JP2006260995A - Method for generating characteristic x-ray from conductor material by low energy ion irradiation and its apparatus - Google Patents

Method for generating characteristic x-ray from conductor material by low energy ion irradiation and its apparatus Download PDF

Info

Publication number
JP2006260995A
JP2006260995A JP2005078278A JP2005078278A JP2006260995A JP 2006260995 A JP2006260995 A JP 2006260995A JP 2005078278 A JP2005078278 A JP 2005078278A JP 2005078278 A JP2005078278 A JP 2005078278A JP 2006260995 A JP2006260995 A JP 2006260995A
Authority
JP
Japan
Prior art keywords
characteristic
rays
material target
low energy
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005078278A
Other languages
Japanese (ja)
Other versions
JP4735805B2 (en
Inventor
Akira Hasegawa
明 長谷川
Kazuki Mitsuishi
和貴 三石
Kazuo Furuya
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2005078278A priority Critical patent/JP4735805B2/en
Publication of JP2006260995A publication Critical patent/JP2006260995A/en
Application granted granted Critical
Publication of JP4735805B2 publication Critical patent/JP4735805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for generating characteristic X-rays capable of efficiently generating low energy characteristic X-rays with compact and low cost equipment, and to provide its apparatus. <P>SOLUTION: Positive ions having low energy of 2 to 100 keV are cast on an insulated conductor material target including at least either one of a light element and a heavy element so that the low energy characteristic X-rays of not more than 4 keV are generated from the light element or the heavy element included in the conductor material target. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、低エネルギーイオン照射による絶縁された導電体物質からの特性X線発生方法とその装置に関するものである。さらに詳しくは、この出願の発明は、低エネルギーイオンを用いて絶縁された導電体物質の特性X線を高効率にかつ小型、低コストの設備で得ることができる新規な特性X線発生方法とその装置に関するものである。   The invention of this application relates to a method and apparatus for generating characteristic X-rays from an insulated conductor material by low energy ion irradiation. More specifically, the invention of this application relates to a novel characteristic X-ray generation method capable of obtaining characteristic X-rays of a conductor material insulated using low-energy ions with high efficiency, small size, and low cost equipment. It relates to the device.

X線は工業、医学、科学研究などの分野で広く利用されており、そのなかでも特性X線は、各種材料の分析、評価、測定、観察などの種々の用途に用いられている。今まで、特性X線は、加速した電子線や高エネルギーイオンをターゲット材料に衝突させることにより発生させていた。その加速エネルギーは電子線で数keV〜数MeVのオーダー、高エネルギーイオンで数100keV〜数MeVのオーダーである。   X-rays are widely used in fields such as industry, medicine, and scientific research. Among them, characteristic X-rays are used in various applications such as analysis, evaluation, measurement, and observation of various materials. Until now, characteristic X-rays have been generated by colliding an accelerated electron beam or high-energy ions with a target material. The acceleration energy is on the order of several keV to several MeV with an electron beam, and on the order of several hundred keV to several MeV with high energy ions.

しかしながら、従来の加速電子線及び高エネルギーイオンを照射する方法では、高額で大型の設備を必要とすることや、低エネルギー特性X線の発生効率が低いという問題があった。   However, the conventional method of irradiating accelerated electron beams and high-energy ions has problems that it requires expensive and large-sized facilities and low generation efficiency of low-energy characteristic X-rays.

この出願の発明は、以上のとおりの事情に鑑みてなされたもので、高額・大型の設備が必要なく、小型、低コストの設備で低エネルギー特性X線を効率良く発生させることが可能な新規な特性X線発生方法を提供することを課題とする。   The invention of this application was made in view of the circumstances as described above, and does not require expensive and large equipment, and is capable of generating low energy characteristic X-rays efficiently with small and low-cost equipment. It is an object to provide a method for generating characteristic X-rays.

この出願の発明は、上記課題を解決するものとして、第1には、2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少なくともいずれかの元素を含む絶縁された導電体材料ターゲットへ照射することにより、導電体材料ターゲット中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させることを特徴とする特性X線発生方法を提供する。   In order to solve the above-mentioned problems, the invention of this application is as follows. First, an insulated conductor material containing positive ions having a low energy of 2 to 100 keV and at least one of light elements and heavy elements. Provided is a characteristic X-ray generation method characterized by generating a low energy characteristic X-ray of 4 keV or less from a light element or heavy element contained in a conductive material target by irradiating the target.

