JP2000030658A - Total reflection x-ray photoelectron spectrometer - Google Patents

Total reflection x-ray photoelectron spectrometer

Info

Publication number
JP2000030658A
JP2000030658A JP10212012A JP21201298A JP2000030658A JP 2000030658 A JP2000030658 A JP 2000030658A JP 10212012 A JP10212012 A JP 10212012A JP 21201298 A JP21201298 A JP 21201298A JP 2000030658 A JP2000030658 A JP 2000030658A
Authority
JP
Japan
Prior art keywords
sample
photoelectron
total reflection
ray
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10212012A
Other languages
Japanese (ja)
Other versions
JP3643484B2 (en
Inventor
Toyohiko Tazawa
豊彦 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP21201298A priority Critical patent/JP3643484B2/en
Publication of JP2000030658A publication Critical patent/JP2000030658A/en
Application granted granted Critical
Publication of JP3643484B2 publication Critical patent/JP3643484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a total reflection X-ray photoelectron spectrometer capable of easily setting the sample tilt angle for XPS measurement under the total reflection condition. SOLUTION: This total reflection X-ray photoelectron spectrometer is provided with an X-ray monochromator 3 monochromating the radiated X-rays, a sample tilt mechanism capable of adjusting the sample tilt angle for radiating the monochromated X-rays to a sample surface under the total reflection condition, and an electrostatic semispherical photoelectron energy analyzer 1 energy- distinguishing and detecting the photoelectrons emitted from the sample. This device is provided with a data collection unit 7, a sample stage control unit 8 and an XPS measurement computer 9 for setting the optimum tilt angle based on the profile indicating the relation of the P/B ratio between the sample tilt angle and the perceived photoelectron peak or the relation of the sample tilt angle and the intensity ratio between the photoelectron peak of a sample electrode surface layer and the photoelectron peak of a substrate layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、X線モノクロメ
ータを備えたX線光電子分光装置(XPS)に関し、特
に全反射条件でX線光電子分光測定(以下、XPS測定
という)を行うための最適試料傾斜角度を容易に設定で
きるようにした全反射X線光電子分光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray photoelectron spectrometer (XPS) equipped with an X-ray monochromator, and particularly to an X-ray photoelectron spectrometer (hereinafter, referred to as XPS measurement) under total reflection conditions. The present invention relates to a total reflection X-ray photoelectron spectrometer capable of easily setting a sample tilt angle.

【0002】[0002]

【従来の技術】一般に、X線モノクロメータを装着した
X線光電子分光装置では、通常の単色化していないX線
源を利用した装置に比べて、制動放射による連続X線を
除去できるために、観測されるスペクトルは非弾性散乱
電子によるバックグランド成分が著しく減少し、ピーク
・バックグランド比(P/B比)がよいスペクトルが得
られる。しかし、このようなX線モノクロメータを装着
した測定装置においても、半導体ウェハ上などの微量な
元素を検出することは困難である。
2. Description of the Related Art In general, an X-ray photoelectron spectrometer equipped with an X-ray monochromator can remove continuous X-rays due to bremsstrahlung compared with an apparatus using an ordinary non-monochromatic X-ray source. In the observed spectrum, the background component due to inelastic scattered electrons is significantly reduced, and a spectrum having a good peak-to-background ratio (P / B ratio) is obtained. However, it is difficult for a measuring apparatus equipped with such an X-ray monochromator to detect trace elements on a semiconductor wafer or the like.

【0003】このような微量な元素の検出を困難にして
いる一つの要因として、光電子スペクトルのバックグラ
ンド信号がある。このバックグランド信号は、物質内部
で発生した二次電子(光電子,オージェ電子等を含む)
が物質表面に輸送される間に非弾性散乱によって運動エ
ネルギーを失い、連続的なエネルギー分布を持つことに
起因している。このバックグランド成分の信号強度が大
きいと、微量元素の光電子信号はバックグランド信号の
統計変動によるS/N比によって支配され、微量元素の
光電子ピークを検出することは困難になる。
One of the factors that makes it difficult to detect such a trace element is a background signal of a photoelectron spectrum. This background signal is generated by secondary electrons (including photoelectrons, Auger electrons, etc.) generated inside the substance.
Loses kinetic energy due to inelastic scattering while being transported to the material surface, resulting in a continuous energy distribution. If the signal intensity of the background component is large, the photoelectron signal of the trace element is governed by the S / N ratio due to the statistical fluctuation of the background signal, and it becomes difficult to detect the photoelectron peak of the trace element.

【0004】そこで微量元素の光電子ピークを検出する
ために、バックグランド信号の低減が有効な手段とな
る。バックグランド信号の低減は、光電子の励起源に使
用する励起X線の試料に対する侵入深さを小さくし、発
生した光電子が物質中で走行する距離を短くすることで
実現できる。
[0004] To detect the photoelectron peak of a trace element, reduction of the background signal is an effective means. The reduction of the background signal can be realized by reducing the penetration depth of the excitation X-ray used for the excitation source of the photoelectrons into the sample and shortening the distance that the generated photoelectrons travel in the substance.

【0005】X線の侵入深さは、X線の入射角(θ0
X線入射束の試料面に対する角)を、励起X線の波長と
試料物質で決まるX線の全反射臨界角(θC )以下に設
定すると、全反射条件下におけるX線の侵入深さを表す
図6に示すように、数nmから10nm程度の領域になる。な
お、図3はSi 基板上にAlkα線(0.833nm)を入射角度
を変化させて照射したときの、X線の侵入深さのシミュ
レーション結果を示す図で、横軸はθ0C を、縦軸は
吸収を考慮したX線の侵入深さLabs(nm)を示してい
る。
[0005] The penetration depth of the X-ray is determined by the incident angle of the X-ray (θ 0 :
When the angle of the incident X-ray beam with respect to the sample surface) is set to be equal to or less than the critical angle of total reflection of the X-rays (θ C ) determined by the wavelength of the excitation X-ray and the sample material, the penetration depth of the X-rays under the condition of total reflection is As shown in FIG. 6, the area is about several nm to about 10 nm. FIG. 3 is a diagram showing a simulation result of the penetration depth of X-rays when the Alα ray (0.833 nm) is irradiated onto the Si substrate while changing the incident angle. The horizontal axis represents θ 0 / θ C. The vertical axis indicates the X-ray penetration depth Labs (nm) in consideration of absorption.

【0006】したがって、従来は、全反射条件下でXP
S測定を行うためには、被測定試料中の構成元素と入射
X線の波長で決まる全反射臨界角θC を算出して、試料
傾斜角度を設定するようにしている。また、全反射条件
下でXPS測定を行うためには、X線源、分光結晶及び
測定試料を正確にローランド円上に調整した後、試料表
面に対して全反射の臨界角度以下に単色化されたX線の
入射角度を設定する必要があるが、この入射角度を調整
する際には、反射X線の強度/像をX線検出器でモニタ
したり、試料の吸収電流をモニタするなどの方法が用い
られている。
[0006] Therefore, conventionally, under total reflection conditions, XP
In order to perform the S measurement, the critical angle of total reflection θ C determined by the constituent elements in the sample to be measured and the wavelength of the incident X-ray is calculated, and the sample tilt angle is set. In addition, in order to perform XPS measurement under total reflection conditions, the X-ray source, the dispersive crystal, and the sample to be measured are accurately adjusted on the Rowland circle, and then monochromatized to the critical angle of total reflection or less with respect to the sample surface. It is necessary to set the incident angle of the reflected X-ray. When adjusting this incident angle, it is necessary to monitor the intensity / image of the reflected X-ray with an X-ray detector or monitor the absorption current of the sample. A method is used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、被測定
試料の構成元素と入射X線の波長で決まる全反射臨界角
θC を算出することや、また反射X線の強度/像をX線
検出器でモニタしたり、試料の吸収電流をモニタして入
射角度の調整をすることには、かなり煩雑な作業を必要
とするという問題点がある。
However, it is necessary to calculate the total reflection critical angle θ C determined by the constituent elements of the sample to be measured and the wavelength of the incident X-rays, and to calculate the intensity / image of the reflected X-rays using an X-ray detector. There is a problem in that it is quite complicated to monitor the data by using the method or monitor the absorption current of the sample to adjust the incident angle.

【0008】本発明は、従来のX線光電子分光装置にお
いて全反射条件でXPS測定を行う場合の試料傾斜角度
の設定における上記問題点を解消するためになされたも
ので、全反射条件でXPS測定を行うための試料傾斜角
を容易に設定できるようにした全反射X線光電子分光装
置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problem in setting the sample tilt angle when XPS measurement is performed under total reflection conditions in a conventional X-ray photoelectron spectrometer, and XPS measurement is performed under total reflection conditions. It is an object of the present invention to provide a total reflection X-ray photoelectron spectrometer capable of easily setting a sample tilt angle for performing the above.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、照射X線を単色化するX線モノクロメー
タと、単色化したX線を全反射条件で試料表面に照射す
るための試料傾斜角度を調整できる機構と、試料より放
出された光電子をエネルギー分別して検出する静電半球
型光電子エネルギーアナライザとを有する全反射X線光
電子分光装置において、入射X線に対する試料傾斜角と
着目した光電子ピークに対するバックグランド強度比と
の関係、又は試料傾斜角と試料極表面層の光電子ピーク
に対する基板層の光電子ピークの強度比との関係を表す
プロファイルに基づいて最適試料傾斜角を設定する手段
を備えていることを特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an X-ray monochromator for monochromaticizing irradiated X-rays and an X-ray monochromator for irradiating monochromatic X-rays to a sample surface under total reflection conditions. In the total reflection X-ray photoelectron spectrometer, which has a mechanism that can adjust the tilt angle of the sample and an electrostatic hemispherical photoelectron energy analyzer that separates the photoelectrons emitted from the sample by energy, focuses on the tilt angle of the sample with respect to the incident X-ray. Means for setting an optimal sample tilt angle based on a profile representing the relationship between the background intensity ratio with respect to the photoelectron peak obtained, or the relationship between the sample tilt angle and the intensity ratio of the photoelectron peak of the substrate layer with respect to the photoelectron peak of the sample pole surface layer. It is characterized by having.

【0010】このように、入射X線に対する試料傾斜角
と着目した光電子ピークに対するバックグランド強度比
との関係、又は試料傾斜角と試料極表面層の光電子ピー
クに対する基板層の光電子ピークの強度比との関係を表
すプロファイルに基づいて最適試料傾斜角を設定する手
段を備えることによって、全反射条件下でのXPS測定
に際して、被測定試料の構成元素と入射X線の波長で決
まる全反射臨界角を算出することなく、X線入射角度の
設定を容易に行うことができ、表面が平坦な種々の試料
に対して全反射条件下でのXPS測定を容易に行うこと
が可能となる。
As described above, the relationship between the sample tilt angle with respect to the incident X-ray and the background intensity ratio with respect to the focused photoelectron peak, or the relationship between the sample tilt angle and the intensity ratio of the photoelectron peak of the substrate layer with respect to the photoelectron peak of the sample pole surface layer. Means for setting an optimum sample tilt angle based on a profile representing the relationship of the following formulas: In XPS measurement under total reflection conditions, the critical angle of total reflection determined by the constituent elements of the sample to be measured and the wavelength of the incident X-ray is determined. The X-ray incident angle can be easily set without calculation, and XPS measurement can be easily performed on various samples having a flat surface under the condition of total reflection.

【0011】[0011]

【発明の実施の形態】次に、実施の形態について説明す
る。図1は本発明に係る全反射X線光電子分光装置の外
観を示す概略図である。図1において、1は試料より発
生した光電子のエネルギーを分別して検出する静電半球
型光電子エネルギーアナライザ、2は試料ステージ部、
3はX線モノクロメータ、4は試料にX線を照射するた
めの標準X線源部である。
Next, an embodiment will be described. FIG. 1 is a schematic view showing the appearance of a total reflection X-ray photoelectron spectroscopy apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes an electrostatic hemispherical photoelectron energy analyzer that separates and detects photoelectron energy generated from a sample, 2 denotes a sample stage unit,
Reference numeral 3 denotes an X-ray monochromator, and 4 denotes a standard X-ray source for irradiating the sample with X-rays.

【0012】図2は、図1における試料ステージ部、X
線モノクロメータ、励起X線源部の内部構成を示す拡大
断面図である。図2において、11は試料ステージ、12は
該試料ステージ11上に載置されたシリコンウェハ等の被
測定試料、13は試料傾斜機構、14はX線モノクロメータ
分光結晶、15はX線モノクロメータ分光結晶14にX線を
照射するためのX線源、16は試料からの発生した光電子
を捕集する光電子捕集レンズ、17は観測チャンバを示し
ている。
FIG. 2 is a sectional view of the sample stage section X in FIG.
FIG. 3 is an enlarged cross-sectional view illustrating an internal configuration of a line monochromator and an excitation X-ray source unit. 2, reference numeral 11 denotes a sample stage, 12 denotes a sample to be measured such as a silicon wafer mounted on the sample stage 11, 13 denotes a sample tilting mechanism, 14 denotes an X-ray monochromator spectral crystal, and 15 denotes an X-ray monochromator. An X-ray source for irradiating the spectral crystal 14 with X-rays, 16 is a photoelectron collection lens for collecting photoelectrons generated from the sample, and 17 is an observation chamber.

【0013】このような構成と同様な従来の通常のX線
モノクロメータを用いたX線光電子分光装置において
は、X線源で発生させたX線をモノクロメータ分光結晶
を用いて分光して、試料上に照射するようになっている
が、通常の分光方式では光量をかせぐためにモノクロメ
ータ分光結晶の立体角を全部使うように、試料は−10°
〜−30°程度に傾斜させている。これに対して、本発明
においては、全反射条件でXPS測定を行うことを前提
としているため、非常に浅い傾斜角を設定するようにし
ている。
In a conventional X-ray photoelectron spectrometer using a conventional ordinary X-ray monochromator having the same structure as described above, the X-rays generated by the X-ray source are separated by using a monochromator spectroscopic crystal. The sample is illuminated on the sample, but in the normal spectroscopic method, the sample is −10 ° so that the solid angle of the monochromator crystal is used in order to increase the amount of light.
It is inclined to about -30 degrees. On the other hand, in the present invention, since it is assumed that the XPS measurement is performed under the condition of total reflection, a very shallow inclination angle is set.

【0014】このように傾斜角を全反射を満たすように
設定した場合、X線の侵入深さが浅いために、試料中で
発生した光電子の試料表面までの飛程が短く、このため
非弾性散乱による光電子のエネルギー損失確率が小さ
く、非弾性散乱に起因するスペクトルのバックグランド
強度が、全反射臨界角度より大きい通常のX線入射角度
で測定されるスペクトルに比べて小さい。この態様を、
Si 基板上にAlkα線を照射した場合のバックグランド
形状を表す図3の(A),(B)に示す。図3の(A)
は全反射条件時のXPS測定スペクトル、図3の(B)
は通常条件におけるXPS測定スペクトルを示してお
り、横軸は結合エネルギー、縦軸は任意単位で強度を表
している。これらの図からわかるように全反射条件時に
おいては、通常条件時よりもバックグランド強度Bが小
さくなっていることがわかる。なお、図3の(A),
(B)において、Pはピークスペクトル強度を示してい
る。
When the tilt angle is set so as to satisfy the total reflection, the range of the photoelectrons generated in the sample to the sample surface is short due to the shallow penetration depth of the X-rays, and the inelasticity is low. The probability of energy loss of photoelectrons due to scattering is small, and the background intensity of the spectrum caused by inelastic scattering is smaller than the spectrum measured at a normal X-ray incident angle larger than the critical angle of total reflection. This aspect,
FIGS. 3A and 3B show a background shape when the Al substrate is irradiated with Alk α-rays on the Si substrate. (A) of FIG.
Is the XPS measurement spectrum under the condition of total reflection, FIG.
Indicates an XPS measurement spectrum under normal conditions, in which the horizontal axis represents binding energy and the vertical axis represents intensity in arbitrary units. As can be seen from these figures, the background intensity B is smaller under the total reflection condition than under the normal condition. In addition, (A) of FIG.
In (B), P indicates the peak spectrum intensity.

【0015】また、全反射条件におけるXPS測定スペ
クトルの特徴としては、X線の侵入深さが浅いため、極
表面付近に存在する元素に起因する光電子が支配的であ
る。この態様を、全反射条件と通常条件下における極表
面層と基板層に起因する光電子ピークの比較を表す図4
の(A),(B)に示す。これらは、極薄い自然酸化膜
が存在するSi 基板にAlkα線を照射した場合の、Si2
p 光電子ピークの強度を示す図で、図4の(A)は全反
射条件、図4の(B)は通常条件の場合を示す図であ
る。これらの図からわかるように、全反射条件でX線を
照射した場合は、基板表面に存在する酸化層に起因する
Si2p 光電子ピークの強度PSUR と基板層のSi に起因
するSi2p 光電子ピークの強度PSUB の強度比が変化す
る。
As a feature of the XPS measurement spectrum under the condition of total reflection, since the penetration depth of X-rays is small, photoelectrons originating from elements existing near the pole surface are dominant. FIG. 4 shows a comparison of photoelectron peaks caused by the extreme surface layer and the substrate layer under total reflection conditions and normal conditions.
(A) and (B). These are obtained by irradiating the Si substrate on which an extremely thin natural oxide film exists with Al2α radiation to the Si2 substrate.
FIG. 4A is a diagram showing the intensity of the photoelectron peak, and FIG. 4A is a diagram showing the case of the total reflection condition, and FIG. 4B is a diagram showing the case of the normal condition. As can be seen from these figures, when X-rays are irradiated under total reflection conditions, the intensity P SUR of the Si2p photoelectron peak due to the oxide layer present on the substrate surface and the intensity of the Si2p photoelectron peak due to Si in the substrate layer. The intensity ratio of P SUB changes.

【0016】このように、全反射条件におけるXPS測
定スペクトルにおいては、バックグランド強度が通常の
X線入射角度で測定されるスペクトルのバックグランド
強度に比べて小さいという特徴、及び試料の極表面層に
存在する元素に基因する光電子ピークと試料の基板層に
起因する光電子ピークの強度比が変化するという特徴が
あり、本発明は、これらの点に着目して、XPS測定を
全反射条件で行うための入射X線の試料表面に対する入
射角度の設定を、傾斜角度に対する着目した光電子ピー
クのP/B比(又はその逆数)の関係を示すプロファイ
ル、又は試料傾斜角度に対する試料の極表面層に存在す
る元素に起因する光電子ピークと試料の基板層に起因す
る光電子ピークの強度比の関係を示すプロファイルを作
成し、それらのプロファイルに基づいて最適試料傾斜角
度を設定するようにするものである。
As described above, in the XPS measurement spectrum under the condition of total reflection, the background intensity is smaller than the background intensity of the spectrum measured at a normal X-ray incident angle, and the surface intensity of the sample is very small. The present invention is characterized in that the intensity ratio of the photoelectron peak due to the element present and the photoelectron peak due to the substrate layer of the sample changes. The present invention focuses on these points and performs XPS measurement under total reflection conditions. The setting of the incident angle of the incident X-ray with respect to the sample surface is performed in the profile showing the relationship of the P / B ratio (or the reciprocal thereof) of the focused photoelectron peak with respect to the tilt angle, or in the extreme surface layer of the sample with respect to the sample tilt angle. A profile showing the relationship between the intensity ratio of the photoelectron peak caused by the element and the photoelectron peak caused by the substrate layer of the sample is created, and the profiles are created. And it is to set the optimum sample tilt angle based on the file.

【0017】そのため、本発明においては、図1の実施
の形態に示すように、試料ステージ11の傾斜角を設定す
るための傾斜機構13を駆動する駆動モータ5と、該駆動
モータ5を制御するステージ制御ユニット6と、XPS
スペクトルデータを光電子検出器7を介して取得するデ
ータ収集ユニット8と、取得されたデータに基づいてプ
ロファイルを作成し最適試料傾斜角を決定すると共に、
各部の制御を行うXPS測定用コンピュータ9を備えて
いる。なお、図1において10はゲート弁である。
Therefore, in the present invention, as shown in the embodiment of FIG. 1, the drive motor 5 for driving the tilt mechanism 13 for setting the tilt angle of the sample stage 11 and the drive motor 5 are controlled. Stage control unit 6 and XPS
A data collection unit 8 for acquiring spectral data via the photoelectron detector 7, a profile is created based on the acquired data to determine an optimum sample tilt angle,
An XPS measurement computer 9 for controlling each unit is provided. In FIG. 1, reference numeral 10 denotes a gate valve.

【0018】次に、このように構成されている実施の形
態における試料傾斜角設定の動作について、図5のフロ
ーチャートに基づいて説明する。まず、被測定試料12を
試料ステージ11にセットし、通常のXPS測定で行う深
い傾斜角度を設定して(ステップS1)、試料の全領域
のワイドスペクトル測定を行う(ステップS2)。次い
で、ワイドスペクトル測定結果に基づいて、どのスペク
トルを目的のピークスペクトルとするか検出判断して、
傾斜角度評価用ピークの設定を行う(ステップS3)。
次に、傾斜角度評価用のプロファイルの作成のための測
定ステップ(ステップS4)に入るが、ここでは試料傾
斜角を少しづつ変えて設定し(ステップS4−1)、そ
の都度XPS測定を行い(ステップS4−2)、強度比
又はP/B比の算出を行う(ステップS4−3)、ここ
では、試料の極表面層に存在する元素に起因する光電子
ピークと試料の基板層に起因する光電子ピークの強度
比、あるいは着目した光電子ピークのP/B比の算出を
行う。
Next, the operation of setting the sample tilt angle in the embodiment configured as described above will be described with reference to the flowchart of FIG. First, the sample to be measured 12 is set on the sample stage 11, and a deep inclination angle to be used in normal XPS measurement is set (step S1), and wide spectrum measurement of the entire region of the sample is performed (step S2). Next, based on the wide spectrum measurement result, which spectrum is determined as the target peak spectrum is detected and determined,
The inclination angle evaluation peak is set (step S3).
Next, a measurement step (step S4) for creating a profile for evaluating the tilt angle is started. Here, the sample tilt angle is changed little by little (step S4-1), and XPS measurement is performed each time (step S4-1). In step S4-2), an intensity ratio or a P / B ratio is calculated (step S4-3). Here, a photoelectron peak caused by an element existing in the very surface layer of the sample and a photoelectron caused by the substrate layer of the sample are calculated. The peak intensity ratio or the P / B ratio of the focused photoelectron peak is calculated.

【0019】このようなステップS4−1〜S4−3の
動作を繰り返して行うことにより、傾斜角度評価用プロ
ファイルが作成される。図示例では、試料傾斜角度θ/
θCに対するP/B比の逆数の関係を表すプロファイル
を示している。このようにして作成されたプロファイル
から、極表面層と基板層のピーク強度比あるいは図示さ
れているP/B比の逆数のミニマム近傍になる傾斜角度
を求めて、全反射条件でのスペクトル測定を行うための
最適試料傾斜角度を決定する(ステップS5)。この試
料傾斜角度をステージ制御ユニットを介して試料ステー
ジに設定して測定を行うことにより、全反射条件下での
XPS測定が行われる。
By repeating the operations of steps S4-1 to S4-3, a profile for evaluating the inclination angle is created. In the illustrated example, the sample inclination angle θ /
4 shows a profile representing a reciprocal of the P / B ratio with respect to θ C. From the profile created in this way, the peak intensity ratio between the extreme surface layer and the substrate layer or the inclination angle that is near the minimum of the reciprocal of the illustrated P / B ratio is obtained, and the spectrum measurement under the total reflection condition is performed. The optimum sample tilt angle to be performed is determined (Step S5). By setting the sample tilt angle on the sample stage via the stage control unit and performing measurement, XPS measurement under total reflection conditions is performed.

【0020】[0020]

【発明の効果】以上実施の形態に基づいて説明したよう
に、本発明によれば、全反射条件下でのXPS測定に際
して、被測定試料の構成元素と入射X線の波長で決まる
全反射臨界角を算出することなくX線入射角度の設定を
容易に行うことができ、表面が平坦な種々の試料に対し
て全反射条件下でXPS測定を容易に行うことが可能と
なる。
As described above with reference to the embodiments, according to the present invention, upon XPS measurement under total reflection conditions, the total reflection criticality determined by the constituent elements of the sample to be measured and the wavelength of the incident X-rays. The X-ray incident angle can be easily set without calculating the angle, and XPS measurement can be easily performed on various samples having a flat surface under the condition of total reflection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る全反射X線光電子分光装置の実施
の形態の概略外観図である。
FIG. 1 is a schematic external view of an embodiment of a total reflection X-ray photoelectron spectroscopy apparatus according to the present invention.

【図2】図1に示した実施の形態の要部の内部構造を示
す断面図である。
FIG. 2 is a sectional view showing an internal structure of a main part of the embodiment shown in FIG.

【図3】全反射条件と通常条件下におけるバックグラン
ド強度を示す図である。
FIG. 3 is a diagram showing background intensity under total reflection conditions and normal conditions.

【図4】全反射条件と通常条件下における極表面層と基
板層に起因する光電子ピークを示す図である。
FIG. 4 is a diagram showing photoelectron peaks caused by the extreme surface layer and the substrate layer under total reflection conditions and normal conditions.

【図5】図1に示した実施の形態の動作を説明するため
のフローチャートである。
FIG. 5 is a flowchart for explaining the operation of the embodiment shown in FIG. 1;

【図6】Si 基板上にAlkα線を入射角度を変化させて
照射したときのX線の侵入深さのシミュレーション結果
を示す図である。
FIG. 6 is a diagram showing a simulation result of a penetration depth of X-rays when an Alkα ray is irradiated onto a Si substrate while changing an incident angle.

【符号の説明】[Explanation of symbols]

1 静電半球型光電子エネルギーアナライザ 2 試料ステージ部 3 X線モノクロメータ 4 標準X線源部 5 試料傾斜機構駆動モータ 6 ステージ制御ユニット 7 光電子検出器 8 データ収集ユニット 9 XPS測定用コンピュータ 10 ゲート弁 11 試料ステージ 12 試料 13 試料傾斜機構 14 X線モノクロメータ分光結晶 15 X線源 16 光電子捕集レンズ 17 観測チャンバ DESCRIPTION OF SYMBOLS 1 Electrostatic hemispherical photoelectron energy analyzer 2 Sample stage part 3 X-ray monochromator 4 Standard X-ray source part 5 Sample tilting mechanism drive motor 6 Stage control unit 7 Photoelectron detector 8 Data collection unit 9 Computer for XPS measurement 10 Gate valve 11 Sample stage 12 Sample 13 Sample tilt mechanism 14 X-ray monochromator spectral crystal 15 X-ray source 16 Photoelectron collection lens 17 Observation chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 照射X線を単色化するX線モノクロメー
タと、単色化したX線を全反射条件で試料表面に照射す
るための試料傾斜角度を調整できる機構と、試料より放
出された光電子をエネルギー分別して検出する静電半球
型光電子エネルギーアナライザとを有する全反射X線光
電子分光装置において、入射X線に対する試料傾斜角と
着目した光電子ピークに対するバックグランド強度比と
の関係を表すプロファイルに基づいて最適試料傾斜角を
設定する手段を備えていることを特徴とする全反射X線
光電子分光装置。
An X-ray monochromator for monochromaticizing irradiated X-rays, a mechanism for adjusting a sample tilt angle for irradiating monochromatic X-rays to a sample surface under total reflection conditions, and a photoelectron emitted from the sample -Reflection X-ray photoelectron spectrometer having an electrostatic hemispherical photoelectron energy analyzer that separates energy into energy for detection, based on a profile representing the relationship between the sample tilt angle with respect to incident X-rays and the background intensity ratio with respect to the focused photoelectron peak Total reflection X-ray photoelectron spectroscopy apparatus comprising means for setting an optimum sample tilt angle by using the method.
【請求項2】 照射X線を単色化するX線モノクロメー
タと、単色化したX線を全反射条件で試料表面に照射す
るための試料傾斜角度を調整できる機構と、試料より放
出された光電子をエネルギー分別して検出する静電半球
型光電子エネルギーアナライザとを有する全反射X線光
電子分光装置において、試料傾斜角と試料極表面層の光
電子ピークに対する基板層の光電子ピークの強度比との
関係を表すプロファイルに基づいて最適試料傾斜角を設
定する手段を備えていることを特徴とする全反射X線光
電子分光装置。
2. An X-ray monochromator for monochromaticizing irradiated X-rays, a mechanism capable of adjusting a sample inclination angle for irradiating monochromatic X-rays on a sample surface under total reflection conditions, and a photoelectron emitted from the sample. Represents the relationship between the sample tilt angle and the intensity ratio of the photoelectron peak of the substrate layer to the photoelectron peak of the surface layer of the sample in a total reflection X-ray photoelectron spectrometer having an electrostatic hemispherical photoelectron energy analyzer that separates and detects energy. A total reflection X-ray photoelectron spectroscopy apparatus comprising means for setting an optimum sample tilt angle based on a profile.
JP21201298A 1998-07-13 1998-07-13 Total reflection X-ray photoelectron spectrometer Expired - Fee Related JP3643484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21201298A JP3643484B2 (en) 1998-07-13 1998-07-13 Total reflection X-ray photoelectron spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21201298A JP3643484B2 (en) 1998-07-13 1998-07-13 Total reflection X-ray photoelectron spectrometer

Publications (2)

Publication Number Publication Date
JP2000030658A true JP2000030658A (en) 2000-01-28
JP3643484B2 JP3643484B2 (en) 2005-04-27

Family

ID=16615429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21201298A Expired - Fee Related JP3643484B2 (en) 1998-07-13 1998-07-13 Total reflection X-ray photoelectron spectrometer

Country Status (1)

Country Link
JP (1) JP3643484B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256399B2 (en) 2005-04-07 2007-08-14 International Business Machines Corporation Non-destructive in-situ elemental profiling
US7285775B2 (en) 2004-12-02 2007-10-23 International Business Machines Corporation Endpoint detection for the patterning of layered materials
JP2010048584A (en) * 2008-08-19 2010-03-04 Univ Of Yamanashi X-ray photoelectron spectrometer, total reflection x-ray photoelectron spectrometer and angle-resolved x-ray photoelectron spectrometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7285775B2 (en) 2004-12-02 2007-10-23 International Business Machines Corporation Endpoint detection for the patterning of layered materials
US7256399B2 (en) 2005-04-07 2007-08-14 International Business Machines Corporation Non-destructive in-situ elemental profiling
JP2010048584A (en) * 2008-08-19 2010-03-04 Univ Of Yamanashi X-ray photoelectron spectrometer, total reflection x-ray photoelectron spectrometer and angle-resolved x-ray photoelectron spectrometer

Also Published As

Publication number Publication date
JP3643484B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
US7231016B2 (en) Efficient measurement of diffuse X-ray reflections
JPH08184572A (en) Total-reflection x-ray analytical apparatus
US20030080291A1 (en) System and method for characterization of thin films
US7449682B2 (en) System and method for depth profiling and characterization of thin films
US6628748B2 (en) Device and method for analyzing atomic and/or molecular elements by means of wavelength dispersive X-ray spectrometric devices
JP2000030658A (en) Total reflection x-ray photoelectron spectrometer
JPH05126768A (en) Fluorescent x-ray analyzing method
JP3950642B2 (en) X-ray analyzer with electronic excitation
JP4537149B2 (en) X-ray fluorescence analysis method
JPH0798285A (en) X-ray evaluation apparatus
JP2000097889A (en) Sample analyzing method and sample analyzer
JP3404338B2 (en) X-ray reflectance measuring method and apparatus
JP5846469B2 (en) Total reflection X-ray fluorescence analyzer and total reflection X-ray fluorescence analysis method
JP3111173B2 (en) X-ray analyzer
JP2000055841A (en) X-ray analysis method
JPH06160312A (en) X-ray evaluation apparatus
US20210302336A1 (en) Analysis Method and X-Ray Fluorescence Analyzer
JP3840503B2 (en) X-ray analysis method and apparatus
JP2592931B2 (en) X-ray fluorescence analyzer
JPS60100038A (en) Surface layer analysis with x-ray microanalyzer
JP2001083111A (en) Auger electron spectrometer and method for measuring spectrum
JP2001304843A (en) Method and device for film thickness measurement
JPH1151630A (en) Method for measuring film thickness of very small part
JPH11295248A (en) Total reflection photoelectron spectrometer
JP2001083112A (en) Photoelectron spectroscopic device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees