JP2007185648A - Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus - Google Patents

Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus Download PDF

Info

Publication number
JP2007185648A
JP2007185648A JP2006237307A JP2006237307A JP2007185648A JP 2007185648 A JP2007185648 A JP 2007185648A JP 2006237307 A JP2006237307 A JP 2006237307A JP 2006237307 A JP2006237307 A JP 2006237307A JP 2007185648 A JP2007185648 A JP 2007185648A
Authority
JP
Japan
Prior art keywords
membrane
membrane filtration
adjusting means
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006237307A
Other languages
Japanese (ja)
Other versions
JP5034381B2 (en
JP2007185648A5 (en
Inventor
Hiroo Takahata
寛生 高畠
Masatsugu Uehara
正嗣 上原
Tsuguhito Itou
世人 伊藤
Toshio Otake
要生 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006237307A priority Critical patent/JP5034381B2/en
Publication of JP2007185648A publication Critical patent/JP2007185648A/en
Publication of JP2007185648A5 publication Critical patent/JP2007185648A5/en
Application granted granted Critical
Publication of JP5034381B2 publication Critical patent/JP5034381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for deciding operation conditions of a membrane filtration apparatus by which the operation condition of a pressure regulating means for regulating membrane filtration pressure, that of a flow rate regulating means for regulating a membrane filtration flow rate and that of a component content regulating means for regulating the content of a certain component of the liquid to be filtered are decided according to the membrane filtration performance and membrane filtration conditions and the liquid to be filtered is filtered by a separation membrane on the basis of the decided operation condition values, so that the separation membrane can be used over a long period of time. <P>SOLUTION: The method for deciding operation conditions of the membrane filtration apparatus comprises the steps of: predicting the fluctuation of the content of the component stuck to the separation membrane, that of the membrane filtration pressure, that of the membrane filtration flow rate, that of a membrane filtration flux or that of membrane resistance from data showing the kind of the component of the liquid to be filtered and time-series changes of the content of the component, data showing time-series changes of the membrane filtration flow rate and/or data showing time-series changes of the membrane filtration pressure; and deciding the operation condition of the pressure regulating means, the flow rate regulating means or the component content regulating means on the basis of the predicted results. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液体を分離膜によってろ過する膜ろ過装置の運転条件の決定方法、およびそれを用いた膜ろ過装置の運転方法、ならびに膜ろ過装置に関し、さらに詳しくは、活性汚泥や微生物培養液などを膜ろ過によって固液分離することを特徴とする膜ろ過装置の運転条件の決定方法、およびそれに基づいた膜ろ過装置の運転方法、ならびに該運転条件に基づいて運転を制御する手段を有する膜ろ過装置に関する。   The present invention relates to a method for determining the operating conditions of a membrane filtration device for filtering a liquid through a separation membrane, a method for operating a membrane filtration device using the same, and a membrane filtration device, and more particularly, activated sludge, microbial culture solution, etc. A method for determining the operating conditions of a membrane filtration device characterized by separating the solid and liquid by membrane filtration, the operating method of the membrane filtration device based thereon, and the membrane filtration having means for controlling the operation based on the operating conditions Relates to the device.

液体を分離膜によってろ過する方法には、被ろ過液である液体と分離膜を接触させ、被ろ過液側を正圧もしくは透過側を負圧にしてろ過液を得る方法がある。この膜ろ過工程において、被ろ過液に含まれる非膜透過物質が膜表面に蓄積し、蓄積された物質が膜抵抗の上昇を引き起こすこととなる。膜抵抗が上昇すると、膜をろ過するために必要な圧力が上昇するため、膜ろ過液を定膜ろ過流量(定膜ろ過流束)で取得する場合には膜間差圧が上昇し、膜ろ過液を定膜ろ過圧力で取得する場合には膜ろ過流量(膜ろ過流束)が低下することとなる。このような膜間差圧の上昇や膜ろ過流量の低下が発生すると、次第に膜ろ過装置の運転が困難となり、分離膜の薬洗や交換が必要となる。   As a method for filtering a liquid through a separation membrane, there is a method in which a liquid to be filtered is brought into contact with a separation membrane, and a filtrate is obtained by setting the filtered liquid side to a positive pressure or the permeate side to a negative pressure. In this membrane filtration step, non-membrane permeable substances contained in the liquid to be filtered accumulate on the membrane surface, and the accumulated substances cause an increase in membrane resistance. As the membrane resistance increases, the pressure required to filter the membrane increases, so when acquiring membrane filtrate at a constant membrane filtration flow rate (constant membrane filtration flux), the transmembrane differential pressure increases, When the filtrate is obtained at a constant membrane filtration pressure, the membrane filtration flow rate (membrane filtration flux) will decrease. When such an increase in transmembrane pressure and a decrease in the membrane filtration flow rate occur, it becomes increasingly difficult to operate the membrane filtration device, and it becomes necessary to wash and replace the separation membrane.

このような膜抵抗の上昇の程度は、被ろ過液に含まれる非膜透過物質の濃度と深く関係している。即ち、一般的に被ろ過液に含まれる非膜透過物質の濃度が高くなれば、単位ろ過流量あたりの膜抵抗の上昇の程度は大きくなり、被ろ過液に含まれる非膜透過物質の濃度が小さくなれば、単位ろ過流量あたりの膜抵抗の上昇の程度は小さくなる。しかしながら、被ろ過液に含まれる非膜透過物質の濃度を小さくしすぎると、他の問題点が発生することがある。例えば、被ろ過液に含まれる非膜透過物質の濃度を小さくするために、被ろ過液に希釈水を加える場合、全体として膜ろ過するべき流量が増加することとなり、膜ろ過に時間を要する場合がある。また、膜ろ過装置が膜分離式活性汚泥法による排水処理装置の場合、容積負荷(単位容積あたりの有機物負荷量)は、被ろ過液である活性汚泥の微生物濃度(微生物は非膜透過物質)の影響を受ける。一般的に、微生物濃度が大きくなるのに伴い、容積負荷は大きくなり、単位容積あたりの処理可能な排水量が大きくなる。従って、膜分離式活性汚泥法による排水処理装置の場合、できるだけ微生物濃度を大きく保持したいのである。即ち、膜抵抗の上昇を抑制させるために微生物濃度を小さくすると、容積負荷が小さくなってしまうという問題点がある。また、活性汚泥を槽から排出することによって微生物濃度を調整する場合、排出された活性汚泥は廃棄物となるため、コスト削減や環境低負荷のためにもできるだけ活性汚泥を排出しないで運転したいという要請もある。このように、被ろ過液を膜ろ過する膜ろ過装置において、被ろ過液に含まれる非膜透過物質の濃度を調整することは重要であり、被ろ過液に含まれる非膜透過物質の濃度を適正に調整することによって、分離膜を長期間利用することができるなど、膜ろ過装置を適正に運転することができる。   The degree of such an increase in membrane resistance is closely related to the concentration of the non-membrane permeable substance contained in the liquid to be filtered. That is, generally, if the concentration of the non-membrane permeable substance contained in the filtrate is increased, the degree of increase in the membrane resistance per unit filtration flow rate is increased, and the concentration of the non-membrane permeable substance contained in the filtrate is increased. The smaller the degree of increase in membrane resistance per unit filtration flow, the smaller. However, if the concentration of the non-membrane permeable substance contained in the liquid to be filtered is too small, other problems may occur. For example, when diluting water is added to the filtrate to reduce the concentration of non-membrane-permeating substances contained in the filtrate, the flow rate to be membrane-filtered as a whole increases, and membrane filtration takes time There is. In addition, when the membrane filtration device is a wastewater treatment device using a membrane separation type activated sludge method, the volume load (the load of organic matter per unit volume) is the microbial concentration of the activated sludge that is the filtrate (microorganisms are non-membrane permeable substances) Affected by. Generally, as the microbial concentration increases, the volume load increases and the amount of wastewater that can be treated per unit volume increases. Therefore, in the case of a wastewater treatment apparatus using a membrane separation type activated sludge method, it is desirable to keep the microbial concentration as high as possible. That is, there is a problem that when the microorganism concentration is decreased in order to suppress the increase in membrane resistance, the volume load is decreased. In addition, when adjusting the microbial concentration by discharging activated sludge from the tank, the discharged activated sludge becomes waste, so we want to operate without discharging activated sludge as much as possible for cost reduction and low environmental load. There is also a request. Thus, in a membrane filtration device for membrane filtration of the filtrate to be filtered, it is important to adjust the concentration of the non-membrane permeable substance contained in the filtrate to be filtrated. By appropriately adjusting, the membrane filtration apparatus can be properly operated, for example, the separation membrane can be used for a long period of time.

上記のような観点に鑑み、被ろ過液中に含まれる非膜透過物質の濃度を調整する方法として、例えば特許文献1がある。すなわち特許文献1は、被ろ過液として汚泥を用い、前記汚泥の粘性係数または粘性係数に相関する物理指標を測定し、この測定値に基づいて汚泥の引き抜き量を決定することを特徴とする膜分離装置について開示されたものである。   In view of the above viewpoint, for example, Patent Document 1 discloses a method for adjusting the concentration of the non-membrane permeable substance contained in the liquid to be filtered. That is, Patent Document 1 uses a sludge as a liquid to be filtered, measures a viscosity index of the sludge or a physical index correlated with the viscosity coefficient, and determines a sludge extraction amount based on the measured value. A separation device is disclosed.

また、液体を分離膜によって膜ろ過する膜ろ過装置において、分離膜の単位面積あたりの膜ろ過流量、即ち膜ろ過流束を常時高く維持することができれば、一定流量の膜ろ過液を取得するために必要な膜面積が小さくなり、膜ろ過装置の設置面積の省スペース化や膜設備費の削減が図れることになる。しかしながら、膜ろ過流束を高く設定したり、高膜ろ過流束を維持するために膜ろ過駆動力となる膜ろ過圧力を高く設定すると、被ろ過液に含まれる非膜透過物質が膜表面に蓄積し易く、蓄積された物質が膜抵抗の上昇を引き起こすこととなる。膜抵抗が上昇すると、膜をろ過するために必要な圧力を上昇させることが必要であり、また、膜ろ過液を定膜ろ過流量(定膜ろ過流束)で取得する場合には膜間差圧が上昇し、膜ろ過液を定膜ろ過圧力で取得する場合には膜ろ過流量(膜ろ過流束)が低下することとなる。このような膜間差圧の上昇や膜ろ過流量の低下が発生すると、次第に膜ろ過装置の運転が困難となるので、分離膜の薬洗や交換が必要となる。したがって、膜ろ過装置の試運転の高効率化、および、運転安定化を図るためには、膜ろ過圧力および膜ろ過流量を適正に調整することが必要である。   In addition, in a membrane filtration device for membrane filtration of a liquid through a separation membrane, if the membrane filtration flow rate per unit area of the separation membrane, that is, the membrane filtration flux can be maintained constantly high, to obtain a membrane filtrate with a constant flow rate Therefore, the required membrane area can be reduced, so that the installation area of the membrane filtration device can be saved and the membrane equipment cost can be reduced. However, if the membrane filtration flux is set high or the membrane filtration pressure, which is the membrane filtration driving force, is set high to maintain the high membrane filtration flux, the non-membrane permeable substance contained in the liquid to be filtrated is applied to the membrane surface. It is easy to accumulate, and the accumulated substance causes an increase in film resistance. As membrane resistance increases, it is necessary to increase the pressure required to filter the membrane, and when obtaining membrane filtrate at a constant membrane filtration flow rate (constant membrane filtration flux) When the pressure rises and the membrane filtrate is obtained at a constant membrane filtration pressure, the membrane filtration flow rate (membrane filtration flux) will be reduced. When such an increase in transmembrane pressure or a decrease in the membrane filtration flow rate occurs, it becomes difficult to operate the membrane filtration device, so that it is necessary to wash or replace the separation membrane. Therefore, it is necessary to appropriately adjust the membrane filtration pressure and the membrane filtration flow rate in order to increase the efficiency of the trial operation of the membrane filtration device and to stabilize the operation.

上記のような観点に鑑み、膜ろ過圧力および膜ろ過流量を決定するための従来の方法としては、技術者やオペレータの経験や勘に基づく方法が主として採用されていた。   In view of the above viewpoint, as a conventional method for determining the membrane filtration pressure and the membrane filtration flow rate, a method based on the experience and intuition of engineers and operators has been mainly employed.

また、その他の膜ろ過流量を決定する方法として、例えば、定量ろ過処理と膜洗浄処理とを繰り返して行う膜ろ過処理において、ろ過膜の初期特性やろ過ケークの特性等から算出によりろ過速度を決定する方法が提案されている(特許文献2)。   In addition, as another method for determining the membrane filtration flow rate, for example, in the membrane filtration treatment that repeats quantitative filtration treatment and membrane washing treatment, the filtration rate is determined by calculation from the initial characteristics of the filtration membrane, the characteristics of the filter cake, etc. A method to do this has been proposed (Patent Document 2).

特開平9−75938号公報Japanese Patent Laid-Open No. 9-75938 特開2004−329982号公報JP 2004-329982 A

しかしながら、特許文献1に記載の膜分離装置を用いて行う膜ろ過方法では、次のような問題点があった。汚泥の前記汚泥の粘性係数または粘性係数に相関する物理指標を測定し、この測定値に基づいて汚泥の引き抜き量を決定するとしても、実際に汚泥を引き抜いてから粘性係数が低下するまでに時間を要するため、汚泥の引き抜き量を決定する基準が不明確であった。また、粘性係数と汚泥に含まれる非膜透過性物質の量とは必ずしも相関がなく、十分な効果が発揮できない場合があるという問題点があった。また、膜抵抗の上昇は、汚泥の粘性係数のみによって依存するわけではなく、膜ろ過条件(膜ろ過流束や、膜間差圧や、膜表面の洗浄の度合いなど)にも依存するにもかかわらず、それらが考慮されていない問題点があった。   However, the membrane filtration method performed using the membrane separation apparatus described in Patent Document 1 has the following problems. Even if the sludge viscosity coefficient or the physical index correlated with the viscosity coefficient is measured and the amount of sludge extraction is determined based on this measured value, it takes time until the viscosity coefficient decreases after the sludge is actually extracted. Therefore, the criteria for determining the amount of sludge withdrawn were unclear. In addition, the viscosity coefficient and the amount of non-membrane permeable substance contained in the sludge are not necessarily correlated, and there is a problem that sufficient effects may not be exhibited. In addition, the increase in membrane resistance is not dependent only on the viscosity coefficient of sludge, but also on membrane filtration conditions (membrane filtration flux, transmembrane pressure difference, degree of membrane surface cleaning, etc.). Regardless, there were problems that were not taken into account.

また、技術者やオペレータの経験や勘に基づいて膜ろ過圧力や膜ろ過流量を決定する方法では、汚泥の性状変化にも対応できるように、高い安全率を見込んで調整することが多く、その分、効率が低い状況下で運転することとなる問題点があった。   In addition, the method of determining the membrane filtration pressure and membrane filtration flow rate based on the experience and intuition of engineers and operators often adjusts in anticipation of a high safety factor so that it can respond to changes in sludge properties. There was a problem that it would be operated under low efficiency.

また、実際の汚泥には多様な微生物が含まれていて、その膜ろ過性状は時事刻々と変化していくが、特許文献2に記載の膜ろ過流量の決定方法では、常に膜ろ過流量が一定であり、汚泥性状も不変であることを前提条件としているため、実際の膜ろ過装置の運転に適用するのは困難である。   In addition, various sludge is contained in actual sludge, and its membrane filtration property changes with time. However, in the method for determining the membrane filtration flow described in Patent Document 2, the membrane filtration flow is always constant. In addition, since it is a precondition that the sludge properties are unchanged, it is difficult to apply to actual operation of a membrane filtration apparatus.

上記課題を解決するために、本発明の膜ろ過装置の運転条件の決定方法は、以下の構成のいずれかであることを必須とする。   In order to solve the above-mentioned problem, it is essential that the method for determining the operating conditions of the membrane filtration device of the present invention has any of the following configurations.

(1)少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって得られる膜ろ過液の流量(以下、膜ろ過流量)を調整する流量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過流量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記流量調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。   (1) At least a separation membrane, a pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and a flow rate of the membrane filtrate obtained by the pressure generating means (hereinafter referred to as a membrane) Operation of a membrane filtration device that uses a membrane filtration device having a flow rate adjusting means for adjusting the filtration flow rate), filters the filtrate to be filtered through the separation membrane, and adjusts the membrane filtration flow rate simultaneously or sequentially with filtration. It is a method for determining the conditions, and from the data representing the type and amount of component of the liquid to be filtered and the time-series change in the membrane filtration flow rate, the fluctuation of the amount of component adhering to the separation membrane, A method for determining operating conditions of a membrane filtration apparatus, comprising predicting fluctuations in membrane filtration pressure or fluctuations in membrane resistance and determining operating conditions of the flow rate adjusting means based on the prediction result.

(2)少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって発生する圧力差(以下、膜ろ過圧力)を調整する圧力調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過圧力の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記圧力調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。   (2) At least the separation membrane, pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and the pressure difference generated by the pressure generating means (hereinafter referred to as membrane filtration pressure) The membrane filtration apparatus having a pressure adjusting means for adjusting the filtration of the filtrate to be filtered through the separation membrane, and determining the operating conditions of the membrane filtration apparatus for adjusting the membrane filtration pressure simultaneously or sequentially with the filtration A method for determining the amount of constituent components and the amount of constituents of the liquid to be filtered, and the data representing the time-series changes in membrane filtration pressure. Alternatively, a method for determining the operating condition of the membrane filtration device, comprising predicting a fluctuation of the membrane filtration flux or a fluctuation of the membrane resistance and determining the operating condition of the pressure adjusting means based on the prediction result.

(3)少なくとも、分離膜、および、被ろ過液の構成成分量を調整する構成成分量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記被ろ過液の構成成分量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記構成成分量調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。   (3) Using a membrane filtration device having at least a separation membrane and a component amount adjusting means for adjusting the component amount of the filtrate to be filtered, the filtrate to be filtered through the separation membrane and simultaneously with filtration or A method for determining the operating conditions of a membrane filtration device that sequentially adjusts the amount of constituents of the filtrate to be filtrated, wherein the type and amount of constituents of the filtrate and the time series of the membrane filtration flow rate Based on the data representing the change, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration pressure, or the fluctuation of the membrane resistance is predicted, and the operation of the component quantity adjusting means is performed based on the prediction result. A method for determining operating conditions of a membrane filtration device including determining conditions.

(4)少なくとも、分離膜、および、被ろ過液の構成成分量を調整する構成成分量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記被ろ過液の構成成分量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記構成成分量調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。   (4) Using a membrane filtration device having at least a separation membrane and a component amount adjusting means for adjusting the component amount of the filtrate to be filtered, the filtrate to be filtered through the separation membrane and simultaneously with filtration or A method for determining the operating conditions of a membrane filtration device that sequentially adjusts the amount of components of the filtrate to be filtrated, wherein the type and amount of components of the filtrate to be filtered and the time series of membrane filtration pressure From the data representing the change, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration flow rate or the membrane filtration flux, or the fluctuation of the membrane resistance is predicted, and based on the prediction result, the constituent component A method for determining operating conditions of a membrane filtration device, including determining operating conditions of a quantity adjusting means.

本発明によれば、様々な被ろ過液の膜ろ過性状や膜ろ過条件に応じて、被ろ過液の構成成分量を調整する調整手段の適正な運転条件を決定し、その決定結果に基づいて、膜ろ過装置を運転することによって、長期間にわたり膜抵抗や膜ろ過圧力の上昇や膜ろ過流束の低下を抑制したり、分離膜を長期間利用したりすることが可能となる。例えば、膜ろ過流束が非常に大きい場合と小さい場合、間欠ろ過をする場合と連続ろ過をする場合、膜表面の洗浄効果が大きい場合と小さい場合など、それぞれの条件によって、長期間膜抵抗や膜ろ過圧力の上昇や膜ろ過流束の低下を抑制するため、あるいは、長期間分離膜を利用するための適正な被ろ過液の構成成分量が異なるはずであるが、本発明では、それら条件に応じて適正な被ろ過液の構成成分量を決定することが可能となる。   According to the present invention, according to the membrane filtration properties and membrane filtration conditions of various filtrates to be determined, the appropriate operating conditions of the adjusting means for adjusting the constituent component amounts of the filtrate to be filtered are determined, and based on the determination results. By operating the membrane filtration apparatus, it is possible to suppress an increase in membrane resistance and membrane filtration pressure and a decrease in membrane filtration flux over a long period of time, or to use a separation membrane for a long period of time. For example, depending on the respective conditions, such as when the membrane filtration flux is very large or small, when intermittent filtration is performed, when continuous filtration is performed, or when the cleaning effect on the membrane surface is large or small, the membrane resistance or long-term In order to suppress an increase in membrane filtration pressure and a decrease in membrane filtration flux, or to use a separation membrane for a long period of time, the amount of components to be filtered should be different. Accordingly, it is possible to determine an appropriate component amount of the liquid to be filtered.

また、本発明によれば、様々な被ろ過液の膜ろ過性状などの条件に応じて、膜ろ過圧力を調整する圧力調整手段や膜ろ過流量を調整する流量調整手段の適正な運転条件を合理的に決定することができ、この決定結果に基づいて、膜ろ過装置を運転することによって、膜ろ過装置運転の高効率化、および、運転安定化を図ることができる。   Further, according to the present invention, appropriate operating conditions of the pressure adjusting means for adjusting the membrane filtration pressure and the flow rate adjusting means for adjusting the membrane filtration flow rate are rationalized according to conditions such as the membrane filtration properties of various liquids to be filtered. By operating the membrane filtration apparatus based on the determination result, the efficiency of the membrane filtration apparatus operation and the operation stabilization can be achieved.

以下、本発明を詳細かつ具体的に説明する。   Hereinafter, the present invention will be described in detail and specifically.

本発明(請求項1)は、少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって得られる膜ろ過液の流量(以下、膜ろ過流量)を調整する流量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過流量の調整を行う膜ろ過装置の運転条件の決定方法に関するものであり、また、本発明(請求項6)は、少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって発生する圧力差(以下、膜ろ過圧力)を調整する圧力調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過圧力の調整を行う膜ろ過装置の運転条件の決定方法に関するものであり、また、本発明(請求項11および12)は、少なくとも、分離膜、および、被ろ過液の構成成分量を調整する構成成分量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記被ろ過液の構成成分量の調整を行う膜ろ過装置の運転条件の決定方法に関するものである。   The present invention (Claim 1) includes at least a separation membrane, pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and a membrane filtrate obtained by the pressure generating means The membrane filtration apparatus having a flow rate adjusting means for adjusting the flow rate (hereinafter referred to as membrane filtration flow rate) is filtered through the separation membrane, and the membrane filtration flow rate is adjusted simultaneously or sequentially with the filtration. The present invention relates to a method for determining the operating conditions of a membrane filtration apparatus to be performed, and the present invention (Claim 6) generates at least a separation membrane and a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane. Using a membrane filtration apparatus having pressure generating means for adjusting the pressure difference generated by the pressure generating means (hereinafter referred to as membrane filtration pressure), and filtering the liquid to be filtered through the separation membrane, Simultaneous or sequential with filtration In addition, the present invention (Claims 11 and 12) relates to at least the separation membrane and the constituent amount of the liquid to be filtered. Membrane filtration device having a component amount adjusting means for adjusting the filtration, the filtrate to be filtered through the separation membrane, and membrane filtration for adjusting the component amount of the filtrate to be filtrated simultaneously or sequentially with the filtration The present invention relates to a method for determining operating conditions of an apparatus.

ここにおいて、分離膜とは、被ろ過液に圧力を加えて、もしくは透過側から吸引することによって、被ろ過液中に含まれる一定粒子径以上の物質を捕捉する機能を有するものであり、その捕捉粒子径の違いにより、ダイナミックろ過膜、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。本発明で用いられる分離膜としては、好ましくは、ダイナミックろ過膜、精密ろ過膜、限外ろ過膜である。また、分離膜の形状としては、平膜や中空糸膜などがあるが、形状は特に限定しない。   Here, the separation membrane has a function of capturing a substance having a certain particle diameter or more contained in the filtrate by applying pressure to the filtrate or sucking from the permeate side. There are dynamic filtration membranes, microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, etc., depending on the difference in trapped particle size. The separation membrane used in the present invention is preferably a dynamic filtration membrane, a microfiltration membrane, or an ultrafiltration membrane. In addition, examples of the shape of the separation membrane include a flat membrane and a hollow fiber membrane, but the shape is not particularly limited.

また、膜ろ過に供される被ろ過液は、一般に懸濁物質を含有する液であり、特に限定しないが、例えば、微生物を含む液体の場合には、一般的に被ろ過液の中には物質としての微生物と微生物の代謝産物が比較的高濃度で存在するため、被ろ過液を膜ろ過した際の抵抗などの変動を予測することが困難となるが、本発明に従えば、被ろ過液を膜ろ過した際の抵抗などの変動を予測することが可能となり、被ろ過液を膜ろ過する膜ろ過装置における調整手段(後述の圧力調整手段、あるいは、流量調整手段、あるいは、構成成分量調整手段)の運転条件を精度よく決定することが可能となる。この点からして、本発明における被ろ過液は、微生物培養液や活性汚泥などの微生物を含む液体であることが好ましい。また、本発明では、懸濁物質の濃度が100mg/L以上の被ろ過液が好ましい。   In addition, the filtrate to be subjected to membrane filtration is generally a liquid containing suspended solids and is not particularly limited. For example, in the case of a liquid containing microorganisms, Since microorganisms and microbial metabolites as substances are present in a relatively high concentration, it is difficult to predict fluctuations such as resistance when the filtrate is subjected to membrane filtration. It is possible to predict fluctuations such as resistance when the liquid is subjected to membrane filtration, and adjustment means in a membrane filtration apparatus for membrane filtration of the liquid to be filtered (pressure adjustment means, flow rate adjustment means, or amount of constituents described later) It becomes possible to determine the operating conditions of the adjusting means) with high accuracy. In this respect, the liquid to be filtered in the present invention is preferably a liquid containing microorganisms such as a microorganism culture solution and activated sludge. Moreover, in this invention, the to-be-filtered liquid whose density | concentration of a suspended solid is 100 mg / L or more is preferable.

また、圧力発生手段とは、分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させるものであれば、その形態は特に限定しないが、例えば、ポンプを利用して、被ろ過液側を加圧、または透過液側から吸引することによる方法、被ろ過液と膜ろ過液側との水頭差を利用する方法がある。   Further, the pressure generating means is not particularly limited as long as it generates a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane. There are a method in which the liquid side is pressurized or sucked from the permeate side, and a method in which the water head difference between the liquid to be filtered and the membrane filtrate side is utilized.

また、圧力調整手段は、前記圧力発生手段によって発生する圧力差(膜ろ過圧力)を調整することができれば、その形態は特に限定しない。例えば、圧力発生手段としてポンプを利用する場合にはポンプの出力を調整する方法、水頭差を利用する場合には被ろ過液側もしくは膜ろ過液側の水位を調整する方法がある。   Further, the form of the pressure adjusting means is not particularly limited as long as the pressure difference (membrane filtration pressure) generated by the pressure generating means can be adjusted. For example, when using a pump as the pressure generating means, there is a method of adjusting the output of the pump, and when using a water head difference, there is a method of adjusting the water level on the filtrate side or the membrane filtrate side.

また、流量調整手段は、前記圧力発生手段によって得られる膜ろ過液の流量(以下、膜ろ過流量)を調整できるものであれば、形態は特に限定しない。例えば、ポンプの出力を調整することにより膜ろ過流量を調整する方法や、弁やバルブの開閉を調整する方法がある。   The flow rate adjusting means is not particularly limited as long as it can adjust the flow rate of the membrane filtrate obtained by the pressure generating means (hereinafter referred to as membrane filtration flow rate). For example, there are a method of adjusting the membrane filtration flow rate by adjusting the output of the pump, and a method of adjusting the opening and closing of valves and valves.

本発明では、圧力発生手段としてインバータつきの吸引ポンプを用いて、膜ろ過側を負圧にすることによって膜ろ過液を取得し、その膜ろ過流量をインバータによるポンプ出力制御によって調整することが好ましい。   In the present invention, it is preferable to use a suction pump with an inverter as pressure generating means, obtain a membrane filtrate by making the membrane filtration side negative pressure, and adjust the membrane filtration flow rate by pump output control by the inverter.

また、被ろ過液の構成成分とは、被ろ過液を構成する成分のことであり、例えば、遠心分離、ろ紙によるろ過、分離膜によるろ過などによって被ろ過液を分画し、その画分となる液体を構成成分とすることができる。また、本発明では、被ろ過液の構成成分の種類として、上清成分を利用することが好ましく、上清成分と固形成分を利用することがさらに好ましく、上清成分と固形成分と溶解成分を利用することが最も好ましい。ここで、上清成分は、例えば、被ろ過液を遠心分離したときの遠心上清、前記膜ろ過装置における分離膜より孔径の大きい分離膜(例えば、前記膜ろ過装置における分離膜として精密ろ過膜や限外ろ過膜などを用いた場合にはろ紙など)を用いて被ろ過液をろ過したときのろ過液などとすることができ、また、固形成分は、例えば、被ろ過液を遠心分離したときの沈殿物、前記膜ろ過装置における分離膜より孔径の大きい分離膜(例えば、前記膜ろ過装置における分離膜として精密ろ過膜や限外ろ過膜などを用いた場合にはろ紙など)を用いて被ろ過液をろ過したときの非膜ろ過液物とすることができる。また、溶解成分は、膜ろ過装置における分離膜、あるいは、前記分離膜と同じ素材の分離膜からの透過液とすることが好ましい。また、被ろ過液の構成成分量とは、前記構成成分中に含まれる溶解物質や懸濁物質などの物質量のことであり、例えば、全有機炭素量(TOC)、化学的酸素要求量(COD)、生物化学的酸素要求量(BOD)、細胞外高分子物質量(EPS)、浮遊固形物濃度(MLSS)、乾燥重量、浮遊固形物強熱減量(MLVSS)などによって測定することができる。本発明では、測定の容易性・精度・自動化を鑑みた場合、TOCに基づいて測定された物質量で規定することを推奨する。また、構成成分量は絶対量で規定されるものであっても良いが、本発明においては濃度で規定されることが好ましい。   The component of the liquid to be filtered is a component constituting the liquid to be filtered.For example, the liquid to be filtered is fractionated by centrifugation, filtration with filter paper, filtration with a separation membrane, and the like. The resulting liquid can be a constituent. Further, in the present invention, it is preferable to use a supernatant component, more preferably to use a supernatant component and a solid component, as a kind of constituent components of the liquid to be filtered, and to use a supernatant component, a solid component and a dissolved component. Most preferably, it is used. Here, the supernatant component is, for example, a centrifugal supernatant obtained by centrifuging the liquid to be filtered, a separation membrane having a larger pore size than the separation membrane in the membrane filtration device (for example, a microfiltration membrane as a separation membrane in the membrane filtration device) In the case of using an ultrafiltration membrane or the like, it can be used as a filtrate when the filtrate is filtered using a filter paper or the like, and the solid component is obtained by, for example, centrifuging the filtrate. Using a separation membrane having a larger pore size than the separation membrane in the membrane filtration device (for example, a filter paper or the like when a microfiltration membrane or an ultrafiltration membrane is used as the separation membrane in the membrane filtration device) It can be set as the non-membrane filtrate thing when filtering a to-be-filtered liquid. The dissolved component is preferably a permeate from a separation membrane in a membrane filtration device or a separation membrane made of the same material as the separation membrane. Further, the component amount of the liquid to be filtered is a substance amount such as a dissolved substance or a suspended substance contained in the component, for example, total organic carbon (TOC), chemical oxygen demand ( COD), biochemical oxygen demand (BOD), extracellular polymer substance amount (EPS), suspended solids concentration (MLSS), dry weight, suspended solids loss on ignition (MLVSS), etc. . In the present invention, in view of ease of measurement, accuracy, and automation, it is recommended to specify the amount of substance measured based on the TOC. Further, the component amount may be defined by an absolute amount, but in the present invention, it is preferably defined by a concentration.

また、本発明では、上清成分の物質量と溶解成分の物質量との差分量を構成成分量として用いることが好ましく、上清成分の物質量と溶解成分の物質量との差分量、および、固形成分の物質量を構成成分量として用いることがさらに好ましい。被ろ過液の上清成分の物質量と溶解成分の物質量との差分量、および、固形成分の物質量は、実際に膜を透過することができずに、膜表面に付着することによって抵抗に寄与する物質量であるためである。特に、被ろ過液を膜ろ過する際には、被ろ過液の上清成分の中で膜ろ過装置における分離膜を透過しない物質(その物質量は、上清成分の物質量と溶解成分の物質量との差分量として表現される)が膜に付着し、膜抵抗を主として形成していることが多く、被ろ過液の構成成分量として、上清成分の物質量と溶解成分の物質量との差分量を用いることによって、より精度良く、分離膜に付着している被ろ過液の構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜抵抗の値の変化を予測することが可能となる。また、被ろ過液の構成成分量として固形成分量のみを用いることによって、被ろ過液全体を包括的かつ容易に定義することができる。また、被ろ過液の固形成分に含まれる物質は、膜に付着すれば抵抗に寄与し、また、前記上清成分の中で膜ろ過装置における分離膜を透過しない物質と比較して膜から剥離しやすいため、膜に付着した前記上清成分の中で膜ろ過装置における分離膜を透過しない物質を巻き込んでともに剥離する効果がある。従って、上清成分の物質量と溶解成分の物質量との差分量、および、固形成分の物質量を構成成分量として用いることによって、分離膜に付着している被ろ過液の構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜抵抗の値の変化を予測する際に、上記現象を再現することが可能となる。   In the present invention, it is preferable to use the difference amount between the substance amount of the supernatant component and the substance amount of the dissolved component as the component amount, and the difference amount between the substance amount of the supernatant component and the substance amount of the dissolved component, and More preferably, the amount of the solid component is used as the component amount. The amount of difference between the amount of the supernatant component in the liquid to be filtered and the amount of the dissolved component, and the amount of the solid component cannot be actually permeated through the membrane, and are resisted by adhering to the membrane surface. This is because the amount of the substance contributes to. In particular, when membranes are filtered, the substances that do not permeate the separation membrane in the membrane filtration device among the supernatant components of the filtrate (the amount of the substance is the amount of the supernatant component and the dissolved component) In most cases, the membrane resistance is mainly formed, and the amount of the component of the supernatant and the amount of the dissolved component are By using the difference amount, the component component amount of the filtrate to be filtered attached to the separation membrane, the fluctuation of the membrane filtration pressure, the fluctuation of the membrane filtration flow rate, the fluctuation of the membrane filtration flux, or more accurately It becomes possible to predict a change in the value of the membrane resistance. Moreover, the whole to-be-filtered liquid can be defined comprehensively and easily by using only the amount of solid components as a component amount of to-be-filtered liquid. In addition, substances contained in the solid component of the liquid to be filtered contribute to resistance if attached to the membrane, and are separated from the membrane in comparison with substances that do not permeate the separation membrane in the membrane filtration device among the supernatant components. Therefore, there is an effect that a substance that does not permeate the separation membrane in the membrane filtration device is entrained in the supernatant component adhering to the membrane and peeled off together. Therefore, by using the difference between the amount of the supernatant component and the amount of the dissolved component and the amount of the solid component as the component amount, the amount of the component of the liquid to be filtered attached to the separation membrane The above phenomenon can be reproduced when predicting fluctuations, fluctuations in membrane filtration pressure, fluctuations in membrane filtration flow rate, fluctuations in membrane filtration flux, or changes in the value of membrane resistance.

また、被ろ過液の構成成分量を調整する調整手段は、被ろ過液の構成成分量を調整・変化させることが可能であるものなら、その形態は特に限定しないが、本発明においては、被ろ過液を排出する方法、水道水などの希釈水を加える方法が好ましい。特に、被ろ過液を排出する方法においては、被ろ過液をそのまま排出しても良いが、遠心分離や不織布によるろ過などによって、被ろ過液の構成成分の一部を優先的に排出する方法がある。また、本発明においては、被ろ過液の構成成分量を濃度で規定することが好ましいため、被ろ過液を排出する場合には、排出した被ろ過液の水量の分だけ希釈水を加えることがさらに好ましい。例えば、膜ろ過装置として膜分離式活性汚泥法を用いる場合には、原水である被処理水が被ろ過液(活性汚泥)収容槽に常時流入してくるので、被ろ過液収容槽内の被ろ過液(活性汚泥)を排出することによって、被ろ過液である活性汚泥の濃度(即ち、被ろ過液の構成成分量)を調整することができる。   The adjusting means for adjusting the component amount of the liquid to be filtered is not particularly limited as long as it can adjust and change the component amount of the liquid to be filtered. A method of discharging the filtrate and a method of adding dilution water such as tap water are preferable. In particular, in the method of discharging the liquid to be filtered, the liquid to be filtered may be discharged as it is, but there is a method for preferentially discharging some of the components of the liquid to be filtered by centrifugation or filtration with a nonwoven fabric. is there. Further, in the present invention, it is preferable to define the component amount of the liquid to be filtered by the concentration. Therefore, when discharging the liquid to be filtered, it is necessary to add dilution water by the amount of water of the discharged liquid to be filtered. Further preferred. For example, when the membrane separation type activated sludge method is used as a membrane filtration device, the water to be treated, which is raw water, always flows into the liquid to be filtered (activated sludge) storage tank. By discharging the filtrate (activated sludge), it is possible to adjust the concentration of the activated sludge that is the filtrate (that is, the component amount of the filtrate).

また、構成成分量調整手段の運転条件とは、構成成分量調整手段によって被ろ過液の構成成分量を調整する程度を表す物理量のことである。例えば、構成成分量調整手段として被ろ過液を排出する場合には、当該被ろ過液の排出量のことを指す。   The operating condition of the component amount adjusting means is a physical quantity representing the degree to which the component amount of the liquid to be filtered is adjusted by the component amount adjusting means. For example, when discharging the liquid to be filtered as the component amount adjusting means, the discharge amount of the liquid to be filtered is indicated.

また、膜ろ過装置には、分離膜を被ろ過液に浸漬させることを特徴とする浸漬型の膜ろ過装置、分離膜を収容した容器に被ろ過液を送液しながら膜ろ過することを特徴とする膜ろ過装置、分離膜の全てまたは一部を被ろ過液に浸漬させ分離膜を回転させることを特徴とする回転型の膜ろ過装置などがある。膜ろ過方式は、デッドエンド型でもクロスフロー型でもよい。なかでも、本発明が適用できる装置としては、下水や工場排水や屎尿などの処理に利用される膜分離式活性汚泥法、膜分離工程を含む微生物学的物質生産プロセスなどがある。   In addition, the membrane filtration device is characterized in that the separation membrane is immersed in the liquid to be filtered, and the membrane filtration device is characterized in that the liquid to be filtered is sent to the container containing the separation membrane while being filtered. And a rotary membrane filtration device characterized in that the separation membrane is rotated by immersing all or part of the separation membrane in the liquid to be filtered. The membrane filtration method may be a dead end type or a cross flow type. Among them, as an apparatus to which the present invention can be applied, there are a membrane separation type activated sludge method used for treatment of sewage, factory effluent, manure and the like, and a microbiological substance production process including a membrane separation step.

また、本発明では、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記圧力調整手段の運転条件あるいは前記構成成分量調整手段の運転条件を決定する(図2参照)。あるいは、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記流量調整手段あるいは前記構成成分量調整手段の運転条件の運転条件を決定する(図1参照)。   Further, in the present invention, from the data representing the type and amount of component of the liquid to be filtered and the time-series change in membrane filtration pressure, the fluctuation of the amount of component adhering to the separation membrane, membrane filtration A fluctuation in flow rate or a fluctuation in membrane resistance is predicted, and an operating condition of the pressure adjusting means or an operating condition of the component amount adjusting means is determined based on the prediction result (see FIG. 2). Alternatively, from the data representing the type and amount of constituents of the liquid to be filtered and the time-series changes in the membrane filtration flow rate, fluctuations in the amount of constituents adhering to the separation membrane, fluctuations in membrane filtration pressure, Or the fluctuation | variation of a membrane resistance is estimated and the operating condition of the operating condition of the said flow volume adjustment means or the said component amount adjustment means is determined based on the said prediction result (refer FIG. 1).

また、被ろ過液の構成成分量の時系列的変化を表すデータとは、任意の時間に対する被ろ過液の構成成分量の値を時系列的に組み合わせたものであり、経時的に被ろ過液の構成成分量の値が変動してもよいが、変動せずに一定でも構わない。   In addition, the data representing the time-series change in the component amount of the liquid to be filtered is a time series combination of the values of the component components of the liquid to be filtered with respect to an arbitrary time. Although the value of the amount of the constituent component may fluctuate, it may be constant without fluctuating.

また、膜ろ過流量とは、膜から得られる透過液の流量である。また、膜ろ過流量の値を膜面積で除したものが膜ろ過流束である(即ち、膜ろ過流束とは、前記分離膜の単位面積あたりの膜ろ過流量である。)。膜ろ過流量の時系列的変化を表すデータとは、任意の時間に対する膜ろ過流量の値を時系列的に組み合わせたものであり、経時的に膜ろ過流量の値が変動してもよいが、変動せずに一定でも構わない。また、膜ろ過流量の値を膜ろ過流束に換算し、膜ろ過流量の時系列的変化を表すデータを膜ろ過流束の時系列的変化を表すデータに置き換えても構わない。   The membrane filtration flow rate is the flow rate of the permeate obtained from the membrane. Further, the value obtained by dividing the value of the membrane filtration flow rate by the membrane area is the membrane filtration flux (that is, the membrane filtration flux is the membrane filtration flow rate per unit area of the separation membrane). Data representing a time-series change in the membrane filtration flow rate is a time-series combination of values of the membrane filtration flow rate for an arbitrary time, and the value of the membrane filtration flow rate may vary over time, It may be constant without changing. Alternatively, the value of the membrane filtration flow rate may be converted into a membrane filtration flux, and the data representing the time series change of the membrane filtration flow rate may be replaced with the data representing the time series change of the membrane filtration flux.

また、膜ろ過圧力とは、分離膜の被ろ過液側の圧力と透過液側の圧力との差として算出されるものであり、ポンプによって加圧あるいは吸引することによって膜ろ過液を得る場合には加圧や吸引圧など、サイフォンの原理を利用して膜ろ過液を得る場合には水頭差などから算出することができる。膜ろ過圧力の時系列的変化を表すデータとは、任意の時間に対する膜ろ過圧力の値を時系列的に組み合わせたものであり、経時的に膜ろ過圧力の値が変動してもよいが、変動せずに一定でも構わない。   The membrane filtration pressure is calculated as the difference between the pressure on the filtrate side of the separation membrane and the pressure on the permeate side. When the membrane filtrate is obtained by applying pressure or suction with a pump, Can be calculated from the water head difference or the like when the membrane filtrate is obtained using the siphon principle such as pressurization or suction pressure. The data representing the time-series change in the membrane filtration pressure is a time-series combination of the values of the membrane filtration pressure for an arbitrary time, and the value of the membrane filtration pressure may vary over time, It may be constant without changing.

また、分離膜に付着している構成成分量とは、膜表面に付着している前記被ろ過液の構成成分に含まれる物質量である。ここで、被ろ過液の構成成分量として2種類以上の物質量(例えば、上清成分の物質量と溶解成分の物質量との差分量と、固形成分の物質量など)を用いる場合には、それぞれの種類の構成成分について、分離膜に付着している構成成分量を意味する。   Moreover, the component amount adhering to the separation membrane is the amount of substance contained in the component of the liquid to be filtered adhering to the membrane surface. Here, when using two or more kinds of substance amounts (for example, the difference between the substance amount of the supernatant component and the substance amount of the dissolved component, the substance amount of the solid component, etc.) as the constituent component amount of the liquid to be filtered For each type of component, it means the amount of component adhering to the separation membrane.

また、膜抵抗とは、被ろ過液を膜によってろ過する際に発生する抵抗のことであり、一般的に、(1)式によって定義される。   The membrane resistance is a resistance generated when the liquid to be filtered is filtered through a membrane, and is generally defined by the equation (1).

R=ΔP/(μJ) (1)
ここで、ΔPは膜ろ過圧力[Pa]、μは膜ろ過液の粘度[Pa・s]、Rは膜抵抗[1/m]、Jは膜ろ過流束[m/s]である。ここで、μは膜ろ過液の粘度を直接測定してもよいが、(2)式に従い、温度から換算してもよい。
R = ΔP / (μJ) (1)
Here, ΔP is the membrane filtration pressure [Pa], μ is the viscosity of the membrane filtrate [Pa · s], R is the membrane resistance [1 / m], and J is the membrane filtration flux [m / s]. Here, μ may directly measure the viscosity of the membrane filtrate, but may be converted from the temperature according to the equation (2).

μ×10=F・exp[(1+BT)/(CT+DT)] (2)
ここで、F=0.01257187、B=−0.005806436、C=0.001130911、D=−0.000005723952であり、Tは絶対温度[K]である。すなわち、摂氏温度をσ[℃]とすると、T=σ+273.15として表される。
μ × 10 3 = F · exp [(1 + BT) / (CT + DT 2 )] (2)
Here, F = 0.01257187, B = −0.005806436, C = 0.001130911, D = −0.000005723952, and T is the absolute temperature [K]. That is, when the Celsius temperature is σ [° C.], it is expressed as T = σ + 273.15.

本発明では、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の値の変動を予測する(以下、予測ステップ1とする)。あるいは、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動(もしくは、膜ろ過流束の変動)、あるいは膜抵抗の値の変動を予測する(以下、予測ステップ2とする)。   In the present invention, from the data representing the type and amount of component of the liquid to be filtered and the time-series change in the membrane filtration flow rate, the fluctuation of the amount of component adhering to the separation membrane, the membrane filtration pressure The fluctuation or the fluctuation of the film resistance value is predicted (hereinafter referred to as prediction step 1). Alternatively, from the data representing the type and amount of constituents of the liquid to be filtered and the time-series changes in membrane filtration pressure, fluctuations in the amount of constituents adhering to the separation membrane, fluctuations in the membrane filtration flow rate ( Alternatively, the fluctuation of the membrane filtration flux) or the fluctuation of the membrane resistance value is predicted (hereinafter referred to as prediction step 2).

ここで、予測とは、インプットとなる時系列的変化を表すデータ(即ち、予測ステップ1の場合は、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータであり、予測ステップ2の場合は、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータである。)から、対象とする変動(即ち、予測ステップ1の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の値の変動であり、予測ステップ2の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の値の変動である。)をアウトプットとして出力することである。   Here, the prediction is data representing a time-series change as an input (that is, in the case of the prediction step 1, the type and the amount of the component of the liquid to be filtered and the time-series change of the membrane filtration flow rate. In the case of the prediction step 2, it is data representing the type and amount of component of the liquid to be filtered and the time-series change of the membrane filtration pressure.) That is, in the case of the prediction step 1, it is a change in the amount of constituent components adhering to the separation membrane, a change in the membrane filtration pressure, or a change in the value of the membrane resistance. Fluctuations in the amount of adhering constituents, fluctuations in the membrane filtration flow rate, fluctuations in the membrane filtration flux, or fluctuations in the value of the membrane resistance).

前記した予測ステップ1あるいは予測ステップ2を実現する手段としては、ニューラルネットなどを利用して実データを学習させた結果に基づいて予測する方法、入力されたデータの関数として膜抵抗の値や膜ろ過圧力の値の変化を表現する方法があるが、本発明においては、前記被ろ過液の構成成分量の時系列的変化を表すデータ、膜ろ過流量の時系列的変化を表すデータ、あるいは、膜ろ過圧力の時系列的変化を表すデータに基づいて、前記分離膜に付着している構成成分量の値を計算する計算ステップ100を含む予測方法であることが好ましい。このことにより、予測ステップ1の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の値の変動を、予測ステップ2の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の値の変動を、より精度良く予測することが可能となる。また、前記計算ステップ100が、前記分離膜に付着した構成成分量の変化量を、前記被ろ過液の構成成分に含まれる物質が分離膜に付着する速度と剥離する速度との差として表現される計算式に基づいて計算される計算ステップ101であることがさらに好ましい。このことにより、分離膜に付着している構成成分量の変化量を計算することができ、それによって、任意の時間tの分離膜に付着している構成成分量の値があれば、一定時間後のti+1における分離膜に付着している構成成分量の値が計算できる。さらに、膜ろ過流量の値や膜ろ過流束の値や膜ろ過圧力の値が一定でなく変動している場合などについても、被ろ過液の構成成分の膜付着量の変動を計算することが可能となる。また、前記被ろ過液の構成成分に含まれる物質が前記分離膜から剥離する速度が、前記分離膜に付着している構成成分量の値の2次以上の高次式に基づいて決定されることが、さらに好ましい。このことによって、予測ステップ1の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の値の変動を、予測ステップ2の場合は、前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の値の変動を、より精度良く予測することが可能となる。また、前記分離膜に付着している上清成分の物質量の変化量を表現した計算式が、前記分離膜に付着している固形成分の物質量の値を含んでいる、あるいは、前記分離膜に付着している固形成分の物質量の変化量を表現した計算式が、前記分離膜に付着している上清成分の物質量の値を含んでいる計算式であることが最も好ましい。このことによって、分離膜に付着している固形成分に含まれる物質が、膜に付着している上清成分に含まれる非膜透過性の物質を巻き込んでともに剥離する現象(被ろ過液の固形成分は、膜に付着すれば抵抗に寄与し、また上清成分に含まれる非膜透過性の物質と比較して膜から剥離しやすいため)を予測することが可能となり、被ろ過液を膜ろ過する膜ろ過装置における圧力調整手段や流量調整手段や構成成分量調整手段の運転条件を精度よく決定することが可能となる。 As means for realizing the prediction step 1 or the prediction step 2 described above, a prediction method based on a result of learning actual data using a neural network or the like, a film resistance value or a film as a function of input data Although there is a method for expressing the change in the value of the filtration pressure, in the present invention, the data representing the time-series change in the component amount of the filtered liquid, the data representing the time-series change in the membrane filtration flow rate, or It is preferable that the prediction method includes a calculation step 100 that calculates a value of the amount of constituent component adhering to the separation membrane based on data representing a time-series change in membrane filtration pressure. Accordingly, in the case of the prediction step 1, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration pressure, or the fluctuation of the membrane resistance value is changed. In the case of the prediction step 2, the separation membrane is changed. It is possible to more accurately predict fluctuations in the amount of constituents adhering to the membrane, fluctuations in the membrane filtration flow rate, fluctuations in the membrane filtration flux, or fluctuations in the value of the membrane resistance. In addition, the calculation step 100 expresses the amount of change in the amount of the component adhering to the separation membrane as a difference between the rate at which the substance contained in the component of the liquid to be filtered adheres to the separation membrane and the rate at which the separation occurs. More preferably, the calculation step 101 is calculated based on the following calculation formula. Thus, it is possible to calculate the amount of change in the constituent component quantity attaching on the separation membrane, whereby, if the value of the constituent component quantity attaching on the separation membrane of any time t i, a constant The value of the component amount adhering to the separation membrane at time t i + 1 can be calculated. In addition, even when the membrane filtration flow rate value, membrane filtration flux value, and membrane filtration pressure value are not constant and fluctuate, it is possible to calculate fluctuations in the amount of membrane adhesion of constituents of the liquid to be filtered. It becomes possible. Further, the rate at which the substances contained in the constituents of the liquid to be filtered peel from the separation membrane is determined based on a higher-order expression of the second or higher order of the amount of the constituent components adhering to the separation membrane. More preferably. Thus, in the case of the prediction step 1, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration pressure, or the fluctuation of the membrane resistance value is changed. In the case of the prediction step 2, the separation membrane is changed. It is possible to more accurately predict fluctuations in the amount of constituents adhering to the membrane, fluctuations in the membrane filtration flow rate, fluctuations in the membrane filtration flux, or fluctuations in the value of the membrane resistance. Further, the calculation formula expressing the amount of change in the amount of the supernatant component adhering to the separation membrane includes the value of the amount of the solid component adhering to the separation membrane, or the separation Most preferably, the calculation expression expressing the amount of change in the amount of the solid component adhering to the membrane is a calculation formula including the value of the amount of the supernatant component adhering to the separation membrane. As a result, the phenomenon that the substance contained in the solid component adhering to the separation membrane entrains the non-membrane-permeable substance contained in the supernatant component adhering to the membrane and peels off together (the solid of the liquid to be filtered If the component adheres to the membrane, it contributes to resistance, and it is easier to separate from the membrane compared to the non-membrane-permeable substance contained in the supernatant component). It becomes possible to accurately determine the operating conditions of the pressure adjusting means, the flow rate adjusting means, and the component amount adjusting means in the membrane filtration device to be filtered.

ここにおいて、前記予測ステップ1および前記予測ステップ2における計算手順として以下のような手順がある。   Here, there are the following procedures as calculation procedures in the prediction step 1 and the prediction step 2.

前記予測ステップ1および前記予測ステップ2は、任意の時刻における膜ろ過流束の値あるいは膜ろ過圧力の値を計算する計算ステップ10、任意の時刻における分離膜に付着している構成成分量の値を計算する計算ステップ20、任意の時刻における膜抵抗の値を計算する計算ステップ30によって構成され、時刻を更新しながら、前記計算ステップ10、前記計算ステップ20、および、前記計算ステップ30を繰り返すことによって、前記予測ステップ1あるいは前記予測ステップ2において、予測対象としている値の時間変化(すなわち、変動)を求めることができる。   The prediction step 1 and the prediction step 2 include a calculation step 10 for calculating the value of the membrane filtration flux or the value of the membrane filtration pressure at an arbitrary time, and the value of the component amount adhering to the separation membrane at an arbitrary time. A calculation step 20 for calculating the film resistance, and a calculation step 30 for calculating the value of the membrane resistance at an arbitrary time. The calculation step 10, the calculation step 20 and the calculation step 30 are repeated while updating the time. Thus, in the prediction step 1 or the prediction step 2, it is possible to obtain a temporal change (that is, variation) of a value that is a prediction target.

ここで、前記計算ステップ10では、前記(1)式に従うことが好ましい。このとき、(1)式を次のような(1’)式に変換してもよい。   Here, in the calculation step 10, it is preferable to follow the equation (1). At this time, the expression (1) may be converted into the following expression (1 ').

R=AΔP/(μQ) (1’)
ここで、Qは膜ろ過流量[m/s]、Aは膜面積[m]である。
R = AΔP / (μQ) (1 ′)
Here, Q is the membrane filtration flow rate [m 3 / s], and A is the membrane area [m 2 ].

(1)式あるいは(1’)式を用いることにより、予測ステップ1の場合には任意の時刻における膜ろ過圧力の値を、予測ステップ2の場合には任意の時刻における膜ろ過流量の値あるいは膜ろ過流束の値を計算することができる。   By using the expression (1) or (1 ′), the value of the membrane filtration pressure at an arbitrary time in the case of the prediction step 1 or the value of the membrane filtration flow rate at an arbitrary time in the case of the prediction step 2 The value of the membrane filtration flux can be calculated.

また、計算ステップ20では、上記のように、前記分離膜に付着している構成成分量の変化量を、前記被ろ過液の構成成分に含まれる物質が分離膜に付着する速度と剥離する速度との差として表現される計算式に基づいて計算される計算ステップ101であることが好ましく、前記分離膜に付着している上清成分の物質量の値の変化量を表現した計算式が、前記分離膜に付着している固形成分の物質量の値を含んでいる、あるいは、前記分離膜に付着している固形成分の物質量の値の変化量を表現した計算式が、前記分離膜に付着している上清成分の物質量の値を含んでいる計算式であることがさらに好ましい。このような計算式として、例えば、次の(3)式および(4)式があり、本発明においては、(3)式および(4)式に従うことを推奨する。しかし、本発明の範囲は(3)式及び(4)式に限定されるものではない。   Further, in the calculation step 20, as described above, the amount of change in the amount of the constituent component adhering to the separation membrane is determined based on the rate at which the substance contained in the constituent component of the liquid to be filtered adheres to the separation membrane. It is preferable that the calculation step 101 is calculated based on a calculation expression expressed as a difference between and the calculation expression expressing the amount of change in the amount of substance of the supernatant component adhering to the separation membrane, A calculation formula that includes the value of the amount of the solid component adhering to the separation membrane or the amount of change in the value of the amount of the solid component adhering to the separation membrane is expressed by the separation membrane. More preferably, the calculation formula includes the value of the amount of the supernatant component adhering to the surface. Examples of such calculation formulas include the following formulas (3) and (4). In the present invention, it is recommended to follow the formulas (3) and (4). However, the scope of the present invention is not limited to the equations (3) and (4).

dXm/dt=X・J−γx・(τ−λx・ΔP)・(ηx・Xm+ηp・Pm)・Xm (3)
dPm/dt=P・J−γp・(τ−λp・ΔP)・(ηx・Xm+ηp・Pm)・Pm (4)
ただし、(τ−λx・ΔP)≧0、(τ−λp・ΔP)≧0である。
dXm / dt = X · J−γx · (τ−λx · ΔP) · (ηx · Xm + ηp · Pm) · Xm (3)
dPm / dt = P · J−γp · (τ−λp · ΔP) · (ηx · Xm + ηp · Pm) · Pm (4)
However, (τ−λx · ΔP) ≧ 0 and (τ−λp · ΔP) ≧ 0.

ここで、Xは固形成分に含まれる物質量[gC/m]、Pは上清成分に含まれる非膜透過性物質の物質量[gC/m]、Xmは単位膜面積あたりの分離膜に付着した固形成分に含まれる物質量[gC/m]、Pmは単位膜面積あたりの分離膜に付着した上清成分に含まれる非膜透過性物質の物質量[gC/m]、tは時間[s]、τは膜洗浄力[Pa]、γxは固形成分に含まれる物質の剥離係数[1/Pa/s]、γpは上清成分に含まれる非膜透過性物質の剥離係数[1/Pa/s]、λxは固形成分に含まれる物質の摩擦係数[−]、λpは上清成分に含まれる非膜透過性物質の摩擦係数[−]、ηxは固形成分に含まれる物質の密度の逆数[m/gC]、ηpは上清成分に含まれる非膜透過性物質の密度の逆数[m/gC]である。ここで、(3)式及び(4)式の右辺の第1項は、構成成分に含まれる物質が分離膜に付着する速度、及び、第2項は、構成成分に含まれる物質が分離膜から剥離する速度を示している。また、(3)式及び(4)式の両辺に膜面積Aを乗ずることによって、(3)式の左辺を分離膜に付着した固形成分に含まれる物質量の変化量、(4)式の左辺を分離膜に付着した上清成分に含まれる非膜透過性物質の物質量の変化量に、右辺の膜ろ過流束Jを膜ろ過流量Qに変換することが可能である。 Here, X is the amount of the substance contained in the solid component [gC / m 3 ], P is the amount of the non-membrane permeable substance contained in the supernatant component [gC / m 3 ], and Xm is the separation per unit membrane area The amount of substance contained in the solid component adhering to the membrane [gC / m 2 ], Pm is the amount of substance of the non-membrane permeable substance contained in the supernatant component adhering to the separation membrane per unit membrane area [gC / m 2 ] , T is the time [s], τ is the membrane detergency [Pa], γx is the exfoliation coefficient [1 / Pa / s] of the substance contained in the solid component, and γp is the non-membrane permeable substance contained in the supernatant component Peel coefficient [1 / Pa / s], λx is the friction coefficient [−] of the substance contained in the solid component, λp is the friction coefficient [−] of the non-membrane permeable substance contained in the supernatant component, and ηx is the solid component density inverse of the substances contained [m 3 / gC], the reciprocal of the density of non-membrane permeable substance ηp is contained in the supernatant component [m 3 gC] is. Here, the first term on the right side of the equations (3) and (4) is the speed at which the substance contained in the constituent component adheres to the separation membrane, and the second term is the substance in which the constituent component is contained in the separation membrane. It shows the speed of peeling from. Further, by multiplying both sides of the formulas (3) and (4) by the membrane area A, the left side of the formula (3) is the amount of change in the amount of substance contained in the solid component attached to the separation membrane, and the formula (4) It is possible to convert the membrane filtration flux J on the right side into the membrane filtration flow rate Q to the amount of change in the amount of the non-membrane permeable substance contained in the supernatant component attached to the separation membrane on the left side.

また、前記のように、分離膜に付着している構成成分量の変化量を、前記被ろ過液の構成成分に含まれる物質が分離膜に付着する速度と剥離する速度との差として表現される計算式に基づく場合、分離膜に付着した被ろ過液の構成成分量に関する微分方程式として表現されるが、そのとき、この微分方程式を解く方法として、Euler法や、Runge−Kutta法や、Runge−Kutta−Gill(RKG)法などがある。   Further, as described above, the amount of change in the amount of the constituent component adhering to the separation membrane is expressed as the difference between the rate at which the substance contained in the constituent component of the liquid to be filtered adheres to the separation membrane and the rate at which the separation is performed. Is expressed as a differential equation related to the amount of constituents of the liquid to be filtered attached to the separation membrane. At that time, as a method for solving this differential equation, the Euler method, the Runge-Kutta method, the Runge method, and the like. -Kutta-Gill (RKG) method.

計算ステップ20を上記のように行うことにより、任意の時刻における分離膜に付着している構成成分量の値を計算することができる。   By performing the calculation step 20 as described above, the value of the component amount adhering to the separation membrane at an arbitrary time can be calculated.

また、前記計算ステップ30では、例えば、(5)式に従うことにより任意の時刻における膜抵抗の値を計算できる。   In the calculation step 30, for example, the value of the membrane resistance at an arbitrary time can be calculated by following the equation (5).

R=Rm+αxXm+αpPm (5)
ここで、Rmは初期膜抵抗の値[1/m]、αxは前記Xmの単位量あたりの抵抗発生量[m/gC]、αpは前記Pmの単位量あたりの抵抗発生量[m/gC]である。
R = Rm + αxXm + αpPm (5)
Here, Rm is the initial film resistance value [1 / m], αx is the resistance generation amount per unit amount of Xm [m / gC], and αp is the resistance generation amount per unit amount of Pm [m / gC]. ].

以上のように、前記計算ステップ10、前記計算ステップ20、および、前記計算ステップ30の3つの計算ステップによって、予測対象の値の変動を計算することができるが、膜抵抗の値の変動のみを予測する場合には、前記計算ステップ10を省略し、前記計算ステップ20および前記計算ステップ30の2つの計算ステップで構成することも可能である。例えば、前記計算ステップ20において、予測ステップ1の場合には、膜ろ過圧力の値を含む計算式(例えば(3)式や(4)式)を用いるとき、前記計算ステップ10において膜ろ過圧力の値の計算のために利用する計算式(例えば(1)式)を、前記計算ステップ20における膜ろ過圧力の値を含む計算式に代入した計算式を前記計算ステップ20に用いることによって、前記膜ろ過圧力の値を計算する計算ステップを省略でき、予測ステップ2の場合には、膜ろ過流量や膜ろ過流束の値を含む計算式(例えば(3)式や(4)式)を用いるとき、前記計算ステップ10において膜ろ過流量や膜ろ過流束の値の計算のために利用する計算式(例えば(1)式)を、前記計算ステップ20における膜ろ過流量や膜ろ過流束の値を含む計算式に代入した計算式を前記計算ステップ20に用いることによって、前記膜ろ過圧力の値を計算する計算ステップを省略できる。同様に、予測ステップ1の場合には膜ろ過圧力の値の変動のみを、予測ステップ2の場合には膜ろ過流量あるいは膜ろ過流束の値の変動のみを予測する場合には、前記計算ステップ30を省略し、前記計算ステップ10および前記計算ステップ20の2つの計算ステップで構成することも可能である。例えば、前記計算ステップ10において、膜ろ過抵抗の値を含む計算式(例えば(1)式)を用いる場合、前記計算ステップ30において膜抵抗の値の計算のために利用する計算式(例えば(5)式)を、前記計算ステップ10における膜抵抗の値を含む計算式に代入した計算式を前記計算ステップ10に用いることによって、前記計算ステップ30を省略できる。上記のように、計算ステップ10あるいは計算ステップ30は適宜省略することが可能であるが、計算ステップ20は省略しないことが推奨される。   As described above, it is possible to calculate the fluctuation of the value to be predicted by the three calculation steps of the calculation step 10, the calculation step 20, and the calculation step 30, but only the fluctuation of the film resistance value is calculated. In the case of prediction, the calculation step 10 may be omitted, and the calculation step 20 and the calculation step 30 may be used. For example, in the calculation step 20, in the case of the prediction step 1, when a calculation formula including the value of the membrane filtration pressure (for example, the formula (3) or the formula (4)) is used, the membrane filtration pressure is calculated in the calculation step 10. By using, in the calculation step 20, a calculation formula in which a calculation formula (for example, formula (1)) used for calculation of the value is substituted into a calculation formula including the value of the membrane filtration pressure in the calculation step 20, the membrane The calculation step for calculating the value of the filtration pressure can be omitted, and in the case of the prediction step 2, when using a calculation formula (for example, formula (3) or formula (4)) including the value of the membrane filtration flow rate or the membrane filtration flux The calculation formula (for example, the formula (1)) used for calculating the value of the membrane filtration flow rate and the membrane filtration flux in the calculation step 10 is changed to the value of the membrane filtration flow rate and the membrane filtration flux in the calculation step 20. Including formula By using the assignment was equation to the calculation step 20, it can be omitted calculating step of calculating the value of the membrane filtration pressure. Similarly, in the prediction step 1, only the fluctuation of the value of the membrane filtration pressure is predicted, and in the case of the prediction step 2, only the fluctuation of the value of the membrane filtration flow rate or the membrane filtration flux is predicted, the calculation step 30 may be omitted, and the calculation step 10 and the calculation step 20 may be configured by two calculation steps. For example, in the calculation step 10, when a calculation formula including the value of the membrane filtration resistance (for example, the equation (1)) is used, a calculation formula (for example, (5) used for the calculation of the value of the membrane resistance in the calculation step 30. The calculation step 30 can be omitted by using, in the calculation step 10, a calculation formula obtained by substituting the formula ()) into the calculation formula including the film resistance value in the calculation step 10. As described above, calculation step 10 or calculation step 30 can be omitted as appropriate, but it is recommended not to omit calculation step 20.

また、前記計算ステップ10、前記計算ステップ20、および、前記計算ステップ30では、予め決められた計算式に従って計算するが、それら計算式の中に各計算ステップの説明において記述された値やデータや物質量以外のパラメータが含まれる場合がある。そのような場合、前記各計算ステップにおける計算を行う上でパラメータの値を決定する必要がある。本発明においては、パラメータの値の決定方法は特に限定しないが、膜ろ過装置の分離膜と同じ素材・形状の分離膜を用いて、被ろ過液あるいは被ろ過液の構成成分を実際にろ過し、そのときの膜ろ過圧力の値、膜ろ過流束あるいは膜ろ過流量の値、膜抵抗の値の変化を実測または算出し、その結果に基づいてパラメータを推定または決定することが好ましい。これは、前記のようなパラメータの中には、利用する被ろ過液と分離膜の性質によって決定されるものが多く含まれており、前記のようなパラメータの推定・決定方法に従うことによって、前記予測を精度良く行うことが可能となり、被ろ過液を膜ろ過する膜ろ過装置における圧力調整手段や流量調整手段や構成成分量調整手段の運転条件を精度よく決定することが可能となるためである。   Further, in the calculation step 10, the calculation step 20, and the calculation step 30, calculation is performed according to a predetermined calculation formula. Values, data, and data described in the description of each calculation step are included in the calculation formulas. Parameters other than the amount of substances may be included. In such a case, it is necessary to determine a parameter value in performing the calculation in each calculation step. In the present invention, the method for determining the parameter value is not particularly limited. However, using a separation membrane having the same material and shape as the separation membrane of the membrane filtration device, the filtrate or the components of the filtrate are actually filtered. It is preferable to measure or calculate changes in the value of the membrane filtration pressure, the value of the membrane filtration flux or the membrane filtration flow rate, and the value of the membrane resistance at that time, and estimate or determine the parameters based on the results. This includes many parameters determined by the properties of the liquid to be filtered and the separation membrane used, and by following the parameter estimation / determination method described above, This is because the prediction can be performed with high accuracy, and the operating conditions of the pressure adjusting means, the flow rate adjusting means, and the component amount adjusting means in the membrane filtration apparatus for membrane filtering the liquid to be filtered can be determined with high accuracy. .

本発明では、上記のように予測された結果に基づいて、前記圧力調整手段あるいは前記流量調整手段あるいは前記構成成分量調整手段の運転条件を決定する。かかる圧力調整手段の運転条件の決定方法としては、仮想的な圧力調整手段の運転条件から、前記分離膜に付着している前記被ろ過液の構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記仮想的な圧力調整手段の運転条件の是非を判断し、前記判断結果において是と判断された前記仮想的な圧力調整手段の運転条件の中から、適正な圧力調整手段の運転条件を決定し、前記決定された適正な圧力調整手段の運転条件に基づいて、前記圧力調整手段の運転条件を決定することが好ましい。また、かかる流量調整手段の運転条件の決定方法としては、仮想的な流量調整手段の運転条件から、前記分離膜に付着している前記被ろ過液の構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記仮想的な流量調整手段の運転条件の是非を判断し、前記判断結果において是と判断された前記仮想的な流量調整手段の運転条件の中から、適正な流量調整手段の運転条件を決定し、前記決定された適正な流量調整手段の運転条件に基づいて、前記流量調整手段の運転条件を決定することが好ましい。また、かかる構成成分量調整手段の運転条件の決定方法としては、仮想的な構成成分量調整手段の運転条件から前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記構成成分量の仮想的な値の是非を判断し、前記判断結果において是と判断された前記構成成分量の仮想的な値の中から、適正な構成成分量調整手段の運転条件を決定し、前記決定された適正な構成成分量調整手段の運転条件に基づいて、前記構成成分量調整手段の運転条件を決定することが好ましい。   In the present invention, the operating conditions of the pressure adjusting means, the flow rate adjusting means, or the component amount adjusting means are determined based on the result predicted as described above. As a method for determining the operating conditions of the pressure adjusting means, from the operating conditions of the virtual pressure adjusting means, fluctuations in the component amount of the filtrate to be filtered adhering to the separation membrane, fluctuations in the membrane filtration flow rate, membrane Fluctuation in filtration flux or fluctuation in membrane resistance is predicted, and based on the prediction result, it is determined whether or not the operating condition of the virtual pressure adjusting means is appropriate, and the virtual result determined to be good in the determination result. Determining an appropriate operating condition of the pressure adjusting means from operating conditions of the appropriate pressure adjusting means, and determining an operating condition of the pressure adjusting means based on the determined operating condition of the appropriate pressure adjusting means. Is preferred. In addition, as a method of determining the operating conditions of the flow rate adjusting means, the operating conditions of the virtual flow rate adjusting means, the fluctuation of the component amount of the liquid to be filtered adhering to the separation membrane, the fluctuation of the membrane filtration pressure Alternatively, the fluctuation of the membrane resistance is predicted, and based on the prediction result, the operating condition of the virtual flow rate adjusting means is determined, and the virtual flow rate adjusting means determined to be good in the determination result. It is preferable to determine an appropriate operating condition for the flow rate adjusting means from among the operating conditions, and to determine the operating condition for the flow rate adjusting means based on the determined proper operating condition for the flow rate adjusting means. In addition, as a method for determining the operating condition of the component amount adjusting unit, the component amount adhering to the separation membrane from the operating condition of the virtual component amount adjusting unit, the fluctuation of the membrane filtration pressure, the membrane Predict fluctuations in filtration flow rate, fluctuations in membrane filtration flux, or fluctuations in membrane resistance, based on the prediction results, determine the pros and cons of the virtual value of the component amount, and determine that the determination results are correct From the determined virtual value of the component amount, an appropriate operating condition of the component amount adjusting unit is determined, and the constituent component is determined based on the determined operating condition of the appropriate component amount adjusting unit. It is preferable to determine the operating conditions of the amount adjusting means.

ここにおいて、仮想的な圧力調整手段の運転条件および仮想的な流量調整手段の運転条件および仮想的な構成成分量調整手段の運転条件は、前記分離膜に付着している構成成分量の変動、膜抵抗の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜ろ過圧力の変動の予測のために利用することを前提として設定された値である。ここで、仮想的とは、実データに必ずしもよらないことを意味し、最終的に決定される適正な圧力調整手段の運転条件あるいは適正な流量調整手段の運転条件あるいは適正な構成成分量調整手段の運転条件とは異なったものである可能性があることを前提としていることによる。   Here, the operating conditions of the virtual pressure adjusting means, the operating conditions of the virtual flow rate adjusting means, and the operating conditions of the virtual component amount adjusting means are the fluctuations in the amount of component adhering to the separation membrane, It is a value set on the assumption that it is used for predicting fluctuations in membrane resistance, fluctuations in membrane filtration flow rate, fluctuations in membrane filtration flux, or fluctuations in membrane filtration pressure. Here, the virtual means that it does not necessarily depend on the actual data, and the proper operating condition of the proper pressure adjusting means or the proper operating condition of the flow rate adjusting means or the proper component amount adjusting means finally determined. It is based on the premise that there is a possibility that the operating conditions may be different.

また、仮想的な構成成分量調整手段の運転条件から、調整後の被ろ過液の構成成分量(即ち、仮想的な構成成分量)を簡単に算出することができる。例えば、被ろ過液を全体の10%排出し、同量の希釈水を加える場合、前記仮想的な構成成分量は9/10となる。このように、仮想的な構成成分量調整手段の運転条件から、調整後の被ろ過液の構成成分量(仮想的な構成成分量)を算出し、前記算出された仮想的な構成成分量から、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の変動を予測することによって、仮想的な構成成分量調整手段の運転条件から、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の変動を予測することができる。   Moreover, the component amount (namely, virtual component amount) of the to-be-filtered liquid after adjustment can be easily calculated from the operating condition of the virtual component amount adjusting means. For example, when 10% of the entire liquid to be filtered is discharged and the same amount of dilution water is added, the virtual component amount is 9/10. Thus, the component amount (virtual component amount) of the filtered liquid after adjustment is calculated from the operating conditions of the virtual component amount adjusting means, and the calculated virtual component amount is calculated from the calculated virtual component amount. By predicting fluctuations in the amount of constituents adhering to the separation membrane, fluctuations in membrane filtration pressure, fluctuations in membrane filtration flow rate, fluctuations in membrane filtration flux, or fluctuations in membrane resistance, Predict fluctuations in the amount of constituents adhering to the separation membrane, fluctuations in membrane filtration pressure, fluctuations in membrane filtration flow, fluctuations in membrane filtration flux, or fluctuations in membrane resistance from the operating conditions of the volume adjustment means Can do.

また、前記予測結果に基づいて、前記仮想的な圧力調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件の是非を判断する方法としては、前記分離膜に付着している構成成分量の値、あるいは、膜抵抗の値があらかじめ決定された所定値以下、あるいは、膜ろ過流束の値あるいは膜ろ過流量の値があらかじめ決定された所定値以上となったときに、前記仮想的な圧力調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件を是と判断することや、前記予測の結果において、前記分離膜に付着している構成成分量の値、あるいは、膜抵抗の値が収束するときに、前記仮想的な圧力調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件を是と判断することが好ましい。また、前記予測結果に基づいて、前記仮想的な流量調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件の是非を判断する方法としては、前記分離膜に付着している構成成分量の値、膜抵抗の値、あるいは、膜ろ過圧力の値があらかじめ決定された所定値以下となったときに、前記仮想的な流量調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件を是と判断することや、前記予測の結果において、前記分離膜に付着している構成成分量の値、膜抵抗の値あるいは膜ろ過圧力の値が収束するときに、前記仮想的な流量調整手段の運転条件あるいは前記仮想的な構成成分量調整手段の運転条件を是と判断することが好ましい。このことにより、適正な圧力調整手段の運転条件や適正な流量調整手段の運転条件あるいは適正な構成成分量調整手段の運転条件を客観的に決定することができ、長期間にわたり膜抵抗や膜ろ過圧力の上昇や膜ろ過流束の低下を抑制したり、分離膜を長期間利用したりすることができる。   In addition, as a method for judging whether or not the operating condition of the virtual pressure adjusting means or the operating condition of the virtual component amount adjusting means is based on the prediction result, the structure attached to the separation membrane When the value of the component amount or the value of the membrane resistance is equal to or less than a predetermined value, or the value of the membrane filtration flux or the value of the membrane filtration flow rate is equal to or greater than the predetermined value, Determining that the operating condition of the typical pressure adjusting means or the operating condition of the virtual component amount adjusting means is correct, the value of the component amount adhering to the separation membrane in the prediction result, or When the value of the membrane resistance converges, it is preferable to determine that the operating condition of the virtual pressure adjusting means or the operating condition of the virtual component amount adjusting means is correct. In addition, as a method for determining whether or not the operating condition of the virtual flow rate adjusting means or the operating condition of the virtual component amount adjusting means is based on the prediction result, the structure attached to the separation membrane When the value of the component amount, the value of the membrane resistance, or the value of the membrane filtration pressure falls below a predetermined value, the operating condition of the virtual flow rate adjusting means or the virtual component amount adjustment When the operating condition of the means is determined to be good, or when the value of the constituent component adhering to the separation membrane, the value of the membrane resistance, or the value of the membrane filtration pressure converges in the prediction result, It is preferable to determine that the operating condition of the typical flow rate adjusting means or the operating condition of the virtual component amount adjusting means is correct. This makes it possible to objectively determine the operating conditions of the appropriate pressure adjusting means, the appropriate flow rate adjusting means, or the appropriate component amount adjusting means, and the membrane resistance and membrane filtration can be determined over a long period of time. An increase in pressure and a decrease in membrane filtration flux can be suppressed, or the separation membrane can be used for a long time.

ここにおいて、所定値は、あらかじめ設定しておく必要があるが、その所定値を、膜ろ過圧力を発生させるポンプの出力最大値に基づいて決定する方法、膜ろ過圧力を発生させるポンプのエネルギー消費許容最大値に基づいて決定する方法、膜の寿命や洗浄間隔を増加させるために膜抵抗の値や膜ろ過圧力の値の許容最大値に基づいて決定する方法、あらかじめ計画された膜ろ過流量を満足するために膜ろ過流束の値や膜ろ過流量の値の許容最小値に基づいて決定する方法などが例示される。例えば、所定値を、膜ろ過圧力を発生させるポンプの出力最大値とした場合、膜ろ過条件が非と判断されるときには、当初予定していた膜ろ過液量が獲得できないことになり、膜ろ過条件が是と判断されるときには、予定している膜ろ過液量が獲得できることとなる。   Here, the predetermined value needs to be set in advance, but the predetermined value is determined based on the maximum output value of the pump that generates the membrane filtration pressure, and the energy consumption of the pump that generates the membrane filtration pressure. A method of determining based on the maximum allowable value, a method of determining based on the maximum allowable value of the membrane resistance value and the membrane filtration pressure value to increase the membrane life and cleaning interval, and the pre-planned membrane filtration flow rate In order to satisfy, the method of determining based on the permissible minimum value of the value of the membrane filtration flux and the value of the membrane filtration flow rate is exemplified. For example, if the predetermined value is the maximum output value of the pump that generates the membrane filtration pressure, when the membrane filtration conditions are judged to be non-existing, the initially scheduled membrane filtrate volume cannot be obtained. When the condition is determined to be good, the expected amount of membrane filtrate can be obtained.

また、本発明においては、前記判断結果において是と判断された前記仮想的な圧力調整手段の運転条件から適正な圧力調整手段の運転条件を決定し、前記判断結果において是と判断された前記仮想的な流量調整手段の運転条件から適正な流量調整手段の運転条件を決定する。ここにおいて、仮想的な膜ろ過圧力の値が小さくなる仮想的な圧力調整手段の運転条件や仮想的な膜ろ過流量の値が小さくなる仮想的な流量調整手段の運転条件の方が膜ろ過に対して良いことは自明なことであるが、膜ろ過装置の膜ろ過効率を高めるためには、仮想的な膜ろ過圧力の値や仮想的な膜ろ過流量の値が大きい方が好ましい。したがって、前記判断結果において是と判断された仮想的な圧力調整手段の運転条件の中で、仮想的な膜ろ過圧力の値ができるだけ大きくなる仮想的な圧力調整手段の運転条件を適正な圧力調整手段の運転条件とすること、および、前記判断結果において是と判断された仮想的な流量調整手段の運転条件の中で、仮想的な膜ろ過流量の値ができるだけ大きくなる仮想的な流量調整手段の運転条件を適正な流量調整手段の運転条件とすることが好ましい。また、本発明においては、前記判断結果において是と判断された前記仮想的な構成成分量調整手段の運転条件から適正な構成成分量調整手段の運転条件を決定する。ここにおいて、仮想的な構成成分量の値が小さくなる仮想的な構成成分量調整手段の運転条件の方が膜ろ過に対して良いことは自明なことであるが、前述したように排水処理の場合にはより大きな容積負荷を維持したいという観点、構成成分量調整手段が被ろ過液を排出する場合には、排出された被ろ過液が廃液となることが多いため、廃液の量はできるだけ小さくしたいという観点、構成成分量調整手段が希釈水を加える場合には、希釈水を準備する量をできるだけ小さくしたいという観点、構成成分量調整手段を運転するということはエネルギーを消費することにつながるので、できるだけ消費されるエネルギーを小さくしたいという観点などから、できるだけ仮想的な構成成分量が大きくなる方が好ましい。したがって、前記判断結果において是と判断された仮想的な構成成分量調整手段の運転条件の中で、仮想的な構成成分量の値ができるだけ大きくなる仮想的な構成成分量調整手段の運転条件を適正な構成成分量調整手段の運転条件とすることが好ましい。   Further, in the present invention, an appropriate operating condition of the pressure adjusting means is determined from the operating condition of the virtual pressure adjusting means determined to be correct in the determination result, and the virtual condition determined to be correct in the determination result is determined. An appropriate operating condition of the flow rate adjusting means is determined from the operating conditions of the typical flow rate adjusting means. Here, the operating conditions of the virtual pressure adjusting means in which the value of the virtual membrane filtration pressure is reduced and the operating conditions of the virtual flow adjusting means in which the value of the virtual membrane filtration flow rate is reduced are more suitable for membrane filtration. It is obvious that this is good, but in order to increase the membrane filtration efficiency of the membrane filtration device, it is preferable that the value of the virtual membrane filtration pressure or the value of the virtual membrane filtration flow rate is large. Therefore, among the operating conditions of the virtual pressure adjusting means determined to be good in the determination result, the operating conditions of the virtual pressure adjusting means in which the value of the virtual membrane filtration pressure becomes as large as possible are appropriately adjusted. And the virtual flow rate adjusting means in which the value of the virtual membrane filtration flow rate becomes as large as possible among the operating conditions of the virtual flow rate adjusting means determined to be good in the determination result. It is preferable that the operating condition is an appropriate operating condition of the flow rate adjusting means. In the present invention, an appropriate operating condition of the component amount adjusting unit is determined from the operating condition of the virtual component amount adjusting unit determined to be good in the determination result. In this case, it is obvious that the operating condition of the virtual component amount adjusting means with a smaller value of the virtual component amount is better for membrane filtration. In order to maintain a larger volume load in some cases, when the component amount adjusting means discharges the filtrate, the discharged filtrate is often the waste liquid, so the amount of the waste liquid is as small as possible. If the component amount adjusting means adds dilution water, operating the component amount adjusting means leads to energy consumption when the component water amount adjusting means adds dilution water. From the standpoint of reducing the energy consumed as much as possible, it is preferable that the virtual component amount is as large as possible. Therefore, among the operating conditions of the virtual component amount adjusting means determined to be good in the determination result, the operating conditions of the virtual component amount adjusting means in which the value of the virtual component amount adjusting means becomes as large as possible. It is preferable to set the operating condition of the proper component amount adjusting means.

上記に説明した適正な圧力調整手段の運転条件の決定方法として、例えば、図5に示した方法がある。図5は、本発明を実施するためのフローチャートの一例である。まず、被ろ過液の構成成分量の時系列的な変化を表すデータ、および、n通りの任意の仮想的な圧力調整手段の運転条件を準備する。前記準備された被ろ過液の構成成分量の時系列的な変化を表すデータ、および、n通りの任意の仮想的な圧力調整手段の運転条件の中の仮に1番目の条件(運転条件1とする)を利用し、予測ステップ2に基づいて分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、その予測結果に基づいて、仮想的な圧力調整手段の運転条件の是非を判断する。この判断結果を判断結果1とする。同様に、2番目〜n番目までの仮想的な圧力調整手段の運転条件を利用して、予測を行い、その予測結果に基づいて仮想的な圧力調整手段の運転条件の是非を判断し、判断結果2〜判断結果nを得る。上記のようにして得られた判断結果1〜判断結果nに基づいて、適正な圧力調整手段の運転条件を決定する。また、適正な流量調整手段の運転条件の決定も、予測ステップ1を利用することにより、同様に行うことができ、適正な構成成分量調整手段の運転条件の決定は、予測ステップ1あるいは予測ステップ2を利用することにより、同様に行うことができる。   As a method for determining the operating condition of the appropriate pressure adjusting means described above, for example, there is a method shown in FIG. FIG. 5 is an example of a flowchart for carrying out the present invention. First, data representing a time-series change in the component amount of the liquid to be filtered and operating conditions of n arbitrary virtual pressure adjusting means are prepared. The data representing the time-series change in the component amount of the prepared liquid to be filtered, and the first condition (operating condition 1 and operating condition of n arbitrary virtual pressure adjusting means) Is used to predict fluctuations in the amount of constituent components adhering to the separation membrane, fluctuations in membrane filtration pressure, or fluctuations in membrane resistance based on the prediction step 2, and based on the prediction results, Determine whether the operating conditions of the pressure adjustment means are appropriate. This determination result is referred to as determination result 1. Similarly, a prediction is performed using the operating conditions of the second to nth virtual pressure adjusting means, and whether or not the operating conditions of the virtual pressure adjusting means are determined is determined based on the prediction result. Results 2 to n are obtained. Based on the determination results 1 to n obtained as described above, an appropriate operating condition of the pressure adjusting means is determined. Further, the operation condition of the proper flow rate adjusting means can be similarly determined by using the prediction step 1, and the operation condition of the proper component amount adjusting means can be determined in the prediction step 1 or the prediction step. The same can be done by using 2.

また、本発明では、前記判断結果において、仮想的な圧力調整手段の運転条件を非と判断したときに、前記仮想的な圧力調整手段の運転条件に相当する仮想的な膜ろ過圧力の値より、仮想的な膜ろ過圧力の値が小さくなるような仮想的な圧力調整手段の運転条件に変更し、変更された仮想的な圧力調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な圧力調整手段の運転条件の是非を判断すること、および、前記仮想的な圧力調整手段の運転条件が是と判断したときに、前記仮想的な圧力調整手段の運転条件を適正な圧力調整手段の運転条件とすることが好ましく、また、前記判断結果において、仮想的な流量調整手段の運転条件を非と判断したときに、前記仮想的な流量調整手段の運転条件に相当する仮想的な膜ろ過流量の値より、仮想的な膜ろ過流量の値が小さくなるような仮想的な流量調整手段の運転条件に変更し、変更された仮想的な流量調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な流量調整手段の運転条件の是非を判断すること、および、前記仮想的な流量調整手段の運転条件が是と判断したときに、前記仮想的な流量調整手段の運転条件を適正な流量調整手段の運転条件とすることが好ましく、また、前記判断結果において、仮想的な構成成分量調整手段の運転条件を非と判断したときに、前記仮想的な構成成分量調整手段の運転条件に相当する仮想的な被ろ過液の構成成分量より、仮想的な被ろ過液の構成成分量が小さくなるような仮想的な構成成分量調整手段の運転条件に変更し、変更された仮想的な構成成分量調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な構成成分量調整手段の運転条件の是非を判断すること、および、前記仮想的な構成成分量調整手段の運転条件が是と判断したときに、前記仮想的な構成成分量調整手段の運転条件を適正な構成成分量調整手段の運転条件とすることが好ましい。   Further, in the present invention, when it is determined in the determination result that the operating condition of the virtual pressure adjusting unit is not, the virtual membrane filtration pressure value corresponding to the operating condition of the virtual pressure adjusting unit is determined. The virtual membrane filtration pressure is changed to the operating condition of the virtual pressure adjusting means so that the value of the virtual membrane filtration pressure is reduced, and the changed virtual pressure adjusting means is reattached to the separation membrane. Predict fluctuations in the amount of constituents, fluctuations in the membrane filtration flow rate, fluctuations in the membrane filtration flux, or fluctuations in membrane resistance, and based on the prediction results, the operating conditions of the virtual pressure adjusting means after the change It is preferable to determine whether or not the operating condition of the virtual pressure adjusting unit is an appropriate operating condition of the pressure adjusting unit. Also, in the judgment result When it is determined that the operating condition of the virtual flow rate adjusting unit is not, the value of the virtual membrane filtration flow rate is smaller than the value of the virtual membrane filtration flow rate corresponding to the operating condition of the virtual flow rate adjusting unit. Change to the operating conditions of the virtual flow rate adjusting means, and from the changed operating conditions of the virtual flow rate adjusting means, the fluctuation of the component amount adhering to the separation membrane again, the fluctuation of the membrane filtration pressure Alternatively, predicting the fluctuation of the membrane resistance, determining whether the virtual flow rate adjusting means after the change is appropriate based on the prediction result, and operating conditions of the virtual flow rate adjusting means Is determined to be an appropriate operating condition of the flow rate adjusting means, and in the determination result, the operation of the virtual component amount adjusting means is preferably determined. When judging the condition is non The virtual component amount adjustment is such that the component amount of the virtual filtered liquid is smaller than the component amount of the virtual filtered liquid corresponding to the operating condition of the virtual component amount adjusting means. Change to the operating conditions of the means, and from the changed operating conditions of the virtual component amount adjusting means, the fluctuation of the component amount adhering to the separation membrane again, the fluctuation of the membrane filtration pressure, the fluctuation of the membrane filtration flow rate Predicting fluctuations in membrane filtration flux, or fluctuations in membrane resistance, and determining whether or not the operating conditions of the virtual component amount adjusting means after the change are based on the prediction results; and When it is determined that the operating condition of the virtual component amount adjusting unit is good, it is preferable that the operating condition of the virtual component amount adjusting unit is an appropriate operating condition of the component amount adjusting unit.

例えば、図4に、仮想的な圧力調整手段の運転条件を変更する変更ステップを備えた場合のフローチャートの例を示す。ここでは、まず、十分に大きな値の膜ろ過圧力に相当する仮想的な圧力調整手段の運転条件を準備し、前記予測ステップ2によって予測を行う。前記予測の結果から仮想的な圧力調整手段の運転条件を判断し、その判断結果が非となるときに、変更ステップにおいて、前記仮想的な圧力調整手段の運転条件に相当する仮想的な膜ろ過圧力より、仮想的な膜ろ過圧力が小さくなる仮想的な圧力調整手段の運転条件に変更し、再度、予測ステップ2以降を繰り返し行う。このとき、判断結果が是となるときに用いた仮想的な圧力調整手段の運転条件を、適正な圧力調整手段の運転条件とする。このような手順に従えば、図5で示した手順より効率的に適正な圧力調整手段の運転条件を決定することができる。   For example, FIG. 4 shows an example of a flowchart when a change step for changing the operating condition of the virtual pressure adjusting means is provided. Here, first, operating conditions of a virtual pressure adjusting means corresponding to a sufficiently large value of membrane filtration pressure are prepared, and prediction is performed in the prediction step 2. The virtual membrane filtration corresponding to the operating condition of the virtual pressure adjusting means is determined in the changing step when the operating condition of the virtual pressure adjusting means is determined from the result of the prediction and the determination result is non- The operating condition of the virtual pressure adjusting means is reduced from the pressure to a virtual membrane filtration pressure, and the prediction step 2 and subsequent steps are repeated again. At this time, the operating condition of the virtual pressure adjusting means used when the judgment result is correct is set as the appropriate operating condition of the pressure adjusting means. By following such a procedure, it is possible to determine an appropriate operating condition of the pressure adjusting means more efficiently than the procedure shown in FIG.

また、図3に、仮想的な流量調整手段の運転条件を変更する変更ステップを備えた場合のフローチャートの例を示す。ここでは、まず、十分に大きな値の膜ろ過流量に相当する仮想的な流量調整手段の運転条件を準備し、前記予測ステップ1によって予測を行う。前記予測の結果から仮想的な流量調整手段の運転条件を判断し、その判断結果が非となるときに、変更ステップにおいて、前記仮想的な流量調整手段の運転条件に相当する仮想的な膜ろ過流量より、仮想的な膜ろ過流量が小さくなる仮想的な流量調整手段の運転条件に変更し、再度、予測ステップ1以降を繰り返し行う。このとき、判断結果が是となるときに用いた仮想的な流量調整手段の運転条件を、適正な流量調整手段の運転条件とする。このような手順に従えば、図5で示した手順より効率的に適正な流量調整手段の運転条件を決定することができる。   FIG. 3 shows an example of a flowchart in the case of including a changing step for changing the operating condition of the virtual flow rate adjusting means. Here, first, an operating condition of a virtual flow rate adjusting means corresponding to a sufficiently large membrane filtration flow rate is prepared, and prediction is performed in the prediction step 1. A virtual membrane filtration corresponding to the operating condition of the virtual flow rate adjusting unit is determined in the changing step when the operating condition of the virtual flow rate adjusting unit is determined from the result of the prediction and the determination result is non- It changes to the operating condition of the virtual flow volume adjustment means in which the virtual membrane filtration flow volume becomes smaller than the flow volume, and the prediction step 1 and subsequent steps are repeated again. At this time, the operating condition of the virtual flow rate adjusting means used when the determination result is positive is set as the appropriate operating condition of the flow rate adjusting means. By following such a procedure, it is possible to determine an appropriate operating condition of the flow rate adjusting means more efficiently than the procedure shown in FIG.

また、図6(予測ステップ1を用いる場合)および図7(予測ステップ2を用いる場合)に、仮想的な構成成分量調整手段の運転条件を変更する変更ステップを備えた場合のフローチャートの例を示す。ここでは、まず、十分に大きな値の構成成分量に相当する仮想的な構成成分量調整手段の運転条件を準備し、前記予測ステップ1あるいは前記予測ステップ2によって予測を行う。前記予測の結果から仮想的な構成成分量調整手段の運転条件を判断し、その判断結果が非となるときに、変更ステップにおいて、前記仮想的な構成成分量調整手段の運転条件に相当する仮想的な構成成分量より、仮想的な構成成分量が小さくなる仮想的な構成成分量調整手段の運転条件に変更し、再度、予測ステップ1あるいは予測ステップ2以降を繰り返し行う。このとき、判断結果が是となるときに用いた仮想的な構成成分量調整手段の運転条件を、適正な構成成分量調整手段の運転条件とする。このような手順に従えば、図5で示した手順より効率的に適正な構成成分量調整手段の運転条件を決定することができる。   Moreover, the example of a flowchart at the time of providing the change step which changes the driving | running condition of a virtual component amount adjustment means in FIG. 6 (when using the prediction step 1) and FIG. 7 (when using the prediction step 2) is shown. Show. Here, first, an operating condition of a virtual component amount adjusting unit corresponding to a sufficiently large component component amount is prepared, and prediction is performed by the prediction step 1 or the prediction step 2. When the operating condition of the virtual component amount adjusting unit is determined from the result of the prediction, and the determination result is non-indicated, the virtual step corresponding to the operating condition of the virtual component amount adjusting unit is changed in the changing step. The virtual constituent component amount adjusting means is changed to an operating condition in which the virtual constituent component amount is smaller than the actual constituent component amount, and the prediction step 1 or the prediction step 2 and subsequent steps are repeated again. At this time, the operating condition of the virtual component amount adjusting unit used when the determination result is positive is set as the appropriate operating condition of the component amount adjusting unit. By following such a procedure, it is possible to determine the appropriate operating condition of the component amount adjusting means more efficiently than the procedure shown in FIG.

本発明では、前記決定された適正な圧力調整手段の運転条件に基づいて、前記圧力調整手段の運転条件を決定することや、前記決定された適正な流量調整手段の運転条件に基づいて、前記流量調整手段の運転条件を決定することや、前記決定された適正な構成成分量調整手段の運転条件に基づいて、前記構成成分量調整手段の運転条件を決定することが好ましい。このとき、前記決定された適正な圧力調整手段の運転条件をそのまま圧力調整手段の運転条件として決定しても良く、また、本発明が対象とする膜ろ過装置においては、膜ろ過圧力が大きい場合には急速な膜目詰まりを引き起こす危険を孕むため、より安全にするために、膜ろ過圧力が小さくなるように、前記決定された適正な圧力調整手段の運転条件に安全率を鑑みた処理を行ってもよい。流量調整手段の運転条件や構成成分量調整手段の運転条件の決定についても同様である。   In the present invention, based on the determined operating condition of the appropriate pressure adjusting means, determining the operating condition of the pressure adjusting means, or based on the determined operating condition of the appropriate flow rate adjusting means, It is preferable to determine the operating conditions of the flow rate adjusting means, or to determine the operating conditions of the component amount adjusting means based on the determined operating conditions of the proper component amount adjusting means. At this time, the determined operating condition of the appropriate pressure adjusting means may be determined as it is as the operating condition of the pressure adjusting means, and in the membrane filtration apparatus targeted by the present invention, when the membrane filtration pressure is large In order to prevent the risk of causing rapid membrane clogging, in order to make it safer, processing considering the safety factor in the operating conditions of the determined appropriate pressure adjusting means is performed so that the membrane filtration pressure is reduced. You may go. The same applies to the determination of the operating condition of the flow rate adjusting means and the operating condition of the component amount adjusting means.

また、本発明では、上記のように決定された前記圧力調整手段の運転条件あるいは前記流量調整手段の運転条件あるいは前記構成成分量調整手段の運転条件に基づいて、前記圧力調整手段の運転条件あるいは前記流量調整手段の運転条件あるいは前記構成成分量調整手段の運転条件を制御することを特徴とする膜ろ過装置の運転方法、および、少なくとも、分離膜、および、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって発生する膜ろ過圧力を調整する圧力調整手段、および、前記圧力調整手段の運転を制御する圧力制御手段を有する膜ろ過装置であって、前記圧力制御手段が、上記のように決定された前記圧力調整手段の運転を制御するものであることを特徴とする膜ろ過装置、および、少なくとも、分離膜、および、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって得られる膜ろ過の流量を調整する流量調整手段、および、前記流量調整手段の運転を制御する流量制御手段を有する膜ろ過装置であって、前記流量制御手段が、上記のように決定された前記流量調整手段の運転を制御するものであることを特徴とする膜ろ過装置、および、少なくとも分離膜、被ろ過液の構成成分量を調整する構成成分量調整手段、および該構成成分量調整手段の運転を制御する構成成分量制御手段を有する膜ろ過装置であって、前記構成成分量制御手段が、上記のように決定された膜ろ過装置の運転条件に基づいて、前記構成成分量調整手段の運転を制御するものであることを特徴とする膜ろ過装置を提供する。ここにおいて、前記構成成分量調整手段が、被ろ過液を被ろ過液収容槽から排出する場合や希釈水を加える場合には、被ろ過液の排出量あるいは希釈水の投与量を計測する計測手段を具備し、前記決定された前記構成成分量調整手段の運転条件に相当する被ろ過液の排出量あるいは希釈水の投与量に対し、前記計測手段による指示値が大きくなったら被ろ過液の排出あるいは希釈水の投与を停止するように、前記構成成分量制御手段によって前記構成成分量調整手段を制御する方法がある。   Further, in the present invention, based on the operating condition of the pressure adjusting unit determined as described above, the operating condition of the flow rate adjusting unit, or the operating condition of the component amount adjusting unit, the operating condition of the pressure adjusting unit or The operation method of the membrane filtration device, wherein the operation condition of the flow rate adjusting means or the operating condition of the component amount adjusting means is controlled, and at least the separation membrane, and the filtrate side of the separation membrane, Pressure generating means for generating a pressure difference from the membrane filtrate side, pressure adjusting means for adjusting the membrane filtration pressure generated by the pressure generating means, and pressure control means for controlling the operation of the pressure adjusting means A membrane filtration device, wherein the pressure control means controls the operation of the pressure adjustment means determined as described above. And at least the separation membrane, the pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and the flow rate of membrane filtration obtained by the pressure generating means A flow rate adjusting means for controlling the operation of the flow rate adjusting means, and the flow rate control means for controlling the operation of the flow rate adjusting means determined as described above. Membrane filtration device, and at least a separation membrane, a component amount adjusting means for adjusting the component amount of the liquid to be filtered, and a component amount control for controlling the operation of the component amount adjusting means A membrane filtration device having means for controlling the operation of the component amount adjusting means based on the operating conditions of the membrane filtration device determined as described above To provide a membrane filtration apparatus characterized in that there. In this case, when the component amount adjusting means discharges the filtrate to be filtrated from the filtrate storage tank or adds dilution water, the measuring means measures the discharge amount of the filtrate or the dosage of dilution water. And when the indicated value by the measuring means becomes larger with respect to the discharge amount of the filtrate or the diluted water dose corresponding to the determined operating condition of the component amount adjusting means, the discharge of the filtrate is performed. Alternatively, there is a method in which the constituent component amount adjusting means is controlled by the constituent component amount control means so as to stop administration of dilution water.

以下、本発明を具体的に説明するが、本発明はこの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to only these examples.

(実施例1)
本実施例に用いた膜ろ過装置500の構造概略を図8に示す。膜ろ過装置500は、浸漬型の膜分離式活性汚泥装置であり、酢酸を主成分とする工場排水を処理する排水処理装置である。原水506として、酢酸を主成分とする工場排水を、有効容量2.3mの被ろ過液収容槽501に投入した。被ろ過液収容槽501の中の被ろ過液504には、活性汚泥が収容されていた。被ろ過液504中に分離膜502を浸漬させ、前記分離膜502の下方部には散気管507が設置され、前記散気管507には曝気ブロア503からエアが供給され、散気管507からエアが噴出される構造とした。すなわち、本装置においては、散気管507から供給されるエアバブルが膜表面に接触し、また曝気による活性汚泥の流動も同時に発生するために、膜表面の付着成分が膜から剥離する効果が得られることとなる。また、分離膜502には、PVDF(ポリフッ化ビニリデン)製の平膜型の精密ろ過膜(孔径0.08μm、有効膜面積10.4m)を用い、圧力発生手段505として、膜透過液側に流量調整可能なインバータ制御付(流量調整手段)の吸引ポンプを設置した。
Example 1
A schematic structure of the membrane filtration device 500 used in this example is shown in FIG. The membrane filtration device 500 is a submerged membrane separation activated sludge device, and is a wastewater treatment device for treating factory wastewater containing acetic acid as a main component. As raw water 506, factory wastewater mainly composed of acetic acid was put into a filtrate storage tank 501 having an effective capacity of 2.3 m 3 . Activated sludge was accommodated in the liquid to be filtered 504 in the liquid tank to be filtered 501. A separation membrane 502 is immersed in the liquid to be filtered 504, and a diffuser tube 507 is installed below the separation membrane 502. Air is supplied from the aeration blower 503 to the diffuser tube 507, and air is supplied from the diffuser tube 507. The structure was made to be ejected. That is, in this apparatus, since the air bubbles supplied from the diffuser tube 507 come into contact with the membrane surface, and the activated sludge flows due to aeration, the adhering components on the membrane surface are separated from the membrane. It will be. The separation membrane 502 is a flat membrane type microfiltration membrane (pore diameter 0.08 μm, effective membrane area 10.4 m 2 ) made of PVDF (polyvinylidene fluoride), and the membrane permeate side is used as the pressure generating means 505. A suction pump with inverter control (flow rate adjusting means) capable of adjusting the flow rate was installed.

また、本実施例では、被ろ過液の構成成分量を次のように定義し測定した。被ろ過液は、固形成分(物質量:X[gC/m])、上清中非膜ろ過成分(物質量:P[gC/m])、溶解成分(物質量:S[gC/m])によって構成されるとした。Xは、被ろ過液のMLSS[gC/m]を下水道試験法に従って測定し、その示性式がCNであると仮定し、その測定値に60/113を乗じることで算出した。Sは、前記膜ろ過装置500において得られた膜ろ過液のTOC[gC/m]を測定し、その測定値とした。Pは、被ろ過液を遠心分離(3500rpm、10分間)し、上清成分を得て、前記上清成分のTOC測定値[gC/m]とS[gC/m]との差として算出した。その結果、Xは6372[gC/m]、Pは9.3[gC/m]、Sは3.6[gC/m]であった。 Moreover, in the present Example, the component amount of the to-be-filtered liquid was defined and measured as follows. The liquid to be filtered consists of a solid component (substance amount: X [gC / m 3 ]), a non-membrane filtration component in the supernatant (substance amount: P [gC / m 3 ]), and a dissolved component (substance amount: S [gC / m 3 ]). X is determined by measuring MLSS [gC / m 3 ] of the liquid to be filtered in accordance with the sewer test method, assuming that its characteristic formula is C 5 H 7 O 2 N, and multiplying the measured value by 60/113. Calculated with S measured the TOC [gC / m 3 ] of the membrane filtrate obtained in the membrane filtration device 500, and set it as the measured value. P represents the difference between the measured TOC [gC / m 3 ] and S [gC / m 3 ] of the supernatant component by centrifuging the liquid to be filtered (3500 rpm, 10 minutes) to obtain the supernatant component. Calculated. As a result, X was 6372 [gC / m 3 ], P was 9.3 [gC / m 3 ], and S was 3.6 [gC / m 3 ].

また、本実施例では、予測ステップ1において、膜ろ過圧力の変動を予測することとした。ここにおいて、計算ステップ10として前記(1)式を利用し(ここにおいて、μは前記(2)式を利用した)、計算ステップ20として前記(3)式および前記(4)式を利用し、計算ステップ30として前記(5)式を利用した。   In the present embodiment, in the prediction step 1, the fluctuation of the membrane filtration pressure is predicted. Here, using the equation (1) as the calculation step 10 (where μ uses the equation (2)), and using the equation (3) and the equation (4) as the calculation step 20, The equation (5) was used as the calculation step 30.

本実施例では、上記計算を、数値計算ソフトMATLAB(米国 Mathworks社製)を用いて行い、積分法としてRunge−Kutta法を用いた。また、本実施例において、上記計算を行うために用いた各諸元値を表1にまとめた。   In this example, the above calculation was performed using numerical calculation software MATLAB (manufactured by Mathworks, USA), and the Runge-Kutta method was used as the integration method. Further, in this example, each specification value used for performing the above calculation is summarized in Table 1.

Figure 2007185648
Figure 2007185648

この表1に示した諸元値の中において、抵抗係数αxとαp、剥離係数γxとγp、摩擦係数λxとλpは次のように決定した。   Among the specification values shown in Table 1, the resistance coefficients αx and αp, the peeling coefficients γx and γp, and the friction coefficients λx and λp were determined as follows.

まず、被ろ過液として前記活性汚泥を用い、図15に示した膜ろ過試験装置400を用いて膜ろ過試験を行った。膜ろ過試験装置400は、窒素ガス405によって、純水を収容している純水チャンバー410を、あるいは、攪拌式セル401(ミリポア(株)製Amicon8050)を加圧すること(その圧力は、圧力計411によって測定)、によって、被ろ過液である活性汚泥を膜固定ホルダー406に設置された分離膜402によってろ過する装置である。また、膜ろ過は、マグネティックスターラー403によって被ろ過液中に浸漬されている攪拌子404を回転させることによって、被ろ過液を攪拌することが可能である。また、膜透過液を電子秤408上に載せたビーカー407に受けて、その膜透過液量を電子秤408によって測定し、その測定値をパソコン409に取り込む構造とした。また、バルブ412、バルブ413、バルブ414を開閉することにより、膜ろ過試験装置各部の加圧の有無を調整した。   First, using the activated sludge as the liquid to be filtered, a membrane filtration test was performed using the membrane filtration test apparatus 400 shown in FIG. The membrane filtration test apparatus 400 pressurizes a pure water chamber 410 containing pure water or a stirring cell 401 (Amicon 8050 manufactured by Millipore Corporation) with nitrogen gas 405 (the pressure is measured by a pressure gauge). ), The activated sludge as the liquid to be filtered by the separation membrane 402 installed in the membrane fixing holder 406. In membrane filtration, the liquid to be filtered can be stirred by rotating a stirring bar 404 immersed in the liquid to be filtered by a magnetic stirrer 403. The membrane permeate was received by a beaker 407 mounted on an electronic balance 408, the amount of the membrane permeate was measured by the electronic balance 408, and the measured value was taken into the personal computer 409. Moreover, the presence or absence of pressurization of each part of the membrane filtration test apparatus was adjusted by opening and closing the valve 412, the valve 413, and the valve 414.

まず、膜ろ過抵抗初期値を測定するために純水を用いた膜ろ過試験を行った。ここにおいて、膜ろ過圧力を20kPa、マグネティックスターラー403による攪拌速度を600rpmとした。また、電子秤408における測定値を2秒間隔でパソコン409に取り込んだ。純水を用いた膜ろ過試験は80mlの膜透過液量が得られるまで行った。   First, a membrane filtration test using pure water was performed to measure the initial value of membrane filtration resistance. Here, the membrane filtration pressure was 20 kPa, and the stirring speed by the magnetic stirrer 403 was 600 rpm. Moreover, the measured value in the electronic balance 408 was taken into the personal computer 409 at intervals of 2 seconds. The membrane filtration test using pure water was conducted until an amount of 80 ml of membrane permeate was obtained.

次に、活性汚泥を用いた膜ろ過性評価試験を行った。まず、純水チャンバー410を外し、図15の点線のライン415を接続した。攪拌式セル401内に12mlの活性汚泥を投入し、膜ろ過圧力を20kPa、マグネティックスターラー403による攪拌速度を600rpmとして膜ろ過試験を行った。電子秤408における測定値を2秒間隔でパソコン409に取り込み、700秒間の膜ろ過試験を行った。   Next, a membrane filterability evaluation test using activated sludge was performed. First, the pure water chamber 410 was removed and the dotted line 415 in FIG. 15 was connected. 12 ml of activated sludge was put into the stirring type cell 401, the membrane filtration test was conducted at a membrane filtration pressure of 20 kPa and a stirring speed by the magnetic stirrer 403 of 600 rpm. The measured value in the electronic balance 408 was taken into the personal computer 409 at intervals of 2 seconds, and the membrane filtration test for 700 seconds was performed.

上記、膜ろ過試験を、遠心分離(3500rpm、10分間)によって得られた遠心上清を用いても行った。   The membrane filtration test was also performed using a centrifugal supernatant obtained by centrifugation (3500 rpm, 10 minutes).

上記の各膜ろ過試験において、パソコン409内に取り込まれたろ過時間とろ過液量との関係を示したデータを次のように処理した。まず、任意のろ過時間におけるろ過液量の微分係数を用いて、任意のろ過時間における膜ろ過流束を算出した。次に、前記任意のろ過時間における膜ろ過流束から、膜ろ過圧力を用いて、前記(1)式に従い、任意のろ過時間における膜ろ過抵抗を算出した。上記のように算出された結果から、単位膜面積あたりの総ろ過液量と膜ろ過抵抗との関係を作成した。   In each membrane filtration test described above, data indicating the relationship between the filtration time taken into the personal computer 409 and the amount of filtrate was processed as follows. First, the membrane filtration flux at any filtration time was calculated using the differential coefficient of the filtrate amount at any filtration time. Next, from the membrane filtration flux at the arbitrary filtration time, the membrane filtration resistance at the arbitrary filtration time was calculated according to the formula (1) using the membrane filtration pressure. From the results calculated as described above, a relationship between the total filtrate amount per unit membrane area and the membrane filtration resistance was created.

前記純水を用いた膜ろ過試験の結果から作成された単位膜面積あたりの総ろ過液量と膜ろ過抵抗との関係から、ろ過液量が70〜80mLの区間における膜ろ過抵抗の平均値を膜ろ過抵抗初期値とした。   From the relationship between the total filtrate volume per unit membrane area and the membrane filtration resistance created from the results of the membrane filtration test using pure water, the average value of the membrane filtration resistance in the section where the filtrate volume is 70 to 80 mL is calculated. The initial value was membrane filtration resistance.

まず、遠心上清による膜ろ過試験結果の予測を行った。   First, the result of the membrane filtration test using the centrifugal supernatant was predicted.

時刻ゼロにおける上清成分物質量値P(0)=9.3、分離膜に付着している上清成分物質量値Pm(0)=0、膜ろ過抵抗初期値Rm=4.65×1010、膜洗浄力値τ=1(一定値)、膜ろ過液の粘度μ=1.0×10−3、膜間差圧値ΔP=20×10を入力した。その他、前記膜ろ過プログラムに必要なパラメータとして抵抗係数αp、剥離係数γp、摩擦係数λpを入力し、膜ろ過予測結果を出力した。そして、実測値と膜ろ過予測結果との差異が最小となるように、抵抗係数αp、剥離係数γp、摩擦係数λpを変化させながら、上記膜ろ過予測を繰り返し行った。その結果、抵抗係数αp=4.89×1012、剥離係数γp=1.5×10、摩擦係数λp=9.8×10−5となるときに実測値と膜ろ過予測結果が最小となった。 The supernatant component substance amount value P (0) = 9.3 at time zero, the supernatant component substance amount value Pm (0) = 0 attached to the separation membrane, and the membrane filtration resistance initial value Rm = 4.65 × 10 10. Membrane detergency value τ = 1 (constant value), membrane filtrate viscosity μ = 1.0 × 10 −3 , transmembrane pressure difference value ΔP = 20 × 10 3 In addition, a resistance coefficient αp, a peeling coefficient γp, and a friction coefficient λp were input as parameters necessary for the membrane filtration program, and a membrane filtration prediction result was output. And the said membrane filtration prediction was repeatedly performed changing resistance coefficient (alpha) p, peeling coefficient (gamma) p, and friction coefficient (lambda) p so that the difference of a measured value and a membrane filtration prediction result might become the minimum. As a result, when the resistance coefficient αp = 4.89 × 10 12 , the peeling coefficient γp = 1.5 × 10 5 , and the friction coefficient λp = 9.8 × 10 −5 , the actual measurement value and the membrane filtration prediction result are minimum. became.

次に、汚泥による膜ろ過試験結果の予測を行った。
時刻ゼロにおける上清成分物質量値P(0)=9.3、時刻ゼロにおける固形成分物質量値X(0)=6.372×10、分離膜に付着している上清成分物質量値Pm(0)=0、分離膜に付着している固形成分物質量値Xm(0)=0、膜ろ過抵抗初期値Rm=4.65×1010、膜洗浄力値τ=1(一定値)、膜ろ過液の粘度μ=1.0×10−3、膜間差圧値ΔP=20×10を入力した。また、上記で決定されたパラメータとして、抵抗係数αp=4.89×1012、剥離係数γp=1.5×10、摩擦係数λp=9.8×10−5を入力した。その他、前記膜ろ過プログラムに必要なパラメータとして抵抗係数αx、剥離係数γx、摩擦係数λxを入力し、膜ろ過予測結果を出力した。そして、実測値と膜ろ過予測結果との差異が最小となるように、抵抗係数αx、剥離係数γx、摩擦係数λxを変化させながら、上記膜ろ過予測を繰り返し行った。その結果、抵抗係数αx=2.0×1010、剥離係数γx=1.7×10、摩擦係数λx=3.0×10−5となるときに実測値と膜ろ過予測結果が最小となった。
Next, the results of the membrane filtration test using sludge were predicted.
The supernatant component substance amount value P (0) = 9.3 at time zero, the solid component substance amount value X (0) = 6.372 × 10 3 at time zero, and the amount of supernatant component substance adhering to the separation membrane Value Pm (0) = 0, solid component substance amount value Xm (0) = 0 adhering to the separation membrane, membrane filtration resistance initial value Rm = 4.65 × 10 10 , membrane cleaning power value τ = 1 (constant) Value), the viscosity of the membrane filtrate μ = 1.0 × 10 −3 , and the transmembrane pressure difference ΔP = 20 × 10 3 . As the parameters determined above, the resistance coefficient αp = 4.89 × 10 12 , the peeling coefficient γp = 1.5 × 10 5 , and the friction coefficient λp = 9.8 × 10 −5 were input. In addition, a resistance coefficient αx, a peeling coefficient γx, and a friction coefficient λx were input as parameters necessary for the membrane filtration program, and a membrane filtration prediction result was output. And the said membrane filtration prediction was repeatedly performed changing resistance coefficient (alpha) x, peeling coefficient (gamma) x, and friction coefficient (lambda) x so that the difference of a measured value and a membrane filtration prediction result might become the minimum. As a result, when the resistance coefficient αx = 2.0 × 10 10 , the peeling coefficient γx = 1.7 × 10 3 , and the friction coefficient λx = 3.0 × 10 −5 , the actual measurement value and the membrane filtration prediction result are minimum. became.

また、表1に記載の膜洗浄力τは、次のように決定した。   Further, the film cleaning power τ shown in Table 1 was determined as follows.

まず、次のような膜ろ過試験を行った。図16に示すように、前記膜ろ過装置500において、分離膜502のろ過液側にチューブを接続し、サイフォンの原理を利用して水頭差により膜ろ過液を取得できるような構造とした。また、そのチューブの途中に流量計514(デジタル式)を設置し、流量計514の指示値の経時変化を記録計515に連続的に記録できる構造とした。また、流量計514の下流にバルブ516を設置し、間欠運転が手動で可能な構造とした。被ろ過液収容槽501中の被ろ過液の水位と、当膜ろ過試験装置のチューブ出口の高さとの差(図16参照)をΔHとし、ΔHから膜ろ過圧力を算出した。   First, the following membrane filtration test was conducted. As shown in FIG. 16, the membrane filtration apparatus 500 has a structure in which a tube is connected to the filtrate side of the separation membrane 502, and the membrane filtrate can be obtained by a water head difference using the siphon principle. In addition, a flow meter 514 (digital type) is installed in the middle of the tube, and a change with time of the indicated value of the flow meter 514 can be continuously recorded on the recorder 515. In addition, a valve 516 is installed downstream of the flow meter 514 so that intermittent operation can be performed manually. The difference between the water level of the liquid to be filtered in the liquid storage tank 501 and the height of the tube outlet of the membrane filtration test apparatus (see FIG. 16) was ΔH, and the membrane filtration pressure was calculated from ΔH.

このような膜ろ過装置において、まず、曝気風量を300L/minの一定流量で維持した。当膜ろ過試験装置のチューブ出口の高さを経時的に変化させることでΔHを変化させ、また、断続的にバルブ516を開閉することで間欠的に膜ろ過を行った。膜ろ過圧力の条件下でのこのときに得られた膜ろ過流量の経時変化を、予測ステップ2を用いて予測した。   In such a membrane filtration apparatus, first, the amount of aeration was maintained at a constant flow rate of 300 L / min. ΔH was changed by changing the height of the tube outlet of the membrane filtration test apparatus over time, and membrane filtration was intermittently performed by opening and closing the valve 516 intermittently. The change with time of the membrane filtration flow rate obtained at this time under the condition of the membrane filtration pressure was predicted using the prediction step 2.

予測ステップ2では、計算ステップ10として前記(1’)式を利用し(ここにおいて、μは前記(2)式を利用した)、計算ステップ20として前記(3)式および前記(4)式にそれぞれJ=Q/Aを代入したもの利用し、計算ステップ30として前記(5)式を利用した。このような計算は前記予測ステップ1と同じ計算ソフトおよび計算方法を用いて行った。   In the prediction step 2, the equation (1 ′) is used as the calculation step 10 (where μ is the equation (2)), and the calculation step 20 is expressed by the equations (3) and (4). Each of them is used by substituting J = Q / A, and the equation (5) is used as the calculation step 30. Such a calculation was performed using the same calculation software and calculation method as in the prediction step 1.

前記予測ステップ1と前記予測ステップ2とは、入力と出力が異なるものの、計算に利用する計算式そのものは基本的に同じであり、対象とする被ろ過液および分離膜も同じである。したがって、表1に示す諸元値も同じであり、前記予測ステップ1で利用した膜洗浄力の値と前記予測ステップ2で利用した膜洗浄力の値とは同じものであると判断できる。   Although the prediction step 1 and the prediction step 2 have different inputs and outputs, the calculation formula itself used for the calculation is basically the same, and the target liquid to be filtered and the separation membrane are also the same. Therefore, the specification values shown in Table 1 are also the same, and it can be determined that the value of the film cleaning power used in the prediction step 1 is the same as the value of the film cleaning power used in the prediction step 2.

ここで、任意の仮想的な膜洗浄力の値における膜ろ過流量の値の経時変化の計算結果と実測の膜ろ過流量の値の経時変化との差の積分値を算出し、その積分値が最小となる膜洗浄力の値を求めた結果、0.3であった。   Here, the integral value of the difference between the calculation result of the change over time of the value of the membrane filtration flow rate and the change over time of the actual value of the membrane filtration flow rate at an arbitrary virtual membrane cleaning power value is calculated. As a result of obtaining the minimum film cleaning power, it was 0.3.

まず、前記被ろ過液の構成成分量のデータ(X:6372[gC/m]、P:9.3[gC/m]である固定データ)、膜ろ過流束の時系列的な変化を表すデータ(連続ろ過として、1.1[m/d]の固定データ)を、前記予測ステップ1における計算式が組み込まれているコンピュータ内に入力した。そのほかのデータとして、膜ろ過液の粘度のデータ、分離膜の初期膜抵抗のデータ(Rm:4.65×1010[1/m])、表1に記載のパラメータの値を入力した。前記入力された被ろ過液の構成成分量のデータ、および、膜ろ過流束のデータを利用して、膜ろ過圧力の変動を予測した。その結果を図9に示す。ろ過時間の経過に伴い、膜ろ過圧力の値が増加し発散する傾向にあった。そこで、仮想的な流量調整手段の運転条件を、仮想的な膜ろ過流量が10.816[m/d](膜ろ過流束として1.04[m/d])となる運転条件とし、再度、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が発散するという傾向は変わらなかった(図9)。ここにおいて、膜ろ過圧力が発散するときに仮想的な流量調整手段の運転条件を非と判断することとし、この仮想的な流量調整手段の運転条件を非と判断した。そこで、変更ステップにおいて、仮想的な流量調整手段の運転条件を、仮想的な膜ろ過流量が10.608[m/d](膜ろ過流束として1.02[m/d])となる運転条件とし、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が収束し一定値に安定する結果となった(図9)。そこで、仮想的な流量調整手段の運転条件が是であると判断し、適正な流量調整手段の運転条件を、膜ろ過流量が10.608[m/d](膜ろ過流束として1.02[m/d])となる運転条件と決定した。 First, data on the amount of component of the liquid to be filtered (fixed data with X: 6372 [gC / m 3 ], P: 9.3 [gC / m 3 ]), time-series changes in membrane filtration flux (Fixed data of 1.1 [m / d] as continuous filtration) was input into a computer in which the calculation formula in the prediction step 1 was incorporated. As other data, viscosity data of the membrane filtrate, initial membrane resistance data of the separation membrane (Rm: 4.65 × 10 10 [1 / m]), and parameter values described in Table 1 were input. The fluctuation | variation of the membrane filtration pressure was estimated using the data of the component amount of the said to-be-filtered liquid, and the data of the membrane filtration flux. The result is shown in FIG. As the filtration time elapses, the value of the membrane filtration pressure tends to increase and diverge. Therefore, the operating condition of the virtual flow rate adjusting means is an operating condition in which the virtual membrane filtration flow rate is 10.816 [m 3 / d] (1.04 [m / d] as the membrane filtration flux) Again, fluctuations in membrane filtration pressure were predicted. As a result, the tendency for the membrane filtration pressure to diverge did not change (FIG. 9). Here, when the membrane filtration pressure diverges, it is determined that the operating condition of the virtual flow rate adjusting means is non-existent, and the operating condition of the virtual flow rate adjusting means is determined to be non-existent. Therefore, in the changing step, the operating condition of the virtual flow rate adjusting means is that the virtual membrane filtration flow rate is 10.608 [m 3 / d] (1.02 [m / d] as the membrane filtration flux). As operating conditions, fluctuations in membrane filtration pressure were predicted. As a result, the membrane filtration pressure converged and became a constant value (FIG. 9). Therefore, it is determined that the operating conditions of the virtual flow rate adjusting means are appropriate, and the appropriate operating conditions of the flow rate adjusting means are set to a membrane filtration flow rate of 10.608 [m 3 / d] (1. 02 [m / d]).

前記決定された適正な調整手段の運転条件に対し、安全率を考慮し、膜ろ過流量が10.4[m/d](膜ろ過流束として1.00[m/d])となるように、圧力発生手段505すなわち吸引ポンプをインバータ制御することとした。 The membrane filtration flow rate is 10.4 [m 3 / d] (1.00 [m / d] as the membrane filtration flux) in consideration of the safety factor with respect to the determined operating conditions of the appropriate adjusting means. Thus, the pressure generating means 505, that is, the suction pump is controlled by the inverter.

(実施例2)
実施例1では、連続ろ過の場合の実施例について記したが、実施例2では、間欠ろ過の場合の実施例について記す。
(Example 2)
In Example 1, although the example in the case of continuous filtration was described, in Example 2, the example in the case of intermittent filtration is described.

膜ろ過装置、膜抵抗予測方法、膜ろ過試験方法、利用した計算ソフト、積分方法、計算に必要な各諸元、被ろ過液の構成成分量の値、および、初期膜抵抗の値は実施例1と同じである。ここでは、間欠ろ過条件として、8分間吸引2分間休息の間欠ろ過、即ち、一定の膜ろ過流束で8分間吸引ろ過し、その後2分間吸引ろ過を停止するというサイクルを繰り返した。   Membrane filtration device, membrane resistance prediction method, membrane filtration test method, calculation software used, integration method, various specifications necessary for calculation, component component amount value of filtrate, and initial membrane resistance value are examples Same as 1. Here, as an intermittent filtration condition, a cycle of 8 minutes of suction and 2 minutes of rest intermittent filtration, that is, 8 minutes of suction filtration with a constant membrane filtration flux, and then 2 minutes of suction filtration was repeated.

まず、実施例1と同様、予測ステップ1において、膜ろ過圧力の値の変動を予測することとした。ここにおいて、計算ステップ10として前記(1)式を利用し(ここにおいて、μは前記(2)式を利用した)、計算ステップ20として前記(3)式および前記(4)式を利用し、計算ステップ30として前記(5)式を利用した。前記被ろ過液の構成成分量のデータ(X:6372[gC/m]、P:9.3[gC/m]である固定データ)、膜ろ過流束の時系列的な変化を表すデータ(間欠ろ過条件として、8分間吸引2分間休息の間欠ろ過(吸引時の膜ろ過流束は1.24[m/d])の固定データ)を、前記予測ステップ1における計算式が組み込まれているコンピュータ内に入力した。そのほかのデータとして、膜ろ過液の粘度のデータ、分離膜の初期膜抵抗のデータ(Rm:4.65×1010[1/m])、表1に記載のパラメータの値を入力した。前記入力された被ろ過液の構成成分量のデータ、および、膜ろ過流束のデータを利用して、膜ろ過圧力の変動を予測した。その結果を図10に示す。ろ過時間の経過に伴い、膜ろ過圧力の値が増減する傾向があった。ここにおいて、膜ろ過圧力の最大値が10kPaより大きくなるときに仮想的な流量調整手段の運転条件を非と判断することとし、この仮想的な流量調整手段の運転条件を非と判断した。ここで、仮想的な流量調整手段の運転条件を、吸引時の仮想的な膜ろ過流量が12.792[m/d](膜ろ過流束として1.23[m/d])とし、再度、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が全体的に小さくなり(図11)、膜ろ過圧力の最大値が、10kPaを下回る結果となった。そこで、仮想的な流量調整手段の運転条件が是であると判断し、適正な流量調整手段の運転条件を、吸引時の膜ろ過流量が12.792[m/d](膜ろ過流束として1.23[m/d])と決定した。 First, as in Example 1, in the prediction step 1, the fluctuation of the membrane filtration pressure value was predicted. Here, using the equation (1) as the calculation step 10 (where μ uses the equation (2)), and using the equation (3) and the equation (4) as the calculation step 20, The equation (5) was used as the calculation step 30. Data on the component amount of the liquid to be filtered (fixed data with X: 6372 [gC / m 3 ], P: 9.3 [gC / m 3 ]), representing time-series changes in membrane filtration flux The calculation formula in the prediction step 1 is incorporated as data (fixed data of intermittent filtration for 2 minutes resting as an intermittent filtration condition (membrane filtration flux during suction is 1.24 [m / d])). Entered in the computer. As other data, viscosity data of the membrane filtrate, initial membrane resistance data of the separation membrane (Rm: 4.65 × 10 10 [1 / m]), and parameter values described in Table 1 were input. The fluctuation | variation of the membrane filtration pressure was estimated using the data of the component amount of the said to-be-filtered liquid, and the data of the membrane filtration flux. The result is shown in FIG. As the filtration time passed, the value of the membrane filtration pressure tended to increase or decrease. Here, when the maximum value of the membrane filtration pressure is greater than 10 kPa, it is determined that the operating condition of the virtual flow rate adjusting means is non-existent, and the operating condition of the virtual flow rate adjusting means is determined to be non-existent. Here, the operating condition of the virtual flow rate adjusting means is assumed to be a virtual membrane filtration flow rate at suction of 12.792 [m 3 / d] (1.23 [m / d] as the membrane filtration flux), Again, fluctuations in membrane filtration pressure were predicted. As a result, the membrane filtration pressure was reduced as a whole (FIG. 11), and the maximum value of the membrane filtration pressure was below 10 kPa. Therefore, it is determined that the operating conditions of the virtual flow rate adjusting means are appropriate, and the appropriate operating conditions of the flow rate adjusting means are the membrane filtration flow rate at the time of suction of 12.792 [m 3 / d] (membrane filtration flux). As 1.23 [m / d]).

前記決定された適正な調整手段の運転条件に対し、安全率を考慮し、吸引時の膜ろ過流量が12.5[m/d](膜ろ過流束として1.20[m/d])となるように、圧力発生手段505すなわち吸引ポンプをインバータ制御することとした。 The membrane filtration flow rate during suction is 12.5 [m 3 / d] (1.20 [m / d] as membrane filtration flux) in consideration of the safety factor with respect to the determined operating conditions of the appropriate adjusting means. ), The pressure generating means 505, that is, the suction pump is controlled by an inverter.

(実施例3)
本実施例に用いた膜ろ過装置500の構造概略を図12に示す。膜ろ過装置500は、浸漬型の膜分離式活性汚泥装置であり、酢酸を主成分とする工場排水を処理する排水処理装置である。原水506である酢酸を主成分とする工場排水を、断続的に平均流量4.2m/dで有効容量2.3mの被ろ過液収容槽501に投入した。被ろ過液収容槽501には、被ろ過液504として活性汚泥が収容されており、被ろ過液504中に分離膜502を浸漬させ、前記分離膜502の下方部には散気管507が設置され、前記散気管507には洗浄手段503である曝気ブロアからエアが供給される構造とした。すなわち、本装置においては、散気管507から供給されるエアバブルが膜表面に接触し、また曝気による活性汚泥の流動も同時に発生するために、膜表面の付着成分が膜から剥離する効果が得られることとなる。また、被ろ過液収容槽501から被ろ過液504である活性汚泥をポンプにより排出する構成成分量調整手段508を設けた。ここにおいて、構成成分量調整手段508によって活性汚泥が被ろ過液収容槽501から排出されたときに、排出された活性汚泥量に相当する原水量が被ろ過液収容槽501に供給されることによって、活性汚泥の構成成分量(濃度)が調整される構造とした。なお、ここで、分離膜502には、PVDF(ポリフッ化ビニリデン)製の平膜型の精密ろ過膜(孔径0.08μm、有効膜面積10.4m)を用い、膜透過液側に設置した吸引ポンプを膜ろ過液取得手段505として用いた。
(Example 3)
FIG. 12 shows a schematic structure of the membrane filtration device 500 used in this example. The membrane filtration device 500 is a submerged membrane separation activated sludge device, and is a wastewater treatment device for treating factory wastewater containing acetic acid as a main component. The raw water 506, the factory effluent mainly composed of acetic acid, was intermittently charged into the filtrate storage tank 501 having an average flow rate of 4.2 m 3 / d and an effective capacity of 2.3 m 3 . Activated sludge is accommodated in the filtrate receiving tank 501 as the filtrate to be filtered 504, and the separation membrane 502 is immersed in the filtrate to be filtered 504, and an aeration tube 507 is installed below the separation membrane 502. The air diffusing tube 507 is configured to be supplied with air from an aeration blower serving as a cleaning unit 503. That is, in this apparatus, since the air bubbles supplied from the diffuser tube 507 come into contact with the membrane surface, and the activated sludge flows due to aeration, the adhering components on the membrane surface are separated from the membrane. It will be. Moreover, the component amount adjustment means 508 which discharges | emits the activated sludge which is the to-be-filtered liquid 504 from the to-be-filtrated liquid storage tank 501 with a pump was provided. Here, when activated sludge is discharged from the filtrate storage tank 501 by the component amount adjusting means 508, the amount of raw water corresponding to the discharged activated sludge is supplied to the filtrate storage tank 501. The structure (concentration) of the activated sludge is adjusted. Here, a flat membrane type microfiltration membrane (pore size 0.08 μm, effective membrane area 10.4 m 2 ) made of PVDF (polyvinylidene fluoride) was used as the separation membrane 502 and installed on the membrane permeate side. A suction pump was used as the membrane filtrate obtaining means 505.

また、本実施例では、被ろ過液の構成成分量を次のように定義し測定した。被ろ過液は、固形成分(物質量:X[gC/m])、上清中非膜ろ過成分(物質量:P[gC/m])、溶解成分(物質量:S[gC/m])によって構成されるとした。Xは、被ろ過液のMLSS[gC/m]を下水道試験法に従って測定し、その示性式がCNであると仮定し、その測定値に60/113を乗じることで算出した。Sは、前記膜ろ過装置500において得られた膜ろ過液のTOC[gC/m]を測定し、その測定値とした。Pは、被ろ過液を遠心分離(3500rpm、10分間)し、上清成分を得て、前記上清成分のTOC測定値[gC/m]とS[gC/m]との差として算出した。その結果、Xは5600[gC/m]、Pは22.4[gC/m]、Sは3.6[gC/m]であった。 Moreover, in the present Example, the component amount of the to-be-filtered liquid was defined and measured as follows. The liquid to be filtered consists of a solid component (substance amount: X [gC / m 3 ]), a non-membrane filtration component in the supernatant (substance amount: P [gC / m 3 ]), and a dissolved component (substance amount: S [gC / m 3 ]). X is determined by measuring MLSS [gC / m 3 ] of the liquid to be filtered in accordance with the sewer test method, assuming that its characteristic formula is C 5 H 7 O 2 N, and multiplying the measured value by 60/113. Calculated with S measured the TOC [gC / m 3 ] of the membrane filtrate obtained in the membrane filtration device 500, and set it as the measured value. P represents the difference between the measured TOC [gC / m 3 ] and S [gC / m 3 ] of the supernatant component by centrifuging the liquid to be filtered (3500 rpm, 10 minutes) to obtain the supernatant component. Calculated. As a result, X was 5600 [gC / m 3 ], P was 22.4 [gC / m 3 ], and S was 3.6 [gC / m 3 ].

また、本実施例では、予測ステップ1において、膜ろ過圧力の変動を予測することとした。ここにおいて、計算ステップ10として前記(1)式を利用し(ここにおいて、μは前記(2)式を利用した)、計算ステップ20として前記(3)式および前記(4)式を利用し、計算ステップ30として前記(5)式を利用した。   In the present embodiment, in the prediction step 1, the fluctuation of the membrane filtration pressure is predicted. Here, using the equation (1) as the calculation step 10 (where μ uses the equation (2)), and using the equation (3) and the equation (4) as the calculation step 20, The equation (5) was used as the calculation step 30.

本実施例では、上記計算を、数値計算ソフトMATLAB(米国 Mathworks社製)を用いて行い、積分法としてRunge−Kutta法を用いた。また、本実施例において、上記計算を行うために用いた各諸元値を表2にまとめた。   In this example, the above calculation was performed using numerical calculation software MATLAB (manufactured by Mathworks, USA), and the Runge-Kutta method was used as the integration method. In addition, in this example, each specification value used for performing the above calculation is summarized in Table 2.

Figure 2007185648
Figure 2007185648

この表2に示した諸元値の中において、抵抗係数αxとαp、剥離係数γxとγp、摩擦係数λxとλp、膜洗浄力τは、実施例1に記載の方法と同様にして決定した。   Among the specification values shown in Table 2, the resistance coefficients αx and αp, the peeling coefficients γx and γp, the friction coefficients λx and λp, and the film cleaning power τ were determined in the same manner as the method described in Example 1. .

まず、前記被ろ過液の構成成分量の時系列的な変化を表すデータ(X:5600[gC/m]、P:22.4[gC/m]である固定データ)、膜ろ過流束の時系列的な変化を表すデータ(連続ろ過として、4.63×10−6[m/s]の固定データ)を、前記予測ステップ1における計算式が組み込まれているコンピュータ内に入力した。そのほかのデータとして、膜ろ過液の粘度のデータ、分離膜の初期膜抵抗のデータ(Rm:4.65×1010[1/m])、表2に記載のパラメータの値を入力した。前記入力された被ろ過液の構成成分量のデータ、および、膜ろ過流束のデータを利用して、膜ろ過圧力の変動を予測した。その結果を図13に示す。ろ過時間の経過に伴い、膜ろ過圧力の値が増加し発散する傾向にあった。そこで、仮想的な構成成分量調整手段の運転条件を、活性汚泥を10%排出すること(即ち、被ろ過液の構成成分量を90/100とすること)とし、再度、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が発散するという傾向は変わらなかった(図13)。ここにおいて、膜ろ過圧力が発散するときに仮想的な構成成分量調整手段の運転条件を非と判断することとし、この仮想的な構成成分量調整手段の運転条件を非と判断した。そこで、変更ステップにおいて、仮想的な構成成分量調整手段の運転条件を、活性汚泥を11%排出すること(即ち、被ろ過液の構成成分量を89/100とすること)とし、再度、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が発散するという傾向は変わらなかった(図13)ため、再度、変更ステップにおいて、仮想的な構成成分量調整手段の運転条件を、活性汚泥を12%排出すること(即ち、被ろ過液の構成成分量を88/100とすること)とし、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が収束し一定値に安定する結果となった(図13)。そこで、仮想的な構成成分量調整手段の運転条件が是であると判断し、適正な構成成分量調整手段の運転条件を、活性汚泥を12%排出すること(即ち、被ろ過液の構成成分量を88/100とすること)と決定した。 First, data representing time-series changes in the amount of constituents of the liquid to be filtered (fixed data with X: 5600 [gC / m 3 ], P: 22.4 [gC / m 3 ]), membrane filtration flow Data representing a time-series change of the bundle (4.63 × 10 −6 [m / s] fixed data as continuous filtration) was input into the computer in which the calculation formula in the prediction step 1 was incorporated. . As other data, the viscosity data of the membrane filtrate, the initial membrane resistance data of the separation membrane (Rm: 4.65 × 10 10 [1 / m]), and the parameter values described in Table 2 were input. The fluctuation | variation of the membrane filtration pressure was estimated using the data of the component amount of the said to-be-filtered liquid, and the data of the membrane filtration flux. The result is shown in FIG. As the filtration time elapses, the value of the membrane filtration pressure tends to increase and diverge. Therefore, the operating condition of the virtual component amount adjusting means is to discharge 10% of activated sludge (that is, to set the component amount of the liquid to be filtered to 90/100), and again the fluctuation of the membrane filtration pressure Predicted. As a result, the tendency for the membrane filtration pressure to diverge did not change (FIG. 13). Here, when the membrane filtration pressure diverges, the operating condition of the virtual component amount adjusting unit is determined to be non-determined, and the operating condition of the virtual component amount adjusting unit is determined to be non-existing. Therefore, in the changing step, the operating condition of the virtual component amount adjusting means is that 11% of activated sludge is discharged (that is, the component amount of the liquid to be filtered is 89/100), and the membrane again The fluctuation of filtration pressure was predicted. As a result, the tendency of the membrane filtration pressure to diverge did not change (FIG. 13). Therefore, in the change step, 12% of activated sludge was discharged as the operating condition of the virtual component amount adjusting means (that is, The amount of component of the liquid to be filtered was 88/100), and the fluctuation of the membrane filtration pressure was predicted. As a result, the membrane filtration pressure converged and stabilized to a constant value (FIG. 13). Therefore, it is determined that the operating condition of the virtual component amount adjusting means is appropriate, and the operating condition of the appropriate component amount adjusting means is to discharge activated sludge by 12% (that is, the component of the liquid to be filtered). The amount was determined to be 88/100).

前記決定された適正な構成成分量調整手段の運転条件は、被ろ過液収容槽501から活性汚泥を276L引き抜き、活性汚泥の構成成分量をX:4928[gC/m]およびP:19.7[gC/m]とすることに相当する。活性汚泥中の微生物は、原水506中の有機物を摂取して増殖するため、膜ろ過装置500の運転を続けるのに伴い、活性汚泥中の構成成分量が増加することになる。そこで、安全率を考慮して、被ろ過液収容槽501から活性汚泥を300L引き抜き、それ以降、Xが4928[gC/m]以上(MLSSでは、9281[g/m]以上)となったときには、構成成分量調整手段508によって活性汚泥を引き抜き、常にXが4928[gC/m]以下(MLSSでは、9281[g/m]以下)となるように調整することとした。 The determined operating condition of the proper component amount adjusting means is that 276 L of activated sludge is extracted from the filtrate storage tank 501, and the component amount of activated sludge is X: 4928 [gC / m 3 ] and P: 19. This corresponds to 7 [gC / m 3 ]. Since microorganisms in the activated sludge ingest organic substances in the raw water 506 and multiply, the amount of components in the activated sludge increases as the operation of the membrane filtration device 500 continues. Therefore, considering the safety factor, 300 L of activated sludge is extracted from the filtrate storage tank 501, and thereafter, X becomes 4928 [gC / m 3 ] or more (9281 [g / m 3 ] or more in MLSS). In this case, the activated sludge is drawn out by the component amount adjusting means 508, and X is always adjusted to be 4928 [gC / m 3 ] or less (9281 [g / m 3 ] or less in MLSS).

(実施例4)
実施例3では、連続ろ過の場合の実施例について記したが、実施例4では、間欠ろ過の場合の実施例について記す。
Example 4
In Example 3, although the example in the case of continuous filtration was described, in Example 4, the example in the case of intermittent filtration is described.

膜ろ過装置、膜抵抗予測方法、膜ろ過試験方法、利用した計算ソフト、積分方法、計算に必要な各諸元、被ろ過液の構成成分量の値、および、初期膜抵抗の値は実施例1と同じである。ここでは、間欠ろ過条件として、8分間吸引2分間休息の間欠ろ過(吸引時の膜ろ過流束は5.79×10−6[m/s])、即ち、膜ろ過流束5.79×10−6[m/s]で8分間吸引ろ過し、その後2分間吸引ろ過を停止するというサイクルを繰り返した。 Membrane filtration device, membrane resistance prediction method, membrane filtration test method, calculation software used, integration method, various specifications necessary for calculation, component component amount value of filtrate, and initial membrane resistance value are examples Same as 1. Here, as intermittent filtration conditions, intermittent filtration with 8 minutes suction for 2 minutes rest (membrane filtration flux at suction is 5.79 × 10 −6 [m / s]), that is, membrane filtration flux 5.79 × The cycle of suction filtration at 10 −6 [m / s] for 8 minutes and then stopping suction filtration for 2 minutes was repeated.

まず、実施例1と同様、予測ステップ1において、膜ろ過圧力の値の変動を予測することとした。ここにおいて、計算ステップ10として前記(1)式を利用し(ここにおいて、μは前記(2)式を利用した)、計算ステップ20として前記(3)式および前記(4)式を利用し、計算ステップ30として前記(5)式を利用した。前記被ろ過液の構成成分量の時系列的な変化を表すデータ(X:5600[gC/m]、P:22.4[gC/m]である固定データ)、膜ろ過流束の時系列的な変化を表すデータ(間欠ろ過条件として、8分間吸引2分間休息の間欠ろ過(吸引時の膜ろ過流束は5.79×10−6[m/s])の固定データ)を、前記予測ステップ1における計算式が組み込まれているコンピュータ内に入力した。そのほかのデータとして、膜ろ過液の粘度のデータ、分離膜の初期膜抵抗のデータ(Rm:4.65×1010[1/m])、表1に記載のパラメータの値を入力した。前記入力された被ろ過液の構成成分量のデータ、および、膜ろ過流束のデータを利用して、膜ろ過圧力の変動を予測した。その結果を図14に示す。ろ過時間の経過に伴い、膜ろ過圧力の値が増減する傾向があった。ここで、仮想的な構成成分量調整手段の運転条件を、活性汚泥を20%排出すること(即ち、被ろ過液の構成成分量を80/100とすること)とし、再度、膜ろ過圧力の変動を予測した。その結果、全体的に膜ろ過圧力が小さくなった(図14)。ここにおいて、膜ろ過圧力の最大値が10kPaより大きくなるときに仮想的な構成成分量調整手段の運転条件を非と判断することとし、この仮想的な構成成分量調整手段の運転条件を非と判断した。そこで、変更ステップにおいて、仮想的な構成成分量調整手段の運転条件を、活性汚泥を21%排出すること(即ち、被ろ過液の構成成分量を79/100とすること)とし、再度、膜ろ過圧力の変動を予測した。その結果、膜ろ過圧力が全体的に小さくなり(図14)、膜ろ過圧力の最大値が、10kPaを下回る結果となった。そこで、仮想的な構成成分量調整手段の運転条件が是であると判断し、適正な構成成分量調整手段の運転条件を、活性汚泥を21%排出すること(即ち、被ろ過液の構成成分量を79/100とすること)と決定した。 First, as in Example 1, in the prediction step 1, the fluctuation of the membrane filtration pressure value was predicted. Here, using the equation (1) as the calculation step 10 (where μ uses the equation (2)), and using the equation (3) and the equation (4) as the calculation step 20, The equation (5) was used as the calculation step 30. Data representing time-series changes in the amount of constituents of the liquid to be filtered (fixed data with X: 5600 [gC / m 3 ], P: 22.4 [gC / m 3 ]), membrane filtration flux Data representing time-series changes (fixed data of intermittent filtration for 8 minutes suction and rest for 2 minutes (membrane filtration flux at suction is 5.79 × 10 −6 [m / s]) as intermittent filtration conditions) The calculation formula in the prediction step 1 is input into the computer. As other data, viscosity data of the membrane filtrate, initial membrane resistance data of the separation membrane (Rm: 4.65 × 10 10 [1 / m]), and parameter values described in Table 1 were input. The fluctuation | variation of the membrane filtration pressure was estimated using the data of the component amount of the said to-be-filtered liquid, and the data of the membrane filtration flux. The result is shown in FIG. As the filtration time passed, the value of the membrane filtration pressure tended to increase or decrease. Here, the operating condition of the virtual component amount adjusting means is to discharge activated sludge by 20% (that is, to set the component amount of the liquid to be filtered to 80/100), and again the membrane filtration pressure. Predicted fluctuations. As a result, the membrane filtration pressure was reduced as a whole (FIG. 14). Here, when the maximum value of the membrane filtration pressure becomes larger than 10 kPa, it is determined that the operating condition of the virtual component amount adjusting means is non-determined, and the operating condition of the virtual component amount adjusting means is non-determined. It was judged. Therefore, in the changing step, the operating condition of the virtual component amount adjusting means is that 21% of activated sludge is discharged (that is, the component amount of the liquid to be filtered is 79/100), and the membrane again The fluctuation of filtration pressure was predicted. As a result, the membrane filtration pressure was reduced as a whole (FIG. 14), and the maximum value of the membrane filtration pressure was less than 10 kPa. Therefore, it is determined that the operating condition of the virtual component amount adjusting means is appropriate, and the operating condition of the appropriate component amount adjusting means is to discharge 21% of activated sludge (that is, the component of the liquid to be filtered). The amount was determined to be 79/100).

前記決定された適正な構成成分量調整手段の運転条件は、被ろ過液収容槽501から活性汚泥を483L引き抜き、活性汚泥の構成成分量をX:4424[gC/m]およびP:17.7[gC/m]とすることに相当する。活性汚泥中の微生物は、原水506中の有機物を摂取して増殖するため、膜ろ過装置500の運転を続けるのに伴い、活性汚泥中の構成成分量が増加することになる。そこで、安全率を考慮して、被ろ過液収容槽501から活性汚泥を500L引き抜くこととした。 The determined operating condition of the proper component amount adjusting means is that 483 L of activated sludge is extracted from the filtrate storage tank 501 and the component amount of activated sludge is X: 4424 [gC / m 3 ] and P: 17. This corresponds to 7 [gC / m 3 ]. Since microorganisms in the activated sludge ingest organic substances in the raw water 506 and multiply, the amount of components in the activated sludge increases as the operation of the membrane filtration device 500 continues. Therefore, in consideration of the safety factor, 500 L of activated sludge was extracted from the filtrate storage tank 501.

予測ステップ1を含む場合の本発明のフローチャートである。It is a flowchart of this invention in case the prediction step 1 is included. 予測ステップ2を含む場合の本発明のフローチャートである。It is a flowchart of this invention in case the prediction step 2 is included. 予測ステップ1を含み、変更ステップを利用する場合の流量調整手段の運転条件を決定するためのフローチャートである。It is a flowchart for determining the driving | running condition of the flow volume adjustment means at the time of using the change step including the prediction step 1. FIG. 予測ステップ2を含み、変更ステップを利用する場合の圧力調整手段の運転条件を決定するためのフローチャートである。It is a flowchart for determining the operating condition of the pressure adjustment means when including the prediction step 2 and using the change step. 本発明の実施フローチャートの一例である。It is an example of the implementation flowchart of this invention. 予測ステップ1を含み、変更ステップを利用する場合の構成成分量調整手段の運転条件を決定するためのフローチャートである。It is a flowchart for determining the driving | running condition of the component component amount adjustment means at the time of using the change step including the prediction step 1. FIG. 予測ステップ2を含み、変更ステップを利用する場合の構成成分量調整手段の運転条件を決定するためのフローチャートである。It is a flowchart for determining the driving | running condition of the component component amount adjustment means at the time of using the change step including the prediction step 2. FIG. 実施例1および実施例2で用いた膜ろ過装置の概略図である。It is the schematic of the membrane filtration apparatus used in Example 1 and Example 2. FIG. 実施例1において計算した膜ろ過圧力の変動を示す図である。It is a figure which shows the fluctuation | variation of the membrane filtration pressure calculated in Example 1. FIG. 実施例2において、仮想的な膜ろ過流束として1.24[m/d]を与えて計算した膜ろ過圧力の変動を示す図である。In Example 2, it is a figure which shows the fluctuation | variation of the membrane filtration pressure calculated by giving 1.24 [m / d] as virtual membrane filtration flux. 実施例2において、仮想的な膜ろ過流束として1.23[m/d]を与えて計算した膜ろ過圧力の変動を示す図である。In Example 2, it is a figure which shows the fluctuation | variation of the membrane filtration pressure calculated by giving 1.23 [m / d] as virtual membrane filtration flux. 実施例3および実施例4で用いた膜ろ過装置の概略図である。It is the schematic of the membrane filtration apparatus used in Example 3 and Example 4. FIG. 実施例3において計算した膜ろ過圧力の変動を示す図である。It is a figure which shows the fluctuation | variation of the membrane filtration pressure calculated in Example 3. FIG. 実施例4において計算した膜ろ過圧力の変動を示す図である。It is a figure which shows the fluctuation | variation of the membrane filtration pressure calculated in Example 4. FIG. 実施例1〜4において予測を行うための諸因子を決定するために利用した膜ろ過試験装置の図である。It is a figure of the membrane filtration test apparatus utilized in order to determine the factors for performing prediction in Examples 1-4. 実施例1において膜洗浄力を決定するために利用した膜ろ過試験装置の図である。It is a figure of the membrane filtration test apparatus utilized in order to determine the membrane cleaning power in Example 1. FIG.

符号の説明Explanation of symbols

400:膜ろ過試験装置
401:攪拌式セル
402:分離膜
403:マグネティックスターラー
404:攪拌子
405:窒素ガス
406:膜固定ホルダー
407:ビーカー
408:電子秤
409:パソコン
410:純水チャンバー
411:圧力計
412、413,414:バルブ
500:膜ろ過装置
501:被ろ過液収容槽
502:分離膜
503:洗浄手段
504:被ろ過液
505:膜ろ過液取得手段
506:原水
507:散気管
508:構成成分量調整手段
514:流量計
515:記録計
516:バルブ
400: Membrane filtration test apparatus 401: Stirring cell 402: Separation membrane 403: Magnetic stirrer 404: Stirring bar 405: Nitrogen gas 406: Membrane fixing holder 407: Beaker 408: Electronic scale 409: Personal computer 410: Pure water chamber 411: Pressure Total 412, 413, 414: Valve 500: Membrane filtration device 501: Filtrate storage tank 502: Separation membrane 503: Cleaning means 504: Filtration liquid 505: Membrane filtrate acquisition means 506: Raw water 507: Air diffuser 508: Configuration Component amount adjusting means 514: Flow meter 515: Recorder 516: Valve

Claims (27)

少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって得られる膜ろ過液の流量(以下、膜ろ過流量)を調整する流量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過流量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記流量調整手段の運転条件を決定することを含むことを特徴とする膜ろ過装置の運転条件の決定方法。 At least a separation membrane, pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and a flow rate of the membrane filtrate obtained by the pressure generating means (hereinafter referred to as membrane filtration flow rate) Using a membrane filtration device having a flow rate adjusting means for adjusting the flow rate, the liquid to be filtered is filtered through the separation membrane, and the operating conditions of the membrane filtration device for adjusting the membrane filtration flow rate simultaneously or sequentially with the filtration are determined. A method for determining the amount of constituent components and the amount of constituent components of the liquid to be filtered, and the data representing the time-series changes in the membrane filtration flow rate, fluctuations in the amount of constituent components adhering to the separation membrane, membrane filtration pressure The method of determining the operating condition of the membrane filtration device includes predicting the fluctuation of the flow rate or the fluctuation of the membrane resistance and determining the operating condition of the flow rate adjusting means based on the prediction result. 仮想的な流量調整手段の運転条件から、前記分離膜に付着している前記被ろ過液の構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記仮想的な流量調整手段の運転条件の是非を判断し、前記判断結果において是と判断された前記仮想的な流量調整手段の運転条件の中から、適正な流量調整手段の運転条件を決定し、前記決定された適正な流量調整手段の運転条件に基づいて、前記流量調整手段の運転条件を決定することを特徴とする請求項1に記載の膜ろ過装置の運転条件の決定方法。 Based on the operation result of the virtual flow rate adjusting means, the fluctuation of the component amount of the liquid to be filtered adhering to the separation membrane, the fluctuation of the membrane filtration pressure, or the fluctuation of the membrane resistance is predicted, and based on the prediction result Determining whether or not the operating condition of the virtual flow rate adjusting means is appropriate, and selecting an appropriate operating condition of the flow rate adjusting means from among the operating conditions of the virtual flow rate adjusting means determined to be good in the determination result. The method for determining the operating condition of the membrane filtration device according to claim 1, wherein the operating condition of the flow rate adjusting means is determined based on the determined operating condition of the proper flow rate adjusting means. 前記予測に際し、仮想的な流量調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、膜抵抗の値、あるいは、膜ろ過圧力の値があらかじめ決定された所定値以下となったときに、前記仮想的な流量調整手段の運転条件を是と判断することを特徴とする請求項2に記載の膜ろ過装置の運転条件の決定方法。 In the prediction, prediction is performed using operating conditions of a virtual flow rate adjusting means, and in the result of the prediction, the value of the component amount adhering to the separation membrane, the value of the membrane resistance, or the membrane filtration pressure The determination of the operating condition of the membrane filtration device according to claim 2, wherein when the value of becomes less than a predetermined value determined in advance, the operating condition of the virtual flow rate adjusting means is determined to be good. Method. 前記予測に際し、仮想的な流量調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、膜抵抗の値あるいは膜ろ過圧力の値が収束するときに、前記仮想的な流量調整手段の運転条件を是と判断することを特徴とする請求項2に記載の膜ろ過装置の運転条件の決定方法。 At the time of the prediction, a prediction is made using the operating conditions of the virtual flow rate adjusting means, and in the prediction result, the value of the component amount adhering to the separation membrane, the value of the membrane resistance or the value of the membrane filtration pressure 3. The method for determining the operating condition of the membrane filtration device according to claim 2, wherein when it converges, the operating condition of the virtual flow rate adjusting means is determined to be good. 前記判断結果において、仮想的な流量調整手段の運転条件を非と判断したときに、前記仮想的な流量調整手段の運転条件に相当する仮想的な膜ろ過流量の値より、仮想的な膜ろ過流量の値が小さくなるような仮想的な流量調整手段の運転条件に変更し、変更された仮想的な流量調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な流量調整手段の運転条件の是非を判断すること、および、前記仮想的な流量調整手段の運転条件が是と判断したときに、前記仮想的な流量調整手段の運転条件を適正な流量調整手段の運転条件とすることを特徴とする請求項2〜4のいずれかに記載の膜ろ過装置の運転条件の決定方法。 In the determination result, when it is determined that the operating condition of the virtual flow rate adjusting unit is not, the virtual membrane filtration value is calculated from the value of the virtual membrane filtration flow rate corresponding to the operating condition of the virtual flow rate adjusting unit. Change to the operating condition of the virtual flow rate adjusting means such that the value of the flow rate becomes small, and from the changed operating condition of the virtual flow rate adjusting means, the fluctuation of the component amount adhering to the separation membrane again, Predicting fluctuations in membrane filtration pressure or fluctuations in membrane resistance, determining whether or not the operating conditions of the virtual flow rate adjusting means after the change are appropriate based on the prediction results, and the virtual flow rate The operating condition of the virtual flow rate adjusting means is set as an appropriate operating condition of the flow rate adjusting means when it is determined that the operating condition of the adjusting means is good. A method for determining the operating conditions of a membrane filtration device. 少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、および、前記圧力発生手段によって発生する圧力差(以下、膜ろ過圧力)を調整する圧力調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記膜ろ過圧力の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記圧力調整手段の運転条件を決定することを含むことを特徴とする膜ろ過装置の運転条件の決定方法。 At least the separation membrane, pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, and the pressure difference generated by the pressure generating means (hereinafter referred to as membrane filtration pressure) are adjusted. This is a method for determining the operating conditions of a membrane filtration device that uses a membrane filtration device having pressure adjustment means to filter the filtrate to be filtered through the separation membrane and adjust the membrane filtration pressure simultaneously or sequentially with the filtration. From the data representing the type and amount of components of the liquid to be filtered and the time-series changes in membrane filtration pressure, fluctuations in the amount of components adhering to the separation membrane, membrane filtration flow rate or membrane filtration A method for determining operating conditions of a membrane filtration device, comprising predicting fluctuations in flux or fluctuations in membrane resistance, and determining operating conditions of the pressure adjusting means based on the prediction result. 仮想的な圧力調整手段の運転条件から、前記分離膜に付着している前記被ろ過液の構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記仮想的な圧力調整手段の運転条件の是非を判断し、前記判断結果において是と判断された前記仮想的な圧力調整手段の運転条件の中から、適正な圧力調整手段の運転条件を決定し、前記決定された適正な圧力調整手段の運転条件に基づいて、前記圧力調整手段の運転条件を決定することを特徴とする請求項6に記載の膜ろ過装置の運転条件の決定方法。 Predicts fluctuations in the amount of constituents of the liquid to be filtered adhering to the separation membrane, fluctuations in the membrane filtration flow rate, fluctuations in the membrane filtration flux, or fluctuations in membrane resistance from the operating conditions of the virtual pressure adjustment means Then, based on the prediction result, it is determined whether or not the operating condition of the virtual pressure adjusting means is appropriate, and the appropriate operating condition of the virtual pressure adjusting means determined as good in the determination result is determined appropriately. 7. The membrane filtration device according to claim 6, wherein operating conditions of the pressure adjusting means are determined, and operating conditions of the pressure adjusting means are determined based on the determined operating conditions of the appropriate pressure adjusting means. How to determine the operating conditions. 前記予測に際し、仮想的な圧力調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、あるいは、膜抵抗の値があらかじめ決定された所定値以下、あるいは、膜ろ過流束の値あるいは膜ろ過流量の値があらかじめ決定された所定値以上となったときに、前記仮想的な圧力調整手段の運転条件を是と判断することを特徴とする請求項7に記載の膜ろ過装置の運転条件の決定方法。 At the time of the prediction, the prediction is performed using the operating conditions of the virtual pressure adjusting means, and the value of the constituent component adhering to the separation membrane or the value of the membrane resistance is determined in advance in the prediction result. When the value of the membrane filtration flux or the value of the membrane filtration flow rate is equal to or greater than a predetermined value determined in advance, it is determined that the operating condition of the virtual pressure adjusting means is correct. The method for determining the operating conditions of the membrane filtration device according to claim 7. 前記予測に際し、仮想的な圧力調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、あるいは、膜抵抗の値が収束するときに、前記仮想的な圧力調整手段の運転条件を是と判断することを特徴とする請求項7に記載の膜ろ過装置の運転条件の決定方法。 When the prediction is performed using the operating conditions of the virtual pressure adjusting means, and the value of the constituent component adhering to the separation membrane or the value of the membrane resistance converges in the prediction result The method for determining the operating condition of the membrane filtration device according to claim 7, wherein the operating condition of the virtual pressure adjusting means is determined to be good. 前記判断結果において、仮想的な圧力調整手段の運転条件を非と判断したときに、前記仮想的な圧力調整手段の運転条件に相当する仮想的な膜ろ過圧力の値より、仮想的な膜ろ過圧力の値が小さくなるような仮想的な圧力調整手段の運転条件に変更し、変更された仮想的な圧力調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過流量の変動、膜ろ過流束の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な圧力調整手段の運転条件の是非を判断すること、および、前記仮想的な調整手段の運転条件が是と判断したときに、前記仮想的な圧力調整手段の運転条件を適正な圧力調整手段の運転条件とすることを特徴とする請求項7〜9のいずれかに記載の膜ろ過装置の運転条件の決定方法。 In the determination result, when it is determined that the operating condition of the virtual pressure adjusting unit is not, a virtual membrane filtration value is calculated based on a virtual membrane filtration pressure value corresponding to the operating condition of the virtual pressure adjusting unit. Change to the operating condition of the virtual pressure adjusting means such that the pressure value becomes small, and from the changed operating condition of the virtual pressure adjusting means, the fluctuation of the component amount adhering to the separation membrane again, Predicting the fluctuation of the membrane filtration flow rate, the fluctuation of the membrane filtration flux, or the fluctuation of the membrane resistance, and determining the appropriateness of the operating conditions of the virtual pressure adjusting means after the change based on the prediction result; And when the operating condition of the virtual adjusting means is determined to be good, the operating condition of the virtual pressure adjusting means is set as an appropriate operating condition of the pressure adjusting means. Operating conditions of the membrane filtration device according to any one of The method of determination. 少なくとも、分離膜、および、被ろ過液の構成成分量を調整する構成成分量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記被ろ過液の構成成分量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過流量の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記構成成分量調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。 Using at least a separation membrane and a membrane filtration device having a component amount adjusting means for adjusting a component amount of the filtrate, the filtrate is filtered through the separation membrane, and simultaneously or sequentially with the filtration. A method for determining the operating conditions of a membrane filtration device for adjusting the amount of constituents of the filtrate to be filtered, which represents the type and amount of constituents of the filtrate and the time-series changes in the membrane filtration flow rate. Based on the data, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration pressure, or the fluctuation of the membrane resistance is predicted, and the operating condition of the component quantity adjusting means is determined based on the prediction result To determine the operating conditions of the membrane filtration device. 少なくとも、分離膜、および、被ろ過液の構成成分量を調整する構成成分量調整手段を有する膜ろ過装置を用いて、前記被ろ過液を前記分離膜によりろ過し、ろ過と同時または逐次的に前記被ろ過液の構成成分量の調整を行う膜ろ過装置の運転条件の決定方法であって、被ろ過液の構成成分の種類および構成成分量、および、膜ろ過圧力の時系列的変化を表すデータから、前記分離膜に付着している構成成分量の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記構成成分量調整手段の運転条件を決定することを含む膜ろ過装置の運転条件の決定方法。 Using at least a separation membrane and a membrane filtration device having a component amount adjusting means for adjusting a component amount of the filtrate, the filtrate is filtered through the separation membrane, and simultaneously or sequentially with the filtration. A method for determining the operating conditions of a membrane filtration device for adjusting the amount of component of the filtrate to be filtrated, which represents the type and amount of components of the filtrate and the time-series change in membrane filtration pressure. From the data, the fluctuation of the component amount adhering to the separation membrane, the fluctuation of the membrane filtration flow rate or the membrane filtration flux, or the fluctuation of the membrane resistance is predicted, and the component quantity adjustment means based on the prediction result A method for determining the operating conditions of a membrane filtration apparatus, including determining the operating conditions. 仮想的な構成成分量調整手段の運転条件から、前記分離膜に付着している前記被ろ過液の構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは膜抵抗の変動を予測し、前記予測結果に基づいて、前記仮想的な構成成分量調整手段の運転条件の是非を判断し、前記判断結果において是と判断された前記仮想的な構成成分量調整手段の運転条件の中から、適正な構成成分量調整手段の運転条件を決定し、前記決定された適正な構成成分量調整手段の運転条件に基づいて、前記構成成分量調整手段の運転条件を決定することを特徴とする請求項11または12に記載の膜ろ過装置の運転条件の決定方法。 From the operating conditions of the virtual component amount adjusting means, the variation of the component amount of the liquid to be filtered adhering to the separation membrane, the variation of the membrane filtration pressure, the variation of the membrane filtration flow rate or the membrane filtration flux, or Fluctuation of membrane resistance is predicted, and based on the prediction result, whether or not the operating condition of the virtual component amount adjusting means is determined, and the virtual component amount adjustment determined to be good in the determination result From the operating conditions of the means, an appropriate operating condition of the component amount adjusting means is determined, and based on the determined operating condition of the appropriate constituent amount adjusting means, the operating condition of the constituent amount adjusting means is determined. 13. The method for determining operating conditions of a membrane filtration device according to claim 11 or 12, wherein the method is determined. 前記予測に際し、仮想的な構成成分量調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、膜抵抗の値あるいは膜ろ過圧力の値があらかじめ決定された所定値以下、あるいは、膜ろ過流束の値あるいは膜ろ過流量の値があらかじめ決定された所定値以上となったときに、前記仮想的な構成成分量調整手段の運転条件を是と判断することを特徴とする請求項13に記載の膜ろ過装置の運転条件の決定方法。 At the time of the prediction, the prediction is performed using the operating condition of the virtual component amount adjusting means, and in the result of the prediction, the value of the component amount adhering to the separation membrane, the value of the membrane resistance or the membrane filtration pressure When the value of is equal to or less than a predetermined value, or when the value of the membrane filtration flux or the value of the membrane filtration flow rate is equal to or greater than the predetermined value, the operation of the virtual component amount adjusting means 14. The method for determining operating conditions of a membrane filtration device according to claim 13, wherein the condition is judged as good. 前記予測に際し、仮想的な構成成分量調整手段の運転条件を用いて予測を行い、前記予測の結果において、前記分離膜に付着している構成成分量の値、膜抵抗の値、膜ろ過圧力の値、膜ろ過流束の値あるいは膜ろ過流量の値が収束するときに、前記仮想的な構成成分量調整手段の運転条件を是と判断することを特徴とする請求項13に記載の膜ろ過装置の運転条件の決定方法。 At the time of the prediction, prediction is performed using the operating conditions of the virtual component amount adjusting means, and in the prediction result, the value of the component amount adhering to the separation membrane, the value of the membrane resistance, the membrane filtration pressure 14. The membrane according to claim 13, wherein when the value of the membrane filtration flux, the value of the membrane filtration flow rate, or the value of the membrane filtration flow rate converges, it is determined that the operating condition of the virtual component amount adjusting means is correct. A method for determining the operating conditions of a filtration device. 前記判断結果において、仮想的な構成成分量調整手段の運転条件を非と判断したときに、前記仮想的な構成成分量調整手段の運転条件に相当する仮想的な被ろ過液の構成成分量より、仮想的な被ろ過液の構成成分量が小さくなるような仮想的な構成成分量調整手段の運転条件に変更し、変更された仮想的な構成成分量調整手段の運転条件から、再度前記分離膜に付着している構成成分量の変動、膜ろ過圧力の変動、膜ろ過流量もしくは膜ろ過流束の変動、あるいは、膜抵抗の変動を予測し、該予測結果に基づいて、前記変更後の仮想的な構成成分量調整手段の運転条件の是非を判断すること、および、前記仮想的な構成成分量調整手段の運転条件が是と判断したときに、前記仮想的な構成成分量調整手段の運転条件を適正な構成成分量調整手段の運転条件とすることを特徴とする請求項13〜15のいずれかに記載の膜ろ過装置の運転条件の決定方法。 In the determination result, when it is determined that the operating condition of the virtual component amount adjusting unit is not, from the component amount of the virtual liquid to be filtered corresponding to the operating condition of the virtual component amount adjusting unit. Change to the operating condition of the virtual component amount adjusting means so that the component quantity of the virtual liquid to be filtered becomes small, and again from the changed operating condition of the virtual component quantity adjusting means, the separation Predict fluctuations in the amount of components adhering to the membrane, fluctuations in membrane filtration pressure, fluctuations in membrane filtration flow rate or membrane filtration flux, or fluctuations in membrane resistance, and based on the prediction results, Determining whether or not the operating condition of the virtual component amount adjusting means is correct, and when the operating condition of the virtual component amount adjusting means is determined to be good, the virtual component amount adjusting means Adjusting the appropriate amount of components for operating conditions Method of determining the operating conditions of the membrane filtration device according to any one of claims 13 to 15, characterized in that the operating conditions. 前記構成成分量調整手段が、被ろ過液を排出すること、あるいは、被ろ過液を希釈することによってなされることを特徴とする請求項11〜16のいずれかに記載の膜ろ過装置の運転条件の決定方法。 The operating condition of the membrane filtration device according to any one of claims 11 to 16, wherein the component amount adjusting means is made by discharging the filtrate or diluting the filtrate. How to determine. 前記被ろ過液の構成成分の種類として、被ろ過液の上清成分及び/又は固形成分を用いることを特徴とする請求項1〜17のいずれかに記載の膜ろ過装置の運転条件の決定方法。 The method for determining operating conditions of a membrane filtration device according to any one of claims 1 to 17, wherein a supernatant component and / or a solid component of the liquid to be filtered is used as a kind of constituent components of the liquid to be filtered. . 前記予測が、前記被ろ過液の構成成分量の時系列的変化を表すデータ、膜ろ過流量の時系列的変化を表すデータ、あるいは、膜ろ過圧力の時系列的変化を表すデータに基づいて、前記分離膜に付着している構成成分量の値を計算する計算ステップ100を含むことを特徴とする請求項1〜18のいずれかに記載の膜ろ過装置の運転条件の決定方法。 Based on the data representing the time-series change of the component amount of the filtrate to be filtered, the data representing the time-series change of the membrane filtration flow rate, or the data representing the time-series change of the membrane filtration pressure, The method for determining operating conditions of a membrane filtration device according to any one of claims 1 to 18, further comprising a calculation step 100 for calculating a value of a component amount adhering to the separation membrane. 前記計算ステップ100が、前記分離膜に付着している構成成分量の変化量を、前記被ろ過液の構成成分に含まれる物質が分離膜に付着する速度と剥離する速度との差として表現される計算式に基づいて計算される計算ステップ101であることを特徴とする請求項19に記載の膜ろ過装置の運転条件の決定方法。 In the calculation step 100, the amount of change in the amount of the component adhering to the separation membrane is expressed as the difference between the rate at which the substance contained in the component of the liquid to be filtered adheres to the separation membrane and the rate of separation. 20. The method for determining operating conditions of a membrane filtration device according to claim 19, characterized in that the calculation step 101 is calculated based on the following calculation formula. 前記被ろ過液の構成成分に含まれる物質が前記分離膜から剥離する速度が、前記分離膜に付着している構成成分量の値の2次以上の高次式に基づいて決定されることを特徴とする請求項20に記載の膜ろ過装置の運転条件の決定方法。 The rate at which the substances contained in the constituents of the liquid to be filtered peel from the separation membrane is determined based on a higher-order expression of the second or higher order of the amount of the constituent components adhering to the separation membrane. 21. A method for determining operating conditions of a membrane filtration device according to claim 20 characterized in. 前記分離膜に付着している上清成分の物質量の変化量を表現した計算式が、前記分離膜に付着している固形成分の物質量の値の項を含んでいる計算式であること、及び/又は、前記分離膜に付着している固形成分の物質量の変化量を表現した計算式が、前記分離膜に付着している上清成分の物質量の値の項を含んでいる計算式であることを特徴とする請求項20に記載の膜ろ過装置の運転条件の決定方法。 The calculation formula expressing the amount of change in the amount of the supernatant component adhering to the separation membrane is a calculation formula including the term of the amount of the solid component adhering to the separation membrane. And / or the calculation expression expressing the amount of change in the amount of the solid component adhering to the separation membrane includes a term of the amount of the substance amount of the supernatant component adhering to the separation membrane. 21. The method for determining operating conditions of a membrane filtration device according to claim 20, which is a calculation formula. 被ろ過液が、微生物を含有する液体であることを特徴とする請求項1〜22のいずれかに記載の膜ろ過装置の運転条件の決定方法。 The method for determining operating conditions of a membrane filtration device according to any one of claims 1 to 22, wherein the liquid to be filtered is a liquid containing microorganisms. 請求項1〜23のいずれかに記載の膜ろ過装置の運転条件の決定方法において決定された前記圧力調整手段の運転条件、あるいは、前記流量調整手段の運転条件、あるいは、前記構成成分量調整手段の運転条件に基づいて、前記圧力調整手段の運転条件、あるいは、前記流量調整手段の運転条件、あるいは、前記構成成分量調整手段の運転条件を制御することを特徴とする膜ろ過装置の運転方法。 24. The operating condition of the pressure adjusting means, the operating condition of the flow rate adjusting means, or the component amount adjusting means determined in the method for determining the operating conditions of the membrane filtration device according to claim 1. Based on the operating conditions, the operating conditions of the pressure adjusting means, the operating conditions of the flow rate adjusting means, or the operating conditions of the component amount adjusting means are controlled. . 少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、前記圧力発生手段によって得られる膜ろ過の流量を調整する流量調整手段、および、前記流量調整手段の運転を制御する流量制御手段を有する膜ろ過装置であって、前記流量制御手段が、請求項1〜5のいずれか、あるいは、請求項18〜23のいずれかに記載の膜ろ過装置の運転条件の決定方法において決定された前記流量調整手段の運転を制御するものであることを特徴とする膜ろ過装置。 At least a separation membrane, a pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, a flow rate adjusting means for adjusting a flow rate of membrane filtration obtained by the pressure generating means, and 24. A membrane filtration device having a flow rate control means for controlling the operation of the flow rate adjustment means, wherein the flow rate control means is any one of claims 1 to 5, or any one of claims 18 to 23. A membrane filtration apparatus for controlling the operation of the flow rate adjusting means determined in the method for determining the operating conditions of the apparatus. 少なくとも、分離膜、前記分離膜の被ろ過液側と膜ろ過液側との圧力差を発生させる圧力発生手段、前記圧力発生手段によって発生する膜ろ過圧力を調整する圧力調整手段、および、前記圧力調整手段の運転を制御する圧力制御手段を有する膜ろ過装置であって、前記圧力制御手段が、請求項6〜10のいずれか、あるいは、請求項18〜23のいずれかに記載の膜ろ過装置の運転条件の決定方法において決定された前記圧力調整手段の運転を制御するものであることを特徴とする膜ろ過装置。 At least a separation membrane, a pressure generating means for generating a pressure difference between the filtrate side and the membrane filtrate side of the separation membrane, a pressure adjusting means for adjusting a membrane filtration pressure generated by the pressure generating means, and the pressure It is a membrane filtration apparatus which has a pressure control means which controls operation | movement of an adjustment means, Comprising: The said pressure control means is any one of Claims 6-10, or the membrane filtration apparatus in any one of Claims 18-23 A membrane filtration apparatus for controlling the operation of the pressure adjusting means determined in the operating condition determining method. 少なくとも分離膜、被ろ過液の構成成分量を調整する構成成分量調整手段、および該構成成分量調整手段の運転を制御する構成成分量制御手段を有する膜ろ過装置であって、前記構成成分量制御手段が、請求項11〜23のいずれかに記載の膜ろ過装置の運転条件の決定方法において決定された前記構成成分量調整手段の運転を制御するものであることを特徴とする膜ろ過装置。 A membrane filtration apparatus comprising at least a separation membrane, a component amount adjusting means for adjusting a component amount of a liquid to be filtered, and a component amount control means for controlling the operation of the component amount adjusting means, wherein the component amount 24. A membrane filtration device characterized in that the control means controls the operation of the component amount adjusting means determined in the method for determining the operating conditions of the membrane filtration device according to any one of claims 11 to 23. .
JP2006237307A 2005-09-01 2006-09-01 Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same Expired - Fee Related JP5034381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237307A JP5034381B2 (en) 2005-09-01 2006-09-01 Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005253179 2005-09-01
JP2005253179 2005-09-01
JP2005362917 2005-12-16
JP2005362917 2005-12-16
JP2006237307A JP5034381B2 (en) 2005-09-01 2006-09-01 Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same

Publications (3)

Publication Number Publication Date
JP2007185648A true JP2007185648A (en) 2007-07-26
JP2007185648A5 JP2007185648A5 (en) 2009-10-15
JP5034381B2 JP5034381B2 (en) 2012-09-26

Family

ID=38341179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237307A Expired - Fee Related JP5034381B2 (en) 2005-09-01 2006-09-01 Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same

Country Status (1)

Country Link
JP (1) JP5034381B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
WO2015083773A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Membrane separation device, circulated water utilization system
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
JP2021159870A (en) * 2020-03-31 2021-10-11 水ing株式会社 Water treatment system, operation and management support system for water treatment system, and operation method for water treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290983A (en) * 1997-04-22 1998-11-04 Kubota Corp Operation of membrane treating device
JP2000033241A (en) * 1998-05-12 2000-02-02 Toray Ind Inc Operation of membrane separator
JP2000140585A (en) * 1998-09-02 2000-05-23 Toray Ind Inc Operation of membrane separation apparatus, and membrane separation apparatus
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2002263452A (en) * 2001-03-13 2002-09-17 Univ Nagoya Membrane filtering method and membrane filtering system
JP2003251153A (en) * 2002-02-27 2003-09-09 Univ Nagoya Method and device for determining treatment water supply method of membrane filtration apparatus
JP2005144290A (en) * 2003-11-13 2005-06-09 Ngk Insulators Ltd Method for controlling mlss

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290983A (en) * 1997-04-22 1998-11-04 Kubota Corp Operation of membrane treating device
JP2000033241A (en) * 1998-05-12 2000-02-02 Toray Ind Inc Operation of membrane separator
JP2000140585A (en) * 1998-09-02 2000-05-23 Toray Ind Inc Operation of membrane separation apparatus, and membrane separation apparatus
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2002263452A (en) * 2001-03-13 2002-09-17 Univ Nagoya Membrane filtering method and membrane filtering system
JP2003251153A (en) * 2002-02-27 2003-09-09 Univ Nagoya Method and device for determining treatment water supply method of membrane filtration apparatus
JP2005144290A (en) * 2003-11-13 2005-06-09 Ngk Insulators Ltd Method for controlling mlss

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054506A1 (en) * 2007-10-25 2009-04-30 Toray Industries, Inc. Film filtration prediction method, prediction apparatus and film filtration prediction program
US8340924B2 (en) 2007-10-25 2012-12-25 Toray Industries, Inc. Membranous filtration prediction method, prediction apparatus, and membranous filtration prediction program
JP5365509B2 (en) * 2007-10-25 2013-12-11 東レ株式会社 Membrane filtration prediction method, prediction apparatus, and membrane filtration prediction program
WO2015083773A1 (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Membrane separation device, circulated water utilization system
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
JP2021159870A (en) * 2020-03-31 2021-10-11 水ing株式会社 Water treatment system, operation and management support system for water treatment system, and operation method for water treatment system
JP7437998B2 (en) 2020-03-31 2024-02-26 水ing株式会社 Water treatment system, water treatment system operation management support system, and water treatment system operation method

Also Published As

Publication number Publication date
JP5034381B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5034381B2 (en) Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same
JP4770726B2 (en) Method for determining operating conditions of membrane filtration device, membrane filtration device using the same
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
US11141701B2 (en) Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
CN110431111B (en) Membrane separation device and membrane separation method
JP2014188442A (en) Operation method of organic wastewater treatment apparatus and organic wastewater treatment apparatus
JP5034326B2 (en) Membrane filtration prediction method and membrane filtration prediction program
JP5399065B2 (en) Wastewater treatment method
CN111727174B (en) Aeration amount control system and aeration amount control method
JPWO2009054506A1 (en) Membrane filtration prediction method, prediction apparatus, and membrane filtration prediction program
AU2007298198B2 (en) Method of wastewater disposal
JP2007000727A (en) Method for operating membrane separation activated sludge treatment apparatus
JPH11333490A (en) Operating method for submerged membrane type filtration equipment
JP5034337B2 (en) Method for determining operating conditions of membrane filtration device, and method of operating membrane filtration device using the same
JP4979519B2 (en) Operation method of membrane separation activated sludge treatment equipment
CN111032581B (en) Water treatment control system
JP5868217B2 (en) Membrane separation activated sludge treatment method and system
JP4046661B2 (en) Wastewater treatment method
JP2003205300A (en) Method and device for controlling operation of membrane type methane fermenter
JP2023149455A (en) Separation membrane operation method, separation membrane device and operation condition determination program for the membrane
JP4576967B6 (en) Method and apparatus for analyzing membrane filterability of undiluted solution, and method and apparatus for membrane separation
JP2013086069A (en) Fresh water producing method
JP2007268389A (en) Apparatus for automatically adjusting mlss concentration
Bugge et al. Compressibility of membrane bioreactor sludge: modelling cake build-up and specific cake resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees