JP2000022050A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2000022050A
JP2000022050A JP10184026A JP18402698A JP2000022050A JP 2000022050 A JP2000022050 A JP 2000022050A JP 10184026 A JP10184026 A JP 10184026A JP 18402698 A JP18402698 A JP 18402698A JP 2000022050 A JP2000022050 A JP 2000022050A
Authority
JP
Japan
Prior art keywords
aluminum
resin
gold
sealing resin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10184026A
Other languages
Japanese (ja)
Other versions
JP3809018B2 (en
Inventor
Tomohiro Uno
智裕 宇野
Kohei Tatsumi
宏平 巽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18402698A priority Critical patent/JP3809018B2/en
Publication of JP2000022050A publication Critical patent/JP2000022050A/en
Application granted granted Critical
Publication of JP3809018B2 publication Critical patent/JP3809018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To raise a reliability at a ball bonding part between a gold alloy thin wire and an aluminum electrode part on a semiconductor device by allowing a film thickness of an aluminum electrode material sealed with a sealing resin whose glass transition temperature is a specific value or less to be a specific value or above. SOLUTION: The aluminum wiring on the device is connected with a gold thin wire or a gold alloy thin wire, a glass transition temperature (Tg) of a sealing resin is 160 deg.C or below, the sealing resin comprises at least one kind of bromine and antimony by 0.1-10 wt.% in total, and the film thickness of an aluminum electrode material is at least 1.6 μm. The high temperature storage characteristics of the sealing resin depends on Tg of a resin. The lower the Tg, the lower the high temperature storage characteristics of a resin, requiring thicker aluminum film required for controlling corrosion. The thickness of an aluminum film is 1.7 μm or thicker for the resin whose Tg is 140-160 deg.C, the thickness of an aluminum film is 1.9 μm or thicker for the resin whose Tg is 120-140 deg.C, and the thickness of an aluminum film is 2.2 μm or thicker for the resin whose Tg is below 120 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子上の電
極と外部端子とを電気的に接続するために利用される接
合部において、優れた信頼性を有する半導体素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element having excellent reliability in a joint used for electrically connecting an electrode on a semiconductor element to an external terminal.

【0002】[0002]

【従来の技術】現在半導体素子上の電極と外部リードと
の間を接合するボンディング線としては、線径20〜50μ
mの金合金細線が主として使用されている。金合金細線
の接合技術としては超音波併用熱圧着方式が一般的であ
る。金細線先端をアーク入熱で加熱溶融し、表面張力に
よりボールを形成させた後に、150〜300℃の範囲
内で加熱した半導体素子のアルミ電極上にこのボール部
を圧着接合せしめた後に、さらに外部リード側との接続
を超音波圧着する。この際、前記素子上の配線はアルミ
またはアルミ合金が用いられているが、LSI の高集積化
に伴い配線幅の縮小(線幅0.5 →0.3μm)が要求され
ており、エッチングにより微細加工するため、アルミ配
線の膜厚は1μm程度が主として用いられている。この
素子をトランジスタやICなどの半導体素子として使用
するためには、前記の金合金細線によるボンディングの
後に、Siチップ、ボンディングワイヤ、およびSiチ
ップが取り付けられた部分のリードフレームを、これら
を保護する目的で熱硬化エポキシ樹脂で封止する。
2. Description of the Related Art At present, a bonding wire for connecting an electrode on a semiconductor element to an external lead has a wire diameter of 20 to 50 μm.
m gold alloy thin wire is mainly used. As a joining technique for a gold alloy fine wire, a thermocompression bonding method using ultrasonic waves is generally used. After the gold wire tip is heated and melted by arc heat input to form a ball by surface tension, the ball portion is pressure-bonded to an aluminum electrode of a semiconductor element heated in the range of 150 to 300 ° C., and then further bonded. Ultrasonic pressure bonding of the connection with the external lead side. At this time, the wiring on the element is made of aluminum or aluminum alloy, but the reduction in the wiring width (line width 0.5 → 0.3 μm) is required with the high integration of LSI, and the fine processing by etching is required. Therefore, the thickness of the aluminum wiring is mainly about 1 μm. In order to use this element as a semiconductor element such as a transistor or an IC, after bonding with the above-described gold alloy thin wire, the Si chip, the bonding wire, and the lead frame where the Si chip is attached are protected. Seal with thermosetting epoxy resin for the purpose.