また、第2には、上記第1の発明において、軽元素が原子番号4番から17番の元素であることを、第3には、上記第1の発明において、重元素が原子番号18番以上の元素であることを、第4には、上記第1から第3のいずれかの発明において、正イオンビームを電場及び磁場の少くともいずれかの印加により集束させることを特徴とする特性X線発生方法を提供する。   Second, in the first invention, the light element is an element having an atomic number of 4 to 17, and third, in the first invention, the heavy element is an atomic number of 18th. Fourthly, the characteristic X is that the positive ion beam is focused by applying at least one of an electric field and a magnetic field in any one of the first to third inventions. Provide a method of generating lines.

そして、第5には、上記第1から第4のいずれかの発明において、正イオンビームを電場及び磁場の少くともいずれかの印加により導電体材料ターゲット上で走査させることを、第6には、上記第1から第5のいずれかの発明において、導電体材料ターゲットの温度を変化させることを特徴とする特性X線発生方法を提供する。   In a fifth aspect, in any of the first to fourth aspects, the positive ion beam is scanned on the conductive material target by applying at least one of an electric field and a magnetic field. In any one of the first to fifth inventions, there is provided a characteristic X-ray generation method characterized in that the temperature of the conductor material target is changed.

さらに、この出願の発明は、第7には、2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少なくともいずれかの元素を含む絶縁された導電体材料ターゲットに照射するイオン発生源と、導電体材料ターゲットを載置する絶縁体ステージと、正イオンの照射により導電体材料ターゲット中に含まれる軽元素又は重元素から発生する特性X線を検出するX線検出器とを備えていることを特徴とする特性X線発生装置を提
供する。
Further, according to the invention of the present application, seventhly, ion generation is performed by irradiating an insulated conductor material target containing a positive ion having a low energy of 2 to 100 keV and containing at least one of a light element and a heavy element. A source, an insulator stage on which the conductor material target is placed, and an X-ray detector for detecting characteristic X-rays generated from light elements or heavy elements contained in the conductor material target by irradiation with positive ions Provided is a characteristic X-ray generator characterized by

また、第8には、上記第7の発明において、軽元素が原子番号4番から17番の元素であることを、第9には、上記第7の発明において、重元素が原子番号18番以上の元素であることを、第10には、上記第7から第9のいずれかの発明において、正イオンビームを電場及び磁場の少なくともいずれかの印加により集束させることを特徴とする特性X線発生装置を提供する。   Eighth, in the seventh invention, the light element is an element having an atomic number of 4 to 17, and ninth, in the seventh invention, the heavy element is an atomic number of 18th. Tenth, the characteristic X-ray is characterized in that, in any of the seventh to ninth inventions, the positive ion beam is focused by applying at least one of an electric field and a magnetic field. A generator is provided.

さらに、第11には、上記第7から第10のいずれかの発明において、正イオンビームを電場及び磁場の少なくともいずれかの印加により導電体材料ターゲット上で走査させることを、第12には上記第7から第11のいずれかの発明において、導電体材料ターゲットの温度を変化させることを特徴とする特性X線発生装置を提供する。   Furthermore, eleventhly, in any one of the seventh to tenth inventions, the positive ion beam is scanned on the conductive material target by applying at least one of an electric field and a magnetic field, and twelfth, In any one of the seventh to eleventh inventions, there is provided a characteristic X-ray generator characterized in that the temperature of a conductor material target is changed.

この出願の発明によれば、低エネルギーの正イオンを、軽元素及び重元素の少くともいずれかの元素を含む絶縁された導電体材料ターゲットに照射させることにより、従来の電子線照射励起により特性X線を発生する方法に比べ、低エネルギーの特性X線を高効率で発生することができ、また従来の高エネルギーイオン照射励起により特性X線を発生する方法に比べ、イオンの加速電圧は1桁から数桁低く、設備の小型化、低コスト化ができる。   According to the invention of this application, by irradiating a low-energy positive ion to an insulated conductor material target containing at least one of a light element and a heavy element, characteristics can be obtained by conventional electron beam irradiation excitation. Compared with the method of generating X-rays, low-energy characteristic X-rays can be generated with high efficiency, and the ion acceleration voltage is 1 compared with the conventional method of generating characteristic X-rays by high-energy ion irradiation excitation. The size can be reduced by several orders of magnitude to reduce the size and cost of the equipment.

従来は、低エネルギーの正イオンを導電体材料ターゲットに照射して、導電体体材料ターゲットに含まれる軽元素あるいは重元素の低エネルギー特性X線を発生できることは知られていなかった。この出願の発明の技術は、低エネルギーの正イオンを用いて軽元素あるいは重元素の低エネルギー特性X線(特にX線エネルギー約4keV以下)を高効率で発生させるという今までの常識を破る斬新な方法であり、物理、化学、生物、医薬などの分野においても、基礎的な研究及びX線を利用する新方法、低エネルギー単色X線発生装置、新しい材料分析・評価装置などの開発に大きく寄与するものと期待される。この出願の発明は基本技術として非常に大きな効果を持つものと期待される。   Conventionally, it has not been known that low energy positive X-rays of light elements or heavy elements contained in a conductor material target can be generated by irradiating the conductor material target with positive ions of low energy. The technology of the invention of this application is a novelty that breaks the conventional wisdom of generating low-energy characteristic X-rays of light elements or heavy elements (especially X-ray energy of about 4 keV or less) with high efficiency using low-energy positive ions. In the fields of physics, chemistry, biology, medicine, etc., it is also greatly used for basic research and development of new methods using X-rays, low-energy monochromatic X-ray generators, new material analysis / evaluation devices, etc. Expected to contribute. The invention of this application is expected to have a very large effect as a basic technology.

この出願の発明は上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。   The invention of this application has the features as described above, and an embodiment thereof will be described below.

この出願の発明は、2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少くともいずれかの元素を含む絶縁された導電体材料ターゲットへ照射することにより、導電体材料ターゲット中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させることを特徴とする。   The invention of this application irradiates an insulated conductor material target containing at least one of a light element and a heavy element with positive ions having a low energy of 2 to 100 keV. A low energy characteristic X-ray of 4 keV or less is generated from a light element or heavy element contained in.

正イオンとしてはいずれの正イオンも使用可能であるが、好ましいものとしては、Gaイオンや、周期表18族元素の正イオンであるHe、Ne、Ar、Kr、Xe等が例示される。これらの正イオンはターゲット物質と化学反応しないなどの利点がある。 Any positive ion can be used as the positive ion, but preferable ones include Ga + ions and He + , Ne + , Ar + , Kr + , Xe + and the like, which are positive ions of Group 18 elements of the periodic table. Is exemplified. These positive ions have the advantage that they do not chemically react with the target substance.

正イオンのエネルギー(加速電圧)は2から100keVであるが、そのエネルギーは正イオンの種類によって変わる。正イオンのエネルギーが上記範囲より高くなると、大型の設備が必要なく小型、低コストの設備で軽元素あるいは重元素の低エネルギー特性X線を効率良く発生させるという所期の目的を達成することができない。正イオンのエネルギーが上記範囲より低くなると、軽元素あるいは重元素の低エネルギー特性X線を効率良く発生させることができなくなる。   The energy (acceleration voltage) of positive ions is 2 to 100 keV, but the energy varies depending on the type of positive ions. When the energy of the positive ions is higher than the above range, the intended purpose of efficiently generating low energy characteristic X-rays of light elements or heavy elements can be achieved with small and low cost equipment without the need for large equipment. Can not. If the energy of the positive ions is lower than the above range, low energy characteristic X-rays of light elements or heavy elements cannot be efficiently generated.

この出願の発明により発生する特性X線のエネルギーは4keV以下の低エネルギーのものであり、その下限値は0.1keV程度である。   The energy of the characteristic X-ray generated by the invention of this application is low energy of 4 keV or less, and the lower limit is about 0.1 keV.

この出願の明細書において、軽元素とは原子番号4番から17番までのものをいう。軽元素を含む導電体材料を例示すると、C、Al、Si、あるいは導電性合金、導電性化合物などを挙げることができる。また、この出願の明細書において、重元素とは原子番号18以上のものをいう。重元素を含む導電体材料を例示すると、Cu、In、Au、あるいはこれらを含む導電性合金、導電性化合物などを挙げることができる。導電性合金の例としてはステンレス鋼、TiAlなど、導電性化合物の例としてはSiC、GaAsなどがある。   In the specification of this application, light elements refer to those having atomic numbers 4 to 17. Examples of conductive materials containing light elements include C, Al, Si, conductive alloys, conductive compounds, and the like. In the specification of this application, the heavy element means an element having an atomic number of 18 or more. Examples of the conductive material containing a heavy element include Cu, In, Au, or a conductive alloy or conductive compound containing these. Examples of the conductive alloy include stainless steel and TiAl, and examples of the conductive compound include SiC and GaAs.

そして、上記の導電体材料は、例えば、SiO、NaCl、MgOなどの絶縁体ステージに導電体材料を蒸着して、電気的に孤立した絶縁状態にする。導電体材料を絶縁状態とする理由は、入射低エネルギー正イオンは絶縁された導電体材料表面と衝突し、その表面と物理的に、化学的に相互作用し、導電体材料に含まれる元素の特性X線を励起するからである。導電体材料の絶縁体ステージへの蒸着方法としては、真空蒸着法、スパッター法などがあるが、これに限定されることはない。 For example, the conductive material is vapor-deposited on an insulating stage such as SiO 2 , NaCl, or MgO to obtain an electrically isolated insulating state. The reason why the conductor material is in an insulating state is that incident low energy positive ions collide with the surface of the insulated conductor material, physically and chemically interact with the surface, and the elements contained in the conductor material. This is because the characteristic X-rays are excited. Examples of the method for depositing the conductor material on the insulator stage include, but are not limited to, a vacuum deposition method and a sputtering method.

この出願の方法による元素特性X線発生の原理を模式的に図1に示す。上記の範囲の低エネルギー正イオンを導電体材料ターゲットに照射すると、照射イオンは導電体材料と相互作用をし、導電体材料に含まれる原子の内殻電子空孔を生成させ、外側電子殻からその空孔への電子遷移により、特性X線が発生する。   The principle of element characteristic X-ray generation by the method of this application is schematically shown in FIG. When the conductive material target is irradiated with the low energy positive ions in the above range, the irradiated ions interact with the conductive material to generate inner electron vacancies of atoms contained in the conductive material, and from the outer electron shell. Characteristic X-rays are generated by the electron transition to the holes.

また、表1に、この出願の発明による特性X線発生方法と既存の代表的な特性X線発生方法を比較して示す。   Table 1 shows a comparison between a characteristic X-ray generation method according to the invention of this application and an existing typical characteristic X-ray generation method.

Figure 2006260995

この出願の発明では、特性X線の発生させる際に、発生効率を制御する目的で、導電体
材料ターゲットの温度を変化させてもよいし、導電体材料ターゲットを真空中に配置してもよい。温度を変化させる場合には、実験装置に実現できる、導電体材料ターゲットを絶縁体ステージに保てる温度範囲の間であれば任意の温度とすることができる。たとえばAlに対しては−269℃(Heの液化温度)〜660℃(Alの融点)、Cuに対しては−269℃〜1084℃(Cuの融点)とすることができる。また、導電体材料ターゲットは、希ガス中に配置してもよい。
Figure 2006260995

In the invention of this application, when generating characteristic X-rays, the temperature of the conductor material target may be changed for the purpose of controlling the generation efficiency, or the conductor material target may be arranged in a vacuum. . In the case of changing the temperature, the temperature can be set to any temperature as long as it is within a temperature range that can be realized in an experimental apparatus and can maintain the conductor material target on the insulator stage. For example, it can be -269 ° C (He liquefaction temperature) to 660 ° C (Al melting point) for Al, and -269 ° C to 1084 ° C (Cu melting point) for Cu. The conductor material target may be disposed in a rare gas.

また、導電体材料ターゲットの照射位置の制御のために、イオンビームに、磁場及び電場の少くともいずれかを印加して収束させたり、走査させたりしてもよい。   In addition, in order to control the irradiation position of the conductive material target, at least one of a magnetic field and an electric field may be applied to the ion beam so as to be converged or scanned.

次に、この出願の発明による実施例を示す。もちろん、この出願の発明は前述の実施の形態及び以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。   Next, examples according to the invention of this application will be described. Of course, the invention of this application is not limited to the above-described embodiments and the following examples, and it goes without saying that various aspects are possible in detail.

<実施例1>
低エネルギー正イオンとして10keVのGaイオン、導電体材料ターゲットとしてAlを真空蒸着法でSiO製の絶縁体ステージ上に蒸着した。チャンバーの真空度は1×10−5Paより高真空にした。X線の検出はSi(Li)X線エネルギー分光検出器を用いた。
<Example 1>
10 keV Ga + ions as low energy positive ions and Al as a conductor material target were deposited on an insulator stage made of SiO 2 by a vacuum deposition method. The degree of vacuum of the chamber was higher than 1 × 10 −5 Pa. For detection of X-rays, a Si (Li) X-ray energy spectroscopic detector was used.

室温で低エネルギー正イオンGaをターゲット材料に照射すると、X線エネルギー分光検出器により、ターゲット材料の特性X線が検出された。図2(a)にこの実施例において低エネルギーイオン照射により励起されたX線スペクトルを示す。また、比較のために、同じ導電体ターゲットを用い10keVの高加速電子ビーム照射により励起されたX線スペクトルを示す。この図に現れたスペクトルを比較すると、電子線に比べ、低エネルギーイオンにより励起された特性X線では、導電体材料(Al)の特性X線の励起効率が高いことが確認された。 When the target material was irradiated with low energy positive ions Ga + at room temperature, the characteristic X-rays of the target material were detected by the X-ray energy spectroscopic detector. FIG. 2A shows an X-ray spectrum excited by low energy ion irradiation in this example. For comparison, an X-ray spectrum excited by 10 keV high acceleration electron beam irradiation using the same conductor target is shown. When the spectra appearing in this figure were compared, it was confirmed that the characteristic X-rays excited by low energy ions had higher excitation efficiency of the characteristic X-rays of the conductor material (Al) than the electron beam.

実施例2
低エネルギー正イオンとして30keVのGaイオン、導電体材料ターゲットとしてInを真空蒸着法でSiO製の絶縁体ステージ上に蒸着した。チャンバーの真空度は1×10−5Paより高真空にした。X線の検出はSi(Li)X線エネルギー分光検出器を用いた。
Example 2
30 keV Ga + ions as low energy positive ions and In as a conductor material target were vapor-deposited on an insulator stage made of SiO 2 by a vacuum vapor deposition method. The degree of vacuum of the chamber was higher than 1 × 10 −5 Pa. For detection of X-rays, a Si (Li) X-ray energy spectroscopic detector was used.

室温で低エネルギー正イオンGaをターゲット材料に照射すると、X線エネルギー分光検出器により、ターゲット材料の特性X線が検出された。図2(b)にこの実施例において低エネルギーイオン照射により励起されたX線スペクトルを示す。この図に現れたスペクトルから、低エネルギーイオンにより励起された導電体材料(In)の特性X線が効率的に励起されることが確認された。 When the target material was irradiated with low energy positive ions Ga + at room temperature, the characteristic X-rays of the target material were detected by the X-ray energy spectroscopic detector. FIG. 2B shows an X-ray spectrum excited by low energy ion irradiation in this example. From the spectrum appearing in this figure, it was confirmed that the characteristic X-rays of the conductor material (In) excited by the low energy ions are efficiently excited.

この出願の発明の方法による特性X線発生の原理を示す模式的に示す図である。It is a figure which shows typically the principle of characteristic X-ray generation by the method of the invention of this application. (a)は実施例1において低エネルギー正イオン照射により励起されたX線スペクトル及び電子ビーム照射により励起されたX線スペクトルを示す図、(b)は実施例2において低エネルギー正イオン照射により励起されたX線スペクトルを示す図である。(A) is a figure which shows the X-ray spectrum excited by low energy positive ion irradiation in Example 1, and the X-ray spectrum excited by electron beam irradiation, (b) is excited by low energy positive ion irradiation in Example 2. It is a figure which shows the made | formed X-ray spectrum.

Claims (12)

2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少なくともいずれかの元素を含む絶縁された導電体材料ターゲットへ照射することにより、導電体材料ターゲット中に含まれる軽元素又は重元素から4keV以下の低エネルギー特性X線を発生させることを特徴とする特性X線発生方法。   By irradiating a positive ion having a low energy of 2 to 100 keV to an insulated conductive material target containing at least one of a light element and a heavy element, the light element or heavy element contained in the conductive material target A characteristic X-ray generation method characterized by generating low energy characteristic X-rays of 4 keV or less from an element. 軽元素が原子番号4番から17番の元素であることを特徴とする請求項1に記載の特性X線発生方法。   The method for generating characteristic X-rays according to claim 1, wherein the light element is an element having an atomic number of 4 to 17. 重元素が原子番号18番以上の元素であることを特徴とする請求項1に記載の特性X線発生方法。   The characteristic X-ray generation method according to claim 1, wherein the heavy element is an element having an atomic number of 18 or more. 正イオンビームを電場及び磁場の少なくともいずれかの印加により集束させることを特徴とする請求項1から3のいずれかに記載の特性X線発生方法。   4. The method of generating characteristic X-rays according to claim 1, wherein the positive ion beam is focused by applying at least one of an electric field and a magnetic field. 正イオンビームを電場及び磁場の少なくともいずれかの印加により導電体材料ターゲット上で走査させることを特徴とする請求項1から4のいずれかに記載の特性X線発生方法。   5. The method of generating characteristic X-rays according to claim 1, wherein the positive ion beam is scanned on the conductive material target by applying at least one of an electric field and a magnetic field. 導電体材料ターゲットの温度を変化させることを特徴とする請求項1から5のいずれかに記載の特性X線発生方法。   6. The method for generating characteristic X-rays according to claim 1, wherein the temperature of the conductor material target is changed. 2から100keVの低エネルギーを有する正イオンを、軽元素及び重元素の少なくともいずれかの元素を含む絶縁された導電体材料ターゲットに照射するイオン発生源と、
導電体材料ターゲットを載置する絶縁体ステージと、
正イオンの照射により導電体材料ターゲット中に含まれる軽元素又は重元素から発生する特性X線を検出するX線検出器とを備えていることを特徴とする特性X線発生装置。
An ion source that irradiates an insulated conductor material target containing positive ions having a low energy of 2 to 100 keV and containing at least one of a light element and a heavy element;
An insulator stage for placing a conductor material target;
An apparatus for generating characteristic X-rays, comprising: an X-ray detector for detecting characteristic X-rays generated from light elements or heavy elements contained in a conductive material target by irradiation with positive ions.
軽元素が原子番号4番から17番の元素であることを特徴とする請求項7に記載の特性X線発生装置。   8. The characteristic X-ray generator according to claim 7, wherein the light element is an element having an atomic number of 4 to 17. 重元素が原子番号18番以上の元素であることを特徴とする請求項7に記載の特性X線発生装置。   The characteristic X-ray generator according to claim 7, wherein the heavy element is an element having an atomic number of 18 or more. 正イオンビームを電場及び磁場の少なくともいずれかの印加により集束させることを特徴とする請求項7から9のいずれかに記載の特性X線発生装置。   The characteristic X-ray generation apparatus according to claim 7, wherein the positive ion beam is focused by applying at least one of an electric field and a magnetic field. 正イオンビームを電場及び磁場の少なくともいずれかの印加により導電体材料ターゲット上で走査させることを特徴とする請求項7から10のいずれかに記載の特性X線発生装置。   The characteristic X-ray generation apparatus according to claim 7, wherein the positive ion beam is scanned on the conductive material target by applying at least one of an electric field and a magnetic field. 導電体材料ターゲットの温度を変化させることを特徴とする請求項7から11のいずれかに記載の特性X線発生装置。   The characteristic X-ray generator according to any one of claims 7 to 11, wherein the temperature of the conductor material target is changed.
JP2005078278A 2005-03-18 2005-03-18 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation Expired - Fee Related JP4735805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078278A JP4735805B2 (en) 2005-03-18 2005-03-18 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078278A JP4735805B2 (en) 2005-03-18 2005-03-18 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation

Publications (2)

Publication Number Publication Date
JP2006260995A true JP2006260995A (en) 2006-09-28
JP4735805B2 JP4735805B2 (en) 2011-07-27

Family

ID=37099980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078278A Expired - Fee Related JP4735805B2 (en) 2005-03-18 2005-03-18 Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation

Country Status (1)

Country Link
JP (1) JP4735805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336875A1 (en) * 2016-12-16 2018-06-20 Excillum AB Semiconductor x-ray target

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113052A (en) * 1985-11-13 1987-05-23 Oki Electric Ind Co Ltd Element analysis
JPH0613012A (en) * 1992-06-30 1994-01-21 Nec Corp Ion excitation x-ray analyzer using focusing ion beam
JPH06186178A (en) * 1992-01-17 1994-07-08 Matsushita Electric Ind Co Ltd Soft x-ray spectroscope
JPH0875684A (en) * 1994-09-01 1996-03-22 Tokin Corp Element analyzer using ion beam
JPH095263A (en) * 1995-06-14 1997-01-10 Sumitomo Electric Ind Ltd Detecting method of trace element
JP2006505033A (en) * 2002-10-29 2006-02-09 ランベール,クラウド Authentication method for an object or substance using chemical marking or tracing
JP2006046964A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Apparatus for analyzing/evaluating light element in insulator by irradiation of low energy ions
JP2006046965A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Analyzing/evaluating method of element in insulator by irradiation of low energy ions
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation
JP2006258671A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method and apparatus for analyzing/evaluating element in conductive material sample by low energy ion irradiation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113052A (en) * 1985-11-13 1987-05-23 Oki Electric Ind Co Ltd Element analysis
JPH06186178A (en) * 1992-01-17 1994-07-08 Matsushita Electric Ind Co Ltd Soft x-ray spectroscope
JPH0613012A (en) * 1992-06-30 1994-01-21 Nec Corp Ion excitation x-ray analyzer using focusing ion beam
JPH0875684A (en) * 1994-09-01 1996-03-22 Tokin Corp Element analyzer using ion beam
JPH095263A (en) * 1995-06-14 1997-01-10 Sumitomo Electric Ind Ltd Detecting method of trace element
JP2006505033A (en) * 2002-10-29 2006-02-09 ランベール,クラウド Authentication method for an object or substance using chemical marking or tracing
JP2006046964A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Apparatus for analyzing/evaluating light element in insulator by irradiation of low energy ions
JP2006046965A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Analyzing/evaluating method of element in insulator by irradiation of low energy ions
JP2006046963A (en) * 2004-07-30 2006-02-16 National Institute For Materials Science Method for generating light element characteristic x ray from insulator by low energy ion irradiation
JP2006258671A (en) * 2005-03-18 2006-09-28 National Institute For Materials Science Method and apparatus for analyzing/evaluating element in conductive material sample by low energy ion irradiation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336875A1 (en) * 2016-12-16 2018-06-20 Excillum AB Semiconductor x-ray target
WO2018109176A1 (en) * 2016-12-16 2018-06-21 Excillum Ab Semiconductor x-ray target
US10971323B1 (en) 2016-12-16 2021-04-06 Excillum Ab Semiconductor X-ray target

Also Published As

Publication number Publication date
JP4735805B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
Tyunkov et al. An experimental test-stand for investigation of electron-beam synthesis of dielectric coatings in medium vacuum pressure range
Fairchild et al. Low work function CsI coatings for enhanced field emission properties
Ahmed et al. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials
Mondal et al. Performance of a size-selected nanocluster deposition facility and in situ characterization of grown films by x-ray photoelectron spectroscopy
Halbritter On contamination on electrode surfaces and electric field limitations
Hippler et al. Pressure dependence of Ar, ArTi+, and Ti dimer formation in a magnetron sputtering discharge
Ganeev et al. Mass spectrometric methods for the direct elemental and isotopic analysis of solid materials
Valipour et al. Increasing of hardness of titanium using energetic nitrogen ions from Sahand as a Filippov Type plasma focus facility
JP4735805B2 (en) Method and apparatus for generating characteristic X-rays from conductive materials by low energy ion irradiation
Berry et al. Spectroscopic techniques for studying the beam-foil interaction
JP4665143B2 (en) Elemental analysis / evaluation method and apparatus in conductor samples by low energy ion irradiation
Maheshwari Surface Characterization of impurities in superconducting niobium for radio frequency (RF) cavities used in particle accelerators
Láska et al. Laser induced direct implantation of ions
Jans et al. Scattering of atoms and molecules off a barium zirconate surface
Matsumoto et al. Development and properties of a Freeman-type hybrid ion source
Sobierajski et al. Experimental station to study the interaction of intense femtosecond vacuum ultraviolet pulses with matter at TTF1 free electron laser
JP4644853B2 (en) Light element characteristic X-ray generation method from insulator by low energy ion irradiation
Kalvas et al. First results of a new quadrupole minimum-B permanent magnet electron cyclotron resonance ion source
Holloway et al. Chemical characterization of coatings by analytical techniques sensitive to the surface and near-surface
Navarro et al. A compact dication source for Ba2+ tagging and heavy metal ion sensor development
Ovsyannikov et al. A novel room temperature electron beam ion trap for atomic physics and materials research
Karmakar et al. Photon emission in ion beam sputtering of an Mg target
JP4452811B2 (en) Elemental analysis and evaluation method in insulators by low energy ion irradiation
JP2004362937A (en) Ion source
Saeki et al. Laser ablation of silicon in neon gas: Study of excitation mechanism of neon neutrals by ablated silicon ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees