JP4665143B2 - Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation - Google Patents

Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation Download PDF

Info

Publication number
JP4665143B2
JP4665143B2 JP2005078290A JP2005078290A JP4665143B2 JP 4665143 B2 JP4665143 B2 JP 4665143B2 JP 2005078290 A JP2005078290 A JP 2005078290A JP 2005078290 A JP2005078290 A JP 2005078290A JP 4665143 B2 JP4665143 B2 JP 4665143B2
Authority
JP
Japan
Prior art keywords
conductor sample
conductor
elemental analysis
sample
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005078290A
Other languages
Japanese (ja)
Other versions
JP2006258671A (en
Inventor
明 長谷川
和貴 三石
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005078290A priority Critical patent/JP4665143B2/en
Publication of JP2006258671A publication Critical patent/JP2006258671A/en
Application granted granted Critical
Publication of JP4665143B2 publication Critical patent/JP4665143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

この出願の発明は、低エネルギーイオン照射による絶縁された導電体試料中の元素分析・評価方法とその装置に関するものである。さらに詳しくは、この出願の発明は、低エネルギーイオンを用いて絶縁された導電体試料中の元素を小型、低コストの設備で高感度・高精度に分析・評価することができる新規な元素分析・評価方法とその装置に関するものである。   The invention of this application relates to a method and apparatus for elemental analysis / evaluation in an insulated conductor sample by low energy ion irradiation. More specifically, the invention of this application is a novel element analysis that can analyze and evaluate elements in a conductor sample insulated using low energy ions with high sensitivity and high accuracy with a small and low cost facility. -It relates to the evaluation method and its device.

特性X線を利用する材料分析・評価方法は工業、医学、科学研究などの分野で広く利用されている。この方法においては特性X線の発生方法及び発生装置は分析・評価の重要な要素である。今まで、材料分析・評価における特性X線の発生方法としては、主に加速電子線や、高エネルギーイオンを試料に衝突させる方法が使用されている。その場合の電子線の加速エネルギーは数keV〜数MeVのオーダーであり、高エネルギーイオンの加速エネルギーは数100keV〜数MeVのオーダーである。   Material analysis / evaluation methods using characteristic X-rays are widely used in fields such as industry, medicine, and scientific research. In this method, the method and apparatus for generating characteristic X-rays are important elements for analysis and evaluation. Until now, as a method for generating characteristic X-rays in material analysis / evaluation, an accelerated electron beam or a method of causing high-energy ions to collide with a sample has been used. In this case, the acceleration energy of the electron beam is on the order of several keV to several MeV, and the acceleration energy of the high energy ions is on the order of several hundred keV to several MeV.

しかしながら、従来の加速電子線及び高エネルギーイオンを照射して分析・評価を行う方法では、高額で大型の設備を必要とすることや、低エネルギー特性X線の発生効率が低いという問題があった。   However, the conventional methods for analysis and evaluation by irradiating accelerated electron beams and high-energy ions have problems that they require expensive and large-sized equipment and low generation efficiency of low-energy characteristics X-rays. .

この出願の発明は、以上のとおりの事情に鑑みてなされたもので、高額・大型の設備が必要なく、小型、低コストの設備で絶縁された導電体試料の分析・評価を高感度・高精度に行うことができる新規な元素分析・評価方法とその装置を提供することを課題とする。   The invention of this application was made in view of the circumstances as described above, and does not require expensive and large-sized equipment, and performs analysis and evaluation of a conductor sample insulated with small-sized and low-cost equipment with high sensitivity and high performance. It is an object of the present invention to provide a novel elemental analysis / evaluation method and apparatus that can be accurately performed.

この出願の発明は、上記の課題を解決するものとして、第1には、2から100keVの低エネルギーを有する正イオンを、原子番号4番から17番の軽元素及び原子番号18番以上の重元素の少なくともいずれかの元素を含み、SiO 、NaCl又はMgOのいずれかの材料からなる絶縁体ステージ上の導電体試料へ照射することにより、導電体試料中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させ、発生した特性X線を検出することにより導電体試料中に含まれる軽元素又は重元素の分析・評価を行うことを特徴とする導電体試料中の元素分析・評価方法を提供する。
In order to solve the above-mentioned problems, the invention of this application firstly applies a positive ion having a low energy of 2 to 100 keV to a light element having an atomic number of 4 to 17 and a heavy element having an atomic number of 18 or more. see contains at least one element of the element, light element or heavy elements contained by irradiating the conductor samples on insulator stage consisting of any material of SiO 2, NaCl or MgO, to the conductor in the sample A low energy characteristic X-ray of 4 keV or less is detected, and light element or heavy element contained in the conductor sample is analyzed and evaluated by detecting the generated characteristic X-ray. Provides elemental analysis and evaluation methods.

