JP2000026901A - RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET - Google Patents

RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET

Info

Publication number
JP2000026901A
JP2000026901A JP10192576A JP19257698A JP2000026901A JP 2000026901 A JP2000026901 A JP 2000026901A JP 10192576 A JP10192576 A JP 10192576A JP 19257698 A JP19257698 A JP 19257698A JP 2000026901 A JP2000026901 A JP 2000026901A
Authority
JP
Japan
Prior art keywords
alloy powder
phase
weight
raw material
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10192576A
Other languages
Japanese (ja)
Inventor
Kaname Takeya
要 武谷
Katsuya Kase
克也 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10192576A priority Critical patent/JP2000026901A/en
Publication of JP2000026901A publication Critical patent/JP2000026901A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow the crystal structure of alloy powder to exhibit high magnetic properties and to reduce load in a pulverizing stage in magnet production by allowing almost particles to have almost spherical shapes. SOLUTION: In alloy powder, almost particles have almost spherical shapes, preferably, of 20 to 500 μm diameter. As for the sintered magnet structure capable of exhibiting high magnetic properties, preferably, R2Fe14B phases (main phases) of about 5 to 10 μm particle size are coated with R-rich phase and B-rich phase liq. phase components, and the ratio of the main phases occupied in a magnet is made high as much as possible. Thus, as the raw material alloy powder, preferably, R-rich phases and B-rich phases are dispersed to stick to the vicinities of the main phase particles of single crystals of about 1 to 5 μm as to pulverized powder before sintering. The preferable compsn. of the alloy is composed of, by weight, 30 to 35% R, 0.9 to 1.2% B, and the balance Fe as the main components, where R denotes at least one kind among rare earth elements including Y, and a part of Fe may be substituted by one or two kinds of Co and Ni.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、R(但しRはYを
含む希土類元素のうち少なくとも一種)、Fe、及び、
Bを主成分とする、R−Fe−B系焼結磁石用原料合金
粉末に関し、特に、磁気特性の優れたR−Fe−B系焼
結磁石が得られ、磁石製造工程での粉砕工程の負荷が少
ないR−Fe−B系焼結磁石用原料合金粉末に関する。
[0001] The present invention relates to R (where R is at least one of the rare earth elements including Y), Fe, and
Regarding the raw material alloy powder for an R-Fe-B based sintered magnet containing B as a main component, in particular, an R-Fe-B based sintered magnet having excellent magnetic properties can be obtained, The present invention relates to a raw material alloy powder for an R-Fe-B-based sintered magnet with a small load.

【0002】[0002]

【従来の技術】R−Fe−B系焼結磁石は、R2Fe14
B相、Rリッチ相、及び、Bリッチ相からなる組織を有
する合金粉末を加圧成形後焼結することによって、最大
エネルギー積(BH)maxで50MGOe以上が達成で
きる優れた永久磁石である。この磁石は、希望する磁気
特性発現のために種々の組成が提案されている。
BACKGROUND OF THE INVENTION R-Fe-B based sintered magnet, R 2 Fe 14
It is an excellent permanent magnet that can achieve a maximum energy product (BH) max of 50 MGOe or more by sintering an alloy powder having a structure composed of a B phase, an R rich phase, and a B rich phase after pressure molding. Various compositions have been proposed for this magnet to achieve desired magnetic properties.

【0003】この磁石の原料である合金粉末の製造法に
は、「溶解鋳造法」や、「ストリップキャスティング
法」が知られている。
[0003] As a method for producing an alloy powder which is a raw material of the magnet, a "melting casting method" and a "strip casting method" are known.

【0004】「溶解鋳造法」は、構成成分の金属または
母合金を目的組成に合わせて配合し、溶解鋳造して鋳塊
を得て、これを粉砕する方法である。この方法は、鋳塊
時の酸素含有量が低く、酸化されやすい希土類金属相が
大きく偏析するため鋳塊の粉砕工程での酸化が比較的容
易に抑制でき、比較的低酸素含有量の合金粉末を得るこ
とができる。
[0004] The "melting casting method" is a method in which a constituent metal or a mother alloy is blended in accordance with a target composition, and is melt-cast to obtain an ingot, which is pulverized. This method has a low oxygen content at the time of ingot, and the sedimentation of the rare earth metal phase which is easily oxidized is largely segregated, so that oxidation in the ingot crushing step can be relatively easily suppressed, and alloy powder having relatively low oxygen content Can be obtained.

【0005】しかし、鋳造時にα−Fe等の初晶が偏析
し、合金組織の均一性が劣るとともにR2Fe14B相結
晶粒の粗大化が避けられないこと、磁石製造工程での鋳
塊の粉砕工程に多大なエネルギーが必要なこと等の短所
がある。
However, primary crystals such as α-Fe segregate during casting, resulting in poor uniformity of the alloy structure and unavoidable coarsening of R 2 Fe 14 B phase crystal grains. Disadvantages are that a large amount of energy is required for the pulverization process.

【0006】「ストリップキャスティング法」は、「溶
解鋳造法」を改良したものであり、合金溶湯をロール法
により0.1〜10mmの板厚鋳造片となし、これを粉
砕する方法である。この方法では、ロールによる溶湯の
冷却速度を制御することで、α−Feの晶析が無く、短
軸方向に0.1〜50μm、長軸方向に5〜200μm
に成長した柱状のR2Fe14B相と、そのR2Fe14B相
の間を微細に分散したRリッチ相、及び、Bリッチ相が
占める結晶組織を有する原料合金を得ることができ、高
磁気特性の磁石が得られる。「溶解鋳造法」に比べて得
られる鋳造片が小さいため、磁石製造工程での粉砕工程
に必要なコストが小さいという利点ももつ(特開平7−
197182号公報)。
[0006] The "strip casting method" is an improvement of the "melting casting method", and is a method in which a molten alloy is formed into a cast piece having a thickness of 0.1 to 10 mm by a roll method, and this is crushed. In this method, by controlling the cooling rate of the molten metal by the roll, there is no crystallization of α-Fe, and 0.1 to 50 μm in the short axis direction and 5 to 200 μm in the long axis direction.
And a raw alloy having a crystal structure occupied by a columnar R 2 Fe 14 B phase, an R-rich phase finely dispersed between the R 2 Fe 14 B phase, and the B-rich phase, A magnet with high magnetic properties can be obtained. Since the cast pieces obtained are smaller than in the "melting casting method", there is also an advantage that the cost required for the pulverizing step in the magnet manufacturing step is small (Japanese Patent Laid-Open No. 7-1995).
197182).

【0007】[0007]

【発明が解決しようとする課題】しかし、「ストリップ
キャスティング法」においても、鋳造片を微粉砕装置に
投入可能な粒度まで粗粉砕することが必要である。
However, even in the "strip casting method", it is necessary to coarsely pulverize a cast piece to a particle size that can be put into a fine pulverizer.

【0008】そこで本発明は、高磁気特性を発現し得る
結晶組織を有し、且つ磁石製造工程中の粉砕工程に対す
る負荷の少ない、例えば、具体的にはジェットミル等の
微粉砕装置に直接投入可能なR−Fe−B系焼結磁石原
料合金粉末を提供することを目的とする。
Therefore, the present invention has a crystal structure capable of exhibiting high magnetic properties and has a small load on a pulverizing step in a magnet manufacturing step. It is an object of the present invention to provide a possible R-Fe-B based sintered magnet raw material alloy powder.

【0009】[0009]

【課題を解決するための手段】上記目的を解決するため
の本発明のR−Fe−B系焼結磁石用原料合金粉末は、
粒子のほとんどが直径20〜500μmの概ね球状であ
ることを特徴とする。
The raw material alloy powder for an R-Fe-B based sintered magnet according to the present invention for solving the above-mentioned object, comprises:
Most of the particles are substantially spherical with a diameter of 20 to 500 μm.

【0010】そして、望ましくは、その粒子内の結晶組
織が、短軸方向が1〜10μm、長軸方向が5〜100
μmである柱状晶のR2Fe14B相と、そのR2Fe14
相の間隙に微細に分散したRリッチ相、及び、Bリッチ
相とからなることを特徴とする。
[0010] Desirably, the crystal structure in the particle has a short axis direction of 1 to 10 µm and a long axis direction of 5 to 100 µm.
μm columnar crystal R 2 Fe 14 B phase and its R 2 Fe 14 B phase
It is characterized by being composed of an R-rich phase and a B-rich phase finely dispersed in phase gaps.

【0011】合金粉末の組成は、R:30〜35重量
%、B:0.9〜1.2重量%、残部Fe(但し、Fe
の一部をCo、Niの一種又は二種にて置換できる)と
不可避不純物とすればよく、もしくは、組成が、R:2
6〜35重量%、B:0.9〜1.2重量%、残部Fe
(但し、Feの一部をCo、Niの一種又は二種にて置
換できる)と不可避不純物である合金粉末に更に、組成
調整用合金粉末を添加配合してもよい。
The composition of the alloy powder is as follows: R: 30 to 35% by weight, B: 0.9 to 1.2% by weight, balance Fe (Fe
Can be replaced by one or two of Co and Ni) and inevitable impurities, or the composition is R: 2
6 to 35% by weight, B: 0.9 to 1.2% by weight, balance Fe
(However, a part of Fe can be replaced by one or two of Co and Ni) and an alloy powder that is an unavoidable impurity may be further mixed with an alloy powder for adjusting the composition.

【0012】[0012]

【発明の実施の形態】本発明の詳細、即ち各技術的要素
(構成物件)の機能、数値限定理由を以下に述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention, that is, the function of each technical element (constituent article) and the reasons for limiting the numerical values will be described below.

【0013】R−Fe−B系焼結磁石の磁気特性の一つ
である残留磁化(Br)を大きくするためには、磁石中
のR2Fe14B相(以下、「主相」という。)の割合を
大きく、また主相の配向度を大きくする必要がある。磁
石組成を主相組成に近づければ磁石中の主相の割合を大
きくすることができるが、磁石組成を極度に主相組成に
近づけると、液相焼結における液相不足を招き、磁石の
保磁力が低下するので組成を近づけることには限界があ
る。
In order to increase the remanent magnetization (Br), which is one of the magnetic characteristics of the R—Fe—B sintered magnet, the R 2 Fe 14 B phase in the magnet (hereinafter referred to as “main phase”). ) And the degree of orientation of the main phase needs to be increased. If the magnet composition is close to the main phase composition, the proportion of the main phase in the magnet can be increased.However, if the magnet composition is extremely close to the main phase composition, a liquid phase shortage in liquid phase sintering will occur, and the magnet Since the coercive force is reduced, there is a limit in approaching the composition.

【0014】そのため現在の高磁気特性化の主点は、磁
石組成を主相に近づけることよりも、主相の配向度を大
きくすることに置かれている。主相の配向度を大きくす
るには、磁石製造における焼結工程前の微粉砕粉の粒子
が、単磁区粒子径に近いことが必要がある。安定に存在
できる単磁区の最大径は5〜10μm程度である。
Therefore, the main point of the current high magnetic properties is to increase the degree of orientation of the main phase rather than to make the magnet composition close to the main phase. In order to increase the degree of orientation of the main phase, it is necessary that the particles of the finely pulverized powder before the sintering step in magnet production are close to a single magnetic domain particle diameter. The maximum diameter of a single magnetic domain that can exist stably is about 5 to 10 μm.

【0015】一方、R−Fe−B系焼結磁石の保磁力発
現は、強磁性相である主相表面を低融点相(Rリッチ
相、及び、Bリッチ相)が覆い、主相表面の逆磁区発生
サイトを無くすニュークリエーション機構による。その
ため、液相焼結時には主相粒子周辺に十分な液相成分が
存在する必要がある。
On the other hand, the coercive force of the R—Fe—B sintered magnet is expressed by the fact that the surface of the main phase, which is a ferromagnetic phase, is covered with a low melting point phase (R-rich phase and B-rich phase), The nucleation mechanism eliminates the reverse magnetic domain generation site. Therefore, at the time of liquid phase sintering, a sufficient liquid phase component needs to be present around the main phase particles.

【0016】以上のことから、高磁気特性を発現できる
焼結磁石組織としては、結晶粒径5〜10μm程度の主
相が、Rリッチ相、及び、Bリッチ相液相成分により覆
われており、且つ、磁石中に占める主相割合ができるだ
け大きなことが望ましい。従って原料合金粉末として
は、焼結前の微粉砕粉で、1〜5μm程度の単結晶主相
粒子周辺にRリッチ相、及び、Bリッチ相が分散付着し
ていることが望ましい。
From the above, as a sintered magnet structure capable of exhibiting high magnetic properties, a main phase having a crystal grain size of about 5 to 10 μm is covered with an R-rich phase and a B-rich phase liquid phase component. In addition, it is desirable that the proportion of the main phase in the magnet is as large as possible. Therefore, as the raw material alloy powder, it is desirable that the R-rich phase and the B-rich phase are dispersed and attached around the single crystal main phase particles of about 1 to 5 μm in the finely pulverized powder before sintering.

【0017】このような微粉砕粉を得るための微粉砕前
原料合金粉末の結晶組織の一つとして、主相が短軸方向
に1〜10μm、長軸方向に5〜500μmの柱状晶と
なっており、柱状晶の間隙には微細に分散したRリッチ
相、及び、Bリッチ相の存在する結晶組織が挙げられ
る。このような結晶組織を有する合金粉末を微粉砕する
と、主相柱状晶間のRリッチ相、及び、Bリッチ相部分
から壊砕が進み、柱状晶同士が解離する形で粉砕が進
む。さらに解離した主相柱状晶粒子は、他粒子との衝突
により粉砕され、最終的には1〜5μm程度の単結晶主
相粒子周辺にRリッチ相、及び、Bリッチ相が分散付着
している粒子となる。
As one of the crystal structures of the raw alloy powder before pulverization to obtain such a finely pulverized powder, the main phase is a columnar crystal having a length of 1 to 10 μm in the short axis direction and 5 to 500 μm in the long axis direction. The gaps between the columnar crystals include a crystal structure in which a finely dispersed R-rich phase and a B-rich phase are present. When the alloy powder having such a crystal structure is finely pulverized, crushing proceeds from the R-rich phase and the B-rich phase between the main phase columnar crystals, and the pulverization proceeds in such a manner that the columnar crystals dissociate. Further, the dissociated main phase columnar crystal particles are pulverized by collision with other particles, and finally the R-rich phase and the B-rich phase are dispersed and attached around the single crystal main phase particles of about 1 to 5 μm. Become particles.

【0018】先述のように、ストリップキャスティング
法による鋳造片からの微粉砕粉も、1〜5μm程度の単
結晶主相粒子周辺にRリッチ相、及び、Bリッチ相が分
散付着した粒子となる。しかし、ストリップキャスティ
ング法で得られる鋳造片は微粉砕装置に投入する前に数
mm以下の粒子に粗粉砕する必要があり、粗粉砕工程が
不必要な原料合金の性状としては上述の結晶組織を有
し、且つほとんどが直径20〜500μmの球状粒子か
らなることが望ましい。粒子直径を20〜500μmと
するのは、500μm以上の粒子ではジェットミル等の
微粉砕装置に対する負荷が大きく、また20μm以下で
は上述のような結晶組織が粒子中で十分に成長できない
ためである。
As described above, the finely pulverized powder from the cast piece by the strip casting method also becomes particles in which the R-rich phase and the B-rich phase are dispersed and attached around the single crystal main phase particles of about 1 to 5 μm. However, the cast pieces obtained by the strip casting method need to be coarsely pulverized into particles of several mm or less before being put into a fine pulverizing apparatus. It is desirable to have spherical particles of 20 to 500 μm in diameter. The reason for setting the particle diameter to 20 to 500 μm is that the particles having a particle diameter of 500 μm or more exert a large load on a fine pulverizing device such as a jet mill, and the particles having a diameter of 20 μm or less cannot sufficiently grow the above-described crystal structure in the particles.

【0019】本発明で用いる合金の望ましい組成として
R(但しRはYを含む希土類元素のうち少なくとも一
種):30〜35重量%、B:0.9〜1.2重量%、
残部:Fe(但し、Feの一部をCo、Niの一種又は
二種にて置換できる)を主成分とするのは以下の理由に
よる。
As a desirable composition of the alloy used in the present invention, R (where R is at least one of rare earth elements including Y): 30 to 35% by weight, B: 0.9 to 1.2% by weight,
The remainder: Fe (however, part of Fe can be replaced by one or two of Co and Ni) is the main reason for the following reasons.

【0020】R品位を30〜35重量%とするのは、R
品位が30重量%以下では磁石化工程での液相焼結時に
十分な液相が供給さないため十分な保磁力が得られず、
R品位が35重量%を超えると合金中の主相割合が低下
して残留磁束密度が低下し、磁気特性が低下するためで
ある。従ってR品位は30〜35重量%が望ましい。
The reason why the R grade is 30 to 35% by weight is that R
If the grade is 30% by weight or less, a sufficient coercive force cannot be obtained because a sufficient liquid phase is not supplied during liquid phase sintering in the magnetizing process.
If the R grade exceeds 35% by weight, the ratio of the main phase in the alloy decreases, the residual magnetic flux density decreases, and the magnetic properties deteriorate. Therefore, the R grade is desirably 30 to 35% by weight.

【0021】B品位を0.9〜1.2重量%とするの
は、主相生成を安定させるBの品位が0.9重量%未満
ではR2Fe17相等の磁石特性発現に不必要な相が生成
し、1.2重量%を超えるとBリッチ相の生成割合が増
えて合金粉中の主相割合が低下して残留磁束密度が低下
し、磁気特性が低下するためである。従ってB品位は
0.9〜1.2重量%が望ましい。
[0021] B grade from a 0.9 to 1.2% by weight, in the quality is less than 0.9 wt% of B to stabilize the main phase generating unnecessary to magnetic properties expression of R 2 Fe 17 phase etc. This is because when a phase is generated and exceeds 1.2% by weight, the generation ratio of the B-rich phase increases, the main phase ratio in the alloy powder decreases, the residual magnetic flux density decreases, and the magnetic properties deteriorate. Therefore, the B grade is desirably 0.9 to 1.2% by weight.

【0022】CoはR−Fe−B系焼結磁石のキュリー
温度を上昇させ磁石の耐熱性を向上させるのでFeに対
して置換することが有効であるが、過度に置換すると他
の磁石特性を低下させるので好ましくない。
[0022] Co is effective to substitute for Fe because it raises the Curie temperature of the R-Fe-B based sintered magnet and improves the heat resistance of the magnet. It is not preferable because it lowers.

【0023】また、上述の結晶組織を有するR(但しR
はYを含む希土類元素のうち少なくとも一種):26〜
35重量%、B:0.9〜1.2重量%、残部Fe(但
し、Feの一部をCo、Niの一種又は二種にて置換で
きる)を主成分とする原料合金粉末、特に主相割合の高
い合金粉末に、成分組成調整用の合金粉末を添加配合
し、液相焼結時の液相成分を補うことで磁石原料合金粉
末を得ることは、磁気特性発現に有効な方法である。
Further, R having the above-mentioned crystal structure (however, R
Is at least one of the rare earth elements containing Y): 26 to
35% by weight, B: 0.9 to 1.2% by weight, and the balance of raw material alloy powder containing Fe as a main component (however, part of Fe can be replaced by one or two of Co and Ni), especially Adding alloy powder for component composition adjustment to alloy powder with high phase ratio and supplementing the liquid phase component during liquid phase sintering to obtain magnet raw material alloy powder is an effective method for developing magnetic properties. is there.

【0024】組成調整用合金粉末には、所用のR−Fe
−B系合金を溶解し鋳造後に粉砕する「溶解粉砕法」、
Ca還元にて直接粉末を得る「直接還元拡散法」、所用
のR−Fe−B系合金粉を溶解ジェットキャスターによ
ってリボン箔としてこれを粉砕焼鈍する「急冷合金
法」、所用のR−Fe−B系合金を溶解しガスアトマイ
ズで粉末化する「ガスアトマイズ法」、所用原料金属を
粉末化した後メカニカルアロイングにて微粉末化して熱
処理する「メカニカルアロイ法」、所用のR−Fe−B
系合金を水素中で加熱して分解並びに再結晶させる「H
DDR法」などの各種公知の製法で得た、等方性若しく
は異方性のR−Fe−B系合金粉末、または、「溶融塩
電解法」や「溶解鋳造法」で製造したR−Fe−B系共
晶組成合金粉砕粉などが利用できる。
The alloy powder for composition adjustment includes the required R-Fe
"Melting and pulverizing method" in which a B-based alloy is melted and pulverized after casting,
"Direct reduction diffusion method" to obtain powder directly by Ca reduction, "Quenched alloy method" in which required R-Fe-B-based alloy powder is crushed and annealed as a ribbon foil by a melt jet caster, required R-Fe- "Gas atomizing method" for dissolving B-based alloy and pulverizing by gas atomization, "Mechanical alloying method" for pulverizing required raw metal, pulverizing it by mechanical alloying and heat-treating, R-Fe-B required
"H" which is heated and decomposed and recrystallized in hydrogen
Isotropic or anisotropic R-Fe-B-based alloy powder obtained by various known manufacturing methods such as "DDR method", or R-Fe manufactured by "molten salt electrolysis method" or "melting casting method" -B eutectic composition alloy pulverized powder and the like can be used.

【0025】本発明のR−Fe−B系焼結磁石用原料合
金粉末は、例えばアトマイズ法、特にガスアトマイズ法
を用いることができる。以下にその理由を述べる。
The raw material alloy powder for the R—Fe—B sintered magnet of the present invention can be, for example, an atomizing method, particularly a gas atomizing method. The reason is described below.

【0026】目的組成の溶湯を冷却して前記のような結
晶組織を得るには、溶湯の冷却速度を制御する必要があ
る。冷却速度が大きすぎると合金は非晶質になり、冷却
速度が小さすぎると粗大な結晶が成長して目的とする結
晶組織を得られない。
In order to cool the molten metal having the desired composition to obtain the above crystal structure, it is necessary to control the cooling rate of the molten metal. If the cooling rate is too high, the alloy becomes amorphous, and if the cooling rate is too low, coarse crystals grow and the desired crystal structure cannot be obtained.

【0027】ストリップキャスティング法では、溶湯温
度、ロール温度、ロールの溶湯に対する線速度、板厚な
どにより制御可能であるが、ストリップキャスティング
法では粉末を得るために鋳造片を粉砕する必要がある。
これに対してアトマイズ法では、直接目的とする粒度の
合金粉末を得ることが容易であり、噴霧媒体、溶湯温
度、噴霧圧力、噴霧ノズル径、噴霧ノズル形状などの製
造条件の制御により、粒子を目的粒度で得ることができ
る。また、結晶組織の制御、即ち短軸方向に1〜10μ
m、長軸方向に5〜100μmに成長した主相の柱状
晶、及びその主相柱状晶の間を微細に分散したRリッチ
相、及び、Bリッチ相が占めるような組織を得るには、
アトマイズ法での製造条件を最適化することで容易に得
られる。
In the strip casting method, the temperature can be controlled by the temperature of the molten metal, the temperature of the roll, the linear velocity of the roll relative to the molten metal, the plate thickness, and the like. However, in the strip casting method, it is necessary to grind the cast pieces to obtain powder.
On the other hand, in the atomization method, it is easy to directly obtain an alloy powder having a target particle size, and particles are controlled by controlling production conditions such as a spray medium, a melt temperature, a spray pressure, a spray nozzle diameter, and a spray nozzle shape. It can be obtained with the desired particle size. Further, control of the crystal structure, that is, 1 to 10 μm in the short axis direction
m, a columnar crystal of the main phase grown to 5 to 100 μm in the major axis direction, and an R-rich phase finely dispersed between the main-phase columnar crystals, and a structure in which the B-rich phase occupies,
It can be easily obtained by optimizing the manufacturing conditions in the atomizing method.

【0028】本発明におけるR−Fe−B系合金粉末、
特に、RとしてNdを選択したNd−Fe−B系合金粉
末のアトマイズ法による製造においては、噴霧媒体には
不活性ガスが望ましい。空気、水によるアトマイズ法で
はNd−Fe−B系合金粉は活性が高いため低酸素の合
金粉が得られないからである。
The R-Fe-B alloy powder according to the present invention,
In particular, in the production of an Nd-Fe-B-based alloy powder in which Nd is selected as R by an atomizing method, an inert gas is desirably used as a spray medium. This is because the Nd—Fe—B-based alloy powder has a high activity in the atomization method using air and water, so that low-oxygen alloy powder cannot be obtained.

【0029】また、Nd2Fe14B相の融点が1150
℃付近であることから、溶湯温度は1300〜1600
℃が望ましい。溶湯温度が高すぎると噴霧された溶湯液
滴がチャンバー内で凝固する際に粒子形状が不規則にな
り、溶湯温度が低すぎると結晶組織が非晶質化しやす
く、得られる合金粉が粗大化しやすいからである。その
他の製造条件については、アトマイズ装置毎に最適条件
が異なるが、製造条件の制御により目的粒子を得ること
が可能である。
The melting point of the Nd 2 Fe 14 B phase is 1150
° C, the temperature of the molten metal is 1300-1600
C is desirable. If the molten metal temperature is too high, the sprayed molten liquid droplets will have an irregular particle shape when solidified in the chamber, and if the molten metal temperature is too low, the crystal structure tends to be amorphous and the resulting alloy powder becomes coarse. Because it is easy. As for the other manufacturing conditions, the optimum conditions are different for each atomizing apparatus, but the target particles can be obtained by controlling the manufacturing conditions.

【0030】[0030]

【実施例】実施例1 ・・・ Nd:84.0重量%、
残部:Feの市販の溶融電解法によるNd−Fe合金塊
1890g、Dy:86.3重量%、残部:Feの市販
の溶融電解法によるDy−Fe合金塊73g、B:2
0.1重量%、Al:2.9重量%、残部:Feの市販
FeB合金249g、純度99重量%の金属Co塊40
g、純度99%の金属Cu顆粒10g、純度99重量%
の金属Fe塊2738gを、Arガスアトマイズ粉末製
造装置のルツボ型高周波誘導炉内のアルミナ製ルツボに
挿入し、真空雰囲気下で溶解した。溶湯温度が1500
℃になり溶湯が均一であることを確認してから、アルミ
ナ製ルツボ下部のノズルから溶湯を流出させ、50kg
/cm2の噴出圧力でArガスアトマイズした。Ar雰
囲気のチャンバー内で室温付近まで放置冷却した後に合
金粉末を回収した。
EXAMPLES Example 1 Nd: 84.0% by weight,
The balance: 1890 g of Nd-Fe alloy lump by commercial melting electrolysis of Fe, Dy: 86.3% by weight, balance: 73 g of Dy-Fe alloy lump by commercial fusion electrolysis of Fe, B: 2
0.1 wt%, Al: 2.9 wt%, balance: 249 g of commercial FeB alloy of Fe, metal Co lump 40 having a purity of 99 wt%
g, 99% pure metal Cu granules 10g, 99% pure by weight
Was inserted into an alumina crucible in a crucible-type high-frequency induction furnace of an Ar gas atomizing powder manufacturing apparatus and melted under a vacuum atmosphere. Melt temperature is 1500
° C, and after confirming that the molten metal is uniform, let the molten metal flow out from the nozzle below the alumina crucible,
Ar gas was atomized at an ejection pressure of / cm 2 . The alloy powder was recovered after being left to cool to around room temperature in a chamber in an Ar atmosphere.

【0031】回収した合金粉末は4520gで、成分分
析の結果、Nd:30.9重量%、Dy:1.24重量
%、B:1.01重量%、Co:0.81重量%、A
l:0.28重量%、Cu:0.21重量%、Ca:<
0.01重量%、O:0.22重量%、C:0.026
重量%、残部:Feからなる、粒子形状が概ね球状の合
金粉末であった。
The recovered alloy powder weighed 4520 g. As a result of component analysis, Nd: 30.9% by weight, Dy: 1.24% by weight, B: 1.01% by weight, Co: 0.81% by weight, A:
l: 0.28% by weight, Cu: 0.21% by weight, Ca: <
0.01% by weight, O: 0.22% by weight, C: 0.026
It was an alloy powder having a substantially spherical particle shape composed of wt%, balance: Fe.

【0032】回収合金粉末をJIS篩(70、100、
140、235、390メッシュ)と自動タップ篩別機
を用いて分級したところ、70メッシュ以上が8.5重
量%、70〜100メッシュが4.3重量%、100〜
140メッシュが9.5重量%、140〜235メッシ
ュが19.6重量%、235〜390メッシュが49.
4重量%、390メッシュ以下が8.7重量%であっ
た。
The recovered alloy powder is passed through a JIS sieve (70, 100,
140, 235, 390 mesh) and classified using an automatic tap sieving machine. As a result, 8.5 weight% of 70 mesh or more, 4.3 weight% of 70 to 100 mesh, 100 to 100 mesh
9.5% by weight of 140 mesh, 19.6% by weight of 140 to 235 mesh, and 49.95% of 235 to 390 mesh.
8.7% by weight was 4% by weight and 390 mesh or less.

【0033】各粒度の合金粉末を光学顕微鏡による偏光
観察、EPMAによる相同定したところ、100メッシ
ュ以上の合金粉末には扁平かつ一部が非晶質化したもの
が見られ、また390メッシュ以下の合金粉には全体が
非晶質化したものが見られた。100〜390メッシュ
の合金粉末は球状で、その内部のほとんどは短軸方向に
3〜10μm、長軸方向に10〜50μmに成長したN
2Fe14B相柱状晶であり、主相柱状晶の間を微細に
分散したRリッチ相、及び、Bリッチ相が占める結晶組
織であった。
The polarization of the alloy powder of each particle size was observed with an optical microscope and the phase was identified by EPMA. As a result, alloy powder having a mesh size of 100 mesh or more was found to be flat and partially amorphous, and 390 mesh or less. The alloy powder was found to be entirely amorphous. The alloy powder of 100 to 390 mesh is spherical, and most of the inside is N grown to 3 to 10 μm in the short axis direction and 10 to 50 μm in the long axis direction.
It was a d 2 Fe 14 B phase columnar crystal, and had a crystal structure occupied by an R-rich phase and a B-rich phase finely dispersed between the main phase columnar crystals.

【0034】上述合金粉末の100〜390メッシュ部
分1000gをジェットミル粉砕し、平均粒度2.7μ
mの微粉砕粉を得た。得られた微粉砕粉を磁場12kO
e、成形圧1.3ton/cm2の磁場中成形後、Ar
ガス中にて1050℃に3時間の焼結後、590℃に1
時間の時効化処理を行ってNd−Fe−B系焼結磁石を
得た。得られた磁石の磁気特性は、Br=14.1k
G、iHc=14.0kOe、(BH)max=42.
1MGOeで、優れた磁気特性を示した。
A 100-390 mesh portion of the above alloy powder (1000 g) was pulverized by a jet mill to obtain an average particle size of 2.7 μm.
m of finely pulverized powder was obtained. The obtained finely pulverized powder is subjected to a magnetic field of 12 kO.
e, after molding in a magnetic field with a molding pressure of 1.3 ton / cm 2 , Ar
After sintering at 1050 ° C for 3 hours in gas, 1
Aging treatment was performed for a time to obtain an Nd-Fe-B based sintered magnet. The magnetic properties of the obtained magnet were Br = 14.1 k
G, iHc = 14.0 kOe, (BH) max = 42.
1MGOe showed excellent magnetic properties.

【0035】実施例2 ・・・ Nd:84.0重量
%、残部:Feの市販の溶融電解法によるNd−Fe合
金塊1560g、Dy:86.3重量%、残部:Feの
市販の溶融電解法によるDy−Fe合金塊73g、B:
20.1重量%、Al:2.9重量%、残部:Feの市
販FeB合金249g、純度99重量%の金属Co塊4
0g、純度99%の金属Cu顆粒10g、純度99重量
%の金属Fe塊3068gを、実施例1と同様の方法で
Arガスアトマイズし、合金粉末を得た。
Example 2 Nd: 84.0% by weight, balance: 1560 g of Nd-Fe alloy ingot by commercial melt electrolysis of Fe, Dy: 86.3% by weight, balance: commercial melt electrolysis of Fe 73 g of Dy-Fe alloy ingot by the method, B:
20.1% by weight, Al: 2.9% by weight, balance: 249 g of commercial FeB alloy of Fe, metal Co lump 4 having a purity of 99% by weight
0 g, 10 g of metal Cu granules having a purity of 99%, and 3068 g of metal Fe lump having a purity of 99 wt% were subjected to Ar gas atomization in the same manner as in Example 1 to obtain an alloy powder.

【0036】回収した合金粉末は4500gで、成分分
析の結果Nd:26.21重量%、Dy:1.24重量
%、B:1.00重量%、Co:0.79重量%、A
l:0.26重量%、Cu:0.21重量%、Ca:<
0.01重量%、O:0.15重量%、C:0.025
重量%、残部:Feからなる、粒子形状が概ね球状の合
金粉末であった。
The collected alloy powder weighed 4500 g. As a result of component analysis, Nd: 26.21% by weight, Dy: 1.24% by weight, B: 1.00% by weight, Co: 0.79% by weight, A
l: 0.26% by weight, Cu: 0.21% by weight, Ca: <
0.01% by weight, O: 0.15% by weight, C: 0.025
It was an alloy powder having a substantially spherical particle shape composed of wt%, balance: Fe.

【0037】回収合金粉末をJIS篩(70、100、
140、235、390メッシュ)と自動タップ篩別機
を用いて分級したところ、70メッシュ以上が9.5重
量%、70〜100メッシュが3.2重量%、100〜
140メッシュが6.8重量%、140〜235メッシ
ュが18.3重量%、235〜390メッシュが51.
6重量%、390メッシュ以下が10.6重量%であっ
た。
The recovered alloy powder is passed through a JIS sieve (70, 100,
140, 235, and 390 mesh) and classified using an automatic tap sieving machine. As a result, 9.5% by weight of 70 mesh or more, 3.2% by weight of 70 to 100 mesh, and 100 to 100%.
6.8% by weight of 140 mesh, 18.3% by weight of 140-235 mesh, 51.51% of 235-390 mesh.
6% by weight, 390 mesh or less was 10.6% by weight.

【0038】各粒度の合金粉末を光学顕微鏡による偏光
観察、EPMAによる相同定したところ、100メッシ
ュ以上の合金粉末には扁平かつ一部が非晶質化したもの
が見られ、また390メッシュ以下の合金粉には全体が
非晶質化したものが見られた。100〜390メッシュ
の合金粉末は球状で、その内部のほとんどは短軸方向に
5〜10μm、長軸方向に10〜100μmに成長した
Nd2Fe14B相柱状晶であり、主相柱状晶の間に微細
に分散したRリッチ相、及び、Bリッチ相は実施例1に
比較して少なかった。
The polarization of the alloy powder of each particle size was observed with an optical microscope and the phase was identified by EPMA. As a result, alloy powder having a mesh size of 100 mesh or more was found to be flat and partially amorphous, and 390 mesh or less. The alloy powder was found to be entirely amorphous. The alloy powder of 100 to 390 mesh is spherical, and most of the inside is Nd 2 Fe 14 B phase columnar crystal grown to 5 to 10 μm in the short axis direction and 10 to 100 μm in the long axis direction. The R-rich phase and the B-rich phase finely dispersed in between were smaller than those in Example 1.

【0039】上述合金粉末100〜390メッシュ部分
930gに、市販の溶融塩電解法によるNd−Fe共晶
合金(Nd:85.5重量%、O:0.01重量%以
下、残部:Fe)を水素粉砕後、ディスクミルで35メ
ッシュ以下に粉砕した合金粉70gを配合添加後、ジェ
ットミル粉砕し、平均粒度2.7μmの微粉砕粉を得
た。得られた微粉砕粉を磁場12kOe、成形圧1.3
ton/cm2の磁場中成形後、Arガス中にて105
0℃に3時間の焼結後、590℃に1時間の時効化処理
を行ってNd−Fe−B系焼結磁石を得た。得られた磁
石の磁気特性は、Br=14.0kG、iHc=14.
3kOe、(BH)max=42.2MGOeで、優れ
た磁気特性を示した。
Nd-Fe eutectic alloy (Nd: 85.5% by weight, O: 0.01% by weight or less, balance: Fe) by commercially available molten salt electrolysis was applied to 930 g of the above alloy powder 100 to 390 mesh portion. After hydrogen pulverization, 70 g of alloy powder pulverized to 35 mesh or less by a disk mill was added and then jet mill pulverized to obtain a finely pulverized powder having an average particle size of 2.7 μm. The obtained finely pulverized powder is subjected to a magnetic field of 12 kOe and a molding pressure of 1.3.
After molding in a magnetic field of ton / cm 2 ,
After sintering at 0 ° C. for 3 hours, aging treatment was performed at 590 ° C. for 1 hour to obtain an Nd—Fe—B based sintered magnet. The magnetic properties of the obtained magnet were Br = 14.0 kG, iHc = 14.0.
At 3 kOe and (BH) max = 42.2 MGOe, excellent magnetic properties were exhibited.

【0040】比較例1 ・・・ 実施例1と同様の合金
原料を高周波誘導炉にて溶解し、直径250mmの銅製
ロール2本を併設した双ロール式薄板製造装置を用いて
溶湯急冷法により板厚1.0mmの薄板鋳造材を得た。
試験は全てAr雰囲気下で行った。この鋳片を35メッ
シュ以下まで粗粉砕した。得られた粗粉砕粉を実施例1
と同様に光学顕微鏡及びEPMAで観察したところ、鋳
片内部には板厚方向に成長したNd2Fe14B相柱状晶
組織が見られた。柱状晶は短軸方向に5〜20μm、長
軸方向に50〜300μmに成長したNd2Fe14B相
柱状晶であった。また、成分分析の結果、Nd:31.
1重量%、Dy:1.22重量%、B:1.00重量
%、Co:0.82重量%、Al:0.26重量%、C
u:0.22重量%、Ca:<0.01重量%、O:
0.13重量%、C:0.024重量%、残部:Feか
らなる合金粉末であった。
Comparative Example 1 An alloy material similar to that used in Example 1 was melted in a high-frequency induction furnace, and was quenched by a molten metal quenching method using a twin-roll type sheet manufacturing apparatus provided with two copper rolls having a diameter of 250 mm. A thin plate cast material having a thickness of 1.0 mm was obtained.
All tests were performed in an Ar atmosphere. This slab was roughly pulverized to 35 mesh or less. Example 1
Observation with an optical microscope and EPMA in the same manner as in the above, a columnar crystal structure of Nd 2 Fe 14 B phase grown in the plate thickness direction was found inside the slab. The columnar crystals were Nd 2 Fe 14 B phase columnar crystals which grew to 5 to 20 μm in the short axis direction and 50 to 300 μm in the long axis direction. In addition, as a result of component analysis, Nd: 31.
1% by weight, Dy: 1.22% by weight, B: 1.00% by weight, Co: 0.82% by weight, Al: 0.26% by weight, C
u: 0.22% by weight, Ca: <0.01% by weight, O:
The alloy powder was composed of 0.13% by weight, C: 0.024% by weight, and the balance: Fe.

【0041】上述合金粉末1000gをジェットミル粉
砕にて平均粒度2.8μmの微粉砕粉を得た。得られた
微粉砕粉より実施例1と同様の方法でNd−Fe−B系
焼結磁石を得た。得られた磁石の磁気特性は、Br=1
4.3kG、iHc=13.9kOe、(BH)max
=42.2MGOeで、優れた磁気特性を示した。
A finely pulverized powder having an average particle size of 2.8 μm was obtained by jet milling 1000 g of the above alloy powder. An Nd—Fe—B-based sintered magnet was obtained from the obtained finely pulverized powder in the same manner as in Example 1. The magnetic properties of the obtained magnet are Br = 1
4.3 kG, iHc = 13.9 kOe, (BH) max
= 42.2 MGOe, showing excellent magnetic properties.

【0042】このように、ストリップキャスティング法
でも本発明と同等の磁気特性を発現できる原料合金粉末
が得られるが、ストリップキャスティング法では微粉砕
工程前に鋳造片を粗粉砕する必要があるのに対し、本発
明では得られた合金粉末を直接微粉砕工程に使用できる
利点がある。
As described above, a raw material alloy powder capable of exhibiting the same magnetic properties as the present invention can be obtained by the strip casting method, but in the strip casting method, it is necessary to roughly pulverize the cast piece before the fine pulverizing step. According to the present invention, there is an advantage that the obtained alloy powder can be directly used in the fine pulverization step.

【0043】[0043]

【発明の効果】本発明によれば、高磁気特性を発現し得
る結晶組織を有し、且つ磁石製造工程中の粉砕工程に対
する負荷の少ない、具体的にはジェットミル等の微粉砕
装置に直接投入可能なR−Fe−B系焼結磁石原料合金
粉末が得られる。
According to the present invention, it has a crystal structure capable of exhibiting high magnetic properties and has a small load on the pulverizing step in the magnet manufacturing process. An R-Fe-B-based sintered magnet raw material alloy powder that can be charged is obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粒子のほとんどが概ね球状であることを
特徴とするR−Fe−B系焼結磁石用原料合金粉末。
1. A raw material alloy powder for an R—Fe—B based sintered magnet, wherein most of the particles are substantially spherical.
【請求項2】 粒子のほとんどが直径20〜500μm
の概ね球状であることを特徴とするR−Fe−B系焼結
磁石用原料合金粉末。
2. Most of the particles have a diameter of 20 to 500 μm.
A raw alloy powder for an R-Fe-B-based sintered magnet, which is substantially spherical.
【請求項3】 粒子内の結晶組織が、柱状晶のR2Fe
14B相と、そのR2Fe14B相の間隙に微細に分散した
Rリッチ相、及び、Bリッチ相とからなる請求項1また
は請求項2に記載のR−Fe−B系焼結磁石用原料合金
粉末。
3. The crystal structure in a particle is a columnar crystal of R 2 Fe.
And 14 B phase, the R 2 Fe 14 B phase gap finely dispersed R-rich phase, and, R-Fe-B based sintered magnet according to claim 1 or claim 2 comprising a B-rich phase Raw material alloy powder.
【請求項4】 粒子内の結晶組織が、短軸方向が1〜1
0μm、長軸方向が5〜100μmである柱状晶のR2
Fe14B相と、そのR2Fe14B相の間隙に微細に分散
したRリッチ相、及び、Bリッチ相とからなる、請求項
1〜請求項3いずれかに記載のR−Fe−B系焼結磁石
用原料合金粉末。
4. The crystal structure in a particle has a minor axis direction of 1 to 1.
0 μm, R 2 of a columnar crystal having a major axis direction of 5 to 100 μm
And Fe 14 B phase, the R 2 Fe 14 B phase R-rich phase which is finely dispersed in the gap, and consists of a B-rich phase, according to any claims 1 to 3 R-Fe-B Raw material alloy powder for sintered magnets.
【請求項5】 組成が、R:30〜35重量%、B:
0.9〜1.2重量%、残部Fe(但し、Feの一部を
Co、Niの一種又は二種にて置換できる)と不可避不
純物である請求項1〜請求項4いずれかに記載のR−F
e−B系焼結磁石用原料合金粉末。
5. A composition comprising R: 30 to 35% by weight, B:
5. The method according to claim 1, wherein the content is 0.9 to 1.2% by weight, the balance being Fe (however, part of Fe can be replaced with one or two of Co and Ni) and inevitable impurities. 6. R-F
Raw material alloy powder for e-B based sintered magnets.
【請求項6】 所用組成のR−Fe−B系合金を原料と
するガスアトマイズ法によって得られた請求項1〜請求
項5いずれかに記載の球状のR−Fe−B系焼結磁石用
原料合金粉末。
6. A raw material for a spherical R—Fe—B-based sintered magnet according to claim 1, which is obtained by a gas atomization method using an R—Fe—B-based alloy having a required composition as a raw material. Alloy powder.
【請求項7】 組成が、R:26〜35重量%、B:
0.9〜1.2重量%、残部Fe(但し、Feの一部を
Co、Niの一種又は二種にて置換できる)と不可避不
純物である請求項1〜請求項6いずれかに記載のR−F
e−B系焼結磁石用原料合金粉末に、更に、組成調整用
合金粉末を添加配合して得られるR−Fe−B系焼結磁
石用原料合金粉末。
7. A composition comprising R: 26 to 35% by weight, B:
7. The method according to claim 1, wherein 0.9 to 1.2% by weight, the balance is Fe (however, part of Fe can be replaced by one or two of Co and Ni) and inevitable impurities. R-F
A raw alloy powder for an R-Fe-B sintered magnet obtained by adding and blending a composition adjusting alloy powder to the raw alloy powder for an eB sintered magnet.
JP10192576A 1998-07-08 1998-07-08 RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET Pending JP2000026901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10192576A JP2000026901A (en) 1998-07-08 1998-07-08 RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10192576A JP2000026901A (en) 1998-07-08 1998-07-08 RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET

Publications (1)

Publication Number Publication Date
JP2000026901A true JP2000026901A (en) 2000-01-25

Family

ID=16293588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10192576A Pending JP2000026901A (en) 1998-07-08 1998-07-08 RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET

Country Status (1)

Country Link
JP (1) JP2000026901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114149A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp Method for manufacturing sintered rare earth magnet
CN106128670A (en) * 2016-06-12 2016-11-16 钢铁研究总院 A kind of low-cost rare earth ferrum boron permanent magnet and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114149A (en) * 2009-11-26 2011-06-09 Toyota Motor Corp Method for manufacturing sintered rare earth magnet
US9640305B2 (en) 2009-11-26 2017-05-02 Toyota Jidosha Kabushiki Kaisha Method for producing sintered rare-earth magnet, sintered rare-earth magnet, and material for same
CN106128670A (en) * 2016-06-12 2016-11-16 钢铁研究总院 A kind of low-cost rare earth ferrum boron permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
US6773517B2 (en) Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
US5963774A (en) Method for producing cast alloy and magnet
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US5930582A (en) Rare earth-iron-boron permanent magnet and method for the preparation thereof
JPWO2007063969A1 (en) Rare earth sintered magnet and manufacturing method thereof
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH1171646A (en) Speaker
JP3712595B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JPH0559165B2 (en)
JP3712581B2 (en) Alloy ribbon for permanent magnet and sintered permanent magnet
JP2000026901A (en) RAW MATERIAL ALLOY POWDER FOR R-Fe-B SERIES SINTERED MAGNET
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP2789364B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
WO2009125671A1 (en) R-t-b-base alloy, process for producing r-t-b-base alloy, fines for r-t-b-base rare earth permanent magnet, r-t-b-base rare earth permanent magnet, and process for producing r-t-b-base rare earth permanent magnet
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH0745412A (en) R-fe-b permanent magnet material
JPH0778709A (en) Manufacture of r-fe-b permanent magnet material
JP2000129304A (en) Raw material alloy powder for r-iron-boron sintered magnet
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JP3142851B2 (en) Manufacturing method of permanent magnet alloy with excellent oxidation resistance
JP2002088451A (en) Rare earth magnet and its manufacturing method
JPH06283318A (en) Manufacture of rare-earth permanent magnet