JP2000097889A - Sample analyzing method and sample analyzer - Google Patents

Sample analyzing method and sample analyzer

Info

Publication number
JP2000097889A
JP2000097889A JP10269098A JP26909898A JP2000097889A JP 2000097889 A JP2000097889 A JP 2000097889A JP 10269098 A JP10269098 A JP 10269098A JP 26909898 A JP26909898 A JP 26909898A JP 2000097889 A JP2000097889 A JP 2000097889A
Authority
JP
Japan
Prior art keywords
sample
ray
rays
analysis
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10269098A
Other languages
Japanese (ja)
Inventor
Yuji Sakai
悠 治 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP10269098A priority Critical patent/JP2000097889A/en
Publication of JP2000097889A publication Critical patent/JP2000097889A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conduct elementary analysis in a sample electrode surface and in a site deeper than the surface without carrying out etching, in analysis using total reflection photoelectron spectroscopy. SOLUTION: An Alkα ray separated into its spectral components by an X-ray monochromater analyzing crystal 6 gets incident into a sample with a total reflection angle. A photoelectron emitted from the sample 7 is detected by an electron spectroscope 11, and a sample analyzing means 21 provides elementary information of a sample 7 electrode surface. A fluorescent X-ray emitted from the sample 7 is detected by a detector 16. An escape depth of the fluorescent X-ray is deeper than that of the photoelectron, the detected fluorescent X-ray has elementary information in a position of about several μm of depth from a sample surface, and the elementary information in a position deeper than that of the sample elctrode surface is provided based on an analyzed result of the second sample analyzing means 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、試料にX線を照
射し、そのX線照射により試料から放出される信号を検
出して試料分析を行う試料分析方法および試料分析装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample analysis method and a sample analysis apparatus for irradiating a sample with X-rays, detecting a signal emitted from the sample by the X-ray irradiation, and analyzing the sample.

【0002】[0002]

【従来の技術】 表面分析装置として光電子分光装置が
あるが、この光電子分光装置は、X線(MgKα線また
はAlKα線などの特性X線)を試料表面に照射し、そ
の照射により試料から放出される光電子の運動エネルギ
ーを測定し、その測定結果から表面元素の定性分析や定
量分析、さらに化学結合状態の分析を行う装置である。
2. Description of the Related Art A photoelectron spectroscopy device is known as a surface analysis device. This photoelectron spectroscopy device irradiates an X-ray (characteristic X-ray such as MgKα ray or AlKα ray) onto a sample surface, and is emitted from the sample by the irradiation. This device measures the kinetic energy of photoelectrons and performs qualitative and quantitative analysis of surface elements from the measurement results, as well as analysis of the state of chemical bonding.

【0003】光電子分光装置で検出される光電子の運動
エネルギーは0〜3keV程度と低く、これらの電子の
脱出深さはせいぜい数nmである。このため、光電子分
光装置を用いれば、試料表面から数nmの情報を得るこ
とができる。
The kinetic energy of photoelectrons detected by a photoelectron spectrometer is as low as about 0 to 3 keV, and the escape depth of these electrons is at most several nm. For this reason, if a photoelectron spectroscopy device is used, information of several nm can be obtained from the sample surface.

【0004】ところで、最近では、半導体関連の材料分
野の研究者から、層構造をなす材料の特性評価を行うた
めに、試料表面から数nmとそれより深いところの元素
の分布を知りたいという要求が多い。この要求にこたえ
るために、最近の光電子分光装置にはイオン銃が構成さ
れており、1回の分析が終わると試料がイオンエッチン
グされてそれより深いところの元素分析が行われてい
る。
[0004] Recently, researchers in the field of semiconductor-related materials have requested to know the distribution of elements several nanometers deeper than the surface of a sample in order to evaluate the characteristics of a material having a layered structure. There are many. In order to meet this demand, a recent photoelectron spectroscopy apparatus is provided with an ion gun, and after one analysis, the sample is subjected to ion etching and element analysis at a deeper place is performed.

【0005】また、最近、光電子分光装置における検出
感度を向上させるために、X線を試料表面すれすれに入
射させて、すなわちX線を全反射条件で試料に照射し
て、検出スペクトルのバックグランドを減少させてP/
B比を上げる全反射光電子分光法が多く利用されてい
る。この全反射光電子分光法を利用したときの電子の脱
出深さは数0.1nmであり、全反射光電子分光法を利
用すれば、試料表面から数0.1nmという試料極表面
のみの情報を得ることができる。
Recently, in order to improve the detection sensitivity of a photoelectron spectrometer, X-rays are incident on a sample slightly below the surface of the sample, that is, the sample is irradiated with X-rays under the condition of total reflection, and the background of the detection spectrum is changed. Decrease P /
Total reflection photoelectron spectroscopy for increasing the B ratio is often used. The escape depth of electrons when using this total internal reflection photoelectron spectroscopy is several 0.1 nm, and when using total internal reflection photoelectron spectroscopy, information of only 0.1 nm from the sample surface can be obtained from the sample surface only. be able to.

【発明が解決しようとする課題】 さて、全反射光電子
分光法を用いて試料極表面の分析を行った後、試料表面
をイオンエッチングし、そしてイオンエッチングにより
現れた試料表面の分析を同様に全反射光電子分光法を用
いて行えば、試料極表面とそれより深いところの元素分
析においてバックグランド成分の少ない検出スペクトル
が得られるように思われるが、実際にはこのような分析
は非常に困難である。その理由について以下に示す。
Now, after analyzing the surface of the sample electrode using total reflection photoelectron spectroscopy, ion etching is performed on the sample surface, and the analysis of the sample surface that has appeared by ion etching is similarly performed. Reflection photoelectron spectroscopy seems to provide a detection spectrum with a small background component in elemental analysis at the surface of the sample and deeper than it, but in practice such analysis is very difficult. is there. The reason will be described below.

【0006】X線を、イオンエッチングにより現れた試
料表面すれすれに入射させるためには、試料表面を広い
範囲にわたってイオンエッチングしなければならない。
そして、ただエッチングすれば良いというものではな
く、イオンエッチングによって試料表面荒れが生じると
検出感度が低下するので、試料表面を原子レベルで均一
にエッチングしなければならない。しかしながら、その
ようなイオンエッチングは非常に困難である。
[0006] In order to make X-rays incident on a very small portion of the sample surface that has appeared by ion etching, the sample surface must be ion-etched over a wide range.
Then, it is not only necessary to perform the etching, but if the sample surface is roughened by the ion etching, the detection sensitivity is lowered. Therefore, the sample surface must be uniformly etched at the atomic level. However, such ion etching is very difficult.

【0007】以上が上記理由であるが、試料表面を原子
レベルで均一にエッチングするために、光電子分光装置
の試料室とは別の場所でエッチング専用装置で試料エッ
チングしたとしても、分析位置の再現性が得られなく、
全反射光電子分光法を用いた深さ方向の分析はうまく行
えない。
Although the above is the reason described above, even if the sample is etched by a dedicated etching apparatus in a place different from the sample chamber of the photoelectron spectrometer in order to uniformly etch the sample surface at an atomic level, the analysis position is reproduced. I can not get the nature,
Analysis in the depth direction using total reflection photoelectron spectroscopy cannot be performed well.

【0008】また、試料エッチングを行う時には元素分
析を中断しなければならず、試料エッチングを用いた分
析のトータル時間は長くなる。
Further, when performing sample etching, elemental analysis must be interrupted, and the total time of analysis using sample etching becomes longer.

【0009】本発明はこのような点に鑑みて成されたも
ので、その目的は、エッチングを行うことなく、全反射
光電子分光法を用いた分析で、試料極表面とそれより深
いところの元素分析を行うことができる試料分析方法お
よび試料分析装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to perform analysis using total reflection photoelectron spectroscopy without performing etching, and to analyze a sample electrode surface and elements deeper than the sample electrode surface. An object of the present invention is to provide a sample analysis method and a sample analyzer capable of performing analysis.

【0010】[0010]

【課題を解決するための手段】 この目的を達成する本
発明の試料分析方法は、X線を全反射条件で試料に照射
し、そのX線照射により試料から放出される光電子を検
出して、検出した光電子に基づいて試料極表面の元素情
報を得、前記X線照射により試料から放出される蛍光X
線を検出して、検出した蛍光X線に基づいて前記試料極
表面より深いところの元素情報を得ることを特徴とす
る。
Means for Solving the Problems A sample analysis method of the present invention that achieves this object irradiates a sample with X-rays under total reflection conditions, detects photoelectrons emitted from the sample by the X-ray irradiation, Based on the detected photoelectrons, element information on the sample pole surface is obtained, and the fluorescence X emitted from the sample by the X-ray irradiation is obtained.
The method is characterized in that a line is detected and element information at a position deeper than the sample pole surface is obtained based on the detected fluorescent X-ray.

【0011】[0011]

【発明の実施の形態】 以下、本発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0012】図1は、本発明の試料分析装置の一例を示
した図である。まず、図1の装置の構成について説明す
る。
FIG. 1 is a diagram showing an example of the sample analyzer of the present invention. First, the configuration of the apparatus shown in FIG. 1 will be described.

【0013】図1において、1はチャンバである。2
は、チャンバ1内に配置されたX線源であり、X線源2
は、フィラメント3、フォーカス調整電極4、ターゲッ
ト5を備えている。ターゲット5はAlで構成されてお
り、単色化した励起X線を使用する光電子分光装置で
は、一般的にAlがターゲットに使用される。
In FIG. 1, reference numeral 1 denotes a chamber. 2
Is an X-ray source arranged in the chamber 1;
Includes a filament 3, a focus adjustment electrode 4, and a target 5. The target 5 is made of Al, and in a photoelectron spectroscopy device that uses monochromatic excited X-rays, Al is generally used for the target.

【0014】6は、二重集束型に湾曲したX線モノクロ
メータ分光結晶であり、X線モノクロメータ分光結晶6
は、前記X線源2に対向するようにチャンバ内に配置さ
れている。このX線モノクロメータ分光結晶6は、結晶
[α−SiO2]で形成されており、被測定試料である
半導体ウェファー7は、X線モノクロメータ分光結晶6
で分光されたAlkα線の照射を受ける。この試料7は
試料ステージ8上に置かれており、試料ステージ8は、
XYステージ9と傾斜ステージ10で構成されている。
Reference numeral 6 denotes an X-ray monochromator spectral crystal curved in a double focusing type.
Is disposed in the chamber so as to face the X-ray source 2. The X-ray monochromator spectral crystal 6 is formed of a crystal [α-SiO 2], and the semiconductor wafer 7 to be measured is a X-ray monochromator spectral crystal 6.
Irradiation of Alkα rays that have been spectroscopically performed. The sample 7 is placed on a sample stage 8, and the sample stage 8
An XY stage 9 and a tilt stage 10 are provided.

【0015】試料7の上側には、試料から放出される光
電子を検出する電子分光器11が配置されており、この
電子分光器11は、複数の静電レンズから成るインプッ
トレンズ(減速レンズ)12と、半球面型アナライザ1
3と、検出器14で構成されている。前記インプットレ
ンズ12は、その光軸が試料表面にほぼ直交するように
配置されている。
An electron spectroscope 11 for detecting photoelectrons emitted from the sample is disposed above the sample 7, and the electron spectroscope 11 has an input lens (deceleration lens) 12 composed of a plurality of electrostatic lenses. And hemispherical analyzer 1
3 and a detector 14. The input lens 12 is arranged so that its optical axis is substantially perpendicular to the sample surface.

【0016】また、試料7の近くには、試料から放出さ
れる蛍光X線を検出するエネルギー分散形X線検出器
(EDS)15が配置されている。光電子分光装置にお
いては、チャンバ1内を超高真空に排気するためにチャ
ンバ1内は150℃程度で8〜10時間ベークアウトさ
れるが、EDS15は、その検出器16を構成する半導
体のP−Nダイオード素子がこのベークアウトで破損し
ないように、図2に示す熱対策が行われている。図2
は、前記検出器16の周辺を示したものであるが、ED
S15の円筒カバー17の内側には断熱材18が設けら
れており、また、検出器16を支持して液体窒素タンク
に接続された熱伝導棒19の表面は、熱放射を良くする
ために鏡面仕上げされている。
An energy dispersive X-ray detector (EDS) 15 for detecting fluorescent X-rays emitted from the sample is arranged near the sample 7. In the photoelectron spectroscopy device, the inside of the chamber 1 is baked out at about 150 ° C. for 8 to 10 hours to evacuate the chamber 1 to an ultra-high vacuum. In order to prevent the N diode element from being damaged by the bakeout, a thermal measure shown in FIG. 2 is taken. FIG.
Shows the periphery of the detector 16;
A heat insulating material 18 is provided inside the cylindrical cover 17 in S15, and the surface of the heat conducting rod 19 supporting the detector 16 and connected to the liquid nitrogen tank has a mirror surface for improving heat radiation. Finished.

【0017】20は排気装置である。また、21は、前
記電子分光器11の検出器14に接続された第1の試料
分析手段であり、22は、前記EDS15の検出器16
に接続された第2の試料分析手段である。
Reference numeral 20 denotes an exhaust device. Reference numeral 21 denotes first sample analysis means connected to the detector 14 of the electron spectrometer 11, and reference numeral 22 denotes a detector 16 of the EDS 15.
The second sample analysis means is connected to the second sample analysis means.

【0018】このような構成において、X線源2で発生
したX線はX線モノクロメータ分光結晶6で分光され、
X線モノクロメータ分光結晶6で分光されたAlkα線
は試料7を照射する。この際、Alkα線が全反射角度
(2〜3度)で試料に入射するように傾斜ステージ10
が調整されているため、Alkα線は全反射角度で試料
7に入射する。このようにX線が全反射角度で試料に入
射すると、入射X線は試料内部に入射せずに表面原子で
全反射され、内部原子とX線の相互作用によるスペクト
ルのバックグランドは大幅に減少する。
In such a configuration, the X-rays generated by the X-ray source 2 are dispersed by the X-ray monochromator spectral crystal 6, and
The sample 7 is irradiated with Alk α-rays separated by the X-ray monochromator crystal 6. At this time, the tilt stage 10 is set so that the Alkα ray is incident on the sample at a total reflection angle (2 to 3 degrees).
Is adjusted, the Alkα ray enters the sample 7 at a total reflection angle. When X-rays enter the sample at a total reflection angle in this way, the incident X-rays are totally reflected by surface atoms without entering the sample, and the background of the spectrum due to the interaction between the internal atoms and the X-rays is greatly reduced. I do.

【0019】さて、X線が試料7を照射すると、試料7
から光電子が放出されるが、この光電子は電子分光器1
1で検出される。そして、この検出された信号は第1の
試料分析手段21に送られ、試料分析手段21は、送ら
れてくる信号に基づいて表面元素の定性分析や定量分
析、さらに化学結合状態の分析を行う。この結果、試料
7の極表面の元素情報を得ることができる。
Now, when X-rays irradiate the sample 7, the sample 7
Photoelectrons are emitted from the electron spectrometer 1
1 is detected. Then, the detected signal is sent to the first sample analyzing means 21. The sample analyzing means 21 performs a qualitative analysis or a quantitative analysis of the surface element and an analysis of the chemical bonding state based on the sent signal. . As a result, it is possible to obtain element information on the very surface of the sample 7.

【0020】また、X線が試料7を照射すると、光電子
以外に蛍光X線も試料7から放出され、この蛍光X線は
EDS15の検出器16で検出される。そして、この検
出された信号は第2の試料分析手段22に送られ、試料
分析手段22は、送られてくる信号に基づいて試料元素
の定性分析や定量分析を行う。この蛍光X線の脱出深さ
は光電子の脱出深さに比べて深く、検出された蛍光X線
は試料表面から約数μmのところの元素情報を有してい
る。このため、第2の試料分析手段22の分析結果か
ら、前記試料極表面より深いところの元素情報を得るこ
とができる。
When X-rays irradiate the sample 7, fluorescent X-rays are emitted from the sample 7 in addition to photoelectrons, and the fluorescent X-rays are detected by the detector 16 of the EDS 15. Then, the detected signal is sent to the second sample analysis means 22, and the sample analysis means 22 performs qualitative analysis or quantitative analysis of the sample element based on the sent signal. The escape depth of this fluorescent X-ray is deeper than the escape depth of photoelectrons, and the detected fluorescent X-ray has elemental information at a position of about several μm from the sample surface. For this reason, from the analysis result of the second sample analysis means 22, it is possible to obtain element information at a position deeper than the sample pole surface.

【0021】このように、図1の装置においては、全反
射光電子分光法による分析によって試料極表面の元素情
報をきわめて正確に得ることができ、また、試料エッチ
ングを行うことなく、試料極表面より深いところの元素
情報を同時に得ることができる。
As described above, in the apparatus shown in FIG. 1, the element information on the sample electrode surface can be obtained very accurately by the analysis by the total reflection photoelectron spectroscopy, and the sample electrode surface can be obtained without etching the sample. It is possible to simultaneously obtain elemental information at a deep place.

【0022】おな、図1の装置においては、試料上の1
点の分析と、XYステージ9の移動によるライン方向の
分析が可能であるが、ライン方向の分析が行われる時に
は、XYステージ9は、X線の入射軸と直交する方向に
移動される。このように、XYステージ9を移動させる
理由は、X線が試料表面すれすれに入射すると、X線が
微小でもX線の反射方向の試料表面にテイルを引くた
め、入射軸方向には位置の分解能がわるくなるためであ
る。
In the apparatus shown in FIG.
Although the analysis of the points and the analysis in the line direction by moving the XY stage 9 are possible, when the analysis in the line direction is performed, the XY stage 9 is moved in a direction perpendicular to the X-ray incident axis. As described above, the reason why the XY stage 9 is moved is that when X-rays are incident on the sample surface, even if the X-rays are minute, a tail is drawn on the sample surface in the X-ray reflection direction. It is because it becomes bad.

【0023】また、XYステージ9を移動させてライン
分析を行うかわりに、X線の試料上での照射位置を変化
させてライン分析を行っても良い。このことは、X線源
2においてターゲット5上で電子線を走査させることに
より容易に行える。なお、この時にも、X線の試料上で
の照射位置がX線の入射軸と直交する方向に移動するよ
うに、ターゲット上で電子線が走査される。
Instead of moving the XY stage 9 to perform the line analysis, the line analysis may be performed by changing the irradiation position of the X-ray on the sample. This can be easily performed by scanning the electron beam on the target 5 in the X-ray source 2. Also at this time, the electron beam is scanned on the target so that the irradiation position of the X-ray on the sample moves in a direction orthogonal to the X-ray incident axis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の試料分析装置の一例を示した図であ
る。
FIG. 1 is a diagram showing an example of a sample analyzer of the present invention.

【図2】 図1におけるEDS15を説明するために示
した図である。
FIG. 2 is a diagram shown for explaining an EDS 15 in FIG. 1;

【符号の説明】[Explanation of symbols]

1…チャンバ、2…X線源、3…フィラメント、4…フ
ォーカス調整電極、5…ターゲット、6…X線モノクロ
メータ分光結晶、7…被測定試料、8…試料ステージ、
9…XYステージ、10…傾斜ステージ、11…電子分
光器、12…インプットレンズ、13…半球面型アナラ
イザ、14…検出器、15…EDS、16…検出器、1
7…円筒カバー、18…断熱材、19…熱伝導棒、20
…排気装置、21…第1の試料分析手段、22…第2の
試料分析手段
DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... X-ray source, 3 ... Filament, 4 ... Focus adjustment electrode, 5 ... Target, 6 ... X-ray monochromator spectral crystal, 7 ... Sample to be measured, 8 ... Sample stage,
9 XY stage, 10 tilt stage, 11 electron spectrometer, 12 input lens, 13 hemispherical analyzer, 14 detector, 15 EDS, 16 detector
7 ... Cylindrical cover, 18 ... Insulation material, 19 ... Heat conductive rod, 20
... Exhaust device, 21 ... First sample analysis means, 22 ... Second sample analysis means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X線を全反射条件で試料に照射し、その
X線照射により試料から放出される光電子を検出して、
検出した光電子に基づいて試料極表面の元素情報を得る
と同時に、前記X線照射により試料から放出される蛍光
X線を検出して、検出した蛍光X線に基づいて前記試料
極表面より深いところの元素情報を得ることを特徴とす
る試料分析方法。
1. A sample is irradiated with X-rays under total reflection conditions, and photoelectrons emitted from the sample by the X-ray irradiation are detected.
At the same time as obtaining elemental information on the sample pole surface based on the detected photoelectrons, detecting the fluorescent X-rays emitted from the sample by the X-ray irradiation, and detecting a portion deeper than the sample pole surface based on the detected fluorescent X-rays A sample analysis method characterized by obtaining element information of a sample.
【請求項2】X線源と、該X線源から発生したX線を全
反射条件で試料に照射させるために設けられた、試料へ
のX線の入射角を調整するX線入射角調整手段と、前記
X線の照射により試料から放出される光電子を検出する
第1の検出手段と、該第1の検出手段の出力に基づいて
試料分析を行う第1の試料分析手段と、前記X線の照射
により試料から放出される蛍光X線を検出する第2の検
出手段と、該第2の検出手段の出力に基づいて試料分析
を行う第2の試料分析手段を備えたことを特徴とする試
料分析装置。
2. An X-ray source and an X-ray incident angle adjusting device provided for irradiating the sample with X-rays generated from the X-ray source under the condition of total internal reflection, for adjusting an incident angle of the X-ray to the sample. Means, first detection means for detecting photoelectrons emitted from the sample by the X-ray irradiation, first sample analysis means for performing sample analysis based on the output of the first detection means, A second detecting means for detecting the fluorescent X-rays emitted from the sample by the irradiation of the radiation; and a second sample analyzing means for performing the sample analysis based on the output of the second detecting means. Sample analyzer.
【請求項3】 前記X線入射角調整手段は試料傾斜ステ
ージであり、試料を傾斜させて試料へのX線の入射角を
調整することを特徴とする請求項2記載の試料分析装
置。
3. The sample analyzer according to claim 2, wherein said X-ray incident angle adjusting means is a sample tilt stage, and adjusts an incident angle of X-rays on the sample by tilting the sample.
【請求項4】 前記X線源から発生したX線を単色化す
るX線モノクロメータを更に備えたことを特徴とする請
求項2または3に記載の光電子分光装置。
4. The photoelectron spectroscopy apparatus according to claim 2, further comprising an X-ray monochromator for monochromaticizing X-rays generated from the X-ray source.
JP10269098A 1998-09-24 1998-09-24 Sample analyzing method and sample analyzer Withdrawn JP2000097889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10269098A JP2000097889A (en) 1998-09-24 1998-09-24 Sample analyzing method and sample analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10269098A JP2000097889A (en) 1998-09-24 1998-09-24 Sample analyzing method and sample analyzer

Publications (1)

Publication Number Publication Date
JP2000097889A true JP2000097889A (en) 2000-04-07

Family

ID=17467653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10269098A Withdrawn JP2000097889A (en) 1998-09-24 1998-09-24 Sample analyzing method and sample analyzer

Country Status (1)

Country Link
JP (1) JP2000097889A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506083B1 (en) * 2001-10-16 2005-08-04 삼성전자주식회사 Electron spectroscopic analyzer for X-ray fluorescence
JP2008191050A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Fluorescent x-ray analysis method and apparatus
WO2013048913A1 (en) 2011-09-27 2013-04-04 Revera Incorporated System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506083B1 (en) * 2001-10-16 2005-08-04 삼성전자주식회사 Electron spectroscopic analyzer for X-ray fluorescence
JP2008191050A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Fluorescent x-ray analysis method and apparatus
WO2013048913A1 (en) 2011-09-27 2013-04-04 Revera Incorporated System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
KR20140100934A (en) * 2011-09-27 2014-08-18 리베라 인코퍼레이티드 System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
US9240254B2 (en) 2011-09-27 2016-01-19 Revera, Incorporated System and method for characterizing a film by X-ray photoelectron and low-energy X-ray fluorescence spectroscopy
KR102042972B1 (en) * 2011-09-27 2019-11-11 리베라 인코퍼레이티드 System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
KR20190128249A (en) * 2011-09-27 2019-11-15 리베라 인코퍼레이티드 System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
EP2761284B1 (en) * 2011-09-27 2020-06-24 ReVera Incorporated System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy
KR102186336B1 (en) * 2011-09-27 2020-12-03 리베라 인코퍼레이티드 System and method for characterizing a film by x-ray photoelectron and low-energy x-ray fluorescence spectroscopy

Similar Documents

Publication Publication Date Title
US6173036B1 (en) Depth profile metrology using grazing incidence X-ray fluorescence
US6548810B2 (en) Scanning confocal electron microscope
JPH07325052A (en) Scanning and high-resolution electronic spectroscopy and image pickup device
JP2005106815A (en) Optical alignment of x-ray microanalyzer
US20030080292A1 (en) System and method for depth profiling
US6788760B1 (en) Methods and apparatus for characterizing thin films
US7449682B2 (en) System and method for depth profiling and characterization of thin films
US5880467A (en) Microcalorimeter x-ray detectors with x-ray lens
JP2002189004A (en) X-ray analyzer
JP2000097889A (en) Sample analyzing method and sample analyzer
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
JP2004500542A (en) Chemical analysis of defects using electron appearance spectroscopy
JPH0712763A (en) Surface analysis method and surface analysis device
JP3643484B2 (en) Total reflection X-ray photoelectron spectrometer
JPS59163505A (en) Method and device for measuring dimension of fine groove
JPH10154480A (en) Microanalysis device
JPS62113052A (en) Element analysis
JP3339267B2 (en) X-ray analysis method and X-ray analyzer
JPH06283585A (en) Semiconductor evaluation equipment
JP2002243672A (en) X-ray analyzer
JP2001083112A (en) Photoelectron spectroscopic device
JP2000097888A (en) X-ray incident angle setting method in photoelectron spectroscope, and photoelectron spectroscope
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
JP2001167726A (en) Apparatus of producing work function image
CN115711897A (en) Laboratory absorption spectrum device based on current control and absorption spectrum acquisition method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110