また、第2には、上記第1の発明において正イオンビームを電場及び磁場の少なくともいずれかの印加により集束させることを特徴とする元素分析・評価方法を提供する。
According to a second aspect of the present invention, there is provided an elemental analysis / evaluation method characterized by focusing a positive ion beam by applying at least one of an electric field and a magnetic field.

そして、第には、上記第1又は第2の発明において、正イオンビームを電場及び磁場の少なくともいずれかの印加により導電体試料上で走査させることを、第には、上記第1からのいずれかの発明において、導電体試料の温度を変化させることを特徴とする元素分析・評価方法を提供する。
Then, in the third, in the first or second invention, that is scanned by the conductor on the sample by at least one of application of an electric field and a magnetic field positive ion beam, the fourth, from the first In any one of 3 inventions, the elemental analysis and evaluation method characterized by changing the temperature of a conductor sample is provided.

さらに、この出願の発明は、第には、2から100keVの低エネルギーを有する正イオンを、原子番号4番から17番の軽元素及び原子番号18番以上の重元素の少なくともいずれかの元素を含む絶縁された導電体試料に照射するイオン発生源と、導電体試料を載置するSiO 、NaCl又はMgOのいずれかの材料からなる絶縁体ステージと、正イオンの照射により導電体試料中に含まれる軽元素又は重元素から発生する特性X線を検出するX線検出器と、導電体試料を配置するチャンバーを備えていることを特徴とする導電体試料中の元素分析・評価装置を提供する。
Further, according to the fifth aspect of the present invention, fifthly, a positive ion having a low energy of 2 to 100 keV is selected from at least one of a light element having an atomic number of 4 to 17 and a heavy element having an atomic number of 18 or more. An ion generation source for irradiating an insulated conductor sample containing, an insulator stage made of any material of SiO 2 , NaCl or MgO on which the conductor sample is placed, and the conductor sample by irradiation with positive ions A device for analyzing and evaluating an element in a conductor sample, comprising: an X-ray detector for detecting characteristic X-rays generated from light elements or heavy elements contained in the substrate; and a chamber for arranging the conductor sample provide.

また、第には、上記第の発明において、イオン発生源からの正イオンビームを集束させるビーム集束手段を有することを特徴とする元素分析・評価装置を提供する。
According to a sixth aspect of the present invention, there is provided an elemental analysis / evaluation apparatus comprising a beam focusing means for focusing a positive ion beam from an ion generation source in the fifth invention.

そして、第には、上記第5又は第6の発明において、イオン発生源からの正イオンビームを導電体試料上で走査させるビーム走査手段を有することを、第8には、上記第から第のいずれかの発明において、導電体試料の温度を変化させる手段を有することを特徴とする元素分析・評価装置を提供する。

Then, in the seventh, in the fifth or sixth invention, further comprising a beam scanning means for scanning on conductor samples positive ion beam from the ion source, the eighth from the fifth In any one of the seventh inventions, there is provided an elemental analysis / evaluation apparatus characterized by having means for changing the temperature of a conductor sample.

この出願の発明によれば、低エネルギー正イオン照射によって絶縁された導電体試料中に含まれる軽元素の特性X線又は重元素の低エネルギー特性X線(ともにX線エネルギー4keV以下)が高効率で励起されることを利用しているため、従来の電子線照射励起により特性X線を発生させる手法を用いた場合に比べ、導電体試料中の軽元素又は重元素の組成や化学状態などの分析・評価を高感度・高精度で行うことができ、また従来の高エネルギーイオン照射励起により特性X線を発生させる手法を用いた場合に比べ、1桁から数桁低い加速電圧のイオンを用いるため、設備の小型化、低コスト化ができる。また、この出願の発明によれば、正イオンの加速電圧が低いために材料への進入深さも浅く、材料の表面の高感度分析や三次元的な分析できる。   According to the invention of this application, characteristic X-rays of light elements contained in a conductor sample insulated by low-energy positive ion irradiation or low-energy characteristic X-rays of heavy elements (both X-ray energies of 4 keV or less) are highly efficient. As compared to the conventional method of generating characteristic X-rays by electron beam irradiation excitation, the composition and chemical state of light or heavy elements in the conductor sample are used. Analyzes and evaluations can be performed with high sensitivity and high accuracy, and ions with acceleration voltages that are one to several orders of magnitude lower than when using conventional methods of generating characteristic X-rays by high-energy ion irradiation excitation Therefore, the equipment can be reduced in size and cost. Further, according to the invention of this application, since the acceleration voltage of positive ions is low, the depth of penetration into the material is shallow, and high sensitivity analysis and three-dimensional analysis of the surface of the material can be performed.

従来は、低エネルギーの正イオンを絶縁された導電体試料に照射して、導電体試料に含まれる元素の特性X線を発生できることは知られていなかった。この出願の発明は、低エネルギーの正イオンを用いて絶縁された導電体試料に含まれる軽元素の特性X線又は重元素の低エネルギーX線を高効率で発生させるという今までの常識を破る斬新な手法を用いたものであり、新しい材料分析・評価技術の基礎的研究及び新製品の開発に大きく寄与するものと期待される。この技術が実用化により、物理、化学、生物、医薬などの分野において、基礎研究の発展にも大いにインパクトを持ち、非常に大きな経済効果を持つものと期待される。   Conventionally, it has not been known that characteristic X-rays of elements contained in a conductor sample can be generated by irradiating an insulated conductor sample with positive ions of low energy. The invention of this application breaks the conventional common sense that high-efficiency generation of characteristic X-rays of light elements or low-energy X-rays of heavy elements contained in a conductor sample insulated using low-energy positive ions is achieved. It uses a novel method and is expected to greatly contribute to the basic research of new material analysis and evaluation technologies and the development of new products. When this technology is put to practical use, it is expected to have a great impact on the development of basic research in the fields of physics, chemistry, biology, medicine, etc., and have a very large economic effect.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

まず、導電体試料中の元素分析・評価方法について説明する。この出願の発明は、2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少なくともいずれかの元素を含む絶縁された導電体試料へ照射することにより、導電体試料中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させ、発生した特性X線を検出することにより導電体試料中に含まれる軽元素又は重元素の分析・評価を行うことを特徴とする。   First, an elemental analysis / evaluation method in a conductor sample will be described. The invention of this application is included in a conductor sample by irradiating an insulated conductor sample containing light elements and / or heavy elements with positive ions having a low energy of 2 to 100 keV. It is characterized by analyzing and evaluating light elements or heavy elements contained in a conductor sample by generating low energy characteristic X-rays of 4 keV or less from light elements or heavy elements and detecting the generated characteristic X-rays. To do.

正イオンとしてはいずれの正イオンも使用可能であるが、好ましいものとしては、Ga+イオン、あるいは周期表18族元素の正イオンであるHe+、Ne+、Ar+、Kr+、X
e+などが例示される。これらの正イオンは試料物質と化学反応しないなどの利点がある
Any positive ion can be used as the positive ion, but preferred are Ga + ions or He +, Ne +, Ar +, Kr +, X which are positive ions of group 18 elements of the periodic table
e + is exemplified. These positive ions have the advantage that they do not chemically react with the sample substance.

正イオンのエネルギー(加速電圧)は2から100keVであるが、そのエネルギーは正イオンの種類によって異なる。正イオンのエネルギーが上記範囲より高くなると、高額・大型の設備が必要となり、小型、低コストの設備で軽元素又は重元素を含む導電体材料の分析・評価を高感度・高精度に行うという所期の目的を達成することができない。正イオンのエネルギーが上記範囲より低くなると、軽元素又は重元素の特性X線の発生効率が悪くなる。   The energy (acceleration voltage) of positive ions is 2 to 100 keV, but the energy varies depending on the type of positive ions. When the positive ion energy is higher than the above range, expensive and large-scale equipment is required, and analysis and evaluation of conductor materials containing light elements or heavy elements is performed with high sensitivity and high accuracy with small and low-cost equipment. The intended purpose cannot be achieved. When the positive ion energy is lower than the above range, the generation efficiency of characteristic X-rays of light elements or heavy elements deteriorates.

この出願の発明により発生する特性X線のエネルギーは4keV以下の低エネルギーのものであり、その下限値は0.1keV程度である。   The energy of the characteristic X-ray generated by the invention of this application is low energy of 4 keV or less, and the lower limit is about 0.1 keV.

この出願の明細書において、軽元素とは原子番号4番から17番までのものをいう。軽元素を含む導電体試料を例示すると、C、Al、Si、あるいは導電性合金、導電性化合物などを挙げることができる。また、この出願の明細書において、重元素とは原子番号18以上のものをいう。重元素を含む導電体試料を例示すると、Cu、In、Au、あるいはこれらを含む導電性合金、導電性化合物などを挙げることができる。導電性合金の例としてはステンレス鋼、TiAlなど、導電性化合物の例としてはSiC、GaAsなどがある。   In the specification of this application, light elements refer to those having atomic numbers 4 to 17. Examples of a conductor sample containing a light element include C, Al, Si, a conductive alloy, a conductive compound, and the like. In the specification of this application, the heavy element means an element having an atomic number of 18 or more. Examples of conductor samples containing heavy elements include Cu, In, Au, or conductive alloys and conductive compounds containing these. Examples of the conductive alloy include stainless steel and TiAl, and examples of the conductive compound include SiC and GaAs.

そして、上記の導電体試料は、例えば、SiO2、NaCl、MgOなどの絶縁体ステ
ージに導電体試料を蒸着して、電気的に孤立した絶縁状態にする。導電体試料を絶縁状態とする理由は、入射低エネルギー正イオンは絶縁された導電体試料表面と衝突し、その表面と物理的に、化学的に相互作用し、導電体試料に含まれる元素の特性X線を励起するからである。導電体試料の絶縁体ステージへの蒸着方法としては、真空蒸着法、スパッター法などがあるが、これに限定されることはない。
For example, the conductor sample is deposited on an insulator stage such as SiO 2 , NaCl, or MgO to be in an electrically isolated insulating state. The reason why the conductor sample is in an insulated state is that incident low-energy positive ions collide with the surface of the insulated conductor sample, physically and chemically interact with the surface, and the elements contained in the conductor sample. This is because the characteristic X-rays are excited. Examples of the method for depositing the conductor sample on the insulator stage include, but are not limited to, a vacuum deposition method and a sputtering method.

この出願の方法で利用する元素特性X線発生の原理と分析・評価の手順を模式的に図1に示す。上記の範囲の低エネルギー正イオンを導電体試料に照射すると、照射イオンは導電体試料と相互作用をし、導電体試料に含まれる原子の内殻電子空孔を生成させ、外側電子殻からその空孔への電子遷移により、特性X線が発生する。   The principle of element characteristic X-ray generation used in the method of this application and the procedure of analysis / evaluation are schematically shown in FIG. When a conductor sample is irradiated with low-energy positive ions in the above range, the irradiated ion interacts with the conductor sample to generate inner electron vacancies of atoms contained in the conductor sample, and from the outer electron shell. Characteristic X-rays are generated by electron transition to the vacancies.

この出願の方法では、このようにして発生した特性X線を検出して、導電体試料中の軽元素又は重元素を高感度・高精度で分析・評価する。特性X線の検出は、Si(Li)X線分光検出器などの半導体検出器を用いて行うことができるが、これに限定されない。   In the method of this application, the characteristic X-rays generated in this way are detected, and light elements or heavy elements in the conductor sample are analyzed and evaluated with high sensitivity and high accuracy. The characteristic X-ray can be detected using a semiconductor detector such as a Si (Li) X-ray spectroscopic detector, but is not limited thereto.

また、表1に、この出願の発明による元素分析・評価方法と既存の代表的な元素分析・評価方法を比較して示す。   Table 1 shows a comparison between an elemental analysis / evaluation method according to the invention of this application and an existing representative elemental analysis / evaluation method.

Figure 0004665143
Figure 0004665143

この出願の発明では、特性X線を発生させる際に、発生効率の制御の目的で、導電体試料の温度を変化させてもよいし、導電体試料を真空中に配置してもよい。温度を変化させる場合には、実験装置に実現できる、導電体試料を絶縁体ステージに保てる温度範囲の間であれば任意の温度とすることができる。たとえばAlに対しては−269℃(Heの液化温度)〜660℃(Alの融点)、Cuに対しては−269℃〜1084℃(Cuの融点)とすることができる。また導電体試料は、空気中に配置してもよいし、希ガス中に配置してもよい。   In the invention of this application, when generating characteristic X-rays, the temperature of the conductor sample may be changed for the purpose of controlling the generation efficiency, or the conductor sample may be placed in a vacuum. In the case of changing the temperature, the temperature can be set to any temperature as long as it is within a temperature range that can be realized in an experimental apparatus and can keep the conductor sample on the insulator stage. For example, it can be -269 ° C (He liquefaction temperature) to 660 ° C (Al melting point) for Al, and -269 ° C to 1084 ° C (Cu melting point) for Cu. The conductor sample may be disposed in the air or in a rare gas.

また、イオンビームの導電体試料上での照射位置を制御するために、イオンビームに、磁場及び電場の少なくともいずれかを印加して収束させたり、走査させたりしてもよい。   In addition, in order to control the irradiation position of the ion beam on the conductor sample, at least one of a magnetic field and an electric field may be applied to the ion beam to be converged or scanned.

次に、導電体試料中の元素分析・評価装置について説明する。   Next, an elemental analysis / evaluation apparatus in a conductor sample will be described.

図2は、この出願の発明による元素分析・評価装置の一構成例を模式的に示す図である。図2において、1はイオン発生源、2は低エネルギーのイオンビーム、3は導電体試料、4は導電体試料3を絶縁するための絶縁体ステージ、5は導電体試料3からの特性X線を検出するX線検出器、6はイオンビーム2を集束させるレンズである。   FIG. 2 is a diagram schematically showing a configuration example of the elemental analysis / evaluation apparatus according to the invention of this application. In FIG. 2, 1 is an ion generation source, 2 is a low energy ion beam, 3 is a conductor sample, 4 is an insulator stage for insulating the conductor sample 3, and 5 is a characteristic X-ray from the conductor sample 3. An X-ray detector 6 for detecting the ion beam 6 is a lens for focusing the ion beam 2.

イオン発生源1は、低エネルギーを有する正イオンのビーム2を出射し、導電体試料3に照射する。正イオンのエネルギー(加速電圧)は2から100keVであるが、そのエネルギーはイオン種によって異なる。正イオンのエネルギーが上記範囲より高くなると、高額・大型の設備が必要なく小型、低コストの設備で軽元素又は重元素を含む絶縁された導電体試料の分析・評価を高感度・高精度に行うという所期の目的を達成することができない。正イオンのエネルギーが上記範囲より低くなると、軽元素又は重元素の特性X線の発生効率が悪くなる。   The ion generation source 1 emits a positive ion beam 2 having low energy and irradiates the conductor sample 3. The energy (acceleration voltage) of positive ions is 2 to 100 keV, but the energy varies depending on the ion species. When the positive ion energy is higher than the above range, high-sensitivity and high-accuracy analysis and evaluation of insulated conductor samples containing light or heavy elements is possible with small and low-cost equipment without the need for expensive and large equipment. The intended purpose of doing cannot be achieved. When the positive ion energy is lower than the above range, the generation efficiency of characteristic X-rays of light elements or heavy elements deteriorates.

ここで、正イオン、導電体試料3、絶縁体ステージ4については、前述の導電体試料中の元素分析・評価方法と同様であるので詳細な説明は省略する。   Here, the positive ions, the conductor sample 3 and the insulator stage 4 are the same as the elemental analysis / evaluation method in the conductor sample described above, and thus detailed description thereof is omitted.

図2の装置を用いて元素の分析・評価を行う際には、先ず、チャンバー(図示せず)内に導電体試料3を配置する。このとき、導電体試料3は絶縁体ステージ4に載置させるが、例えば、真空蒸着法により絶縁体ステージ4に蒸着させて絶縁させるようにしてもよい。チャンバー内は、必要に応じて、適切な真空度の真空状態としたり、不活性ガスを導入させたりする。また、導電体試料3の物性や、化学状態を変化させる目的で、導電体試料3の温度を変化させてもよい。この場合、ヒーターや冷却装置等公知の手段を用いることができ、軽元素又は重元素の特性X線の発生効率が変化する。   When performing elemental analysis / evaluation using the apparatus of FIG. 2, first, the conductor sample 3 is placed in a chamber (not shown). At this time, although the conductor sample 3 is placed on the insulator stage 4, it may be insulated by vapor deposition on the insulator stage 4 by, for example, a vacuum evaporation method. The inside of the chamber is brought into a vacuum state with an appropriate degree of vacuum or an inert gas is introduced as necessary. Further, the temperature of the conductor sample 3 may be changed for the purpose of changing the physical properties or chemical state of the conductor sample 3. In this case, a known means such as a heater or a cooling device can be used, and the generation efficiency of characteristic X-rays of light elements or heavy elements changes.

次に、イオン発生源1を作動させて、上記の範囲の低エネルギーの正イオンビーム2を導電体試料3に照射させる。イオンビーム2を照射させる時に、必要に応じて、イオンビーム2をレンズ6で集束させたり、ビームスキャナー(図示せず)で走査させたりしてもよい。低エネルギーの正イオンの照射により、照射イオンは導電体試料3と相互作用をし、導電体試料3に含まれる原子の内殻電子空孔を生成させ、外側電子殻からその空孔への電子遷移により、特性X線が発生する。このX線をX線検出器5で検出する。X線検出器5としては、Si(Li)X線分光検出器などの半導体検出器が好ましく用いられるが、これに限定されない。   Next, the ion source 1 is operated to irradiate the conductor sample 3 with the low-energy positive ion beam 2 in the above range. When irradiating the ion beam 2, the ion beam 2 may be focused by the lens 6 or scanned by a beam scanner (not shown) as necessary. By irradiation with low-energy positive ions, the irradiated ions interact with the conductor sample 3 to generate inner shell electron vacancies of atoms contained in the conductor sample 3, and electrons from the outer electron shell to the vacancies. A characteristic X-ray is generated by the transition. This X-ray is detected by the X-ray detector 5. As the X-ray detector 5, a semiconductor detector such as a Si (Li) X-ray spectroscopic detector is preferably used, but is not limited to this.

