JP2021159870A - Water treatment system, operation and management support system for water treatment system, and operation method for water treatment system - Google Patents

Water treatment system, operation and management support system for water treatment system, and operation method for water treatment system Download PDF

Info

Publication number
JP2021159870A
JP2021159870A JP2020064988A JP2020064988A JP2021159870A JP 2021159870 A JP2021159870 A JP 2021159870A JP 2020064988 A JP2020064988 A JP 2020064988A JP 2020064988 A JP2020064988 A JP 2020064988A JP 2021159870 A JP2021159870 A JP 2021159870A
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
osmosis membrane
information
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020064988A
Other languages
Japanese (ja)
Other versions
JP7437998B2 (en
Inventor
鵬哲 隋
Pengzhe SUI
和彰 島村
Kazuaki Shimamura
美有 鈴木
Miyu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2020064988A priority Critical patent/JP7437998B2/en
Publication of JP2021159870A publication Critical patent/JP2021159870A/en
Application granted granted Critical
Publication of JP7437998B2 publication Critical patent/JP7437998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To provide a water treatment system, an operation and management support system for a water treatment system, and an operation method for a water treatment system, which is capable of properly evaluating an operating condition in a water treatment system equipped with a reverse osmosis membrane device and optimizing the operating condition of the water treatment system.SOLUTION: A water treatment system 1000 includes a reverse osmosis membrane device 10 which treats feed water by reverse osmosis to obtain concentrated water and permeate water, collects reverse osmosis membrane operation information including at least one of the following: water quality information of the feed water, discharge pressure of the pressure pump that pressurizes the feed water supplied to the reverse osmosis membrane device, flow rate of the permeate water, flow rate of the concentrated water, and flux information of the reverse osmosis membrane. Predicting the pressure loss and/or the quality of the permeate water of the reverse osmosis membrane device based on the learned model obtained by machine learning using the collected reverse osmosis membrane operation information, producing optimization information including operating conditions and/or maintenance timing information of the reverse osmosis membrane device based on the results of the prediction, and controlling the reverse osmosis membrane device based on the produced optimization information. The water treatment system is equipped with an operation management support system 30 which controls the reverse osmosis membrane device based on the produced optimization information.SELECTED DRAWING: Figure 1

Description

本発明は、水処理システムに関し、特に、逆浸透膜装置を利用した水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法に関する。 The present invention relates to a water treatment system, and more particularly to a water treatment system using a reverse osmosis membrane device, an operation management support system for the water treatment system, and an operation method for the water treatment system.

工業用純水の製造、海水の淡水化、工業廃水の回収及び再利用には、逆浸透膜を用いた水処理システムが利用される。このような逆浸透膜を用いた水処理システムにおいては、被処理水温度の上昇、膜劣化に伴う脱塩率の低減の発生、濃縮の進行に伴うスケールの発生、膜ファウリングの進行に伴う濾過差圧の上昇等の種々の運転トラブルが生じることが知られており、運転条件を最適化するための種々の工夫がなされている。 A water treatment system using a reverse osmosis membrane is used for the production of industrial pure water, desalination of seawater, and recovery and reuse of industrial wastewater. In a water treatment system using such a reverse osmosis membrane, the temperature of the water to be treated rises, the desalination rate decreases due to membrane deterioration, scale occurs as the concentration progresses, and membrane fouling progresses. It is known that various operation troubles such as an increase in filtration differential pressure occur, and various measures have been taken to optimize the operation conditions.

例えば、特開平8−180311号公報(特許文献1)には、水透過係数という指標を用いて逆浸透膜の状態を判断し、膜洗浄又は膜交換を行うタイミングを決定する技術が提案されている。 For example, Japanese Patent Application Laid-Open No. 8-180311 (Patent Document 1) proposes a technique for determining the state of a reverse osmosis membrane using an index called a water permeability coefficient and determining the timing for membrane cleaning or membrane replacement. There is.

特開2013−161336号公報(特許文献2)には、水処理プラントの運転において、複数の予測モデルと、プラント設備の稼働実績データ、現在の稼働状況に関するデータ、気象観測データ、及び天気予報に関するデータを用いて、プラント設備の監視対象量を予測する技術が提案されている。 Japanese Unexamined Patent Publication No. 2013-161336 (Patent Document 2) relates to a plurality of prediction models, operation record data of plant equipment, data on current operation status, meteorological observation data, and weather forecast in the operation of a water treatment plant. A technique for predicting the monitored amount of plant equipment using data has been proposed.

特開平8−180311号公報Japanese Unexamined Patent Publication No. 8-180311 特開2013−161336号公報Japanese Unexamined Patent Publication No. 2013-161336

特許文献1に記載される技術においては、逆浸透膜を評価するために、透過水流量、供給水圧力、及び供給水側膜面浸透圧の3つの測定結果に基づく水透過係数を算出している。しかしながら、逆浸透膜モジュールの性能評価に際しては、透過水流量、供給水圧力、及び供給水側膜面浸透圧以外の因子が複合的に影響を与える場合があるため、より適切な性能評価方法としてはまだ検討の余地がある。 In the technique described in Patent Document 1, in order to evaluate a reverse osmosis membrane, a water permeation coefficient based on three measurement results of permeation water flow rate, supply water pressure, and supply water side membrane surface osmotic pressure is calculated. There is. However, when evaluating the performance of the reverse osmosis membrane module, factors other than the permeated water flow rate, the supply water pressure, and the supply water side membrane surface osmotic pressure may have a combined effect, so this is a more appropriate performance evaluation method. Still has room for consideration.

特許文献2に記載される技術は、主として、下水処理場での自動監視を目標としており、気象観測データ及び天気情報等を利用することには意味があると思われる。しかしながら、逆浸透膜の性能評価に対して特許文献2を適用しても最適な監視が行えるとは限らない。 The technique described in Patent Document 2 mainly aims at automatic monitoring at a sewage treatment plant, and it seems that it is meaningful to use meteorological observation data and weather information. However, even if Patent Document 2 is applied to the performance evaluation of the reverse osmosis membrane, optimum monitoring cannot always be performed.

上記課題を鑑み、本発明は、逆浸透膜装置を備える水処理システム内の運転状況を適切に評価でき、水処理システムの運転条件の最適化を行うことが可能な水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法を提供する。 In view of the above problems, the present invention is a water treatment system and a water treatment system capable of appropriately evaluating the operating condition in a water treatment system provided with a reverse osmosis membrane device and optimizing the operating conditions of the water treatment system. Provides operation methods for operation management support systems and water treatment systems.

本発明者は鋭意検討を重ねた結果、逆浸透膜装置を備える水処理システムの運転情報を用いて人工知能モデルを作製し、作製した人工知能モデルを利用して逆浸透膜の圧力損失及び/又は透過水の水質を予測し、予測結果に基づき水処理システムの運転条件の最適化を図ることが有効であるとの知見を得た。 As a result of diligent studies, the present inventor created an artificial intelligence model using the operation information of a water treatment system equipped with a reverse osmosis membrane device, and used the prepared artificial intelligence model to reduce the pressure loss of the reverse osmosis membrane and / Alternatively, it was found that it is effective to predict the quality of permeated water and optimize the operating conditions of the water treatment system based on the prediction results.

上記の知見を基礎として完成した本発明は一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、供給水の水質情報、逆浸透膜装置に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、逆浸透膜装置の圧力損失及び/又は透過水の水質を予測し、予測の結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、作製された最適化情報に基づいて逆浸透膜装置を制御する運転管理支援システムとを備える水処理システムである。 In one aspect, the present invention completed based on the above findings supplies the supplied water to the back-penetration membrane device for obtaining concentrated water and permeated water by treating the feed water with the back-penetration membrane, and the water quality information of the supply water and the back-penetration membrane device. Back-penetration membrane operation that collects and collects back-penetration membrane operation information including at least one of the discharge pressure of the pressurizing pump that pressurizes the supply water, the flow rate of permeated water, the flow rate of concentrated water, and the flux information of the back-penetration membrane. Based on the trained model obtained by machine learning using information, the pressure loss and / or the quality of permeated water of the back-penetrating membrane device is predicted, and based on the prediction result, the operating conditions and / or the operating conditions of the back-penetrating membrane device and / Alternatively, it is a water treatment system including an operation management support system that creates optimization information including maintenance timing information and controls the back-penetrating membrane device based on the created optimization information.

本発明に係る水処理システムは一実施態様において、運転管理支援システムが、予測の結果に基づいて、運転条件として、加圧ポンプの吐出圧を制御する吐出圧制御情報及び/又は透過水の造水量を制御する透過水造水量制御情報についての最適化情報を作製し、作製した最適化情報に基づいて、加圧ポンプの吐出圧及び/又は透過水の造水量を制御する。 In one embodiment of the water treatment system according to the present invention, the operation management support system creates discharge pressure control information and / or permeated water that controls the discharge pressure of the pressurizing pump as operating conditions based on the prediction result. Optimized information for permeated water production amount control information for controlling the amount of water is produced, and the discharge pressure of the pressurizing pump and / or the amount of permeated water produced is controlled based on the produced optimization information.

本発明に係る水処理システムは別の一実施態様において、運転管理支援システムが、予測の結果に基づいて、メンテナンスタイミング情報として、逆浸透膜装置の膜洗浄タイミング及び洗浄時間の制御情報を含む洗浄タイミング制御情報と、逆浸透膜装置の膜交換タイミングの制御情報を含む交換タイミング制御情報とについての最適化情報を作製し、作製した洗浄タイミング制御情報及び交換タイミング制御情報に基づいて、最適となる逆浸透膜装置の膜洗浄タイミング又は膜交換タイミングとなるときに、警告信号を発する。 In another embodiment of the water treatment system according to the present invention, the operation management support system performs cleaning including control information of the membrane cleaning timing and cleaning time of the reverse osmosis membrane device as maintenance timing information based on the prediction result. Optimization information about the timing control information and the replacement timing control information including the control information of the membrane replacement timing of the reverse osmosis membrane device is created, and the optimization is performed based on the prepared cleaning timing control information and replacement timing control information. A warning signal is issued when the membrane cleaning timing or membrane replacement timing of the reverse osmosis membrane device is reached.

本発明に係る水処理システムは更に別の一実施態様において、逆浸透膜装置の上流側に配置され、被処理水を前処理して逆浸透膜装置に供給するための供給水を得る前処理装置を更に備え、運転管理支援システムが、前処理装置の運転条件を最適化するための前処理装置運転制御情報を作製し、作製した前処理装置運転制御情報に基づいて、前処理装置を制御する。 In still another embodiment, the water treatment system according to the present invention is arranged on the upstream side of the reverse osmosis membrane device, and is pretreated to obtain supply water for pretreating the water to be treated and supplying it to the reverse osmosis membrane device. A device is further provided, and the operation management support system creates pretreatment device operation control information for optimizing the operation conditions of the pretreatment device, and controls the pretreatment device based on the created pretreatment device operation control information. do.

本発明に係る水処理システムは更に別の一実施態様において、前処理装置が、被処理水に凝集剤を添加する凝集剤添加手段を備え、運転管理支援システムが、被処理水の水質の予測結果に基づいて被処理水に注入する凝集剤注入率の最適化情報を作製し、作製した最適化情報に基づいて凝集剤注入率を制御する。 In still another embodiment of the water treatment system according to the present invention, the pretreatment apparatus includes a coagulant addition means for adding a coagulant to the water to be treated, and the operation management support system predicts the water quality of the water to be treated. Based on the result, the optimization information of the coagulant injection rate to be injected into the water to be treated is prepared, and the coagulant injection rate is controlled based on the prepared optimization information.

本発明に係る水処理システムは更に別の一実施態様において、逆浸透膜装置が、互いに直列に接続された複数の逆浸透膜バンクと、逆浸透膜バンクの運転状況を測定可能な計器と、を備えており、運転管理支援システムが、複数の逆浸透膜バンクのそれぞれに対してそれぞれ最適となる洗浄タイミング、洗浄時間、又は交換タイミングとなるように、最適化情報を作製し、作製した最適化情報に基づいて、逆浸透膜装置を制御する。 In still another embodiment of the water treatment system according to the present invention, the reverse osmosis membrane apparatus includes a plurality of reverse osmosis membrane banks connected in series with each other, an instrument capable of measuring the operating status of the reverse osmosis membrane banks, and the like. The optimization information is created and created so that the operation management support system has the optimum cleaning timing, cleaning time, or replacement timing for each of the multiple reverse osmosis membrane banks. The reverse osmosis membrane device is controlled based on the chemical information.

本発明は、別の一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転管理支援システムであって、供給水の水質情報、逆浸透膜に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を取得する取得部と、逆浸透膜運転情報を用いて、水処理システムの学習済みモデルを作製する学習部と、学習済みモデルを用いて、逆浸透膜の圧力損失及び/又は透過水の水質を予測する予測部と、予測部の予測結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む逆浸透膜装置の運転最適化情報を作製する最適化情報作製部と、最適化情報に基づいて、水処理システムを制御するための制御信号を出力する制御部と、を備える水処理システムの運転管理支援システムである。 In another aspect, the present invention is an operation management support system for a water treatment system including a back-penetration membrane device for obtaining concentrated water and permeated water by back-penetrating the supply water, and water quality information of the supply water. Acquisition of back-penetration membrane operation information including at least one of the discharge pressure of the pressurizing pump that pressurizes the supply water supplied to the back-penetration membrane, the flow rate of permeated water, the flow rate of concentrated water, and the flux information of the back-penetration membrane. A learning unit that creates a trained model of a water treatment system using the back-penetrating membrane operation information, and a prediction that predicts the pressure loss of the back-penetrating membrane and / or the water quality of permeated water using the trained model. For the optimization information creation unit and the optimization information that create the operation optimization information of the back-penetrating membrane device including the operating conditions and / or maintenance timing information of the back-penetrating membrane device based on the prediction results of the unit and the prediction unit. Based on this, it is an operation management support system for a water treatment system including a control unit that outputs a control signal for controlling the water treatment system.

本発明は更に別の一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転方法において、供給水の水質情報、逆浸透膜装置に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、逆浸透膜装置の圧力損失及び/又は透過水の水質を予測し、予測の結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、最適化情報に基づいて、水処理システムを制御することを含む水処理システムの運転方法である。 In yet another aspect of the present invention, in a method of operating a water treatment system including a back-penetration membrane device for obtaining concentrated water and permeated water by back-penetrating the supply water, water quality information of the supply water and the back-penetration membrane device Reverse permeable membrane operation information is collected and collected, including at least one of the discharge pressure of the pressurizing pump that pressurizes the supply water supplied to the water supply, the flow rate of permeated water, the flow rate of concentrated water, and the flux information of the back permeable membrane. Based on the trained model obtained by machine learning using the permeable membrane operation information, the pressure loss and / or the water quality of the permeated water of the reverse permeable membrane device is predicted, and the operation of the reverse permeable membrane device is performed based on the prediction result. It is an operation method of a water treatment system including creating optimization information including condition and / or maintenance timing information and controlling the water treatment system based on the optimization information.

本発明によれば、逆浸透膜装置を備えた水処理システム内の運転状況を適切に評価でき、水処理システムの運転条件の最適化を行うことが可能な水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法が提供できる。 According to the present invention, the operation of a water treatment system and a water treatment system capable of appropriately evaluating the operating condition in a water treatment system equipped with a reverse osmosis membrane device and optimizing the operating conditions of the water treatment system. It is possible to provide a method of operating a management support system and a water treatment system.

本発明の実施の形態に係る水処理システムの一例を説明する概略図である。It is the schematic explaining an example of the water treatment system which concerns on embodiment of this invention. 本発明の実施の形態に係る水処理システムの運転管理支援システムの構成例を示す概略図である。It is a schematic diagram which shows the structural example of the operation management support system of the water treatment system which concerns on embodiment of this invention. 本発明の実施の形態に係る水処理システムの運転方法の一例を示すフロー図である。It is a flow chart which shows an example of the operation method of the water treatment system which concerns on embodiment of this invention. 本発明の実施の形態に係る水処理システムの別の装置態様を示す概略図である。It is the schematic which shows another apparatus mode of the water treatment system which concerns on embodiment of this invention. 本発明の実施の形態に係る学習済みモデルを用いて逆浸透膜装置の全体圧力損失の予測を行った場合における予測値(sim)と実測値(obs)の相関関係を表したグラフである。It is a graph showing the correlation between the predicted value (sim) and the measured value (obs) when the total pressure loss of the reverse osmosis membrane apparatus is predicted using the trained model according to the embodiment of the present invention. 本発明の実施の形態に係る学習済みモデルを用いて逆浸透膜装置の全体圧力損失の予測を行った場合における予測値(sim)と実測値(obs)の比較結果を表すグラフである。It is a graph which shows the comparison result of the predicted value (sim) and the measured value (obs) when the total pressure loss of the reverse osmosis membrane apparatus is predicted using the trained model which concerns on embodiment of this invention. 本発明の実施の形態に係る学習済みモデルを用いて透過水の導電率の予測を行った場合における予測値(sim)と実測値(obs)の相関関係を表したグラフである。It is a graph which showed the correlation of the predicted value (sim) and the measured value (obs) at the time of predicting the conductivity of permeated water using the trained model which concerns on embodiment of this invention. 本発明の実施の形態に係る学習済みモデルを用いて透過水の導電率の予測を行った場合における予測値(sim)と実測値(obs)の比較結果を表すグラフである。It is a graph which shows the comparison result of the predicted value (sim) and the measured value (obs) when the conductivity of permeated water is predicted using the trained model which concerns on embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. It is not something to do.

(水処理システム)
本発明の実施の形態に係る水処理システム1000は、図1に示すように、供給水を逆浸透膜処理して透過水を得る逆浸透膜装置10と、被処理水に前処理を行い、逆浸透膜装置10へ供給水を生成する前処理装置20と、逆浸透膜装置10及び前処理装置20の運転管理支援を行う運転管理支援システム30とを備える。
(Water treatment system)
As shown in FIG. 1, the water treatment system 1000 according to the embodiment of the present invention comprises a reverse osmosis membrane device 10 that obtains permeable water by treating the supplied water with a reverse osmosis membrane, and pretreating the water to be treated. It includes a pretreatment device 20 that generates water to be supplied to the reverse osmosis membrane device 10, and an operation management support system 30 that supports the operation management of the reverse osmosis membrane device 10 and the pretreatment device 20.

逆浸透膜装置10は、供給水を逆浸透膜処理する逆浸透膜バンク3を備える。逆浸透膜バンク3は、複数の逆浸透膜エレメントを収容した複数の逆浸透膜モジュールを備える。図1の例では逆浸透膜バンク3は1つ示されているが、典型的には、逆浸透膜バンク3は、供給水の流れに対して互いに直列に複数本配置することができる。例えば、図4に示すように、逆浸透膜バンク3を供給水の流れに対して直列に多段に配置することにより、上流側の逆浸透膜バンク3から排出される濃縮水を有効利用でき、全体としての透過水量を多く得ることができる。 The reverse osmosis membrane device 10 includes a reverse osmosis membrane bank 3 that treats the supplied water with a reverse osmosis membrane. The reverse osmosis membrane bank 3 includes a plurality of reverse osmosis membrane modules containing a plurality of reverse osmosis membrane elements. Although one reverse osmosis membrane bank 3 is shown in the example of FIG. 1, typically, a plurality of reverse osmosis membrane banks 3 can be arranged in series with each other with respect to the flow of supply water. For example, as shown in FIG. 4, by arranging the reverse osmosis membrane banks 3 in multiple stages in series with the flow of the supply water, the concentrated water discharged from the reverse osmosis membrane bank 3 on the upstream side can be effectively used. A large amount of permeated water can be obtained as a whole.

なお、第1段目の逆浸透膜バンク(ファーストバンク、1ステージともいう)の濃縮水を後段の第2段目の逆浸透膜バンク(セカンドバンク、2ステージともいう)で処理する構成を2バンク構成、更に、セカンドバンクの濃縮水を更に第3段目の逆浸透膜バンクで処理する構成を3バンク構成という。 In addition, the configuration in which the concentrated water of the first-stage reverse osmosis membrane bank (also referred to as the first bank and the first stage) is treated by the second-stage reverse osmosis membrane bank (also referred to as the second bank and the second stage) in the subsequent stage is 2 The bank configuration and the configuration in which the concentrated water in the second bank is further treated by the reverse osmosis membrane bank in the third stage are referred to as a three-bank configuration.

図1に示すように、逆浸透膜バンク3の上流側には、逆浸透膜バンク3の供給水を加圧する加圧ポンプ2が接続されている。逆浸透膜バンク3から濃縮水を排出する配管には、圧力調整弁6及びフラッシング弁7が接続される。逆浸透膜バンク3の濃縮水出口側及び透過水出口側の配管には、洗浄薬液を収容する洗浄タンク4と、洗浄タンク4内の洗浄薬液を逆浸透膜へ送給して洗浄を行うためのポンプ5とが接続されている。 As shown in FIG. 1, a pressurizing pump 2 that pressurizes the supply water of the reverse osmosis membrane bank 3 is connected to the upstream side of the reverse osmosis membrane bank 3. A pressure regulating valve 6 and a flushing valve 7 are connected to a pipe for discharging concentrated water from the reverse osmosis membrane bank 3. In order to supply the cleaning tank 4 for accommodating the cleaning chemical solution and the cleaning chemical solution in the cleaning tank 4 to the reverse osmosis membrane to perform cleaning on the pipes on the concentrated water outlet side and the permeated water outlet side of the reverse osmosis membrane bank 3. Is connected to the pump 5.

逆浸透膜バンク3から排出される濃縮水の水量を測定するために、逆浸透膜バンク3の濃縮水出口側の配管には、濃縮水流量計(FI2)16が配置されている。逆浸透膜バンク3から得られる透過水の水量を測定するために、逆浸透膜バンク3の透過水出口側の配管には、透過水流量計(FI1)17が配置されている。透過水を流す配管には更に、導電率、水温等を含む透過水の水質を測定可能な測定計(CIR)15が配置されている。 In order to measure the amount of concentrated water discharged from the reverse osmosis membrane bank 3, a concentrated water flow meter (FI2) 16 is arranged in a pipe on the outlet side of the concentrated water of the reverse osmosis membrane bank 3. In order to measure the amount of permeated water obtained from the reverse osmosis membrane bank 3, a permeated water flow meter (FI1) 17 is arranged in a pipe on the permeated water outlet side of the reverse osmosis membrane bank 3. Further, a measuring meter (CIR) 15 capable of measuring the water quality of the permeated water including the conductivity, the water temperature, etc. is arranged in the pipe through which the permeated water flows.

供給水を逆浸透膜バンク3へ供給するための配管には、供給水のpHを測定するためのpH計11が配置されている。逆浸透膜バンク3の上流側の配管には、逆浸透膜バンク3へ流入する供給水の水温を測定するための温度計(TIC)12が配置されている。逆浸透膜バンク3の入口側と出口側の配管にはそれぞれ入口圧力計(PI1)13、出口圧力計(PI2)14が配置されており、圧力計13、14の出力圧力差により、逆浸透膜バンク3の圧力損失が測定できるようになっている。 A pH meter 11 for measuring the pH of the supply water is arranged in the pipe for supplying the supply water to the reverse osmosis membrane bank 3. A thermometer (TIC) 12 for measuring the temperature of the supply water flowing into the reverse osmosis membrane bank 3 is arranged in the pipe on the upstream side of the reverse osmosis membrane bank 3. An inlet pressure gauge (PI1) 13 and an outlet pressure gauge (PI2) 14 are arranged on the inlet side and outlet side pipes of the reverse osmosis membrane bank 3, respectively, and reverse osmosis is caused by the output pressure difference between the pressure gauges 13 and 14, respectively. The pressure loss of the membrane bank 3 can be measured.

前処理装置20は、原水である被処理水を汲み上げるためのブースターポンプ21と、被処理水に凝集剤等の薬品を供給する薬品供給部(凝集剤などの添加手段)22と、被処理水に含まれる濁質等不純物を除去するための前処理を行う前処理手段23と、被処理水の水温を測定する温度計(TIC)24とを備える。前処理手段23としては、例えば、スクリーン装置、砂ろ過装置、凝集沈殿装置、空気浮揚装置、膜分離装置等を含む。 The pretreatment device 20 includes a booster pump 21 for pumping raw water to be treated, a chemical supply unit (adding means such as a coagulant) 22 for supplying chemicals such as a coagulant to the water to be treated, and water to be treated. It is provided with a pretreatment means 23 for performing pretreatment for removing impurities such as turbidity contained in the water, and a thermometer (TIC) 24 for measuring the temperature of the water to be treated. The pretreatment means 23 includes, for example, a screen device, a sand filtration device, a coagulation sedimentation device, an aerodynamic levitation device, a membrane separation device, and the like.

(運転管理支援システム)
本発明の実施の形態に係る運転管理支援システム30は、逆浸透膜装置10及び前処理装置20に接続され、所定の制御ストラテジーに基づいて、所定の動作指令を送出する汎用又は専用の情報処理装置が利用可能である。
(Operation management support system)
The operation management support system 30 according to the embodiment of the present invention is connected to the reverse osmosis membrane device 10 and the pretreatment device 20, and is a general-purpose or dedicated information processing that sends a predetermined operation command based on a predetermined control strategy. The device is available.

例えば、図2に示すように、本発明の実施の形態に係る運転管理支援システム30は、水処理システム1000が備える各装置(逆浸透膜装置10、前処理装置20)の運転を制御可能な制御装置100と、各種制御に必要な情報記憶可能な記憶装置110と、入力装置120と、出力装置130と、通信手段140とを備えることができる。 For example, as shown in FIG. 2, the operation management support system 30 according to the embodiment of the present invention can control the operation of each device (reverse osmosis membrane device 10, pretreatment device 20) included in the water treatment system 1000. A control device 100, a storage device 110 capable of storing information necessary for various controls, an input device 120, an output device 130, and a communication means 140 can be provided.

運転管理支援システム30の一部は、図1に示されるように、必ずしも逆浸透膜装置10及び前処理装置20と近接して配置される必要はなく、例えば、ネットワーク40を介して、逆浸透膜装置10及び前処理装置20に接続されてもよい。そして、運転管理支援システム30が、ネットワーク40を介して接続された別の遠隔サポートセンタ1002(図2)等から遠隔制御(オンライン制御)又は自動運転制御されるように構成してもよい。 A part of the operation management support system 30 does not necessarily have to be arranged in close proximity to the reverse osmosis membrane device 10 and the pretreatment device 20, as shown in FIG. 1, for example, the reverse osmosis through the network 40. It may be connected to the membrane device 10 and the pretreatment device 20. Then, the operation management support system 30 may be configured to be remotely controlled (online control) or automatically operated from another remote support center 1002 (FIG. 2) or the like connected via the network 40.

運転管理支援システム30は、ネットワーク40を介して、遠隔サポートセンタ1002又はサーバ50と通信可能に接続され、運転管理支援システム30が作製する学習済みモデル、或いはサーバ50又は別の水処理システム1001に記録された情報を通信手段140を介して互いに送受信して共有できるように構成されていてもよい。 The operation management support system 30 is communicably connected to the remote support center 1002 or the server 50 via the network 40, and is connected to the trained model created by the operation management support system 30 or the server 50 or another water treatment system 1001. The recorded information may be configured so that it can be transmitted and received to and shared with each other via the communication means 140.

制御装置100は、取得部101と、学習部102と、予測部103と、最適化情報作製部104と、制御部105と、警告部106とを備える。記憶装置110は、運転情報記憶手段111と、学習済みモデル記憶手段112と、予測結果記憶手段113と、最適化情報記憶手段114とを備える。 The control device 100 includes an acquisition unit 101, a learning unit 102, a prediction unit 103, an optimization information creation unit 104, a control unit 105, and a warning unit 106. The storage device 110 includes a driving information storage means 111, a learned model storage means 112, a prediction result storage means 113, and an optimized information storage means 114.

取得部101は、例えば、図1の構成を備える水処理システム1000におけるリアルタイムの逆浸透膜運転情報及び過去数十年間分の逆浸透膜運転情報を取得し、運転情報記憶手段111に記憶させる。この逆浸透膜運転情報には、供給水及び透過水の水質情報、逆浸透膜装置10の設置条件、運転条件及び運転結果を含む逆浸透膜装置情報、及び逆浸透膜装置10のメンテナンス情報等が含まれる。 The acquisition unit 101 acquires, for example, real-time reverse osmosis membrane operation information in the water treatment system 1000 having the configuration of FIG. 1 and reverse osmosis membrane operation information for the past several decades, and stores the reverse osmosis membrane operation information in the operation information storage means 111. The reverse osmosis membrane operation information includes water quality information of supplied water and permeated water, installation conditions of the reverse osmosis membrane device 10, reverse osmosis membrane device information including operation conditions and operation results, maintenance information of the reverse osmosis membrane device 10, and the like. Is included.

供給水の水質情報としては、供給水の水温、pH、シリカ、ナトリウムやアルミなどの金属類、有機物の情報が含まれる。透過水の水質情報としては、透過水の導電率、透過水中のナトリウム、アルミ等の金属類の測定結果の情報等が含まれる。逆浸透膜装置10の設置条件としては、逆浸透膜装置10の装置構成の情報等が含まれる。例えば、本実施形態に係る水処理システム1000に導入される逆浸透膜バンク3の段数、逆浸透膜バンク3が複数ある場合にはその接続関係、逆浸透膜バンク3に収容される逆浸透膜モジュール及び逆浸透膜エレメントの数、逆浸透膜のフラックス、及び逆浸透膜の特性を評価するために必要な特性情報(逆浸透膜の寸法、型番、膜の材質、有効ろ過面積、設計流入流量、設計透過水流量、設計透過流束等)等が逆浸透膜装置10の装置構成の情報として含まれる。逆浸透膜装置10の運転条件としては、供給水の供給流量、供給水を加圧する加圧ポンプ2の吐出圧等が含まれる。逆浸透膜装置10の運転結果としては、逆浸透膜処理で得られた透過水流量、透過流束、濃縮水の流量、透過水積算水量の各種測定結果等が含まれる。これら逆浸透膜運転情報は運転情報記憶手段111に記憶される。 The water quality information of the supply water includes information on the water temperature, pH, silica, metals such as sodium and aluminum, and organic substances of the supply water. The water quality information of the permeated water includes information on the conductivity of the permeated water, the measurement result of metals such as sodium and aluminum in the permeated water, and the like. The installation conditions of the reverse osmosis membrane device 10 include information on the device configuration of the reverse osmosis membrane device 10. For example, the number of stages of the reverse osmosis membrane bank 3 introduced in the water treatment system 1000 according to the present embodiment, the connection relationship when there are a plurality of reverse osmosis membrane banks 3, and the reverse osmosis membrane accommodated in the reverse osmosis membrane bank 3. The number of modules and reverse osmosis membrane elements, the flux of the reverse osmosis membrane, and the characteristic information required to evaluate the characteristics of the reverse osmosis membrane (reverse osmosis membrane dimensions, model number, membrane material, effective filtration area, design inflow flow rate). , Design permeation water flow rate, design permeation flow flux, etc.) are included as information on the device configuration of the reverse osmosis membrane device 10. The operating conditions of the reverse osmosis membrane device 10 include the supply flow rate of the supply water, the discharge pressure of the pressurizing pump 2 for pressurizing the supply water, and the like. The operation results of the reverse osmosis membrane device 10 include various measurement results of the permeated water flow rate, the permeated flux, the concentrated water flow rate, and the permeated water integrated water amount obtained by the reverse osmosis membrane treatment. These reverse osmosis membrane operation information is stored in the operation information storage means 111.

取得部101は、更に、水処理システム1000の運転時に得られる各種計器(温度計12、24、pH計11、圧力計13、14、流量計16、17、水質測定計15)の測定結果を取得することにより、水処理システム1000の運転状況をモニタリングする。 The acquisition unit 101 further obtains measurement results of various instruments (thermometers 12, 24, pH meters 11, pressure meters 13, 14, flow meters 16, 17, water quality meters 15) obtained during operation of the water treatment system 1000. By acquiring it, the operating status of the water treatment system 1000 is monitored.

学習部102は、逆浸透膜運転情報を用いて、所定の機械学習アルゴリズムを用いた機械学習により水処理システムの学習済みモデル(人工知能モデル)を作製する。機械学習アルゴリズムとしては、例えば、PCR法(主成分回帰法)、PLS法(部分最小二乗法)、SVR法(サポートベクター回帰法)、ARIMA、ニューラルネットワーク(ANNやRNN)法、ランダムフォレスト法、決定木法等を用いた種々の解析ツールの中から適切なものを適宜選択して使用することができる。 The learning unit 102 creates a learned model (artificial intelligence model) of the water treatment system by machine learning using a predetermined machine learning algorithm using the reverse osmosis membrane operation information. Examples of machine learning algorithms include PCR method (principal component regression method), PLS method (partial minimum square method), SVR method (support vector regression method), ARIMA, neural network (ANN and RNN) method, and random forest method. An appropriate tool can be appropriately selected and used from various analysis tools using the decision tree method or the like.

学習部102により作製される学習済みモデルは、全結合ニューラルネットワークモデル、ランダムフォレストモデル、クラスタリングモデル、又はRNNモデルの任意のいずれかを含むことができる。中でも、本実施形態では、学習部102が、PCR法等の線形モデルよりも、ニューラルネットワーク法などを利用した非線形モデルを作製することによって、目的変数とする逆浸透装置の圧力損失及び/又は透過水の水質の予測精度が高まる点で好ましい。 The trained model created by the learning unit 102 can include any of a fully connected neural network model, a random forest model, a clustering model, or an RNN model. Above all, in the present embodiment, the learning unit 102 creates a nonlinear model using a neural network method or the like rather than a linear model such as the PCR method, so that the pressure loss and / or transmission of the reverse osmosis apparatus as the objective variable This is preferable because it improves the accuracy of predicting the quality of water.

機械学習モデルのパラメータ、例えば全結合ニューラルネットワーク法における層の数、及び各層のニューロンの数については説明変数の数に応じて適宜変更されるため、以下に限定されるものではないが、例えば、各層のニューロンの数を1〜50、更には1〜30とすることができ、層の数は1層、更には1〜4層とすることができる。このようにして作製された学習済みモデルは、所定の説明変数を受け取り、所定の目的変数を出力するように構成される。学習済みモデルは、学習済みモデル記憶手段112に記憶される。 The parameters of the machine learning model, for example, the number of layers in the fully connected neural network method and the number of neurons in each layer are appropriately changed according to the number of explanatory variables, and are not limited to the following, for example. The number of neurons in each layer can be 1 to 50, further 1 to 30, and the number of layers can be 1 layer, further 1 to 4 layers. The trained model created in this way is configured to receive a predetermined explanatory variable and output a predetermined objective variable. The trained model is stored in the trained model storage means 112.

予測部103は、学習済みモデルを用いて、水処理システムの運転結果の予測を行う。本実施形態では、予測部103が、逆浸透膜装置の圧力損失及び/又は透過水の水質を少なくとも予測することを含む。予測部103が予測する透過水の水質としては、例えば、透過水の導電率、ナトリウム(Na)などの金属類の濃度等を含む。 The prediction unit 103 predicts the operation result of the water treatment system using the trained model. In the present embodiment, the prediction unit 103 includes at least predicting the pressure loss of the reverse osmosis membrane device and / or the water quality of the permeated water. The water quality of the permeated water predicted by the prediction unit 103 includes, for example, the conductivity of the permeated water, the concentration of metals such as sodium (Na), and the like.

本実施形態によれば、説明変数として所定の変数、例えば、供給水の水質情報、逆浸透膜に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報を利用することにより、逆浸透膜装置の圧力損失及び/又は透過水の水質を精度良く予測することができるため、熟練者の経験に寄らず、予測結果に応じた水処理システム内の運転状況をより適切に評価できる。この評価結果に基づいて、水処理システム1000の最適化情報を作製し、この最適化情報に基づいて、水処理システム1000の運転条件及びメンテナンスタイミング情報を少なくとも最適化できる。 According to the present embodiment, predetermined variables as explanatory variables, for example, water quality information of supply water, discharge pressure of a pressurizing pump for pressurizing supply water to be supplied to a reverse osmosis membrane, flow rate of permeated water, flow rate of concentrated water, By using the information on the flux of the reverse osmosis membrane, the pressure loss of the reverse osmosis membrane device and / or the quality of the permeated water can be predicted with high accuracy. The operating conditions in the water treatment system can be evaluated more appropriately. Based on this evaluation result, optimization information of the water treatment system 1000 can be created, and based on this optimization information, at least the operating conditions and maintenance timing information of the water treatment system 1000 can be optimized.

予測部103は、例えば、説明変数として、(1)逆浸透膜バンク3に流入する供給水の水温[℃]、(2)逆浸透膜バンク3に流入する供給水のpH[−]、(3)逆浸透膜バンク3に流入する供給水の圧力[MPa]、(4)逆浸透膜バンク3に流入する供給水の流量[m3/h](5)逆浸透膜バンク3の交換又は洗浄後、次の交換又は洗浄を行うまでに逆浸透膜装置10から得られる透過水の積算水量[m3]、(6)濃縮水流量[m3/h]、(7)逆浸透膜のフラックス比[−]を用い、目的変数として、(8)逆浸透膜バンク3の差圧(圧力損失)[MPa]及び/又は(9)透過水の導電率[μS/cm]を出力するように構成された学習済みモデルを用いて計算を実行することにより、逆浸透膜バンク3の圧力損失及び/又は透過水の水質を予測することができる。 For example, the prediction unit 103 uses (1) the water temperature [° C.] of the supply water flowing into the reverse osmosis membrane bank 3 and (2) the pH [-] of the supply water flowing into the reverse osmosis membrane bank 3 as explanatory variables. 3) Pressure of supply water flowing into reverse osmosis membrane bank 3 [MPa], (4) Flow rate of supply water flowing into reverse osmosis membrane bank 3 [m 3 / h] (5) Replacement of reverse osmosis membrane bank 3 or After cleaning, the cumulative amount of permeated water obtained from the reverse osmosis membrane device 10 [m 3 ], (6) concentrated water flow rate [m 3 / h], and (7) reverse osmosis membrane Using the flux ratio [-], (8) the differential pressure (pressure loss) [MPa] and / or (9) the conductivity of permeated water [μS / cm] of the reverse osmosis membrane bank 3 should be output as objective variables. By executing the calculation using the trained model constructed in, the pressure loss of the reverse osmosis membrane bank 3 and / or the water quality of the permeated water can be predicted.

予測部103は、逆浸透膜バンク3に流入する供給水の水質(シリカ、ナトリウムやカルシウムやアルミなどの金属類、有機物、などの濃度)等の水質情報を更に説明変数として加えることで差圧の上昇や運転トラブルの発生(回収率の低下、スケールの形成など)をより精度よく予測できるという効果が得られる。例えば、説明変数として、上述の(1)〜(7)に加えて(10)供給水のシリカ濃度、(11)供給水のナトリウム濃度、(12)供給水のカルシウム濃度、(13)供給水のアルミ等の金属濃度、(14)供給水の有機物濃度の少なくともいずれかを更に考慮に入れることができる。 The prediction unit 103 further adds water quality information such as water quality (concentration of metals such as silica, sodium, calcium, aluminum, organic substances, etc.) of the supply water flowing into the reverse osmosis membrane bank 3 as an explanatory variable to obtain a differential pressure. The effect is that it is possible to more accurately predict the rise in calcium and the occurrence of operational troubles (decrease in recovery rate, formation of scale, etc.). For example, as explanatory variables, in addition to the above-mentioned (1) to (7), (10) silica concentration of supply water, (11) sodium concentration of supply water, (12) calcium concentration of supply water, (13) supply water At least one of the concentration of metals such as aluminum in (14) and the concentration of organic substances in the feed water can be further taken into consideration.

上述の説明変数に用いられる「逆浸透膜のフラックス比」は、逆浸透膜の実測フラックス値と標準フラックス値との比(実測フラックス値/標準フラックス値)で表される。このフラックス比を、説明変数として用いることにより、予測対象とする水処理システムが、取得部101が取得した水処理システム運転情報の逆浸透膜装置の構成(逆浸透膜の種類や本数)が異なる場合があっても、予測性を適正に維持することができる。 The "reverse osmosis membrane flux ratio" used in the above explanatory variables is represented by the ratio of the measured flux value of the reverse osmosis membrane to the standard flux value (measured flux value / standard flux value). By using this flux ratio as an explanatory variable, the water treatment system to be predicted differs in the configuration (type and number of reverse osmosis membranes) of the reverse osmosis membrane device of the water treatment system operation information acquired by the acquisition unit 101. Even in some cases, predictability can be maintained properly.

最適化情報作製部104は、予測部103の予測結果に基づいて逆浸透膜装置10の運転状態を診断し、水処理システム1000の最適化情報を作製する。ここで「最適化情報」とは、運転コストを削減できるように水処理システム1000を最適化するための制御条件をいい、本実施形態では、逆浸透膜装置のメンテナンスタイミング情報及び/又は運転情報を少なくとも含む。メンテナンスタイミング情報としては、逆浸透膜装置10の膜洗浄タイミング及び洗浄時間を制御するための洗浄タイミング制御情報、及び逆浸透膜装置10の膜交換タイミングを制御するための交換タイミング制御情報が含まれる。逆浸透膜装置10の運転条件には、少なくとも加圧ポンプの吐出圧を制御する吐出圧制御情報及び/又は透過水の造水量を制御する透過水造水量制御情報を含む。 The optimization information preparation unit 104 diagnoses the operating state of the reverse osmosis membrane device 10 based on the prediction result of the prediction unit 103, and prepares the optimization information of the water treatment system 1000. Here, the "optimization information" refers to a control condition for optimizing the water treatment system 1000 so that the operation cost can be reduced. In the present embodiment, maintenance timing information and / or operation information of the reverse osmosis membrane device is used. At least include. The maintenance timing information includes cleaning timing control information for controlling the membrane cleaning timing and cleaning time of the reverse osmosis membrane device 10, and replacement timing control information for controlling the membrane replacement timing of the reverse osmosis membrane device 10. .. The operating conditions of the reverse osmosis membrane device 10 include at least discharge pressure control information for controlling the discharge pressure of the pressurizing pump and / or permeated water production amount control information for controlling the water production amount of the permeated water.

現在の水処理システム1000の運転では、水処理システム1000内に配置された種々の測定装置による測定結果及び運転条件の設計値に基づいて、水処理システム1000の運転に従事する操作者の熟練度及び長年の感覚に依存した運転条件の変更が行われている。しかしながら、逆浸透膜装置のトラブル原因は複合的であり、特に、回収率の低下、透過水への不純物の混入、又は逆浸透膜の膜ファウリングやスケールの発生による圧力損失の増大等による種々の要因が重なりあう場合も多い。そのため、現在は装置トラブルが発生する前に、予め逆浸透膜モジュールを交換しておくなどの、比較的余裕を持った運転管理が行われており、必ずしも効率的な運転とはいえない。また、熟練者が運転結果を参照しても膨大なデータの中から必ずしも適正な判断を行えているとはいえない場合もある。 In the current operation of the water treatment system 1000, the skill level of the operator engaged in the operation of the water treatment system 1000 is based on the measurement results by various measuring devices arranged in the water treatment system 1000 and the design values of the operating conditions. And the operating conditions have been changed depending on the feeling for many years. However, the causes of troubles in reverse osmosis membrane devices are multiple, and in particular, there are various causes such as a decrease in recovery rate, contamination of permeated water with impurities, or an increase in pressure loss due to membrane fouling of the reverse osmosis membrane and generation of scale. Factors often overlap. Therefore, at present, operation management with a relatively large margin is performed, such as replacing the reverse osmosis membrane module in advance before equipment trouble occurs, and it cannot always be said that the operation is efficient. In addition, even if an expert refers to the driving result, it may not always be possible to make an appropriate judgment from the huge amount of data.

本発明の実施の形態に係る水処理システム1000及び水処理システム1000の運転管理支援システム30によれば、最適化情報作製部104が、機械学習による学習済みモデルを利用した水処理システム1000の運転条件及び/又はメンテナンスタイミング情報の最適化情報を自動的に作製する。例えば、洗浄のタイミングについては、洗浄周期を横軸とし、運転コスト(洗浄コスト)を縦軸とし、予測部103の予測結果に基づいて最適化情報作製部104が相関グラフを作製し、運転コストの最低点となる洗浄周期を自動的に決定することができ、必要に応じて、この洗浄周期を実際の運転結果に基づいてリアルタイムで更新することもできる。その結果、熟練者の熟練度によらず、逆浸透膜装置10のメンテナンスタイミング情報を最適化することができる。その結果、装置トラブルを抑制しながら、逆浸透膜装置10のメンテナンスタイミングをより最適化することができ、運転コストを削減できる。 According to the operation management support system 30 of the water treatment system 1000 and the water treatment system 1000 according to the embodiment of the present invention, the optimization information creation unit 104 operates the water treatment system 1000 using the trained model by machine learning. Automatically create optimization information for condition and / or maintenance timing information. For example, regarding the cleaning timing, the cleaning cycle is on the horizontal axis, the operation cost (cleaning cost) is on the vertical axis, and the optimization information creation unit 104 creates a correlation graph based on the prediction result of the prediction unit 103, and the operation cost. The cleaning cycle, which is the lowest point of the above, can be automatically determined, and if necessary, this cleaning cycle can be updated in real time based on the actual operation result. As a result, the maintenance timing information of the reverse osmosis membrane device 10 can be optimized regardless of the skill level of the expert. As a result, the maintenance timing of the reverse osmosis membrane device 10 can be further optimized while suppressing device troubles, and the operating cost can be reduced.

最適化情報としては、例えば、以下の制御情報を含むことができる。
・逆浸透膜装置10の膜洗浄タイミングを制御するための洗浄タイミング制御情報、
・逆浸透膜装置10の膜交換タイミングを制御するための交換タイミング制御情報、
・逆浸透膜装置10の供給水を加圧する加圧ポンプの吐出圧の制御に関する吐出圧制御情報、
・逆浸透膜バンク3が多段の場合は各段の透過水の造水量の制御に関する透過水造水量制御情報、及び各段の膜洗浄タイミングや交換タイミングをそれぞれ制御する制御情報
The optimization information can include, for example, the following control information.
・ Cleaning timing control information for controlling the membrane cleaning timing of the reverse osmosis membrane device 10.
-Replacement timing control information for controlling the membrane replacement timing of the reverse osmosis membrane device 10.
Discharge pressure control information regarding control of the discharge pressure of the pressurizing pump that pressurizes the supply water of the reverse osmosis membrane device 10.
-When the reverse osmosis membrane bank 3 is multi-stage, the permeated water production amount control information regarding the control of the permeated water production amount of each stage, and the control information for controlling the membrane cleaning timing and replacement timing of each stage, respectively.

(洗浄タイミング制御情報)
逆浸透膜装置10の洗浄周期を長くすると、透過水を得るための処理時間を長く保つことができ稼働時間を上げることができる一方で、一回の洗浄処理に負荷がかかる結果となる。逆に、洗浄周期を短くすると、透過水を得るための処理時間が短くなり稼働時間が低下する一方で、一回の洗浄処理が容易になる。最適化情報作製部104は、予測部103の予測結果と、供給水の水質や操作条件を総合的に勘案し、最適な洗浄周期及び洗浄時間となる制御情報を含む洗浄タイミング制御情報を作製する。これにより、供給水の水質や操作条件に応じて最適となる膜洗浄タイミングを選択できる。また、従来に比べて、不必要な洗浄薬液の供給等による逆浸透膜バンク3内の逆浸透膜モジュールの劣化や、洗浄作業に要する作業時間も低減できるため、洗浄処理に係るコストを低減できる。
(Washing timing control information)
When the cleaning cycle of the reverse osmosis membrane device 10 is lengthened, the treatment time for obtaining permeated water can be maintained for a long time and the operating time can be increased, but the result is that a load is applied to one cleaning treatment. On the contrary, when the cleaning cycle is shortened, the treatment time for obtaining the permeated water is shortened and the operating time is shortened, while the one-time cleaning treatment is facilitated. The optimization information creation unit 104 comprehensively considers the prediction result of the prediction unit 103, the water quality of the supply water, and the operating conditions, and creates cleaning timing control information including control information for the optimum cleaning cycle and cleaning time. .. This makes it possible to select the optimum membrane cleaning timing according to the water quality of the supply water and the operating conditions. Further, as compared with the conventional case, the deterioration of the reverse osmosis membrane module in the reverse osmosis membrane bank 3 due to the supply of unnecessary cleaning chemicals and the work time required for the cleaning work can be reduced, so that the cost related to the cleaning treatment can be reduced. ..

(交換タイミング制御情報)
最適化情報作製部104は、予測部103の予測結果と、供給水の水質や操作条件を総合的に勘案し、最適な膜交換周期となる制御情報を含む膜交換タイミング制御情報を作製する。これにより、供給水の水質や操作条件に応じて最適となる膜交換タイミングを選択し、逆浸透膜を延命することができる。更に、逆浸透膜装置10では、複数本直列接続された逆浸透膜バンクのうち、特定の逆浸透膜バンク、又は複数本並列接続された逆浸透膜バンクのうち、特定の逆浸透膜バンクの消耗が激しくなる場合がある。最適化情報作製部104は、予測部103の予測結果に基づいて複数本の逆浸透膜バンクや逆浸透膜モジュールをすべて交換するための交換頻度の情報だけでなく、個々の逆浸透膜バンクや逆浸透膜モジュールのそれぞれの交換タイミングをそれぞれ最適化するための制御情報、即ち、第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの交換箇所及び交換順序をそれぞれ最適化した交換位置順序制御情報を更に作製することができる。交換位置順序制御情報は、第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの操作条件(供給水の水質、圧力および産水量など)及び/又は第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの運転状況を測定可能な圧力計等の計器の測定結果から予測を行うことで、複数の逆浸透膜バンクやモジュールがある場合にその交換箇所及び交換順序を最適化することができる。その結果、実際には交換寿命を迎えていない逆浸透膜バンクやモジュールの交換を少なくし、逆浸透膜の長寿命化を図るとともに、交換が必要な逆浸透膜バンクやモジュールについては、交換頻度を最適化することができる。
(Replacement timing control information)
The optimization information preparation unit 104 comprehensively considers the prediction result of the prediction unit 103, the water quality of the supply water, and the operating conditions, and prepares the membrane exchange timing control information including the control information that becomes the optimum membrane exchange cycle. As a result, the optimum membrane replacement timing can be selected according to the water quality of the supply water and the operating conditions, and the life of the reverse osmosis membrane can be extended. Further, in the reverse osmosis membrane apparatus 10, among a plurality of reverse osmosis membrane banks connected in series, a specific reverse osmosis membrane bank, or among a plurality of reverse osmosis membrane banks connected in parallel, a specific reverse osmosis membrane bank It may be exhausted. The optimization information creation unit 104 provides not only information on the exchange frequency for exchanging a plurality of reverse osmosis membrane banks and all reverse osmosis membrane modules based on the prediction result of the prediction unit 103, but also individual reverse osmosis membrane banks and the individual reverse osmosis membrane banks. Control information for optimizing each replacement timing of the reverse osmosis membrane module, that is, replacement with optimized replacement locations and replacement sequences of the first reverse osmosis membrane bank 3a and the second reverse osmosis membrane bank 3b, respectively. The position order control information can be further produced. The exchange position order control information includes the operating conditions of the first reverse osmosis membrane bank 3a and the second reverse osmosis membrane bank 3b (water quality, pressure, amount of water produced, etc.) and / or the first reverse osmosis membrane bank 3a. And by making predictions from the measurement results of instruments such as pressure gauges that can measure the operating status of the second reverse osmosis membrane bank 3b, if there are multiple reverse osmosis membrane banks or modules, the replacement location and replacement order can be determined. Can be optimized. As a result, the replacement of reverse osmosis membrane banks and modules that have not actually reached the replacement life is reduced to extend the life of the reverse osmosis membrane, and the replacement frequency of reverse osmosis membrane banks and modules that need to be replaced is increased. Can be optimized.

(吐出圧制御情報)
図1の水処理システム全体のエネルギー消費量を鑑みた場合、逆浸透膜モジュールを加圧する加圧ポンプ2は、エネルギー消費量が最も大きい。また、供給水の濃度が高いほど、単位造水量あたりの加圧ポンプ2のエネルギー消費量が増大する。最適化情報作製部104は、予測部103の予測結果に基づいて、加圧ポンプ2の吐出圧を最適化することにより、加圧ポンプの省エネを実現することができる。
(Discharge pressure control information)
Considering the energy consumption of the entire water treatment system of FIG. 1, the pressurizing pump 2 that pressurizes the reverse osmosis membrane module has the largest energy consumption. Further, the higher the concentration of the supplied water, the higher the energy consumption of the pressurizing pump 2 per unit water production amount. The optimization information creation unit 104 can realize energy saving of the pressure pump by optimizing the discharge pressure of the pressure pump 2 based on the prediction result of the prediction unit 103.

(透過水造水量制御情報)
水処理システム1000は、複数の逆浸透膜バンクを利用することにより、透過水の回収率を向上できる。水質変動により高導電率の供給水を処理する場合には加圧ポンプ2の圧力を上げる必要があるが、低導電率の供給水を処理する場合には加圧ポンプの加圧を低減することができる場合もある。また、逆浸透膜バンクを直列に多段に接続した場合には、後段の逆浸透膜バンクの流入水濃度が高くなるために、膜ファウリングやスケールが発生しやすい。その結果、後段の逆浸透膜バンクの単位造水量当たりのエネルギー消費量が、前段の逆浸透膜バンクよりも高くなり、更に、後段の逆浸透膜バンクの膜洗浄の周期も短くなり、洗浄コストが高くなる場合がある。最適化情報作製部104が、供給水の水質及び予測部103の各逆浸透膜バンクの圧力損失及び/又は透過水の水質の予測結果に基づいて、逆浸透膜バンクの単位造水量当たりのエネルギー消費量が低く保てるように、加圧ポンプ2の吐出圧を低減する、或いは供給水量を調整して逆浸透膜の各段から得られる透過水の造水量を最適化することにより、水処理にかかるエネルギー消費量を低減することができる。
(Permeated water production amount control information)
The water treatment system 1000 can improve the recovery rate of permeated water by using a plurality of reverse osmosis membrane banks. It is necessary to increase the pressure of the pressurizing pump 2 when treating the supplied water with high conductivity due to fluctuations in water quality, but reduce the pressurization of the pressurizing pump when treating the supplied water with low conductivity. May be possible. Further, when the reverse osmosis membrane banks are connected in series in multiple stages, the inflow water concentration of the reverse osmosis membrane banks in the subsequent stage becomes high, so that membrane fouling and scale are likely to occur. As a result, the energy consumption per unit water production of the reverse osmosis membrane bank in the subsequent stage is higher than that in the reverse osmosis membrane bank in the previous stage, and the membrane cleaning cycle of the reverse osmosis membrane bank in the latter stage is also shortened, so that the cleaning cost is reduced. May be higher. The optimization information preparation unit 104 determines the energy per unit water production amount of the reverse osmosis membrane bank based on the prediction result of the water quality of the supply water and the pressure loss and / or the water quality of the permeated water of each reverse osmosis membrane bank of the prediction unit 103. For water treatment by reducing the discharge pressure of the pressurizing pump 2 or adjusting the amount of supplied water to optimize the amount of permeated water obtained from each stage of the reverse osmosis membrane so that the amount of consumption can be kept low. Such energy consumption can be reduced.

最適化情報作製部104は、更に、交換タイミング制御情報、メンテナンス制御情報、吐出圧制御情報及び透過水造水量制御情報をそれぞれ最適化するように構成できる。例えば、操作者の要望に応じて、入力装置120等を介して、上記4つの最適化情報について、各制御情報を最適化するための優先順位を設定することができる。そして、最適化情報作製部104が、優先順位に応じた最適化情報を作製することにより、操作者の要望、供給水及び透過水の水質、或いは逆浸透膜モジュールの特性等に応じたフレキシブルな運転を行うことができる。作製された最適化情報は最適化情報記憶手段114に記憶される。制御部105は、作製された最適化情報に基づいて、水処理システム1000の運転を制御する。 The optimization information production unit 104 can be further configured to optimize the replacement timing control information, the maintenance control information, the discharge pressure control information, and the permeated water production amount control information. For example, according to the request of the operator, the priority order for optimizing each control information can be set for the above four optimization information via the input device 120 or the like. Then, the optimization information creation unit 104 creates optimization information according to the priority order, so that it is flexible according to the operator's request, the water quality of the supplied water and the permeated water, the characteristics of the reverse osmosis membrane module, and the like. Can drive. The produced optimization information is stored in the optimization information storage means 114. The control unit 105 controls the operation of the water treatment system 1000 based on the produced optimization information.

警告部106は、水処理システム1000の操作者に対して、所定の警告信号を、出力装置130を介して出力するための警告信号を送出する。例えば、最適化情報作製部104が作製した洗浄タイミング制御情報及び交換タイミング制御情報に基づいて、最適な洗浄タイミング及び交換タイミングとなる時期に、警告信号を出力するように構成される。警告部106を備えることにより、適正な洗浄タイミング及び交換タイミングを水処理システム1000の操作者が早期に知ることができるため、洗浄及び交換に必要な準備を行うことができる。 The warning unit 106 sends a warning signal for outputting a predetermined warning signal to the operator of the water treatment system 1000 via the output device 130. For example, it is configured to output a warning signal at the optimum cleaning timing and replacement timing based on the cleaning timing control information and replacement timing control information produced by the optimization information creation unit 104. By providing the warning unit 106, the operator of the water treatment system 1000 can know the appropriate cleaning timing and replacement timing at an early stage, so that preparations necessary for cleaning and replacement can be performed.

(前処理装置の予測制御)
運転管理支援システム30は、逆浸透膜装置10の運転状況に応じて、前処理装置20の運転条件が最適化されるように前処理装置20の運転条件を制御することもできる。その場合、取得部101は、被処理水の水質情報と、前処理装置20の設置条件、運転条件及び運転結果とを含む前処理装置運転制御情報を更に取得する。学習部102は、前処理装置運転制御情報及び逆浸透膜運転情報を用いた機械学習により学習済みモデルを作製する。予測部103は、学習部102が作製した学習済みモデルを用いて、前処理装置20の薬品供給部22及び前処理手段23の運転条件、例えば、薬品供給部22から被処理水へ供給される薬剤の注入率(注入量と処理水水量との比率)、前処理手段23へ供給される被処理水の流量等を予測する。最適化情報作製部104は、前処理装置20の運転条件を最適化するための前処理装置運転制御情報を更に作製する。
(Predictive control of pretreatment equipment)
The operation management support system 30 can also control the operation conditions of the pretreatment device 20 so that the operation conditions of the pretreatment device 20 are optimized according to the operation status of the reverse osmosis membrane device 10. In that case, the acquisition unit 101 further acquires the pretreatment device operation control information including the water quality information of the water to be treated and the installation condition, operation condition, and operation result of the pretreatment device 20. The learning unit 102 creates a learned model by machine learning using the pretreatment device operation control information and the reverse osmosis membrane operation information. The prediction unit 103 supplies the operating conditions of the chemical supply unit 22 and the pretreatment means 23 of the pretreatment device 20, for example, the chemical supply unit 22 to the water to be treated, using the trained model created by the learning unit 102. The injection rate of the chemical (ratio of the injection amount to the treated water amount), the flow rate of the treated water supplied to the pretreatment means 23, and the like are predicted. The optimization information creation unit 104 further creates pretreatment device operation control information for optimizing the operation conditions of the pretreatment device 20.

例えば、前処理手段23として凝集砂ろ過や凝集膜ろ過が利用される場合、予測部103が被処理水の水質を予測し、最適化情報作製部104が被処理水に添加する凝集剤注入率の最適化情報を作製することにより凝集剤注入率の最適化を行い、供給水の水質を安定化させることができるため、水質変動等による逆浸透膜バンク3の膜ファウリングやスケールの発生を抑制できる。その結果、本発明の実施の形態に係る水処理システムによれば、逆浸透膜バンク3の洗浄回数及び交換回数を低減することができ、効率的な水処理を行うことができる。 For example, when agglomerated sand filtration or agglomerated membrane filtration is used as the pretreatment means 23, the predictor 103 predicts the water quality of the water to be treated, and the optimization information preparation unit 104 adds the coagulant injection rate to the water to be treated. By creating the optimization information of, the coagulant injection rate can be optimized and the water quality of the supplied water can be stabilized. Therefore, membrane fouling and scale generation of the reverse osmosis membrane bank 3 due to water quality fluctuation etc. Can be suppressed. As a result, according to the water treatment system according to the embodiment of the present invention, the number of times of washing and the number of times of replacement of the reverse osmosis membrane bank 3 can be reduced, and efficient water treatment can be performed.

(水処理システムの運転方法)
図1又は図2に示す水処理システム1000の運転管理支援システム30を用いた水処理システムの運転方法の運転フローの一例を図3に示す。図3のステップS1に示すように、運転管理支援システム30が備える取得部101が、供給水及び透過水の水質情報と、逆浸透膜装置の設置条件、運転条件及び運転結果を含む逆浸透膜装置情報と、逆浸透膜装置のメンテナンス情報の少なくともいずれかを含む逆浸透膜運転情報を取得し、水処理システム運転情報を運転情報記憶手段111に記憶させる。取得部101は更に、図1の水処理システム1000の運転時のモニタリングにより得られる各計器(温度計12、24、pH計11、圧力計13、14、流量計16、17、水質測定計15)のリアルタイムの測定結果を取得することができる。
(How to operate the water treatment system)
FIG. 3 shows an example of the operation flow of the operation method of the water treatment system using the operation management support system 30 of the water treatment system 1000 shown in FIG. 1 or 2. As shown in step S1 of FIG. 3, the acquisition unit 101 included in the operation management support system 30 includes the water quality information of the supply water and the permeated water, the installation condition of the reverse osmosis membrane device, the operation condition, and the operation result. The reverse osmosis membrane operation information including at least one of the device information and the maintenance information of the reverse osmosis membrane device is acquired, and the water treatment system operation information is stored in the operation information storage means 111. The acquisition unit 101 further obtains each instrument (thermometer 12, 24, pH meter 11, pressure meter 13, 14, flow meter 16, 17, water quality measuring meter 15) obtained by monitoring the water treatment system 1000 in FIG. 1 during operation. ) Real-time measurement results can be obtained.

ステップS2において、学習部102が、水処理システムの学習済みモデルを作製する。学習済みモデルは学習済みモデル記憶手段112に記憶される。引き続き、ステップS3において、予測部103が、逆浸透膜運転情報及び学習済みモデルを用いて、逆浸透膜装置10の圧力損失及び/又は透過水の水質、例えば、透過水の導電率を少なくとも予測する。 In step S2, the learning unit 102 creates a trained model of the water treatment system. The trained model is stored in the trained model storage means 112. Subsequently, in step S3, the prediction unit 103 at least predicts the pressure loss of the reverse osmosis membrane device 10 and / or the water quality of the permeated water, for example, the conductivity of the permeated water, using the reverse osmosis membrane operation information and the learned model. do.

ステップS4において、最適化情報作製部104が、逆浸透膜装置の圧力損失及び/又は透過水の水質の予測結果に基づいて、逆浸透膜装置の運転状態を診断し、逆浸透膜装置のメンテナンスタイミングを含む水処理システム1000の最適化情報を作製する。作製された最適化情報は、最適化情報記憶手段114へ記憶される。制御部105は、最適化情報作製部104が作製した最適化情報に基づいて、逆浸透膜装置10を制御する。 In step S4, the optimization information preparation unit 104 diagnoses the operating state of the reverse osmosis membrane device based on the prediction result of the pressure loss of the reverse osmosis membrane device and / or the water quality of the permeated water, and maintains the reverse osmosis membrane device. Produce optimization information for the water treatment system 1000, including timing. The produced optimization information is stored in the optimization information storage means 114. The control unit 105 controls the reverse osmosis membrane device 10 based on the optimization information produced by the optimization information production unit 104.

本発明の実施の形態に係る水処理システム1000及び水処理システムの運転管理支援システム30によれば、逆浸透膜装置10の逆浸透膜運転情報を用いて学習済みモデルを作製し、作製した学習済みモデルを利用して逆浸透膜装置10の圧力損失及び/又は水質(導電率)を予測し、予測結果に基づき水処理システムの最適化情報を作製することにより、逆浸透膜装置10を備えた水処理システム1000内の運転状況を適切に評価でき、水処理システム1000の運転条件の最適化を行うことができる。 According to the water treatment system 1000 and the operation management support system 30 of the water treatment system according to the embodiment of the present invention, a learned model is created using the reverse osmosis membrane operation information of the reverse osmosis membrane device 10, and the prepared learning is performed. The reverse osmosis membrane device 10 is provided by predicting the pressure loss and / or water quality (conductivity) of the reverse osmosis membrane device 10 using the completed model and creating optimization information of the water treatment system based on the prediction result. The operating condition in the water treatment system 1000 can be appropriately evaluated, and the operating conditions of the water treatment system 1000 can be optimized.

図4に、図1の逆浸透膜バンクを多段に直列接続した場合の逆浸透膜装置10の別の構成例を示す。図4の例では逆浸透膜バンク3a、3bの二段で構成された例が示されているが、上述の通り、逆浸透膜バンク3a、3bは2本以上配置されていてもよいことは勿論である。なお、図4の例では簡略化のため、洗浄時に使用される洗浄タンク4及びポンプ5等の記載は省略している。 FIG. 4 shows another configuration example of the reverse osmosis membrane device 10 when the reverse osmosis membrane banks of FIG. 1 are connected in series in multiple stages. In the example of FIG. 4, an example composed of two stages of the reverse osmosis membrane banks 3a and 3b is shown, but as described above, two or more reverse osmosis membrane banks 3a and 3b may be arranged. Of course. In the example of FIG. 4, for the sake of simplicity, the description of the cleaning tank 4 and the pump 5 used at the time of cleaning is omitted.

第1の逆浸透膜バンク3aの濃縮水は、第2の逆浸透膜バンク3bへ供給される。第2の逆浸透膜バンク3bは、第1の逆浸透膜バンク3aの濃縮水を受け入れて、濃縮水と透過水とを生成する。第1の逆浸透膜バンク3aの透過水と第2の逆浸透膜バンク3bの透過水は混合され、水処理システム1000の外部へ送られる。 The concentrated water in the first reverse osmosis membrane bank 3a is supplied to the second reverse osmosis membrane bank 3b. The second reverse osmosis membrane bank 3b receives the concentrated water of the first reverse osmosis membrane bank 3a and produces concentrated water and permeated water. The permeated water of the first reverse osmosis membrane bank 3a and the permeated water of the second reverse osmosis membrane bank 3b are mixed and sent to the outside of the water treatment system 1000.

逆浸透膜バンク3bから排出される濃縮水の水量を測定するために、逆浸透膜バンク3bの濃縮水出口側の配管には流量計(FI3)16bが配置されている。逆浸透膜バンク3bから排出される透過水の水量を測定するために、逆浸透膜バンク3bの透過水出口側の配管には、流量計(FI4)17bが配置されている。逆浸透膜バンク3bの入口側の配管には圧力計(PI2)14aが接続され、逆浸透膜バンク3bの出口側の配管には圧力計(PI4)14bが配置されており、逆浸透膜バンク3bに流入する流入水の圧力を計測する圧力計13bと、逆浸透膜バンク3bで処理された濃縮水の圧力を計測する圧力計14bとの圧力差により、逆浸透膜バンク3bの圧力損失を測定できるようになっている。 In order to measure the amount of concentrated water discharged from the reverse osmosis membrane bank 3b, a flow meter (FI3) 16b is arranged in a pipe on the outlet side of the concentrated water of the reverse osmosis membrane bank 3b. In order to measure the amount of permeated water discharged from the reverse osmosis membrane bank 3b, a flow meter (FI4) 17b is arranged in the pipe on the permeated water outlet side of the reverse osmosis membrane bank 3b. A pressure gauge (PI2) 14a is connected to the pipe on the inlet side of the reverse osmosis membrane bank 3b, and a pressure gauge (PI4) 14b is placed on the pipe on the outlet side of the reverse osmosis membrane bank 3b. The pressure loss of the reverse osmosis membrane bank 3b is caused by the pressure difference between the pressure gauge 13b that measures the pressure of the inflow water flowing into 3b and the pressure gauge 14b that measures the pressure of the concentrated water treated by the reverse osmosis membrane bank 3b. It can be measured.

図4に示す水処理システムの学習済みモデルの作製に際しては、例えば以下の変数が説明変数として利用できる。
(a)供給水水質
(b)加圧ポンプ2の吐出圧[MPa]
(c)一段目(逆浸透膜バンク3a)透過水流量[m3/h]
(d)二段目(逆浸透膜バンク3b)透過水流量[m3/h]
(e)透過水合計流量[m3/h]
(f)逆浸透膜バンク3a、3bのいずれかを交換後、次の交換を行うまでに逆浸透膜バンク3a、3bで得られる透過水の透過水積算水量[m3/h]
(g)逆浸透膜バンク3a、3bのいずれかを洗浄後、次の洗浄を行うまでに逆浸透膜バンク3a、3bで得られる透過水の透過水積算水量[m3/h]
(h)水処理システム1000から排出される濃縮水流量[m3/h]
(i)供給水の水温[℃]
(j)逆浸透膜バンク3a、3bにそれぞれ流入する供給水のpH[−]
(k)一段目(逆浸透膜バンク3a)フラックス比[−]
(l)二段目(逆浸透膜バンク3b)フラックス比[−]
When creating the trained model of the water treatment system shown in FIG. 4, for example, the following variables can be used as explanatory variables.
(A) Supply water quality (b) Discharge pressure of the pressurizing pump 2 [MPa]
(C) First stage (reverse osmosis membrane bank 3a) permeated water flow rate [m 3 / h]
(D) Second stage (reverse osmosis membrane bank 3b) permeated water flow rate [m 3 / h]
(E) Total flow rate of permeated water [m 3 / h]
(F) After replacing any of the reverse osmosis membrane banks 3a and 3b, the cumulative amount of permeated water obtained in the reverse osmosis membrane banks 3a and 3b [m 3 / h] before the next replacement.
(G) Cumulative amount of permeated water obtained from the reverse osmosis membrane banks 3a and 3b after washing any of the reverse osmosis membrane banks 3a and 3b before the next washing [m 3 / h]
(H) Concentrated water flow rate discharged from the water treatment system 1000 [m 3 / h]
(I) Water temperature of supply water [° C]
(J) pH [-] of supply water flowing into the reverse osmosis membrane banks 3a and 3b, respectively.
(K) First stage (reverse osmosis membrane bank 3a) flux ratio [-]
(L) Second stage (reverse osmosis membrane bank 3b) flux ratio [-]

目的変数としては、例えば以下の変数が利用できる。
(A)一段目(逆浸透膜バンク3a)圧力損失[MPa]
(B)二段目(逆浸透膜バンク3b)圧力損失[MPa]
(C)全体圧力損失[MPa]
(D)透過水導電率[μS/cm]
As the objective variable, for example, the following variables can be used.
(A) First stage (reverse osmosis membrane bank 3a) pressure loss [MPa]
(B) Second stage (reverse osmosis membrane bank 3b) pressure loss [MPa]
(C) Overall pressure loss [MPa]
(D) Permeable water conductivity [μS / cm]

上述の(a)〜(l)を説明変数とし、(A)〜(D)を目的変数とし、ニューラルネットワークを用いて予測を行った場合における、全体圧力損失の予測値(sim)と実測値(obs)との相関関係を表すグラフの例を図5に示す。予測値と実測値の相関係数は0.987であり、適切な予測が行えていることが分かる。また、図5の予測結果と実測結果を用い、運転時間を横軸として別の表現手法で比較した結果を図6に示す。図6においても予測値(sim)と実測値(Obs)がほぼ一致し、比較的精度よく予測が行えていることが分かる。 Predicted value (sim) and measured value of total pressure loss when prediction is performed using a neural network with the above-mentioned (a) to (l) as explanatory variables and (A) to (D) as objective variables. An example of a graph showing the correlation with (obs) is shown in FIG. The correlation coefficient between the predicted value and the measured value is 0.987, and it can be seen that an appropriate prediction is performed. Further, FIG. 6 shows a result of comparison using another expression method with the operation time as the horizontal axis using the prediction result and the actual measurement result of FIG. Also in FIG. 6, the predicted value (sim) and the measured value (Obs) are almost the same, and it can be seen that the prediction can be performed with relatively high accuracy.

同様に、上述の(a)〜(l)を説明変数とし、(A)〜(D)を目的変数とし、ニューラルネットワークを用いて予測を行った場合において、透過水導電率の予測値(sim)と実測値(obs)との相関関係を表すグラフの例を図7に示す。予測値と実測値の相関係数は0.966であり、適切な予測が行えていることが分かる。図7の予測結果と実測結果を用い、運転時間を横軸として別の表現手法で比較した結果を図8に示す。図8においても逆浸透膜装置の透過水導電率に関し、比較的精度よく予測が行えていることが分かる。 Similarly, when the above-mentioned (a) to (l) are used as explanatory variables and (A) to (D) are used as objective variables and prediction is performed using a neural network, the predicted value (sim) of the permeated water conductivity is used. ) And the measured value (obs) are shown in FIG. 7 as an example of a graph showing the correlation. The correlation coefficient between the predicted value and the measured value is 0.966, and it can be seen that an appropriate prediction is performed. FIG. 8 shows the results of comparison using another expression method with the operation time as the horizontal axis using the prediction results and the actual measurement results of FIG. 7. Also in FIG. 8, it can be seen that the permeation water conductivity of the reverse osmosis membrane device can be predicted with relatively high accuracy.

このように、本発明の実施の形態の変形例に係る水処理システム1000によれば、運転管理支援システム30が作製した学習済みモデルに基づいて、逆浸透膜バンク3a、3bの圧力損失及び/又は透過水の導電率を適切に予測することができるため、逆浸透膜装置10を備えた水処理システム1000内の運転状況を適切に評価でき、水処理システム1000の運転条件の最適化が行える。 As described above, according to the water treatment system 1000 according to the modified example of the embodiment of the present invention, the pressure loss of the reverse osmosis membrane banks 3a and 3b and / / based on the learned model produced by the operation management support system 30. Alternatively, since the conductivity of the permeated water can be appropriately predicted, the operating condition in the water treatment system 1000 provided with the reverse osmosis membrane device 10 can be appropriately evaluated, and the operating conditions of the water treatment system 1000 can be optimized. ..

例えば、第1の逆浸透膜バンク3aの濃縮水を処理する第2の逆浸透膜バンク3bは、第1の逆浸透膜バンク3a内に通水される供給水よりも高濃度となる濃縮水を処理するため第1の逆浸透膜バンク3aよりも膜閉塞等のトラブルが発生しやすいため、より頻繁に洗浄及び交換を行う必要がある。更には、水処理システム1000の装置構成の特性によっては、原因は不明であるが、特定の逆浸透膜バンクのみが、他の逆浸透膜バンクに比べて、意図せずに圧力損失が大きくなる等して膜寿命が短くなったり、トラブルが多く発生したりする場合がある。本実施形態に係る水処理システム1000によれば、複数の逆浸透膜バンク3a、3bの各逆浸透膜バンクに対して圧力損失及び透過水の導電率の予測を行うことにより、複数の逆浸透膜バンクの個々の特性に応じた最適な洗浄及び交換頻度を調整することができる。 For example, the second reverse osmosis membrane bank 3b for treating the concentrated water of the first reverse osmosis membrane bank 3a has a higher concentration than the supply water passed through the first reverse osmosis membrane bank 3a. Since troubles such as membrane blockage are more likely to occur than the first reverse osmosis membrane bank 3a, it is necessary to perform cleaning and replacement more frequently. Furthermore, although the cause is unknown depending on the characteristics of the device configuration of the water treatment system 1000, only a specific reverse osmosis membrane bank unintentionally increases the pressure loss as compared with other reverse osmosis membrane banks. As a result, the film life may be shortened or many troubles may occur. According to the water treatment system 1000 according to the present embodiment, a plurality of reverse osmosis membrane banks 3a and 3b are predicted by predicting the pressure loss and the conductivity of the permeated water for each of the reverse osmosis membrane banks 3a and 3b. The optimum cleaning and replacement frequency can be adjusted according to the individual characteristics of the membrane bank.

このように、本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではなく、上述の開示に基づいて、当業者であれば種々の態様を実施することができる。 Thus, although the present invention has been described by the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention and are based on the above disclosure. Those skilled in the art can carry out various aspects.

例えば、本実施形態では、上述の学習済みモデルを用いて逆浸透膜モジュールの圧力損失及び/又は透過水の導電率を予測する方法について説明したが、これ以外にも、既存の運転情報を利用して種々の予測を行うことができる。 For example, in the present embodiment, a method of predicting the pressure loss and / or the conductivity of permeated water of the reverse osmosis membrane module using the above-mentioned trained model has been described, but other than this, existing operation information is used. Various predictions can be made.

例えば、本発明の水処理システムの学習済みモデルの作製に際し、過去の運転情報と現在の運転結果に基づいて、原水水質の変動による逆浸透膜バンク3a、3bの差圧の異常上昇を予測し、その予測結果に基づいて、逆浸透膜バンク3a、3bの洗浄タイミング及び交換タイミングの情報を含むメンテナンス情報を最適化した最適化情報を作製し、その最適化情報に基づいて、図1又は図4の水処理装置を運転するように構成されてもよい。このように、本発明は実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得るものである。 For example, when creating a trained model of the water treatment system of the present invention, an abnormal increase in the differential pressure of the reverse osmosis membrane banks 3a and 3b due to fluctuations in raw water quality is predicted based on past operation information and current operation results. Based on the prediction result, optimization information that optimizes maintenance information including information on cleaning timing and replacement timing of the reverse osmosis membrane banks 3a and 3b is produced, and based on the optimization information, FIG. 1 or FIG. It may be configured to operate the water treatment apparatus of 4. As described above, the present invention can be modified and embodied at the implementation stage without departing from the gist thereof.

2…加圧ポンプ
3、3a、3b…逆浸透膜バンク
4…洗浄タンク
5…洗浄用ポンプ
6…圧力調整弁
7…フラッシング弁
10…逆浸透膜装置
11…pH計
12…温度計
13、14、14a、14b…圧力計
15…水質測定計
16、17、17a、17b…流量計
20…前処理装置
21…ブースターポンプ
22…薬品供給部
23…前処理手段
24…温度計
30…運転管理支援システム
40…ネットワーク
50…サーバ
100…制御装置
101…取得部
102…学習部
103…予測部
104…最適化情報作製部
105…制御部
106…警告部
110…記憶装置
111…運転情報記憶手段
112…学習済みモデル記憶手段
113…予測結果記憶手段
114…最適化情報記憶手段
120…入力装置
130…出力装置
140…通信手段
1000、1001…水処理システム
1002…遠隔サポートセンタ
2 ... Pressurizing pumps 3, 3a, 3b ... Reverse osmotic membrane bank 4 ... Cleaning tank 5 ... Cleaning pump 6 ... Pressure adjusting valve 7 ... Flushing valve 10 ... Reverse osmotic membrane device 11 ... pH meter 12 ... Thermometers 13, 14 , 14a, 14b ... Pressure meter 15 ... Water quality measuring meters 16, 17, 17a, 17b ... Flow meter 20 ... Pretreatment device 21 ... Booster pump 22 ... Chemical supply unit 23 ... Pretreatment means 24 ... Thermometer 30 ... Operation management support System 40 ... Network 50 ... Server 100 ... Control device 101 ... Acquisition unit 102 ... Learning unit 103 ... Prediction unit 104 ... Optimization information production unit 105 ... Control unit 106 ... Warning unit 110 ... Storage device 111 ... Operation information storage means 112 ... Trained model storage means 113 ... Prediction result storage means 114 ... Optimized information storage means
120 ... Input device 130 ... Output device 140 ... Communication means 1000, 1001 ... Water treatment system 1002 ... Remote support center

Claims (8)

供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、
前記供給水の水質情報、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜装置の圧力損失及び/又は前記透過水の水質を予測し、該予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、作製された前記最適化情報に基づいて前記逆浸透膜装置を制御する運転管理支援システムと
を備える水処理システム。
A reverse osmosis membrane device that obtains concentrated water and permeated water by treating the supplied water with a reverse osmosis membrane.
At least one of the water quality information of the supply water, the discharge pressure of the pressurizing pump that pressurizes the supply water supplied to the reverse osmosis membrane device, the flow rate of the permeated water, the flow rate of the concentrated water, and the flux information of the reverse osmosis membrane. Based on a learned model obtained by collecting reverse osmosis membrane operation information including the above and using the collected reverse osmosis membrane operation information, the pressure loss of the reverse osmosis membrane device and / or the permeated water The water quality is predicted, optimization information including operating conditions and / or maintenance timing information of the reverse osmosis membrane device is prepared based on the prediction result, and the reverse osmosis membrane is prepared based on the prepared optimization information. A water treatment system equipped with an operation management support system that controls the equipment.
前記運転管理支援システムが、前記予測の結果に基づいて、前記運転条件として、前記加圧ポンプの前記吐出圧を制御する吐出圧制御情報及び/又は前記透過水の造水量を制御する透過水造水量制御情報についての前記最適化情報を作製し、作製した前記最適化情報に基づいて、前記加圧ポンプの吐出圧及び/又は前記透過水の造水量を制御することを特徴とする請求項1に記載の水処理システム。 Based on the result of the prediction, the operation management support system controls the discharge pressure control information for controlling the discharge pressure of the pressurizing pump and / or the permeated water production amount for controlling the permeated water production amount as the operation conditions. Claim 1 is characterized in that the optimization information for the water amount control information is produced, and the discharge pressure of the pressurizing pump and / or the amount of water produced in the permeated water is controlled based on the produced optimization information. The water treatment system described in. 前記運転管理支援システムが、前記予測の結果に基づいて、前記メンテナンスタイミング情報として、前記逆浸透膜装置の膜洗浄タイミング及び洗浄時間の制御情報を含む洗浄タイミング制御情報と、前記逆浸透膜装置の膜交換タイミングの制御情報を含む交換タイミング制御情報とについての前記最適化情報を作製し、作製した前記洗浄タイミング制御情報及び前記交換タイミング制御情報に基づいて、最適となる前記逆浸透膜装置の膜洗浄タイミング又は膜交換タイミングとなるときに、警告信号を発することを特徴とする請求項1又は2に記載の水処理システム。 Based on the result of the prediction, the operation management support system includes cleaning timing control information including control information of the membrane cleaning timing and cleaning time of the reverse osmosis membrane device as the maintenance timing information, and the reverse osmosis membrane device. The optimization information about the replacement timing control information including the control information of the membrane replacement timing is prepared, and the optimum membrane of the reverse osmosis membrane device is optimized based on the prepared cleaning timing control information and the replacement timing control information. The water treatment system according to claim 1 or 2, wherein a warning signal is issued when the cleaning timing or the membrane replacement timing comes. 前記逆浸透膜装置の上流側に配置され、被処理水を前処理して前記逆浸透膜装置に供給するための前記供給水を得る前処理装置を更に備え、
前記運転管理支援システムが、前記前処理装置の運転条件を最適化するための前処理装置運転制御情報を作製し、作製した前処理装置運転制御情報に基づいて、前記前処理装置を制御することを特徴とする請求項1〜3のいずれか1項に記載の水処理システム。
Further provided is a pretreatment device which is arranged on the upstream side of the reverse osmosis membrane device and obtains the supply water for pretreating the water to be treated and supplying the reverse osmosis membrane device.
The operation management support system creates pretreatment device operation control information for optimizing the operation conditions of the pretreatment device, and controls the pretreatment device based on the created pretreatment device operation control information. The water treatment system according to any one of claims 1 to 3.
前記前処理装置が、前記被処理水に凝集剤を添加する凝集剤添加手段を備え、
前記運転管理支援システムが、前記被処理水の水質の予測結果に基づいて、前記被処理水に注入する凝集剤注入率の最適化情報を作製し、作製した前記凝集剤注入率の前記最適化情報に基づいて、前記凝集剤注入率を制御することを特徴とする請求項4に記載の水処理システム。
The pretreatment apparatus includes a coagulant addition means for adding a coagulant to the water to be treated.
The operation management support system creates optimization information of the coagulant injection rate to be injected into the water to be treated based on the prediction result of the water quality of the water to be treated, and the optimization of the prepared coagulant injection rate. The water treatment system according to claim 4, wherein the coagulant injection rate is controlled based on the information.
前記逆浸透膜装置が、
互いに直列に接続された複数の逆浸透膜バンクと、
前記逆浸透膜バンクの運転状況を測定可能な計器と、
を備え、
前記運転管理支援システムが、前記複数の逆浸透膜バンクのそれぞれに対してそれぞれ最適となる洗浄タイミング、洗浄時間、又は交換タイミングとなるように、前記最適化情報を作製し、作製した前記最適化情報に基づいて、前記逆浸透膜装置の運転を制御することを特徴とする請求項1〜5のいずれか1項に記載の水処理システム。
The reverse osmosis membrane device
With multiple reverse osmosis membrane banks connected in series with each other,
An instrument that can measure the operating status of the reverse osmosis membrane bank,
With
The optimization information is created so that the operation management support system has the optimum cleaning timing, cleaning time, or replacement timing for each of the plurality of reverse osmosis membrane banks. The water treatment system according to any one of claims 1 to 5, wherein the operation of the reverse osmosis membrane device is controlled based on the information.
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転管理支援システムであって、
前記供給水の水質情報、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、前記逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を取得する取得部と、
前記逆浸透膜運転情報を用いて、前記水処理システムの学習済みモデルを作製する学習部と、
前記学習済みモデルを用いて、前記逆浸透膜の圧力損失及び/又は前記透過水の水質を予測する予測部と、
前記予測部の予測結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む前記逆浸透膜装置の最適化情報を作製する最適化情報作製部と、
前記最適化情報に基づいて、前記水処理システムを制御するための制御信号を出力する制御部と、
を備える水処理システムの運転管理支援システム。
It is an operation management support system of a water treatment system equipped with a reverse osmosis membrane device that obtains concentrated water and permeated water by reverse osmosis membrane treatment of supplied water.
At least information on the quality of the supply water, the discharge pressure of the pressurizing pump that pressurizes the supply water supplied to the reverse osmosis membrane device, the flow rate of the permeated water, the flow rate of the concentrated water, and the flux information of the reverse osmosis membrane. An acquisition unit that acquires reverse osmosis membrane operation information including any of them,
A learning unit that creates a trained model of the water treatment system using the reverse osmosis membrane operation information, and
Using the trained model, a prediction unit for predicting the pressure loss of the reverse osmosis membrane and / or the water quality of the permeated water, and
An optimization information creation unit that creates optimization information for the reverse osmosis membrane device, including operating conditions and / or maintenance timing information for the reverse osmosis membrane device, based on the prediction results of the prediction unit.
A control unit that outputs a control signal for controlling the water treatment system based on the optimization information, and a control unit.
Operation management support system for water treatment system.
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転方法において、
前記供給水の水質情報、前記逆浸透膜に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、前記逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、
収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜の圧力損失及び/又は前記透過水の水質を予測し、
予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、
前記最適化情報に基づいて、前記水処理システムを制御すること
を有する水処理システムの運転方法。
In the operation method of a water treatment system provided with a reverse osmosis membrane device for obtaining concentrated water and permeated water by reverse osmosis membrane treatment of supplied water.
At least one of the water quality information of the supply water, the discharge pressure of the pressurizing pump that pressurizes the supply water supplied to the reverse osmosis membrane, the flow rate of the permeated water, the flow rate of the concentrated water, and the flux information of the reverse osmosis membrane. Collect reverse osmosis membrane operation information including
Based on the learned model obtained by machine learning using the collected reverse osmosis membrane operation information, the pressure loss of the reverse osmosis membrane and / or the water quality of the permeated water is predicted.
Based on the prediction results, optimization information including operating conditions and / or maintenance timing information of the reverse osmosis membrane device is created.
A method of operating a water treatment system, which comprises controlling the water treatment system based on the optimization information.
JP2020064988A 2020-03-31 2020-03-31 Water treatment system, water treatment system operation management support system, and water treatment system operation method Active JP7437998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064988A JP7437998B2 (en) 2020-03-31 2020-03-31 Water treatment system, water treatment system operation management support system, and water treatment system operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064988A JP7437998B2 (en) 2020-03-31 2020-03-31 Water treatment system, water treatment system operation management support system, and water treatment system operation method

Publications (2)

Publication Number Publication Date
JP2021159870A true JP2021159870A (en) 2021-10-11
JP7437998B2 JP7437998B2 (en) 2024-02-26

Family

ID=78001928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064988A Active JP7437998B2 (en) 2020-03-31 2020-03-31 Water treatment system, water treatment system operation management support system, and water treatment system operation method

Country Status (1)

Country Link
JP (1) JP7437998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116059833A (en) * 2023-03-07 2023-05-05 海澜智云科技有限公司 Artificial intelligent judging system for coal chemical industry circulating water blocking state
WO2023126700A1 (en) * 2021-12-30 2023-07-06 Pani Energy Inc. Digital model based configurable plant optimization and operation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
WO2017022113A1 (en) * 2015-08-05 2017-02-09 三菱重工業株式会社 Water treatment system, power generation plant, and method for controlling water treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327967A (en) * 2000-05-19 2001-11-27 Toray Ind Inc Operating method and manufacturing method of membrane filtration plant
JP2007185648A (en) * 2005-09-01 2007-07-26 Toray Ind Inc Method for deciding operation condition of membrane filtration apparatus, method for operating membrane filtration apparatus by using the method and membrane filtration apparatus
WO2017022113A1 (en) * 2015-08-05 2017-02-09 三菱重工業株式会社 Water treatment system, power generation plant, and method for controlling water treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023126700A1 (en) * 2021-12-30 2023-07-06 Pani Energy Inc. Digital model based configurable plant optimization and operation
CN116059833A (en) * 2023-03-07 2023-05-05 海澜智云科技有限公司 Artificial intelligent judging system for coal chemical industry circulating water blocking state
CN116059833B (en) * 2023-03-07 2023-08-18 海澜智云科技有限公司 Artificial intelligent judging system for coal chemical industry circulating water blocking state

Also Published As

Publication number Publication date
JP7437998B2 (en) 2024-02-26

Similar Documents

Publication Publication Date Title
JP6053175B2 (en) Desalination system with anomaly detection function
AU2002216167B2 (en) Method for regulating a membrane filtering installation
JP4982094B2 (en) Membrane filtration controller
Chew et al. Advanced process control for ultrafiltration membrane water treatment system
JP7437998B2 (en) Water treatment system, water treatment system operation management support system, and water treatment system operation method
US20110035195A1 (en) On-line performance management of membrane separation process
EP3921066B1 (en) Water treatment methods and apparatus
CN109843416A (en) The operation method of reverse osmosis membrane treatment system and reverse osmosis membrane treatment system
JP4718873B2 (en) Control device for membrane filtration equipment
WO2015198898A1 (en) Plant abnormality predicting device, abnormality predicting device, display device and display method
Hajeeh et al. Reliability and availability assessment of reverse osmosis
KR101915378B1 (en) Energy control process and system for seawater desalination plant
JPH0839065A (en) Operation control device of water making plant
AU2017202157A1 (en) Method and system for minimizing energy consumption during reverse osmosis unit operation
US20230072711A1 (en) Apparatus and methods for cleaning reverse osmosis systems
JP2011189285A (en) Knowledge storage for wastewater treatment process and method for control support device
CN116402233A (en) Ultrafiltration membrane pollution prediction method
JPH10314734A (en) Water distilling plant control device
Cámara et al. Neural network modelling and prediction of an Anaerobic Filter Membrane Bioreactor
JP5638636B2 (en) Control device, control system, and control method
CN114786794A (en) Method and system for filtering liquids
Koutsakos et al. Membrane management system
Lior et al. Advanced instrumentation, measurement, control and automation (IMCA) in multistage flash (MSF) and reverse-osmosis (RO) water desalination
JP2016097342A (en) Timing management device, timing management method, timing calculation device, and program
US20240124333A1 (en) Method for controlling ro system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7437998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150