JPS62113052A - Element analysis - Google Patents

Element analysis

Info

Publication number
JPS62113052A
JPS62113052A JP60252671A JP25267185A JPS62113052A JP S62113052 A JPS62113052 A JP S62113052A JP 60252671 A JP60252671 A JP 60252671A JP 25267185 A JP25267185 A JP 25267185A JP S62113052 A JPS62113052 A JP S62113052A
Authority
JP
Japan
Prior art keywords
ion
sample
primary beam
primary
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60252671A
Other languages
Japanese (ja)
Inventor
Tsuneo Ajioka
味岡 恒夫
Izumi Aikawa
合川 泉
Eiji Uchida
英次 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP60252671A priority Critical patent/JPS62113052A/en
Publication of JPS62113052A publication Critical patent/JPS62113052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To reduce the beam diameter while making the penetration depth into sample shallow, by employing ion seed with large ion radius exceeding 35 in the mass number for primary beam to be an ion beam. CONSTITUTION:An ion seed such as Xe introduced into an ionization chamber 4 is accelerated to 5-15keV in the ionization chamber 4 and is made to irradiate onto a sample 1 comprising an insulation film as a primary beam (ion beam) 2 through an electronic optical system lens section 5. A specific X rays 3 generated from a surface layer area of the sample 1 are diffracted with a spectroscope 6 and is projected onto an X rays detector 7. Generally speaking, the penetration depth of the primary beam 2 needs to be controlled below 50Angstrom to analyze element distribution in the direction of surface and depth. Thus, irradiation ion seed is preferable large in the ion radius exceeding 35 in the mass number.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は元素分析法に関し、特に絶縁膜の微小領域の表
面及び深さ方向の元素分布の測定に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an elemental analysis method, and particularly to the measurement of elemental distribution in the surface and depth direction of a minute region of an insulating film.

〔従来の技術〕[Conventional technology]

近年の半導体プロセス技術においては、放射化分析、質
1分析吟の高感度分析法によpノ9ルク中の不純物濃度
のみならず、プロセス評価と1〜で特に加工中の部品材
料の微小領域の表面並ひに深さ方向における元素の分析
技術が要求されてきている。
In recent semiconductor process technology, high-sensitivity analysis methods such as activation analysis and quality 1 analysis have been used to evaluate not only the impurity concentration in p-no-9 but also process evaluation and 1 to 1, especially in minute areas of component materials being processed. Techniques for analyzing elements both on the surface as well as in the depth direction are increasingly required.

第2図を基に、従来の一般的な元素分析方法を説明する
。一次ビーム発生源(図示せず)から加速器及び電子光
学系レンズ部(いずれも図示せず)等を介して、試料1
に一次ビーム2を照射すると、これに応じて二次ビーム
3が発生する。そして、この二次ビーム3を分光器4で
分光し、二次ビーム検出器5に入射させる事によシ元素
分析を行う事が出来る。この場合、一次ビーム2及び二
次ビーム3としてはイオン、電子及びX線が用いられる
A conventional general elemental analysis method will be explained based on FIG. The sample 1 is
When the primary beam 2 is irradiated to the area, a secondary beam 3 is generated accordingly. Then, this secondary beam 3 is separated by a spectroscope 4 and made incident on a secondary beam detector 5 to perform elemental analysis. In this case, ions, electrons, and X-rays are used as the primary beam 2 and secondary beam 3.

各柚分析装置における一次ビーム2と二次ビーム3との
関係を下表に示す。
The relationship between the primary beam 2 and the secondary beam 3 in each Yuzu analyzer is shown in the table below.

[恨)  AES  : Auger electro
n 5pectroscopyS IMS : 5ec
ondary ton mass 5pectrosc
oByXPS  : X−、ray photo el
ectron spectroscopyEPMA :
 Electron probe m1croanal
ysisP I XE : Particle 1nd
uced X−ray Fm1ssionここで、試料
1の分析面積は一次ビーム2に依存し、X線を用いた場
合は()、1〜10關φの饋城しか分析出来ないが、イ
オンビームや電子ビームではビームを絞ることにより1
0μmφ 以下の微小領域の分析が可能となる。また分
析深さは二次ビーム3に依存し、電子ビームの場合には
所謂脱出深さに相当する5〜30A程度の表面近傍を対
象とする事が出来るが、X線またはイオンビームは一次
ビーム2の侵入深さにも関係する。
[Grudge] AES: Auger electro
n5pectroscopyS IMS: 5ec
ondary ton mass 5pectrosc
oByXPS: X-, ray photo el
ectron spectroscopy EPMA:
Electron probe m1croanal
ysisPIXE: Particle 1nd
uced X-ray Fm1ssionHere, the analysis area of sample 1 depends on the primary beam 2, and when X-rays are used (), only a radius of 1 to 10 mm can be analyzed, but with ion beam or electron beam Then, by narrowing down the beam, 1
Analysis of minute regions of 0 μmφ or less becomes possible. In addition, the analysis depth depends on the secondary beam 3, and in the case of an electron beam, it is possible to target the vicinity of the surface of about 5 to 30 A, which corresponds to the so-called escape depth, but in the case of an X-ray or ion beam, the primary beam It is also related to the penetration depth of 2.

次に、絶縁膜の場合特に間組となる電荷(電子またはi
E孔)の蓄積について述べる。電荷の蓄積は一次げ一ノ
・2と2次ビーム3によるものとがあるが、一般には一
次ビーム2の影響が大きい。即ち、一次ピーム2が荷電
体であるイオンまたは電子から成る場合には電荷が蓄積
され易く、この為二次ビーム3が同様に荷電体であれば
、エネルギーが変ってしまうので分光出来なくなってし
まう。
Next, in the case of an insulating film, the electric charges (electrons or i
We will discuss the accumulation of hole E). There are two types of charge accumulation: the primary beam 1/2 and the secondary beam 3, but generally the primary beam 2 has a large influence. That is, if the primary beam 2 is made up of ions or electrons, which are charged bodies, charges tend to accumulate, and therefore, if the secondary beam 3 is also a charged body, the energy will change, making it impossible to perform spectroscopy. .

以上の事から現状の分析法においては、AESやS I
MSでは一次ビーム2と二次ビーム3が共に荷電体であ
る為、絶縁膜を分析対象とする事は出来ず、一次ビーム
2、二次ビーム3いずれかにX線を用いるXPS 、E
PMA及びPIXEによって絶縁膜の元素分析を行う事
が出来る。このうちPIXBは、X線分析感度が高く扶
−出限界護度が低い(1)I)mオーダ)という特徴が
あシ、絶縁物を始めとした広い応用範囲を有する(日本
学術振興会第141委員会第42回研究会資料Na45
5(59,12,4〜5))。
For the above reasons, current analytical methods such as AES and SI
In MS, since both the primary beam 2 and the secondary beam 3 are charged bodies, insulating films cannot be analyzed, so XPS, E uses X-rays for either the primary beam 2 or the secondary beam 3.
Elemental analysis of insulating films can be performed using PMA and PIXE. Among these, PIXB has the characteristics of high X-ray analysis sensitivity and low output limit protection (1)I)m order), and has a wide range of applications including insulators (Japan Society for the Promotion of Science 141 Committee 42nd Study Group Materials Na45
5 (59, 12, 4-5)).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記EPMAでは2次ビーム3がX線で
あり、その発生領域が表面から・−数μmにまで達する
為表面分析に適せず、深さ方向の分析も困難である。ま
た、上記XPSでは一次ビーム2がX線の為、微小領域
の分析が困難である。
However, in the EPMA described above, the secondary beam 3 is an X-ray, and the generation region thereof reaches several micrometers from the surface, so it is not suitable for surface analysis, and analysis in the depth direction is also difficult. Furthermore, in the above-mentioned XPS, since the primary beam 2 is an X-ray, it is difficult to analyze a minute area.

さらに上記P I XEは、一次ビーム2にプロトン、
 Heイオン等のイオン半径の小さいイオンを用いてい
る為、分析深さが〜数μm程度と大きく、やはり表面及
び深き方向の分析に適当ではない。
Furthermore, the above P I XE has protons in the primary beam 2,
Since ions with a small ionic radius such as He ions are used, the analysis depth is as large as about several μm, which is not suitable for surface and deep analysis.

従って、本発明は以上述べた絶縁膜の微小領域の表面及
び深さ方向の元素分析が困難であるという問題を解消し
た、元素分析方法を提供する事を目的とする。
Therefore, an object of the present invention is to provide an elemental analysis method that solves the above-mentioned problem of difficulty in elemental analysis in the surface and depth directions of minute regions of an insulating film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る元素分析方法は、 (a)一次ビームを質蓋数が35以上のイオン種を用い
たイオンビームとし、このイオンビームを電子光学系レ
ンズ部を介して試料に照射するステップ、 山)上記イオンビームの照射によ多発生した特性X線を
、分光器を介しX線検出器に入射させて分析するステッ
プ とを含むものである。
The elemental analysis method according to the present invention includes the following steps: (a) using an ion beam using an ion species with a particle number of 35 or more as the primary beam, and irradiating the sample with this ion beam through an electron optical system lens part; ) The characteristic X-rays generated by the ion beam irradiation are incident on an X-ray detector via a spectrometer and analyzed.

〔作 用〕[For production]

以上のように、本発明は一次ビームにイオンビームを用
いる為、電子光学系レンズ部によシビームを十分細く絞
ることができる。また上記イオンビームには、質−1数
が35以上のイオン種を用いておシイオン半径が大きい
為、その侵入深さは試料の表面近傍に限定される。
As described above, since the present invention uses an ion beam as the primary beam, the beam can be narrowed down sufficiently by the electron optical system lens section. Furthermore, since the ion beam uses ion species with a quality-1 number of 35 or more and has a large ion radius, its penetration depth is limited to the vicinity of the surface of the sample.

さらに、二次ビームとしては特性X線が発生する為、試
料が絶tii!膜の場合には電荷の蓄積を減少できる。
Furthermore, since characteristic X-rays are generated as a secondary beam, the sample is completely destroyed! In the case of membranes, charge accumulation can be reduced.

また更に、上記イオンビームの照射により、試料にスパ
ッタエッチを施す事もできる。
Furthermore, sputter etching can also be performed on the sample by irradiating the ion beam.

〔実施例〕〔Example〕

以下第1図に基き、本発明の一実施例を詳細に説明する
。まず、イオン化室4に導入されたXs等のイオン種は
、このイオン化室4内で5〜15KeV 程度に加速さ
れ、スキャニングレンズ、コンデンサレンズ及び対物レ
ンズ等から構成される周知の電子光学系レンズ部5を介
[2、一次ビーム(イオンビーム)2とし7て絶縁膜か
ら成る試料1に照射される1、なおイオンビー・ム2は
、上記電子光学系レンズ部5において1〜10μmφ程
度に集束され、試料1の任意個所に任意量照射される。
An embodiment of the present invention will be described in detail below with reference to FIG. First, the ion species such as Xs introduced into the ionization chamber 4 are accelerated to about 5 to 15 KeV in the ionization chamber 4, and the well-known electron optical system lens section consisting of a scanning lens, a condenser lens, an objective lens, etc. The sample 1 made of an insulating film is irradiated as a primary beam (ion beam) 2 through the ion beam 5, and the ion beam 2 is focused to a diameter of about 1 to 10 μm in the electron optical system lens section 5. , an arbitrary amount of light is irradiated onto an arbitrary part of the sample 1.

また、試料1に照射されるイオンビーム2の侵入深さは
、加速電圧、イオン種等の条件から〜50′A以下とな
り、この表面層領域から二次ビーム3として特性X線が
発生する。そして、発生り。
Further, the penetration depth of the ion beam 2 irradiated onto the sample 1 is ~50'A or less depending on conditions such as accelerating voltage and ion species, and characteristic X-rays are generated as the secondary beam 3 from this surface layer region. And then it happened.

た特性X線3は分光結晶から成る分光器6で回折してX
線検出器7に入射さJする。この場合、分光結晶6とX
線検出器7は共に回転でき、特性X線3けλ=2dsi
nθを満足する所でピークを持つことができる。式中、
λは特性X線3の波長、dけ分光結晶6の面間隔であり
θは分光結晶6に対する%性X線3の入射角度を示す。
The characteristic X-ray 3 is diffracted by a spectrometer 6 made of a spectroscopic crystal, and
The beam is incident on the ray detector 7. In this case, the spectroscopic crystal 6 and
The ray detector 7 can be rotated together, and characteristic X-ray 3 digits λ=2dsi
It is possible to have a peak where nθ is satisfied. During the ceremony,
λ is the wavelength of the characteristic X-ray 3, d is the interplanar spacing of the spectroscopic crystal 6, and θ is the incident angle of the characteristic X-ray 3 with respect to the spectroscopic crystal 6.

との特性X線30分光並びに検出法は、前記EPMAや
けい光X線分析装置と同じ原理に基ぐもので、この他生
導体検出器を用いることもできる。
The characteristic X-ray 30 spectroscopy and detection method is based on the same principle as the EPMA and fluorescence X-ray analyzers, and other live conductor detectors can also be used.

本発明においては、一次ビームとしてイオンビーム2を
用いている為、ビーム径を1〜IOμmφ程度と極めて
細く絞ることができる一方、イオンの侵入深さを加速電
圧やイオン種の選定により表面から〜50A程屋の範囲
に限定することができる。従って、前述し、たよりに試
料10表面層領域から二次ビームとして特性X#3を発
生させることが可能でおる為、微小領域の表面分析に適
している。−まだ二次ビームが特性X線3であることか
ら、電荷の蓄積が少ないという利点もあり、絶縁膜を分
析対象とすることができる。
In the present invention, since the ion beam 2 is used as the primary beam, the beam diameter can be narrowed down to approximately 1 to IO μmφ, while the penetration depth of the ions can be adjusted from the surface to It can be limited to a range of 50A. Therefore, as described above, since it is possible to generate the characteristic X#3 as a secondary beam from the surface layer region of the sample 10, it is suitable for surface analysis of a minute area. - Since the secondary beam is still the characteristic X-ray 3, it has the advantage of little charge accumulation, and insulating films can be analyzed.

更に加速電圧、イオン種の選定により、試料1表面をス
パッタエッチさせることもできるので、深さ方向につい
ての元素分析も行うことができる。
Furthermore, by selecting the accelerating voltage and ion species, the surface of the sample 1 can be sputter-etched, so elemental analysis in the depth direction can also be performed.

例えば、Siを対象とする場合、イオン種としてSl(
質量数:28)より質l−数の大きいXe(131)。
For example, when targeting Si, the ion species is Sl(
Xe (131) has a larger mass number than 28).

C5(133)等を用い、加速電圧を15KeV程度と
する事によ981表面は容易にスパッタエッチされる。
By using C5 (133) or the like and setting the accelerating voltage to about 15 KeV, the 981 surface can be easily sputter-etched.

また、S iOx + S is N4等の絶縁膜の場
合にも略同−の条件でスノ?ツタエッチを施す事ができ
る。
In addition, in the case of an insulating film such as SiOx + Sis N4, Snow? You can apply ivy etch.

一般に、表面や深さ方向の元素分布の分析を行う為には
、一次ビーム2の侵入深さを5()A以下に抑える必要
がある。bilち、100 A tH!tの深い位置ま
でイオンが入り込むと、放出される特性X線3の位置の
特定か困難となる。従って、照射用イオン種としては、
質量数が35以上のイオン半径の大きいものが好ましく
、単体のガスではKr(84)、Xe及びCsが好適で
ある。lた加速電圧が低い程、侵入深さは浅くなるが、
5KeVよシ低いと試料中の元素のうちに以下の元素し
か励起できない。従って、全元累を分析する為には少な
くとも5 KeVを要し、通常は15 KeVが好適で
ある。
Generally, in order to analyze the elemental distribution on the surface or in the depth direction, it is necessary to suppress the penetration depth of the primary beam 2 to 5()A or less. bilchi, 100 A tH! If the ions penetrate to a deep position t, it becomes difficult to specify the position of the emitted characteristic X-ray 3. Therefore, as the ion species for irradiation,
Those having a mass number of 35 or more and a large ionic radius are preferable, and Kr (84), Xe, and Cs are preferable as single gases. The lower the accelerating voltage, the shallower the penetration depth.
At a voltage as low as 5 KeV, only the following elements among the elements in the sample can be excited. Therefore, at least 5 KeV is required to analyze all elements, and 15 KeV is usually preferred.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、一次ビー
ムを質量数が35以上のイオン半径の大きいイオン種を
用いたイオンビームとするので、ビーム径を十分小さく
出来、試料への侵入深さが浅くなシ、しかも表面をスパ
ッタエッチする事も出来る。また、二次ビームとして特
性X線が発生する為、試料への電荷の蓄積が抑制される
As explained in detail above, according to the present invention, since the primary beam is an ion beam using an ion species with a mass number of 35 or more and a large ion radius, the beam diameter can be made sufficiently small and the penetration depth into the sample can be reduced. The surface is shallow, and the surface can be sputter-etched. Furthermore, since characteristic X-rays are generated as a secondary beam, accumulation of charge on the sample is suppressed.

従って、特に絶縁膜の微小領域の表面及び深さ方向の元
素分布の測定を行う事が出来るという効果があり、高い
工業的利用価値を有するものである。
Therefore, it is particularly effective in being able to measure the elemental distribution in the surface and depth directions of minute regions of the insulating film, and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する概要図、第2図は
従来例を説明する概要図でおる。 1・・・試料(絶縁膜)、2・・・一次ビーム(イオン
ビーム)、3・・・二次ビーム(%性X線)、5・・・
電子光学系レンズ部、6・・・分光器(分光結晶)、7
・・・X線検出器。 特許出願人 沖電気工業株式会社 今蓬来り 第
FIG. 1 is a schematic diagram illustrating an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating a conventional example. 1... Sample (insulating film), 2... Primary beam (ion beam), 3... Secondary beam (% X-ray), 5...
Electron optical system lens section, 6... Spectrometer (spectroscopic crystal), 7
...X-ray detector. Patent applicant Oki Electric Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)一次ビームを試料に照射し、発生する二次ビーム
のエネルギー特性を分析する元素分析方法において、 (a)上記一次ビームを質量数が35以上のイオン種を
用いたイオンビームとし、該イオンビームを電子光学系
レンズ部を介して試料に照射するステップ、 (b)上記イオンビームの照射により二次ビームとして
発生する特性X線を、分光器を介してX線検出器に入射
させて分析するステップ とを含む事を特徴とする元素分析方法。
(1) In an elemental analysis method in which a sample is irradiated with a primary beam and the energy characteristics of the generated secondary beam are analyzed, (a) the primary beam is an ion beam using an ion species with a mass number of 35 or more; irradiating the sample with the ion beam via the electron optical system lens; (b) making the characteristic X-rays generated as a secondary beam by the ion beam irradiation enter the X-ray detector via the spectrometer; An elemental analysis method characterized by comprising the step of analyzing.
(2)前記イオンビームを、前記試料の表面をスパッタ
エッチするように照射した特許請求の範囲第(1)項記
載の元素分析方法。
(2) The elemental analysis method according to claim (1), wherein the ion beam is irradiated to sputter-etch the surface of the sample.
JP60252671A 1985-11-13 1985-11-13 Element analysis Pending JPS62113052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60252671A JPS62113052A (en) 1985-11-13 1985-11-13 Element analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252671A JPS62113052A (en) 1985-11-13 1985-11-13 Element analysis

Publications (1)

Publication Number Publication Date
JPS62113052A true JPS62113052A (en) 1987-05-23

Family

ID=17240611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252671A Pending JPS62113052A (en) 1985-11-13 1985-11-13 Element analysis

Country Status (1)

Country Link
JP (1) JPS62113052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011677A1 (en) * 2004-07-30 2006-02-02 National Institute For Materials Science Method of emitting light-element characteristic x-ray, and elemental analysis/estimation apparatus and method
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation
JP2006260995A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method for generating characteristic x-ray from conductor material by low energy ion irradiation and its apparatus
JP2006258671A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method and apparatus for analyzing/evaluating element in conductive material sample by low energy ion irradiation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006011677A1 (en) * 2004-07-30 2006-02-02 National Institute For Materials Science Method of emitting light-element characteristic x-ray, and elemental analysis/estimation apparatus and method
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation
JP4644853B2 (en) * 2004-07-30 2011-03-09 独立行政法人物質・材料研究機構 Light element characteristic X-ray generation method from insulator by low energy ion irradiation
JP2006260995A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method for generating characteristic x-ray from conductor material by low energy ion irradiation and its apparatus
JP2006258671A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method and apparatus for analyzing/evaluating element in conductive material sample by low energy ion irradiation
JP4665143B2 (en) * 2005-03-18 2011-04-06 独立行政法人物質・材料研究機構 Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation
JP4735805B2 (en) * 2005-03-18 2011-07-27 独立行政法人物質・材料研究機構 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation

Similar Documents

Publication Publication Date Title
US4236073A (en) Scanning ion microscope
EP0615123A4 (en) Method and apparatus for surface analysis.
Reuter Electron probe microanalysis
US20030080292A1 (en) System and method for depth profiling
US5594246A (en) Method and apparatus for x-ray analyses
US20040238735A1 (en) System and method for depth profiling and characterization of thin films
Thellier et al. [21] Physical methods to locate metal atoms in biological systems
JPH08327514A (en) Preparation of sample for transmission electron microscope and device therefor
Evans Jr Ion probe mass spectrometry: Overview
JPS62113052A (en) Element analysis
US5457725A (en) Analyzing method for foreign matter states
Bernius et al. Evaluation of ion microscopic spatial resolution and image quality
JPH10154480A (en) Microanalysis device
JPS59163505A (en) Method and device for measuring dimension of fine groove
JP2000097889A (en) Sample analyzing method and sample analyzer
JP2574792B2 (en) Element distribution analysis in the depth direction
JPS63233356A (en) Auger electron analyser
JP2996210B2 (en) Sample absorption current spectroscopy
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
JPH07107518B2 (en) Primary ion irradiation method
JP2832298B2 (en) Insulation analysis method
Newbury Secondary Ion Mass Spectrometry for Particulate Analysis
Kossowsky Analytical Techniques for Electronic Materials-A Comparative Evaluation
JPS6383644A (en) Ion mass spectroscopic device
Davies et al. Trace Element Analysis by Synchrotron Radiation excited XRF