そしてX線検出器5で検出した特性X線のデータに基づいて軽元素又は重元素の特性X線を高感度、高精度で分析・評価することができる。また、必要に応じて、導電体試料3から発生する可視光、紫外光、オージェ電子、二次電子、二次イオンなど(特性X線以外のもの)を検出するための検出器(図示せず)が配置されていてもよい。検出器の配置数は、検出すべき励起信号の数に応じて適宜設定することができる。また、検出器の種類も測定する励起信号に応じて従来使用されている公知のものを使用することができる。   Based on the characteristic X-ray data detected by the X-ray detector 5, the characteristic X-rays of light elements or heavy elements can be analyzed and evaluated with high sensitivity and high accuracy. If necessary, a detector (not shown) for detecting visible light, ultraviolet light, Auger electrons, secondary electrons, secondary ions, etc. (other than characteristic X-rays) generated from the conductor sample 3. ) May be arranged. The number of detectors can be set as appropriate according to the number of excitation signals to be detected. Moreover, the well-known thing used conventionally according to the excitation signal which measures the kind of detector can also be used.

次に、この出願の発明による実施例を示す。もちろん、この出願の発明は前述の実施の形態及び以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
<実施例1>
低エネルギー正イオンとして10keVのGa+イオン、導電体試料としてAlを真空
蒸着法で絶縁体ステージSiO2に蒸着した。チャンバーの真空度は1×10-5Pa以下
にした。X線の検出はSi(Li)X線エネルギー分光検出器を用いた。
Next, examples according to the invention of this application will be described. Of course, the invention of this application is not limited to the above-described embodiments and the following examples, and it goes without saying that various aspects are possible in detail.
<Example 1>
10 keV Ga + ions as low energy positive ions and Al as a conductor sample were deposited on the insulator stage SiO 2 by vacuum deposition. The degree of vacuum in the chamber was 1 × 10 −5 Pa or less. For detection of X-rays, a Si (Li) X-ray energy spectroscopic detector was used.

室温で低エネルギー正イオンを試料に照射すると、X線エネルギー分光検出器により、試料の特性X線が検出された。図3(a)にこの実施例において低エネルギーイオン照射により励起されたX線スペクトルを示す。また、比較のために、図3(a)に同じ導電体試料を用い10keVの電子ビーム照射により励起されたX線スペクトルを示す。これらのスペクトルを比較すると、電子線に比べ、低エネルギーイオンにより励起された特性X線では、導電体試料(Al)の特性X線が効率的に励起されることが確認された。
<実施例2>
低エネルギー正イオンとして30keVのGa+イオン、導電体試料としてInを真
空蒸着法で絶縁体ステージSiO2に蒸着した。チャンバーの真空度は1×10-5Pa以
下にした。X線の検出はSi(Li)X線エネルギー分光検出器を用いた。
When the sample was irradiated with low-energy positive ions at room temperature, characteristic X-rays of the sample were detected by the X-ray energy spectroscopic detector. FIG. 3A shows an X-ray spectrum excited by low-energy ion irradiation in this example. For comparison, FIG. 3A shows an X-ray spectrum excited by 10 keV electron beam irradiation using the same conductor sample. Comparing these spectra, it was confirmed that the characteristic X-rays excited by the low-energy ions compared to the electron beam efficiently excited the characteristic X-rays of the conductor sample (Al).
<Example 2>
30 keV Ga + ions as low energy positive ions and In as a conductor sample were deposited on the insulator stage SiO 2 by vacuum deposition. The degree of vacuum in the chamber was 1 × 10 −5 Pa or less. For detection of X-rays, a Si (Li) X-ray energy spectroscopic detector was used.

室温で低エネルギー正イオンを試料に照射すると、X線エネルギー分光検出器により、試料の特性X線が検出された。図3(b)にこの実施例において低エネルギーイオン照射により励起されたX線スペクトルを示す。このスペクトルから、低エネルギーイオンにより励起された導電体試料(In)の特性X線が効率的に励起されることが確認された。   When the sample was irradiated with low-energy positive ions at room temperature, characteristic X-rays of the sample were detected by the X-ray energy spectroscopic detector. FIG. 3B shows an X-ray spectrum excited by low-energy ion irradiation in this example. From this spectrum, it was confirmed that the characteristic X-rays of the conductor sample (In) excited by the low energy ions are efficiently excited.

この出願の発明で利用する元素特性X線発生の原理と分析・評価の手順を模式的に示す図である。It is a figure which shows typically the principle of element characteristic X-ray generation utilized by invention of this application, and the procedure of analysis and evaluation. この出願の発明による軽元素分析・評価装置の一構成例を模式的に示す図である。It is a figure which shows typically the example of 1 structure of the light element analysis and evaluation apparatus by invention of this application. (a)は実施例1において低エネルギーイオン照射により励起されたX線スペクトルを示す図及び電子ビームにより励起されたX線スペクトルを示す図、(b)は実施例2において低エネルギーイオン照射により励起されたX線スペクトルを示す図である。(A) The figure which shows the X-ray spectrum excited by the low energy ion irradiation in Example 1, and the figure which shows the X-ray spectrum excited by the electron beam, (b) is excited by the low energy ion irradiation in Example 2. It is a figure which shows the made | formed X-ray spectrum.

符号の説明Explanation of symbols

1 イオン発生源
2 イオンビーム
3 導電体試料
4 絶縁体ステージ
5 X線検出器
6 レンズ
DESCRIPTION OF SYMBOLS 1 Ion generation source 2 Ion beam 3 Conductor sample 4 Insulator stage 5 X-ray detector 6 Lens

Claims (8)

2から100keVの低エネルギーを有する正イオンを、原子番号4番から17番の軽元素及び原子番号18番以上の重元素の少なくともいずれかの元素を含み、SiO 、NaCl又はMgOのいずれかの材料からなる絶縁体ステージ上の導電体試料へ照射することにより、導電体試料中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させ、発生した特性X線を検出することにより導電体試料中に含まれる軽元素又は重元素の分析・評価を行うことを特徴とする導電体試料中の元素分析・評価方法。 The positive ions having a low energy from 2 100 keV, at least one element of the light element and atomic number 18th more heavy elements 17th atomic number fourth look including a one of SiO 2, NaCl or MgO By irradiating a conductor sample on an insulator stage made of any material , low energy characteristic X-rays of 4 keV or less are generated from light elements or heavy elements contained in the conductor sample, and the generated characteristic X-rays are detected. An elemental analysis / evaluation method in a conductor sample, characterized in that light elements or heavy elements contained in the conductor sample are analyzed and evaluated. 正イオンビームを電場及び磁場の少なくともいずれかの印加により集束させることを特徴とする請求項に記載の元素分析・評価方法。 The elemental analysis / evaluation method according to claim 1 , wherein the positive ion beam is focused by applying at least one of an electric field and a magnetic field. 正イオンビームを電場及び磁場の少なくともいずれかの印加により導電体試料上で走査させることを特徴とする請求項1又は請求項2に記載の元素分析・評価方法。 3. The elemental analysis / evaluation method according to claim 1, wherein the positive ion beam is scanned on the conductor sample by applying at least one of an electric field and a magnetic field. 導電体試料の温度を変化させることを特徴とする請求項1からのいずれかに記載の元素分析・評価方法。 Elemental analysis and evaluation method according to any one of claims 1 to 3, characterized in that changing the temperature of the conductor sample. 2から100keVの低エネルギーを有する正イオンを、原子番号4番から17番の軽元素及び原子番号18番以上の重元素の少なくともいずれかの元素を含む絶縁された導電体試料に照射するイオン発生源と、導電体試料を載置するSiO 、NaCl又はMgOのいずれかの材料からなる絶縁体ステージと、正イオンの照射により導電体試料中に含まれる軽元素又は重元素から発生する特性X線を検出するX線検出器と、導電体試料を配置するチャンバーを備えていることを特徴とする導電体試料中の元素分析・評価装置。 Ion generation to irradiate an insulated conductor sample containing positive ions having a low energy of 2 to 100 keV and containing at least one of light elements having atomic numbers 4 to 17 and heavy elements having atomic numbers 18 and higher Characteristic X generated from light element or heavy element contained in conductor sample by irradiation of positive ion, source stage, insulator stage made of any material of SiO 2 , NaCl or MgO on which conductor sample is placed An element analysis / evaluation apparatus for a conductor sample, comprising: an X-ray detector for detecting a line; and a chamber for arranging the conductor sample. イオン発生源からの正イオンビームを集束させるビーム集束手段を有することを特徴とする請求項に記載の元素分析・評価装置。 6. The elemental analysis / evaluation apparatus according to claim 5 , further comprising beam focusing means for focusing a positive ion beam from an ion generation source. イオン発生源からの正イオンビームを導電体試料上で走査させるビーム走査手段を有することを特徴とする請求項5又は請求項6に記載の元素分析・評価装置。 Elemental analysis and evaluation apparatus according to claim 5 or claim 6 characterized in that it has a beam scanning means for scanning on conductor samples positive ion beam from the ion source. 導電体試料の温度を変化させる手段を有することを特徴とする請求項5から7のいずれかに記載の元素分析・評価装置。
8. The elemental analysis / evaluation apparatus according to claim 5, further comprising means for changing a temperature of the conductor sample.
JP2005078290A 2005-03-18 2005-03-18 Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation Expired - Fee Related JP4665143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078290A JP4665143B2 (en) 2005-03-18 2005-03-18 Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078290A JP4665143B2 (en) 2005-03-18 2005-03-18 Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation

Publications (2)

Publication Number Publication Date
JP2006258671A JP2006258671A (en) 2006-09-28
JP4665143B2 true JP4665143B2 (en) 2011-04-06

Family

ID=37098095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078290A Expired - Fee Related JP4665143B2 (en) 2005-03-18 2005-03-18 Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation

Country Status (1)

Country Link
JP (1) JP4665143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735805B2 (en) * 2005-03-18 2011-07-27 独立行政法人物質・材料研究機構 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113052A (en) * 1985-11-13 1987-05-23 Oki Electric Ind Co Ltd Element analysis
JPH0613012A (en) * 1992-06-30 1994-01-21 Nec Corp Ion excitation x-ray analyzer using focusing ion beam
JPH0875684A (en) * 1994-09-01 1996-03-22 Tokin Corp Element analyzer using ion beam
JPH095263A (en) * 1995-06-14 1997-01-10 Sumitomo Electric Ind Ltd Detecting method of trace element
JP2006046964A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Apparatus for analyzing/evaluating light element in insulator by irradiation of low energy ions
JP2006046965A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Analyzing/evaluating method of element in insulator by irradiation of low energy ions
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113052A (en) * 1985-11-13 1987-05-23 Oki Electric Ind Co Ltd Element analysis
JPH0613012A (en) * 1992-06-30 1994-01-21 Nec Corp Ion excitation x-ray analyzer using focusing ion beam
JPH0875684A (en) * 1994-09-01 1996-03-22 Tokin Corp Element analyzer using ion beam
JPH095263A (en) * 1995-06-14 1997-01-10 Sumitomo Electric Ind Ltd Detecting method of trace element
JP2006046964A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Apparatus for analyzing/evaluating light element in insulator by irradiation of low energy ions
JP2006046965A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Analyzing/evaluating method of element in insulator by irradiation of low energy ions
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation

Also Published As

Publication number Publication date
JP2006258671A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
Ström et al. Ion beam tools for nondestructive in-situ and in-operando composition analysis and modification of materials at the Tandem Laboratory in Uppsala
Reed Electron microprobe analysis and scanning electron microscopy in geology
Andrade X-ray photoelectron spectroscopy (XPS)
Folkmann Analytical use of ion-induced X-rays
Lukmanov et al. Multiwavelength Ablation/Ionization and Mass Spectrometric Analysis of 1.88 Ga Gunflint Chert
Joshi et al. Auger electron spectroscopy
Thellier et al. [21] Physical methods to locate metal atoms in biological systems
JP4665143B2 (en) Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation
Skopinski et al. Time-of-flight mass spectrometry of particle emission during irradiation with slow, highly charged ions
Walker et al. Simulations and measurements in scanning electron microscopes at low electron energy
Anagnostopoulos et al. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy
Chater et al. Simultaneous detection of positive and negative secondary ions
JP4735805B2 (en) Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation
Holloway et al. Chemical characterization of coatings by analytical techniques sensitive to the surface and near-surface
Ingemarsson et al. SEM/EDX analysis of boron
Breuer et al. Secondary ion and neutral mass spectrometry with swift heavy ions: Organic molecules
JP4452811B2 (en) Elemental analysis and evaluation method in insulators by low energy ion irradiation
Higatsberger Solid surfaces analysis
Sykes Surface chemical analysis
Garten et al. Trends in applications and strategies in the analysis of thin films, interfaces and surfaces
JP4644853B2 (en) Light element characteristic X-ray generation method from insulator by low energy ion irradiation
PARK Chemical analysis of surfaces
Riedo et al. Improved plasma stoichiometry recorded by laser ablation ionization mass spectrometry using a double‐pulse femtosecond laser ablation ion source
JP2006046964A (en) Apparatus for analyzing/evaluating light element in insulator by irradiation of low energy ions
Ghosh et al. New Analytical Methods in Nanotechnology-A Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4665143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees