface and in the pores of the separation membrane, the filtration resistance R of the separation membrane increases. Generally, in a real process, a fixed amount of water is often treated because a fixed amount of water is treated.In this case, in order to obtain a fixed amount of filtered water, the filtration differential pressure is controlled. There must be. In the case of constant-pressure filtration, the filtration flow rate decreases as the filtration continues.

【0004】そこで、分離膜面の堆積物を剥がしたり閉
塞した分離膜の細孔を開孔して処理能力を回復させるた
めの手段として、分離膜面をフラッシングする方法(特
開平5−138166号公報)、エアーでスクラビング
する方法(特開昭61−263605)などの物理的洗
浄方法が提案されている。しかし、物理的な洗浄だけで
は、分離膜の細孔内の汚れを取り除くことができないた
め、クエン酸や蓚酸、次亜塩素酸塩、水酸化ナトリウム
などの薬液で定期的に薬液洗浄する必要がある。また、
薬液を用いた物理的洗浄で分離膜細孔内の汚れを除去
し、菌などの増殖を抑制する方法として、次亜塩素酸
塩、水酸化ナトリウムなどの水溶液で逆圧洗浄する方法
(特開平5−168873号公報)が提案されている。
Therefore, as a means for recovering the processing ability by peeling off the deposits on the surface of the separation membrane or opening the pores of the separation membrane which is closed, a method of flushing the surface of the separation membrane (JP-A-5-138166) Publication) and a physical cleaning method such as a method of scrubbing with air (Japanese Patent Application Laid-Open No. 61-263605) have been proposed. However, physical cleaning alone cannot remove dirt in the pores of the separation membrane, so it is necessary to periodically perform chemical cleaning with a chemical such as citric acid, oxalic acid, hypochlorite, or sodium hydroxide. is there. Also,
As a method of removing dirt in the pores of the separation membrane by physical washing using a chemical solution and suppressing the growth of bacteria and the like, a method of back-pressure washing with an aqueous solution of hypochlorite, sodium hydroxide, etc. No. 5-168873) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】薬液洗浄は、その実施
時期の設定が難しく、一般にろ過差圧の急激な上昇が起
こってから実施する場合が多い。しかしながらろ過差圧
の急激な上昇が起こってから薬液洗浄を実施しても洗浄
回復性が悪く、運転を再開した場合にも再びろ過差圧が
急上昇してしまい、分離膜の寿命が極めて短くなるので
処理コスト面から不利となる。また、早目早目に薬液洗
浄を行なった場合、洗浄回復性が良く分離膜の寿命が長
くなるが、薬液洗浄の頻度が多くなるため、維持管理が
煩雑になり処理コストの面から不利となる。分離膜の汚
れ方は、原水の水質すなわち原水中に含まれる不純物の
種類と濃度によって異なるので、同じ分離膜を用いた場
合でも最適な薬液洗浄実施時期はそれぞれの場合で異な
り、従来はこの最適な薬液洗浄実施時期を根拠に基づい
て設定する手段がなかった。
It is difficult to set the timing of chemical cleaning, and it is often the case that chemical cleaning is performed after a sharp rise in the filtration differential pressure. However, even if chemical cleaning is performed after a rapid rise in the filtration differential pressure, the cleaning recovery is poor, and even when the operation is resumed, the filtration differential pressure sharply increases again, and the life of the separation membrane becomes extremely short. This is disadvantageous in terms of processing cost. In addition, when the chemical solution is washed early, the recoverability of the cleaning solution is good and the life of the separation membrane is long.However, since the frequency of the chemical solution washing is increased, the maintenance and management becomes complicated, which is disadvantageous in terms of processing cost. Become. The method of contaminating the separation membrane differs depending on the quality of the raw water, that is, the type and concentration of impurities contained in the raw water.Even when the same separation membrane is used, the optimal chemical solution cleaning time differs in each case. There was no means to set the timing for performing the chemical cleaning based on the grounds.

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
の本発明は、被処理水を分離膜に通過させて不純物を除
去する膜分離装置の運転方法において、該被処理水に含
まれる溶解性成分の量Aと濁度Bとの関係を用いて薬液
洗浄を行う必要が生じるまでの総ろ過水量Vを算出し、
その算出結果に基づいて薬液洗浄を行う時を定め、その
時点で薬液洗浄を行う膜分離装置の運転方法を特徴とす
るものである。
According to the present invention, there is provided a method for operating a membrane separation apparatus for removing impurities by passing the water to be treated through a separation membrane. Using the relationship between the amount A of the sexual component and the turbidity B, the total filtered water amount V until it is necessary to perform the chemical solution washing is calculated,
The method is characterized in that the time for performing the chemical cleaning is determined based on the calculation result, and the operation method of the membrane separation apparatus that performs the chemical cleaning at that time.

【0007】このとき、以下の手順で薬液洗浄を行う必
要が生じる運転経過時間(t+T)を算出し、運転経過
時間(t+T)の時点で薬液洗浄を行うことが好まし
い。 (1)3種類以上の異なる被処理水のろ過データから求
めたろ過抵抗Rの経時変化を用いて、ろ過機構定数nを
該被処理水に含まれる溶解性成分の量Aと濁度Bの比x
=A/Bの関数n=f(x)で表現する。 (2)被処理水のxから関数n=f(x)を用いて算出
したろ過機構定数nおよび分離膜自身の抵抗(R0)、
運転経過時間tにおける総ろ過水量V(t)およびろ過
抵抗R(t)から、ろ過係数αを関数α=g(n,
0,V(t),R(t))を用いて算出する。 (3)薬液洗浄を行う必要が生じるろ過抵抗R(t+
T)を、分離膜自身の抵抗R0と定数kの積(k・R0
=R(t+T)で設定する。 (4)運転経過時間(t+T)におけるろ過抵抗R(t
+T)、ろ過係数α、ろ過機構定数n、分離膜自身の抵
抗R0から、逆関数V(t+T)=g-1(n,R0,α,
R(t+T))を用いて運転経過時間(t+T)の総ろ
過水量V(t+T)を算出する。 (5)総ろ過水量V(t+T)から運転経過時間(t+
T)を、定流量ろ過の場合、総ろ過水量をろ過流量で割
って求め、定圧ろ過の場合は、積分により求める。
At this time, it is preferable to calculate the operation elapsed time (t + T) at which the chemical cleaning needs to be performed in the following procedure, and to perform the chemical cleaning at the time of the operation elapsed time (t + T). (1) Using the time-dependent change of the filtration resistance R obtained from the filtration data of three or more different types of water to be treated, the filtration mechanism constant n is calculated based on the amount A of the soluble component and the turbidity B contained in the water to be treated. Ratio x
= A / B function n = f (x). (2) Filtration mechanism constant n calculated from x of the water to be treated using function n = f (x) and resistance (R 0 ) of the separation membrane itself,
From the total filtered water amount V (t) and the filtration resistance R (t) at the operation elapsed time t, the filtration coefficient α is calculated as a function α = g (n,
R 0 , V (t), R (t)). (3) Filtration resistance R (t +
T) is the product of the resistance R 0 of the separation membrane itself and a constant k (k · R 0 )
= R (t + T). (4) Filtration resistance R (t) at operation elapsed time (t + T)
+ T), filtration coefficient α, filtration mechanism constant n, and resistance R 0 of the separation membrane itself, the inverse function V (t + T) = g −1 (n, R 0 , α,
R (t + T)) to calculate the total filtered water amount V (t + T) during the operation elapsed time (t + T). (5) Elapsed operation time (t + T) from total filtered water amount V (t + T)
T) is obtained by dividing the total amount of filtered water by the filtration flow rate in the case of constant flow filtration, and by integration in the case of constant pressure filtration.

【0008】また、関数α=g(n,R0,V(t),
R(t))が(1)式であることや、定数kが1.5以
上15以下であること、さらに、関数n=f(x)が、
定数a、mを用いた(2)式であり、そして、定数aが
1以上10以下および定数mが0.1以上1以下である
ことが好ましい。 R1-n/(1−n)=αV+R0 1-n/(1−n) (1)式 n=axm (2)式 さらに、溶解性成分をフミン質で代表することや、溶解
性成分の量Aを、波長260nmの紫外線吸光度または
全有機炭素量とすることも好ましい。
Further, a function α = g (n, R 0 , V (t),
R (t)) is the expression (1), the constant k is 1.5 or more and 15 or less, and the function n = f (x) is
Expression (2) using constants a and m, and it is preferable that the constant a is 1 or more and 10 or less and the constant m is 0.1 or more and 1 or less. R 1−n / (1−n) = αV + R 0 1−n / (1−n) Formula (1) n = ax m Formula (2) Further, the solubility component is represented by humic substances, It is also preferable that the amount A of the component is the ultraviolet absorbance at a wavelength of 260 nm or the total amount of organic carbon.

【0009】また、上記いずれかに記載の方法で薬液洗
浄を行った後、さらに被処理水を分離膜に通過させる水
の製造方法も好ましい態様である。
Also, a preferred embodiment is a method for producing water, in which the water to be treated is passed through a separation membrane after the chemical solution washing is performed by any of the methods described above.

【0010】そして、上記課題を達成するための本発明
は、被処理水を通過させて不純物を除去する分離膜と、
該被処理水に含まれる溶解性成分の量Aと濁度Bとの関
係を用いて薬液洗浄を行う必要が生じるまでの総ろ過水
量Vを算出する手段と、その算出結果に基づいて薬液洗
浄を行う時を定める手段と、薬液洗浄を行う手段とを備
えている膜分離装置も特徴とするものである。
In order to achieve the above object, the present invention provides a separation membrane for removing impurities by passing water to be treated;
Means for calculating the total filtered water amount V until the necessity of performing the chemical cleaning using the relationship between the amount A of the soluble component contained in the water to be treated and the turbidity B, and cleaning the chemical based on the calculation result The present invention is also characterized by a membrane separation device comprising means for determining when to perform the cleaning and means for performing the chemical cleaning.

【0011】ここで、薬液洗浄を行う必要が生じる時を
定める手段は、以下の手順で運転経過時間(t+T)を
算出する手段を備えていることが好ましく、運転経過時
間(t+T)を表示する手段を備えていることがより好
ましい。 (1)3種類以上の異なる被処理水のろ過データから求
めたろ過抵抗Rの経時変化を用いて、ろ過機構定数nを
該被処理水に含まれる溶解性成分の量Aと濁度Bの比x
=A/Bの関数n=f(x)で表現する。 (2)被処理水のxから関数n=f(x)を用いて算出
したろ過機構定数nおよび分離膜自身の抵抗R0、運転
経過時間tにおける総ろ過水量V(t)およびろ過抵抗
R(t)から、ろ過係数αを関数α=g(n,R0,V
(t),R(t))を用いて算出する。 (3)薬液洗浄を行う必要が生じるろ過抵抗R(t+
T)を、分離膜自身の抵抗R0と定数kの積(k・R0
=R(t+T)で設定する。 (4)運転経過時間(t+T)におけるろ過抵抗R(t
+T)、ろ過係数α、ろ過機構定数n、分離膜自身の抵
抗R0から、逆関数V(t+T)=g-1(n,R0,α,
R(t+T))を用いて運転経過時間(t+T)の総ろ
過水量V(t+T)を算出する。 (5)総ろ過水量V(t+T)から運転経過時間(t+
T)を、定流量ろ過の場合、総ろ過水量をろ過流量で割
って求め、定圧ろ過の場合は、積分により求める。
Here, the means for determining when it is necessary to perform the chemical cleaning preferably includes means for calculating the operation elapsed time (t + T) in the following procedure, and displays the operation elapsed time (t + T). It is more preferred to have means. (1) Using the time-dependent change of the filtration resistance R obtained from the filtration data of three or more different types of water to be treated, the filtration mechanism constant n is calculated based on the amount A of the soluble component and the turbidity B contained in the water to be treated. Ratio x
= A / B function n = f (x). (2) Filtration mechanism constant n calculated from x of the water to be treated using function n = f (x), resistance R 0 of the separation membrane itself, total filtered water amount V (t) and filtration resistance R at operation elapsed time t From (t), the filtration coefficient α is calculated by the function α = g (n, R 0 , V
(T), R (t)). (3) Filtration resistance R (t +
T) is calculated by multiplying the resistance R 0 of the separation membrane itself by a constant k (k · R 0 ).
= R (t + T). (4) Filtration resistance R (t) at operation elapsed time (t + T)
+ T), filtration coefficient α, filtration mechanism constant n, and resistance R 0 of the separation membrane itself, the inverse function V (t + T) = g −1 (n, R 0 , α,
R (t + T)) to calculate the total filtered water amount V (t + T) during the operation elapsed time (t + T). (5) Elapsed operation time (t + T) from total filtered water amount V (t + T)
T) is obtained by dividing the total amount of filtered water by the filtration flow rate in the case of constant flow filtration, and by integration in the case of constant pressure filtration.

【0012】また、分離膜が、細孔径が1nm以上10
μm以下の精密ろ過膜または限外ろ過膜であること、さ
らには、分離膜の素材が、ポリアクリロニトリル、酢酸
セルロース、ポリフェニレンスルフォン、ポリフェニレ
ンスルフィドスルフォンのいずれかであることが好まし
い。
The separation membrane has a pore diameter of 1 nm or more and 10 nm or more.
It is preferable that the membrane is a microfiltration membrane or an ultrafiltration membrane of μm or less, and furthermore, the material of the separation membrane is any one of polyacrylonitrile, cellulose acetate, polyphenylene sulfone, and polyphenylene sulfide sulfone.

【0013】[0013]

【発明の実施の形態】以下、発明の実施の形態について
説明する。
Embodiments of the present invention will be described below.

【0014】分離膜の汚れ方の変化は、膜透過係数の逆
数であるろ過抵抗Rの変化で表わすことができる。本発
明の方法によると事前に分離膜の汚れ方すなわちろ過抵
抗Rの経時変化を予測できるので、根拠に基づいて最適
な薬液洗浄時期を設定でき、その結果、分離膜の寿命が
長くなり、処理コストの面からも有利な膜分離装置の運
転方法が提供される。
The change in the manner of fouling of the separation membrane can be represented by the change in filtration resistance R, which is the reciprocal of the membrane permeability coefficient. According to the method of the present invention, it is possible to predict in advance how the separation membrane is contaminated, that is, a change with time in the filtration resistance R, so that it is possible to set an optimum chemical cleaning time based on the basis, and as a result, the life of the separation membrane becomes longer, An operation method of a membrane separation device which is advantageous in terms of cost is provided.

【0015】すなわち、本発明は、被処理水を分離膜に
通過させて不純物を除去する膜分離装置の運転方法にお
いて、該被処理水に含まれる溶解性成分の量Aと濁度B
との関係を用いて薬液洗浄を行う必要が生じるまでの総
ろ過水量Vを算出し、その算出結果に基づいて薬液洗浄
を行う時を定め、その時点で薬液洗浄を行うことを特徴
とする。なお、本発明において薬液洗浄を行う時点は、
算出結果に基づく薬液洗浄を行う時点に加えて、算出結
果に基づく時点の前後1ヶ月以内も含む。好ましくは、
算出結果に基づく時点の前後2週間以内の範囲内であ
る。
That is, the present invention relates to a method for operating a membrane separation apparatus for removing impurities by passing water to be treated through a separation membrane, wherein the amount A of the soluble component contained in the water to be treated and the turbidity B
Is used to calculate the total filtered water amount V until the necessity of performing the chemical cleaning, determine when to perform the chemical cleaning based on the calculation result, and perform the chemical cleaning at that time. In the present invention, the point of time when the chemical cleaning is performed,
In addition to the point in time when the chemical cleaning is performed based on the calculation result, the period includes one month before and after the time based on the calculation result. Preferably,
The range is within two weeks before and after the time based on the calculation result.

【0016】そして、その最適な薬液洗浄時期の設定
は、次のように行う。
The setting of the optimum chemical cleaning time is performed as follows.

【0017】様々なろ過の運転データを詳細に解析・検
討した結果、定数nと、被処理水中に含まれる溶解性成
分の量Aと濁度Bの比の値x=A/Bとの間に関数n=
f(x)で表現できる関係があることを本発明では見出
した。そこで、ある分離膜において3種類以上の異なる
被処理水のろ過データから求めたろ過抵抗Rの経時変化
を用いて、ろ過機構定数nを該被処理水に含まれる溶解
性成分の量Aと濁度Bの比x=A/Bの関数n=f
(x)として求める。ここで、溶解性成分とは、フミン
質、鉄、マンガン、アルミ、シリカなどの総量である
が、溶解性成分と分離膜材質の吸着性や全溶解性成分の
量に対するそれぞれの溶解性成分の割合等から1つもし
くは複数の成分を選択して総量としても構わないが、フ
ミン質がろ過抵抗を増加させる要因である場合が多いの
で、溶解性成分をフミン質で代表させることができる場
合もある。溶解性成分の量Aとは、フミン質の場合、市
販のフミン酸試薬を純水に溶かした濃度が既知の標準液
を数種類調整し、その標準液の波長260nmの紫外線
吸光度を測定して、フミン酸濃度と波長260nmの紫
外線吸光度の検量線を作成し、被処理水の波長260n
mの紫外線吸光度から検量線を使ってフミン質の量に変
換する。その単位はmg/lである。溶解性成分の量A
を、波長260nmの紫外線吸光度とすることは簡便で
好ましい。さらに、被処理水の全有機炭素量を測定して
溶解性成分の量Aとすることも簡便で好ましい。なお、
鉄、マンガン、アルミ、シリカなどは、水道水基準で定
められた測定方法で測定した量で、その単位はmg/l
である。濁度Bとは、カオリン1mg/lの溶液の濁り
を1度と定義する指標で、その測定原理の違いから透過
光濁度、散乱光濁度、積分光濁度があるが、測定方法は
適宜選択されるべきものであり、特に限定されるもので
はない。関数n=f(x)としては、例えば(2)式が
挙げられる。 n=axm (2)式 ここで式中のa、mは定数であり、分離膜の材質と細孔
径で決められる値であり、それぞれの場合で異なるが、
おおよそ定数aは1以上10以下および定数mが0.1
以上1以下である。
As a result of analyzing and examining various kinds of operation data of filtration in detail, it was found that the constant n and the value x = A / B of the ratio of the amount A of soluble components contained in the water to be treated to the turbidity B were obtained. And the function n =
The present inventors have found that there is a relationship that can be expressed by f (x). Therefore, using a temporal change of filtration resistance R obtained from filtration data of three or more different types of water to be treated in a certain separation membrane, the filtration mechanism constant n is determined by the amount A of the soluble component contained in the water to be treated and the turbidity. Function of n = f of ratio x = A / B of degree B
(X). Here, the soluble component refers to the total amount of humic substances, iron, manganese, aluminum, silica, etc., and the solubility component and the adsorptivity of the separation membrane material and the amount of each soluble component relative to the total soluble component amount. One or a plurality of components may be selected from the ratio and the like, and the total amount may be selected. However, since humic substances are often a factor that increases filtration resistance, soluble components can be represented by humic substances. is there. With the amount A of the soluble component, in the case of humic substances, several kinds of standard solutions having a known concentration of a commercially available humic acid reagent dissolved in pure water are adjusted, and the ultraviolet absorbance of the standard solution at a wavelength of 260 nm is measured. A calibration curve of humic acid concentration and ultraviolet absorbance at a wavelength of 260 nm was created, and the wavelength of the water to be treated was 260 n.
m is converted to the amount of humic substance using a calibration curve. Its unit is mg / l. Amount of soluble component A
Is preferably an ultraviolet absorbance at a wavelength of 260 nm, which is simple and preferable. Further, it is also convenient and preferable to measure the total amount of organic carbon in the water to be treated and determine the amount A of the soluble component. In addition,
Iron, manganese, aluminum, silica, etc. are the amounts measured by the measurement method specified in tap water standards, and the unit is mg / l.
It is. Turbidity B is an index that defines the turbidity of a kaolin 1 mg / l solution as 1 degree. There are transmitted turbidity, scattered light turbidity, and integrated light turbidity due to differences in the measurement principle. It should be appropriately selected and is not particularly limited. As the function n = f (x), for example, equation (2) is given. n = ax m (2) where a and m are constants and are values determined by the material of the separation membrane and the pore diameter, and differ in each case.
Approximately constant a is 1 or more and 10 or less and constant m is 0.1
It is 1 or less.

【0018】次に被処理水のxから関数n=f(x)を
用いて算出したろ過機構定数nおよび分離膜自身の抵抗
0、運転経過時間tにおける総ろ過水量V(t)、ろ
過抵抗R(t)から、ろ過係数αを関数α=g(n,R
0,V(t),R(t))を用いて算出する。ここで、
運転経過時間tが小さい場合、少ないデータで薬液洗浄
を行う必要が生じる運転経過時間を算出できる点は有利
であるが、予測精度が低い問題がある。また、運転経過
時間tが大きくなるに従って、予測の精度が向上し、好
ましい。最初の予測を行うためのtはそれぞれのケース
で異なるがおおよそ1時間以上、好ましくは24時間以
上程度である。
Next, the filtration mechanism constant n calculated from x of the water to be treated using the function n = f (x), the resistance R 0 of the separation membrane itself, the total filtered water amount V (t) at the operation elapsed time t, the filtration From the resistance R (t), the filtration coefficient α is calculated as a function α = g (n, R
0 , V (t), R (t)). here,
When the operation elapsed time t is short, it is advantageous to calculate the operation elapsed time when it is necessary to perform the chemical cleaning with a small amount of data, but there is a problem that the prediction accuracy is low. In addition, as the operation elapsed time t increases, the prediction accuracy improves, which is preferable. The time t for making the first prediction differs in each case, but is about 1 hour or more, preferably about 24 hours or more.

【0019】関数α=g(n,R0,V(t),R
(t))には、例えば、化学工学のろ過理論で知られて
いる(1)式に示すHermansの式が適用できるこ
とを見出した。 R(t)1-n/(1−n)=αV(t)+R0 1-n/(1−n) (1)式 次に薬液洗浄を行うろ過抵抗R(t+T)は、分離膜自
身の抵抗R0と定数kの積(k・R0)=R(t+T)で
設定すれば良いことを見出した。定数kは分離膜の洗浄
回復性等の特性やろ過線速度等により適宜選択されるべ
きものであるが、1.5以上15以下、好ましくは1.
8以上10以下、さらに好ましくは2以上7以下程度で
ある。
The function α = g (n, R 0 , V (t), R
For (t)), for example, it has been found that the Hermans equation shown in the equation (1) known in the filtration theory of chemical engineering can be applied. R (t) 1−n / (1−n) = αV (t) + R 0 1−n / (1−n) (1) Next, the filtration resistance R (t + T) for performing chemical cleaning is the separation membrane itself. Of the resistance R 0 and the constant k (k · R 0 ) = R (t + T). The constant k should be appropriately selected depending on characteristics such as the washing recovery property of the separation membrane, the filtration linear velocity, and the like.
It is about 8 or more and 10 or less, more preferably about 2 or more and 7 or less.

【0020】設定した薬液洗浄を行うろ過抵抗R(t+
T)に到達するまでの総ろ過水量V(t+T)を、ろ過
抵抗R(t+T)およびろ過係数α、ろ過機構定数n、
分離膜自身の抵抗R0から、逆関数V(t+T)=g-1
(n,R0,α,R(t+T))を用いて算出する。
The filtration resistance R (t +
T), the total amount of filtered water V (t + T) is calculated as: filtration resistance R (t + T), filtration coefficient α, filtration mechanism constant n,
From the resistance R 0 of the separation membrane itself, the inverse function V (t + T) = g −1
It is calculated using (n, R 0 , α, R (t + T)).

【0021】最後に総ろ過水量V(t+T)から運転経
過時間(t+T)を求める。定流量ろ過の場合、総ろ過
水量をろ過流量で割って求め、定圧ろ過の場合は、積分
により求める。
Finally, the operation elapsed time (t + T) is obtained from the total filtered water amount V (t + T). In the case of constant flow filtration, it is obtained by dividing the total amount of filtered water by the filtration flow rate, and in the case of constant pressure filtration, it is obtained by integration.

【0022】本発明は以上のようにして求めた、運転経
過時間(t+T)に薬液洗浄を行うことを特徴とする膜
分離装置の運転方法である。ここで、薬液洗浄を行う運
転経過時間(t+T)は、分離膜の材質、細孔径、被処
理水の水質、ろ過線速度などによりそれぞれの場合で異
なり、大きい方が薬液洗浄頻度が減り好ましいが、おお
よそ1ヶ月以上3年以下、好ましくは3ヶ月以上2年6
ヶ月以下、さらに好ましくは6ヶ月以上2年以下程度で
ある。
The present invention is a method for operating a membrane separation apparatus, characterized in that a chemical solution is washed during the elapsed operation time (t + T) obtained as described above. Here, the operation elapsed time (t + T) for performing the chemical cleaning is different in each case depending on the material of the separation membrane, the pore diameter, the quality of the water to be treated, the filtration linear velocity, and the like. , Approximately 1 month to 3 years, preferably 3 months to 2 years 6
It is about 6 months or less, more preferably about 6 months or more and about 2 years or less.

【0023】また、運転経過時間(t+T)を算出し、
運転経過時間(t+T)において自動的もしくは手動で
薬液洗浄を行う手段を具備したことを特徴とする膜分離
装置も本発明に含まれる。さらに該膜分離装置が運転経
過時間(t+T)を表示する手段を有すれば、常に薬液
洗浄時期を知ることができ好ましい。
The operation elapsed time (t + T) is calculated,
The present invention also includes a membrane separation device provided with a means for automatically or manually cleaning the chemical solution during the elapsed operation time (t + T). Further, it is preferable that the membrane separation device has a means for displaying the operation elapsed time (t + T) since the chemical solution cleaning time can always be known.

【0024】本発明で行う薬液洗浄は、本発明の主旨か
ら言えば特に限定されるものではなく、分離膜の材質と
汚れの種類によって決められるべきである。例えば、鉄
やマンガンのような無機物の場合は、塩酸やクエン酸や
蓚酸等の酸を、蛋白質や微生物、菌等の有機物の場合
は、水酸化ナトリウムや次亜塩素酸ナトリウム等のアル
カリを用いるのが一般的である。
The chemical cleaning performed in the present invention is not particularly limited in view of the gist of the present invention, and should be determined according to the material of the separation membrane and the type of dirt. For example, in the case of an inorganic substance such as iron or manganese, an acid such as hydrochloric acid, citric acid, or oxalic acid is used, and in the case of an organic substance such as a protein, a microorganism, or a bacterium, an alkali such as sodium hydroxide or sodium hypochlorite is used. It is common.

【0025】本発明に用いられる分離膜は、本発明の主
旨から言えば特に限定されるものではないが、飲料水製
造分野すなわち浄水処理過程、用水製造や排水処理など
の水処理用途には、細孔径が1nm以上10μm以下の
いわゆる精密ろ過膜または限外ろ過膜に分類される分離
膜であることが好ましい。ここで、分離膜の細孔径は、
以下に述べる方法で測定する。すなわち、分離膜の透水
性Lpと水の膜透過速度Jvから、(3)(4)式の関係を
使って計算して求める。 Jv=Lp・ΔP (3)式 Lp=(H/L)・[Rp2/(8η)] (4)式 ここで、ΔPは膜間圧力差、Hは膜含水率、Lは膜厚、
Rpは細孔径、ηは水の粘性である。
The separation membrane used in the present invention is not particularly limited in terms of the gist of the present invention. However, the separation membrane is used in the field of drinking water production, that is, in the water treatment process such as water purification process, water production and wastewater treatment. It is preferable that the separation membrane is classified into a so-called microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less. Here, the pore diameter of the separation membrane is
It is measured by the method described below. That is, it is calculated from the water permeability Lp of the separation membrane and the water membrane permeation velocity Jv using the relations of the equations (3) and (4). Jv = Lp · ΔP Equation (3) Lp = (H / L) · [Rp 2 / (8η)] (4) where ΔP is the transmembrane pressure difference, H is the membrane water content, L is the film thickness,
Rp is the pore size and η is the viscosity of water.

【0026】また、分離膜の形状には、中空糸膜、管状
膜、平膜などがあり、いずれの形状のものでも本発明に
用いることができるが、一般的な飲料水製造分野すなわ
ち浄水処理過程、用水製造や排水処理などの水処理用途
には、装置単位体積あたりの有効膜面積を大きくできる
中空糸膜を、被処理水中の濁度が極めて高く、中空糸膜
束内に濁質が堆積して、運転が困難な場合などは平膜
を、平膜を形成し難い無機膜等は管状膜を、それぞれ用
いるのが好ましい。ここで、中空糸膜とは外径2mm未
満の円管状の分離膜、管状膜とは外径2mm以上の円管
状の分離膜である。
The shape of the separation membrane includes a hollow fiber membrane, a tubular membrane, and a flat membrane, and any shape can be used in the present invention. For water treatment applications such as process, water production and wastewater treatment, hollow fiber membranes that can increase the effective membrane area per unit volume of the equipment are required to have extremely high turbidity in the water to be treated and turbidity in the hollow fiber membrane bundle. It is preferable to use a flat film when the operation is difficult after deposition, and a tubular film when the inorganic film or the like is difficult to form. Here, the hollow fiber membrane is a tubular separation membrane having an outer diameter of less than 2 mm, and the tubular membrane is a tubular separation membrane having an outer diameter of 2 mm or more.

【0027】さらに、分離膜の素材には、ポリアクリロ
ニトリル、ポリスルフォン、ポリフェニレンスルフォ
ン、ポリフェニレンスルフィドスルフォン、ポリフッ化
ビニリデン、酢酸セルロース、ポリエチレン、ポリプロ
ピレン、セラミック等の無機素材等を挙げることがで
き、本発明の主旨から言って特に限定されないが親水性
の素材であるポリアクリロニトリル、酢酸セルロース、
ポリフェニレンスルフォン、ポリフェニレンスルフィド
スルフォンが汚れにくく、洗浄回復性も良いため好まし
い。
Further, examples of the material of the separation membrane include inorganic materials such as polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and ceramics. Polyacrylonitrile, which is not particularly limited but hydrophilic material from the gist of cellulose, cellulose acetate,
Polyphenylene sulphone and polyphenylene sulfide sulphone are preferable because they are hardly contaminated and have good cleaning recoverability.

【0028】本発明の被処理水は、本発明の主旨から言
えば特に限定されるものではないが、飲料水製造や用水
製造のために、河川水または湖沼水または地下水などが
好ましい。また、本発明は、排水処理などにも適用で
き、その場合は被処理水が排水となる。
The water to be treated according to the present invention is not particularly limited in view of the gist of the present invention, but is preferably river water, lake water, or groundwater for producing drinking water or producing water for use. Further, the present invention can be applied to wastewater treatment and the like, in which case the water to be treated is wastewater.

【0029】膜分離装置の運転には、先に述べたように
定流量ろ過および定圧ろ過があり、いずれでも構わない
が、定流量ろ過運転が、一定の処理量を得ることができ
一般的で好ましい。
As described above, the operation of the membrane separation apparatus includes the constant flow filtration and the constant pressure filtration. Either one may be used, but the constant flow filtration operation can obtain a constant throughput and is generally used. preferable.

【0030】また、被処理水の分離膜への供給の仕方
で、被処理水の全量をろ過する全量ろ過運転と分離膜モ
ジュールに供給した被処理水の一部を被処理水に返送す
るクロスフローろ過運転がある。本発明の主旨から言え
ばいずれのろ過運転方式でも構わないが、全量ろ過運転
の方が操作が単純で運転し易く、低圧で運転できるの
で、エネルギーコストの低減につながり有利であり好ま
しい。
In addition, in the manner of supplying the water to be treated to the separation membrane, a total amount filtering operation for filtering the entire amount of the water to be treated and a cross-section for returning a part of the water to be treated supplied to the separation membrane module to the water to be treated. There is a flow filtration operation. Although any filtration operation method may be used from the gist of the present invention, the total amount filtration operation is advantageous because it is simple and easy to operate and can be operated at a low pressure, which leads to a reduction in energy cost and is advantageous and preferable.

【0031】[0031]

【実施例】以下に具体的実施例を挙げて本発明を説明す
るが、本発明はこれら実施例により何ら限定されるもの
ではない。
EXAMPLES The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

【0032】実施例1 平均孔径0.01μmのポリアクリロニトリル製中空糸
膜を束ねた、長さ約50cm、有効膜面積0.35m2
の中空糸膜モジュールを用いて、北海道千歳川表流水の
定流量全ろ過を行った。ろ過線速度は1m/dとした。
ろ過差圧の経時変化を図1中に白抜き丸で示す。河川A
の表流水と該ポリアクリロニトリル製中空糸膜の場合、
n=3.9x0.76という関係があり、x=(フミン質の
量)/(濁度)=3.5/15=0.233からnは
1.3となる。n=1.3をHermansの式に代入
し、運転初期データに合うようにαを求めるとα=8.
8×10-5となる。定数が決められたHermansの
式から求めたろ過差圧の経時変化を図1中に実線で示
す。予め設定したろ過差圧100kPaに運転開始14
60h後に達することが予測されたので、その約4日前
の運転開始1360h後に、クエン酸および次亜塩素酸
ナトリウムで薬液洗浄を行い、ろ過差圧は、運転開始時
にほぼ等しい10kPaまで回復し、その後も安定運転
を継続した。
Example 1 A polyacrylonitrile hollow fiber membrane having an average pore diameter of 0.01 μm was bundled, about 50 cm in length, and an effective membrane area of 0.35 m 2.
Using the hollow fiber membrane module of No. 1, constant flow total filtration of surface water in Chitosegawa, Hokkaido was performed. The filtration linear velocity was 1 m / d.
The time-dependent change of the filtration pressure difference is shown by a white circle in FIG. River A
Surface water and the polyacrylonitrile hollow fiber membrane,
There is a relationship of n = 3.9 × 0.76, and n = 1.3 from x = (amount of humic substance) / (turbidity) = 3.5 / 15 = 0.233. By substituting n = 1.3 into the Hermans equation and obtaining α to match the initial operation data, α = 8.
It becomes 8 × 10 -5 . The time-dependent change of the filtration pressure difference obtained from the Hermans equation in which the constant is determined is shown by a solid line in FIG. Operation started at a preset filtration pressure difference of 100 kPa 14
Since it was predicted to reach 60 hours later, about 1 day after the start of operation about 4 days before, a chemical solution washing was performed with citric acid and sodium hypochlorite, and the filtration pressure difference recovered to approximately 10 kPa at the start of the operation. Continued stable operation.

【0033】比較例1 実施例1と同様に平均孔径0.01μmのポリアクリロ
ニトリル製中空糸膜モジュールを用いて、北海道千歳川
表流水の定流量全ろ過を行った。ろ過線速度は1m/d
とした。ろ過差圧の経時変化を図2中に白抜き丸で示
す。予め設定したろ過差圧100kPaを超えてから、
実施例1と同様にクエン酸および次亜塩素酸ナトリウム
で薬液洗浄を行ったが、ろ過差圧は、あまり回復しなか
った。
Comparative Example 1 In the same manner as in Example 1, a polyacrylonitrile hollow fiber membrane module having an average pore size of 0.01 μm was used to perform constant flow total filtration of the surface water of Chitosegawa, Hokkaido. Filtration linear velocity is 1m / d
And The time-dependent change of the filtration pressure difference is shown by a white circle in FIG. After exceeding a preset filtration pressure difference of 100 kPa,
Chemical cleaning was performed with citric acid and sodium hypochlorite in the same manner as in Example 1, but the filtration pressure difference did not recover much.

【0034】比較例2 実施例1と同様に平均孔径0.01μmのポリアクリロ
ニトリル製中空糸膜モジュールを用いて、北海道千歳川
表流水の定流量全ろ過を行った。ろ過線速度は1m/d
とした。ろ過差圧の経時変化を図3中に白抜き丸で示
す。500時間毎に、実施例1と同様にクエン酸および
次亜塩素酸ナトリウムで薬液洗浄を行ったところ、安定
運転でき、洗浄回復性も良かったが、薬液洗浄の頻度が
増え、維持管理、処理コストの面から不利であった。
Comparative Example 2 In the same manner as in Example 1, a polyacrylonitrile hollow fiber membrane module having an average pore diameter of 0.01 μm was used to perform constant flow total filtration of surface water of Chitosegawa, Hokkaido. Filtration linear velocity is 1m / d
And The time-dependent change of the filtration pressure difference is shown by a white circle in FIG. Chemical cleaning with citric acid and sodium hypochlorite was performed every 500 hours in the same manner as in Example 1. As a result, stable operation was possible and cleaning recovery was good, but the frequency of chemical cleaning increased, and maintenance, treatment, and treatment were performed. It was disadvantageous in terms of cost.

【0035】[0035]

【発明の効果】本発明は、該被処理水に含まれる溶解性
成分の量Aと濁度Bの比x=A/Bから、薬液洗浄を行
う必要が生じるまでの総ろ過水量Vを算出し、総ろ過水
量Vの被処理水を処理した時点で膜分離装置の薬液洗浄
を行うので、最適な薬液洗浄時期を設定でき、分離膜の
洗浄回復性が良く、分離膜の寿命が長くなり、維持管理
が容易でコストの面からも有利な膜分離装置およびその
運転方法と、透過水の製造方法を提供することができ
る。
According to the present invention, the total filtered water amount V until the necessity of chemical cleaning is calculated from the ratio x = A / B of the amount A of the soluble component contained in the water to be treated and the turbidity B. Then, the chemical cleaning of the membrane separation device is performed when the water to be treated having the total filtered water amount V is treated, so that the optimal chemical cleaning time can be set, the cleaning recovery of the separation membrane is good, and the life of the separation membrane is extended. It is possible to provide a membrane separation apparatus which is easy to maintain and is advantageous in terms of cost, an operation method thereof, and a method for producing permeated water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の運転方法を用いた運転結果例のデータ
を示す図。
FIG. 1 is a diagram showing data of an operation result example using the operation method of the present invention.

【図2】従来法による運転結果例(薬液洗浄時期が遅れ
た場合)のデータを示す図。
FIG. 2 is a diagram showing data of an operation result example (when a chemical solution cleaning timing is delayed) according to a conventional method.

【図3】従来の方法による運転結果例(早目早目に薬液
洗浄を行なった場合)のデータを示す図。
FIG. 3 is a diagram showing data of an operation result example (in the case of performing a chemical cleaning at an early stage) according to a conventional method.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】被処理水を分離膜に通過させて不純物を除
去する膜分離装置の運転方法において、該被処理水に含
まれる溶解性成分の量Aと濁度Bとの関係を用いて薬液
洗浄を行う必要が生じるまでの総ろ過水量Vを算出し、
その算出結果に基づいて薬液洗浄を行う時を定め、その
時点で薬液洗浄を行うことを特徴とする膜分離装置の運
転方法。
1. A method for operating a membrane separation apparatus for removing impurities by passing water to be treated through a separation membrane, wherein a relationship between the amount A of a soluble component contained in the water to be treated and the turbidity B is used. Calculate the total filtered water volume V until it is necessary to perform chemical cleaning,
A method for operating a membrane separation device, wherein a time when chemical cleaning is performed is determined based on the calculation result, and the chemical cleaning is performed at that time.
【請求項2】以下の手順で薬液洗浄を行う必要が生じる
運転経過時間(t+T)を算出し、運転経過時間(t+
T)の時点で薬液洗浄を行う、請求項1に記載の膜分離
装置の運転方法。 (1)3種類以上の異なる被処理水のろ過データから求
めたろ過抵抗Rの経時変化を用いて、ろ過機構定数nを
該被処理水に含まれる溶解性成分の量Aと濁度Bの比x
=A/Bの関数n=f(x)で表現する。 (2)被処理水のxから関数n=f(x)を用いて算出
したろ過機構定数nおよび分離膜自身の抵抗R0、運転
経過時間tにおける総ろ過水量V(t)およびろ過抵抗
R(t)から、ろ過係数αを関数α=g(n,R0,V
(t),R(t))を用いて算出する。 (3)薬液洗浄を行う必要が生じるろ過抵抗R(t+
T)を、分離膜自身の抵抗R0と定数kの積(k・R0
=R(t+T)で設定する。 (4)運転経過時間(t+T)におけるろ過抵抗R(t
+T)、ろ過係数α、ろ過機構定数n、分離膜自身の抵
抗R0から、逆関数V(t+T)=g-1(n,R0,α,
R(t+T))を用いて運転経過時間(t+T)の総ろ
過水量V(t+T)を算出する。 (5)総ろ過水量V(t+T)から運転経過時間(t+
T)を、定流量ろ過の場合、総ろ過水量をろ過流量で割
って求め、定圧ろ過の場合は、積分により求める。
2. An operation elapsed time (t + T) at which the chemical solution needs to be cleaned is calculated in the following procedure, and the operation elapsed time (t + T) is calculated.
The operation method of the membrane separation device according to claim 1, wherein the chemical solution cleaning is performed at the time of T). (1) Using the time-dependent change of the filtration resistance R obtained from the filtration data of three or more different types of water to be treated, the filtration mechanism constant n is calculated based on the amount A of the soluble component and the turbidity B contained in the water to be treated. Ratio x
= A / B function n = f (x). (2) Filtration mechanism constant n calculated from x of the water to be treated using function n = f (x), resistance R 0 of the separation membrane itself, total filtered water amount V (t) and filtration resistance R at operation elapsed time t From (t), the filtration coefficient α is calculated by the function α = g (n, R 0 , V
(T), R (t)). (3) Filtration resistance R (t +
T) is calculated by multiplying the resistance R 0 of the separation membrane itself by a constant k (k · R 0 ).
= R (t + T). (4) Filtration resistance R (t) at operation elapsed time (t + T)
+ T), filtration coefficient α, filtration mechanism constant n, and resistance R 0 of the separation membrane itself, the inverse function V (t + T) = g −1 (n, R 0 , α,
R (t + T)) to calculate the total filtered water amount V (t + T) during the operation elapsed time (t + T). (5) Elapsed operation time (t + T) from total filtered water amount V (t + T)
T) is obtained by dividing the total amount of filtered water by the filtration flow rate in the case of constant flow filtration, and by integration in the case of constant pressure filtration.
【請求項3】関数α=g(n,R0,V(t),R
(t))が(1)式である、請求項2に記載の膜分離装
置の運転方法。 R1-n/(1−n)=αV+R0 1-n/(1−n) (1)式
3. The function α = g (n, R 0 , V (t), R
The method according to claim 2, wherein (t)) is the expression (1). R 1-n / (1- n) = αV + R 0 1-n / (1-n) (1) formula
【請求項4】定数kが1.5以上15以下である、請求
項2または3に記載の膜分離装置の運転方法。
4. The method according to claim 2, wherein the constant k is 1.5 or more and 15 or less.
【請求項5】関数n=f(x)が、定数a、mを用いた
(2)式である、請求項2〜4のいずれかに記載の膜分
離装置の運転方法。 n=axm (2)式
5. The method for operating a membrane separation apparatus according to claim 2, wherein the function n = f (x) is the equation (2) using constants a and m. n = ax m (2)
【請求項6】定数aが1以上10以下および定数mが
0.1以上1以下である、請求項5に記載の膜分離装置
の運転方法。
6. The method according to claim 5, wherein the constant a is 1 or more and 10 or less and the constant m is 0.1 or more and 1 or less.
【請求項7】溶解性成分をフミン質で代表する、請求項
1〜6のいずれかに記載の膜分離装置の運転方法。
7. The method according to claim 1, wherein the soluble component is represented by humic substances.
【請求項8】溶解性成分の量Aを、波長260nmの紫
外線吸光度または全有機炭素量とする、請求項7に記載
の膜分離装置の運転方法。
8. The method for operating a membrane separation apparatus according to claim 7, wherein the amount A of the soluble component is the ultraviolet absorbance at a wavelength of 260 nm or the total organic carbon amount.
【請求項9】請求項1〜8のいずれかに記載の方法で薬
液洗浄を行った後、さらに被処理水を分離膜に通過させ
ることを特徴とする水の製造方法。
9. A method for producing water, comprising washing a chemical solution by the method according to any one of claims 1 to 8, and further passing treated water through a separation membrane.
【請求項10】被処理水を通過させて不純物を除去する
分離膜と、該被処理水に含まれる溶解性成分の量Aと濁
度Bとの関係を用いて薬液洗浄を行う必要が生じるまで
の総ろ過水量Vを算出する手段と、その算出結果に基づ
いて薬液洗浄を行う時を定める手段と、薬液洗浄を行う
手段とを備えていることを特徴とする膜分離装置。
10. It is necessary to perform chemical cleaning using a separation membrane for removing impurities by passing water to be treated and a relationship between the amount A of soluble components contained in the water to be treated and the turbidity B. A membrane separation device comprising: means for calculating the total filtered water amount V up to the above, means for determining when to perform chemical cleaning based on the calculation result, and means for performing chemical cleaning.
【請求項11】薬液洗浄を行う必要が生じる時を定める
手段は、以下の手順で運転経過時間(t+T)を算出す
る手段を備えている、請求項10に記載の膜分離装置。 (1)3種類以上の異なる被処理水のろ過データから求
めたろ過抵抗Rの経時変化を用いて、ろ過機構定数nを
該被処理水に含まれる溶解性成分の量Aと濁度Bの比x
=A/Bの関数n=f(x)で表現する。 (2)被処理水のxから関数n=f(x)を用いて算出
したろ過機構定数nおよび分離膜自身の抵抗R0、運転
経過時間tにおける総ろ過水量V(t)およびろ過抵抗
R(t)から、ろ過係数αを関数α=g(n,R0,V
(t),R(t))を用いて算出する。 (3)薬液洗浄を行う必要が生じるろ過抵抗R(t+
T)を、分離膜自身の抵抗R0と定数kの積(k・R0
=R(t+T)で設定する。 (4)運転経過時間(t+T)におけるろ過抵抗R(t
+T)、ろ過係数α、ろ過機構定数n、分離膜自身の抵
抗R0から、逆関数V(t+T)=g-1(n,R0,α,
R(t+T))を用いて運転経過時間(t+T)の総ろ
過水量V(t+T)を算出する。 (5)総ろ過水量V(t+T)から運転経過時間(t+
T)を、定流量ろ過の場合、総ろ過水量をろ過流量で割
って求め、定圧ろ過の場合は、積分により求める。
11. The membrane separation apparatus according to claim 10, wherein the means for determining when it is necessary to perform the chemical cleaning includes a means for calculating the operation elapsed time (t + T) according to the following procedure. (1) Using the time-dependent change of the filtration resistance R obtained from the filtration data of three or more different types of water to be treated, the filtration mechanism constant n is calculated based on the amount A of the soluble component and the turbidity B contained in the water to be treated. Ratio x
= A / B function n = f (x). (2) Filtration mechanism constant n calculated from x of the water to be treated using function n = f (x), resistance R 0 of the separation membrane itself, total filtered water amount V (t) and filtration resistance R at operation elapsed time t From (t), the filtration coefficient α is calculated by the function α = g (n, R 0 , V
(T), R (t)). (3) Filtration resistance R (t +
T) is calculated by multiplying the resistance R 0 of the separation membrane itself by a constant k (k · R 0 ).
= R (t + T). (4) Filtration resistance R (t) at operation elapsed time (t + T)
+ T), filtration coefficient α, filtration mechanism constant n, and resistance R 0 of the separation membrane itself, the inverse function V (t + T) = g −1 (n, R 0 , α,
R (t + T)) to calculate the total filtered water amount V (t + T) during the operation elapsed time (t + T). (5) Elapsed operation time (t + T) from total filtered water amount V (t + T)
T) is obtained by dividing the total amount of filtered water by the filtration flow rate in the case of constant flow filtration, and by integration in the case of constant pressure filtration.
【請求項12】運転経過時間(t+T)を表示する手段
を備えている、請求項11に記載の膜分離装置。
12. The membrane separation apparatus according to claim 11, further comprising means for displaying the operation elapsed time (t + T).
【請求項13】分離膜が、細孔径が1nm以上10μm
以下の精密ろ過膜または限外ろ過膜である、請求項10
〜12のいずれかに記載の膜分離装置。
13. The separation membrane having a pore diameter of 1 nm or more and 10 μm.
The following microfiltration membrane or ultrafiltration membrane:
13. The membrane separation device according to any one of claims to 12.
【請求項14】分離膜の素材が、ポリアクリロニトリ
ル、酢酸セルロース、ポリフェニレンスルフォン、ポリ
フェニレンスルフィドスルフォンのいずれかである、請
求項10〜13のいずれかに記載の膜分離装置。
14. The membrane separation device according to claim 10, wherein the material of the separation membrane is any one of polyacrylonitrile, cellulose acetate, polyphenylene sulfone, and polyphenylene sulfide sulfone.
JP11131026A 1998-05-12 1999-05-12 Operation of membrane separator Pending JP2000033241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11131026A JP2000033241A (en) 1998-05-12 1999-05-12 Operation of membrane separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12871398 1998-05-12
JP10-128713 1998-05-12
JP11131026A JP2000033241A (en) 1998-05-12 1999-05-12 Operation of membrane separator

Publications (1)

Publication Number Publication Date
JP2000033241A true JP2000033241A (en) 2000-02-02

Family

ID=26464302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11131026A Pending JP2000033241A (en) 1998-05-12 1999-05-12 Operation of membrane separator

Country Status (1)

Country Link
JP (1) JP2000033241A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
JP2005169238A (en) * 2003-12-10 2005-06-30 Fuji Electric Systems Co Ltd Reversal washing method for membrane filtrate treatment equipment
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2007038212A (en) * 2005-06-28 2007-02-15 Toray Ind Inc Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus
JP2007125465A (en) * 2005-11-01 2007-05-24 Mitsubishi Rayon Co Ltd Method for estimating degree of contamination of separating membrane used for membrane separation/activated sludge device
JP2007152192A (en) * 2005-12-02 2007-06-21 Yokohama National Univ Water quality monitoring equipment and water treatment facility
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
JP2017113729A (en) * 2015-12-25 2017-06-29 栗田工業株式会社 Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof
US7182870B2 (en) 2001-10-04 2007-02-27 Toray Industries, Inc. Hollow fiber membrane and method of producing the same
CN100443148C (en) * 2001-10-04 2008-12-17 东丽株式会社 Hollow fiber film and method for prodn thereof
US7504034B2 (en) 2001-10-04 2009-03-17 Toray Industries, Inc. Hollow fiber membrane and method of producing the same
KR100904943B1 (en) 2001-10-04 2009-06-29 도레이 카부시키가이샤 Hollow fiber film and method for production thereof
JP2005169238A (en) * 2003-12-10 2005-06-30 Fuji Electric Systems Co Ltd Reversal washing method for membrane filtrate treatment equipment
JP2007014948A (en) * 2005-06-09 2007-01-25 Toray Ind Inc Membrane filteration estimation method, estimation device, membrane filteration estimation ptogram
JP2007038212A (en) * 2005-06-28 2007-02-15 Toray Ind Inc Determining method of operation condition of membrane filtering apparatus and operation method of membrane filtering apparatus using it, membrane filtering apparatus
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
JP2007125465A (en) * 2005-11-01 2007-05-24 Mitsubishi Rayon Co Ltd Method for estimating degree of contamination of separating membrane used for membrane separation/activated sludge device
JP2007152192A (en) * 2005-12-02 2007-06-21 Yokohama National Univ Water quality monitoring equipment and water treatment facility
JP2017113729A (en) * 2015-12-25 2017-06-29 栗田工業株式会社 Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane

Similar Documents

Publication Publication Date Title
KR101542617B1 (en) Cleaning system of separation membrane and method using the same
JP2001327967A (en) Operating method and manufacturing method of membrane filtration plant
DE602005023424D1 (en) MEMBRANE FILTER CLEANING METHOD AND APPARATUS FOR IMPLEMENTING THEREOF
Kumar et al. Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes
JP4135267B2 (en) Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus
JP2000033241A (en) Operation of membrane separator
JP5151009B2 (en) Membrane separation device and membrane separation method
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
JP3514825B2 (en) Operation method of water purification system and water purification device
JP2006321677A (en) High purity phosphoric acid and its production method
JPH06262173A (en) Membrane purifying method for surface water with improved recovery rate and operation method of its device
JPH11169851A (en) Water filter and its operation
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
WO2021200752A1 (en) Method and program for determining cleaning trouble in fresh water generator
WO2018105569A1 (en) Water treatment method and water treatment device
CN105592915B (en) It is configured to the chemical cleaning method of the RO/NF separation membranous systems of two row
JP2000015062A (en) Membrane filter
JPH07204476A (en) Water purifying apparatus and operation thereof
JP4876391B2 (en) Precoat liquid concentration control method
JPH05168873A (en) Method for maintaining treating capacity of filter membrane
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP4804097B2 (en) Continuous operation method of water purification system
Sondhi et al. Cross-flow filtration of synthetic electroplating wastewater by ceramic membranes using high frequency backpulsing
JP4872391B2 (en) Membrane separation device and membrane separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516