【0003】最近、半導体素子が使用される環境条件が
ますます厳しくなっており、例えば自動車のエンジンル
ーム内で使用される半導体素子では高温あるいは高湿な
どの環境で使用される場合が増えている。また半導体素
子の高周波化、ハイパワー化により使用時に発生する熱
が無視できなくなっている。金細線を用いた場合、高温
環境下におけるアルミ電極との接合部の長期信頼性の低
下などが問題視されている。
In recent years, environmental conditions in which semiconductor devices are used have become increasingly severe. For example, semiconductor devices used in an engine room of an automobile have been increasingly used in an environment such as high temperature or high humidity. . Further, the heat generated during use due to the higher frequency and higher power of the semiconductor element cannot be ignored. When a gold wire is used, there is a problem that a long-term reliability of a joint with an aluminum electrode in a high-temperature environment is reduced.

【0004】耐熱性が要求される環境条件で使用される
半導体素子においては、従来、ボンディングワイヤとし
てはアルミ合金細線を使用し、セラッミックスパッケー
ジした半導体素子が利用されていた。アルミ合金細線で
は、半導体素子上の電極との接合部において同種金属の
接合により、高信頼性が得られる利点がある。しかし、
樹脂封止と比較してセラッミックスパッケージは高価で
あり、またアルミ合金細線では大気中で正常なボール形
成が困難であることから接合方法としてウェッジ接合法
が一般的であり、金合金細線に比べて生産性が低下す
る。
In a semiconductor element used under environmental conditions requiring heat resistance, a semiconductor element packaged in a ceramics package using a thin aluminum alloy wire as a bonding wire has conventionally been used. The aluminum alloy thin wire has an advantage that high reliability can be obtained by joining the same kind of metal at the joint with the electrode on the semiconductor element. But,
The ceramic mix package is more expensive than resin encapsulation, and it is difficult to form a normal ball in the atmosphere with aluminum alloy fine wires.Therefore, the wedge bonding method is generally used as the bonding method. The productivity is lower than that.

【0005】コスト、生産性などの理由から、アルミ合
金細線の使用は特定の半導体素子に限定されており、今
後とも高速性、生産性、作業性などに優れている、金合
金細線によるボンディング方式が主流であると考えれ
る。高温環境における金細線とアルミ電極との接合信頼
性を高めた半導体素子が関連する事業分野から望まれて
いる。
For reasons such as cost and productivity, the use of aluminum alloy thin wires is limited to specific semiconductor devices, and a bonding method using gold alloy thin wires, which is excellent in high speed, productivity and workability, will be continued in the future. Is considered to be the mainstream. There is a demand from related business fields for a semiconductor element having improved bonding reliability between a gold wire and an aluminum electrode in a high-temperature environment.

【0006】近年、多ピン狭ピッチ接続において金合金
細線によるワイヤボンディング技術では困難な高密度実
装形態において、TAB(Tape Automated Bonding)技
術やフリップチップ技術の実用化が進んでいる。これら
の接続形態において、半導体素子上のアルミ電極との接
合には金属突起物(バンプ)が用いられており、材料と
して金または金合金が使用される場合が多い。前述した
金細線の場合と同様に金合金バンプとアルミ電極との接
合部において、高温での接合信頼性を有する半導体素子
が所望される。
In recent years, TAB (Tape Automated Bonding) technology and flip chip technology have been put into practical use in high-density packaging, which is difficult with a wire bonding technology using a gold alloy thin wire in a multi-pin narrow-pitch connection. In these connection forms, metal projections (bumps) are used for bonding with aluminum electrodes on the semiconductor element, and gold or a gold alloy is often used as a material. As in the case of the above-described gold wire, a semiconductor element having high-temperature bonding reliability at a bonding portion between a gold alloy bump and an aluminum electrode is desired.

【0007】一方、封止樹脂には、流動性、低熱膨張、
リードフレームなどの金属との密着性など多様な特性が
要求されており、近年それらの要求は厳しくなってお
り、なかでも表面実装用パッケージングにおいて、ハン
ダリフロー工程におけるクラック(パッケージクラッ
ク)発生が問題となっている。現行のクレゾールノボラ
ック系エポキシ樹脂よりもクラック発生を抑制ができる
樹脂として、ビフェニール系エポキシ樹脂の使用量が増
加している。このビフェニール系樹脂は、密着性、吸湿
性、流動性などを向上させることを主眼としているた
め、封止樹脂のガラス転移温度Tgが低下することにな
る。例えば、ノボラック系のTgは160 ℃程度であるの
に対し、ビフェニール系のTgは100 〜160 ℃の低温で
ある。
On the other hand, the sealing resin has fluidity, low thermal expansion,
Various characteristics such as adhesion to metals such as lead frames are required, and in recent years those requirements have become severe. In particular, cracks (package cracks) in the solder reflow process are a problem in surface mounting packaging. It has become. The use of biphenyl-based epoxy resins has increased as resins capable of suppressing cracking more than the current cresol novolak-based epoxy resins. The main purpose of this biphenyl-based resin is to improve the adhesiveness, hygroscopicity, fluidity, and the like, so that the glass transition temperature Tg of the sealing resin is reduced. For example, novolak-based Tg is about 160 ° C., whereas biphenyl-based Tg is a low temperature of 100 to 160 ° C.

【0008】[0008]

【発明が解決しようとする課題】従来の金細線を用いた
場合、半導体素子上のアルミ電極との接合部の長期信頼
性の低下が問題視されていた。接合部の不良原因を整理
すると、アルミと金が相互拡散して金属間化合物の生成
やボイドの発生による接合部で剥離や電気的導通不良な
どが生じることが問題であると考えられる。
In the case where a conventional gold wire is used, there has been a problem that the long-term reliability of a junction with an aluminum electrode on a semiconductor element is reduced. When the cause of the failure of the joint is sorted out, it is considered that the problem is that aluminum and gold interdiffuse and peeling or poor electrical conduction occur at the joint due to formation of an intermetallic compound or generation of a void.

【0009】金合金細線とアルミ電極との接合部の信頼
性に関してさらに検討した結果、樹脂封止された接合部
における金属間化合物層の腐食が信頼性に及ぼす影響が
大きいことが確認された。さらに、接合界面近傍に成長
した金とアルミの金属間化合物が封止樹脂の含有成分と
反応することにより、接合部の電気抵抗が増加し、腐食
が顕著な場合は電気的導通不良などが生じる事も判明し
た。
As a result of further study on the reliability of the joint between the gold alloy thin wire and the aluminum electrode, it was confirmed that the corrosion of the intermetallic compound layer at the joint sealed with resin greatly affects the reliability. Further, the intermetallic compound of gold and aluminum grown near the bonding interface reacts with the components contained in the sealing resin, thereby increasing the electrical resistance of the bonding portion. If corrosion is remarkable, poor electrical conduction occurs. The thing turned out.

【0010】つまり、封止樹脂の密着性、吸湿性などを
向上させるためには、ガラス転移温度Tgが低い封止樹
脂を使用することになり、高温環境では樹脂が分解し、
その含有成分が金/ アルミ接合部での腐食反応を起こす
ことが問題であることが明らかとなった。
That is, in order to improve the adhesiveness, hygroscopicity, etc. of the sealing resin, the sealing resin having a low glass transition temperature Tg must be used.
It has been found that the problem is that the contained components cause a corrosion reaction at the gold / aluminum joint.

【0011】この腐食反応に関与している封止樹脂成分
は、臭素およびアンチモンであり、これらは難燃剤とし
て封止樹脂の必須成分であるので、難燃剤を低減すると
樹脂の高温保管性の一つである難燃性が低下するという
問題が生じる。
The sealing resin components involved in the corrosion reaction are bromine and antimony, which are essential components of the sealing resin as a flame retardant. One problem is that the flame retardancy is reduced.

【0012】そこで、本発明は、ビフェニール系エポキ
シ樹脂のようにガラス転移温度Tgが低い封止樹脂を使
用しても、金合金細線と半導体素子上のアルミ電極部と
のボール接合部の信頼性に優れた半導体素子を提供する
ことを目的としている。
Therefore, the present invention provides a method for manufacturing a ball joint between a gold alloy thin wire and an aluminum electrode on a semiconductor element even when a sealing resin having a low glass transition temperature Tg such as a biphenyl-based epoxy resin is used. An object of the present invention is to provide a semiconductor device excellent in the above.

【0013】[0013]

【課題を解決するための手段】本発明者等は前述した観
点から、金とアルミの接合部の高温下での信頼性を向上
させる半導体素子について研究を行った結果、封止樹脂
中に臭素およびアンチモンを適量添加することにより、
難燃効果を高め、さらに金合金細線を接続するアルミ電
極の膜厚を一定の厚さ以上にすることにより、樹脂封止
した接合部において金属間化合物層の腐食を著しく低減
させる効果があることを見出した。
SUMMARY OF THE INVENTION From the above-mentioned viewpoints, the present inventors have conducted research on a semiconductor element which improves the reliability of a gold-aluminum joint at high temperatures under high temperatures. And by adding appropriate amounts of antimony,
By increasing the flame-retardant effect and further increasing the thickness of the aluminum electrode connecting the gold alloy thin wires to a certain thickness or more, it has the effect of significantly reducing the corrosion of the intermetallic compound layer at the resin-sealed joint. Was found.

【0014】すなわち、本発明は上記知見に基づくもの
であって、以下の構成を要旨とする。 (1) 素子上のアルミ電極が金細線または金合金細線
により接続され、ガラス転移温度が160℃以下の封止
樹脂により封止された半導体素子であって、アルミ電極
材の膜厚は1.6μm以上であることを特徴とする半導体
素子。 (2) 素子上のアルミ電極が金バンプまたは金合金バ
ンプにより接続され、ガラス転移温度が160℃以下の
封止樹脂により封止された半導体素子であって、アルミ
電極材の膜厚は1.6μm以上であることを特徴とする半
導体素子。 (3) 前記封止樹脂中の臭素及び/又はアンチモンの
含有量が総計で0.1〜10重量%であること特徴とす
る上記(1)又は(2)に記載の半導体素子。
That is, the present invention is based on the above findings, and has the following constitution. (1) A semiconductor element in which an aluminum electrode on the element is connected by a thin gold wire or a thin gold alloy wire and sealed with a sealing resin having a glass transition temperature of 160 ° C. or less, and the thickness of the aluminum electrode material is 1. A semiconductor element having a thickness of 6 μm or more. (2) A semiconductor element in which an aluminum electrode on the element is connected by a gold bump or a gold alloy bump and sealed with a sealing resin having a glass transition temperature of 160 ° C. or less, and the thickness of the aluminum electrode material is 1. A semiconductor element having a thickness of 6 μm or more. (3) The semiconductor element according to the above (1) or (2), wherein the total content of bromine and / or antimony in the sealing resin is 0.1 to 10% by weight.

【0015】[0015]

【発明の実施の形態】以下に、本発明に係わる半導体素
子の構成についてさらに説明する。封止樹脂の高温での
要求特性の一つとして、何らかの原因で発火した際にも
燃焼を抑えることが不可欠であり、通常の樹脂中には難
燃材が含有される。これらの含有量が多いほど難燃効果
は高まるものの、高温環境で分解したそれらのガス成分
が、金ボール部とアルミ電極との接合部に成長した金/
アルミの金属間化合物と容易に腐食反応することが問題
となる。難燃剤の含有量を増加して、且つ、上記の化合
物の腐食を抑制できれば、難燃効果と耐腐食性を併せ持
つ耐熱性を向上させた半導体素子となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a semiconductor device according to the present invention will be further described below. As one of the required characteristics of the sealing resin at high temperatures, it is indispensable to suppress combustion even when fire occurs for some reason, and a normal resin contains a flame-retardant material. The higher the content, the higher the flame-retardant effect.However, those gas components decomposed in a high-temperature environment cause the gold /
The problem is that the corrosion reaction easily occurs with the intermetallic compound of aluminum. If the content of the flame retardant can be increased and the corrosion of the above compound can be suppressed, a semiconductor element having both a flame retardant effect and corrosion resistance and improved heat resistance can be obtained.

【0016】従来の金合金細線を使用する半導体素子で
は、難燃剤として、例えば臭素およびアンチモンが主流
として使用されているが、金/ アルミ接合部の腐食の問
題から、通常の封止樹脂中の臭素およびアンチモンの含
有量には上限があり、臭素では1%およびアンチモンで
は1%程度である。本発明に係わるアルミ電極膜を使用
すると、臭素およびアンチモンの含有量を従来より増加
させても信頼性を損なうことなく、難燃性を高めること
ができる。即ち、難燃剤である臭素とアンチモンの含有
量が総計として、0.1 〜10重量%であることが望ま
しい。この理由として、0.1 重量%未満では難燃効果
がえられず、10重量%以上含有すると化合物の腐食を
抑制することは困難であるためである。さらに好ましく
は、臭素の含有量は0.1 〜7%、アンチモンの含有量
は0.1 〜4%であることが望ましい。これは、臭素と
アンチモンの両者を併用することにより、より高い難燃
効果が得られ、その適量が上記範囲であるためである。
In a conventional semiconductor device using a gold alloy thin wire, for example, bromine and antimony are mainly used as a flame retardant. However, due to a problem of corrosion of a gold / aluminum joint, a conventional sealing resin contained in a sealing resin. The contents of bromine and antimony have upper limits, about 1% for bromine and about 1% for antimony. When the aluminum electrode film according to the present invention is used, even if the content of bromine and antimony is increased more than before, the flame retardancy can be improved without impairing the reliability. That is, the total content of bromine and antimony, which are flame retardants, is preferably 0.1 to 10% by weight. The reason is that if the content is less than 0.1% by weight, the flame retardant effect cannot be obtained, and if the content is 10% by weight or more, it is difficult to suppress the corrosion of the compound. More preferably, the bromine content is 0.1 to 7%, and the antimony content is 0.1 to 4%. This is because a higher flame retardant effect can be obtained by using both bromine and antimony together, and the appropriate amount is within the above range.

【0017】金/ アルミ接合部の腐食は、樹脂が分解し
て発生した腐食性ガスにより進行する。一方、 樹脂の分
解は熱活性化過程であり、樹脂の耐熱性に左右される。
樹脂流れ性の向上、パッケージクラックの抑制などのた
めに、ビフェニール系エポキシ樹脂に代表される、ガラ
ス転移温度Tgが低い封止樹脂が好ましいが、ガラス転
移温度が低下するほど高温特性が劣化する傾向にある。
半導体素子の信頼性評価として通常175〜200℃に
加熱しての評価が主流であり、Tgが160℃以下の樹
脂では信頼性の低下が問題となる。そこで、これらの問
題を解決すべく種々の検討を行った結果、接合部におけ
る腐食の抑制として、腐食に関与する特定の金/ アルミ
化合物相の成長を遅らせることが有効であり、アルミ膜
厚が厚いほど腐食を抑えられることを見出した。
The corrosion of the gold / aluminum joint proceeds due to corrosive gas generated by decomposition of the resin. On the other hand, the decomposition of resin is a heat activation process, which depends on the heat resistance of the resin.
A sealing resin having a low glass transition temperature Tg typified by a biphenyl-based epoxy resin is preferable for the purpose of improving resin flowability, suppressing package cracks, and the like. It is in.
As a reliability evaluation of a semiconductor element, evaluation usually performed by heating to 175 to 200 ° C. is mainstream, and a resin having a Tg of 160 ° C. or lower has a problem of deterioration in reliability. Therefore, as a result of various studies to solve these problems, it was effective to suppress the corrosion at the joints by delaying the growth of a specific gold / aluminum compound phase involved in the corrosion. We found that the thicker the film, the more corrosion can be suppressed.

【0018】通常の加熱試験として175℃1000時
間で、電気抵抗の増加が10%以下であること、あるい
は接合強度の低下が30%以下であることが望まれてお
り、Tgが160℃以下の封止樹脂を使用して、これら
の信頼性を確保するためにはアルミ膜厚として1.6μ
m以上が必要である。これは、Tgが160℃以上であ
れば高温での分解が抑えられるので、アルミ膜厚が現行
の1μm程度でも上記の信頼性を確保することができる
が、Tgが160℃以下の樹脂では高温での分解が促進
され、発生した臭素およびアンチモンによる金/ アルミ
化合物相の腐食が顕著となるが、アルミ膜厚が1.6μ
m以上であれば接合部における化合物相の成長を抑制す
ることができるためである。アルミ膜厚は厚いほど信頼
性を向上することは可能ではあるが、アルミ膜厚が5μ
m以上になるとアルミ膜の形成に時間を要し、量産性が
低下することが懸念される。また、半導体の動作時の発
熱および高温環境での使用において十分な信頼性を確保
するためには、封止樹脂のTgは80℃以上が望まし
い。
As a normal heating test, it is desired that an increase in electric resistance is 10% or less or a decrease in bonding strength is 30% or less at 175 ° C. for 1000 hours, and Tg is 160 ° C. or less. Using a sealing resin, in order to ensure these reliability, an aluminum film thickness of 1.6 μm is required.
m or more is required. This is because if Tg is 160 ° C. or higher, decomposition at high temperatures is suppressed, and thus the above reliability can be ensured even when the aluminum film thickness is about 1 μm at present. Decomposition is promoted, and the corrosion of the gold / aluminum compound phase by the generated bromine and antimony becomes remarkable.
This is because if m or more, the growth of the compound phase at the joint can be suppressed. Although it is possible to improve the reliability as the aluminum film thickness increases, the aluminum film thickness is 5 μm.
If it is more than m, it takes time to form the aluminum film, and there is a concern that mass productivity may be reduced. In addition, in order to ensure sufficient heat generation during operation of the semiconductor and use in a high-temperature environment, the Tg of the sealing resin is desirably 80 ° C. or higher.

【0019】前述したように臭素およびアンチモンの濃
度が増加するほど、接合部の腐食が起こりやすくなる
が、アルミ膜厚が厚くなれば腐食を抑える効果が得られ
る。ここで、接合部信頼性を向上させ、さらに難燃効果
も高めるためには、素子上のアルミ配線を金細線または
金合金細線により接続し、封止樹脂のガラス転移温度が
160℃以下であり、さらに封止樹脂は臭素またはアン
チモンの少なくとも1種を総計で0.1 〜10重量%の
範囲で含有しており、アルミ電極材の膜厚は1.6μm以
上であることがより好ましい。
As described above, as the concentration of bromine and antimony increases, corrosion of the joint is more likely to occur. However, as the thickness of aluminum increases, the effect of suppressing corrosion is obtained. Here, in order to improve the joint reliability and further enhance the flame-retardant effect, the aluminum wiring on the element is connected by a fine gold wire or a fine gold alloy wire, and the glass transition temperature of the sealing resin is 160 ° C. or less. Further, the sealing resin contains at least one of bromine and antimony in a total range of 0.1 to 10% by weight, and the film thickness of the aluminum electrode material is more preferably 1.6 μm or more.

【0020】封止樹脂の高温保管性は樹脂のガラス転移
温度Tgに依存するところが大きく、さらに腐食を抑制
するのに要するアルミ膜厚についても、Tgと関連して
いることを見出した。すなわちTgが低いほど樹脂の高
温保管性も低下し、腐食を抑制するのに要するアルミ膜
厚は厚くなる。樹脂のTgと信頼性を向上するのに要す
るアルミ膜厚t(Al膜厚)との関係について調べた結
果、Tgが140〜160度の樹脂ではt(Al膜厚)は
1.7μm以上、Tgが120〜140℃での樹脂では
t(Al膜厚)は1.9μm以上、Tgが120℃未満の
樹脂ではt(Al膜厚)は2.2μm以上であることがよ
り好ましいことがわかった。これは、Al膜厚がこれら
の関係を満足すれば、上記の厳しい信頼性をも満足する
ことができるという理由に基づく。
It has been found that the high-temperature storability of the sealing resin largely depends on the glass transition temperature Tg of the resin, and the aluminum film thickness required for suppressing corrosion is also related to Tg. That is, the lower the Tg, the lower the high-temperature storage property of the resin, and the thicker the aluminum film required to suppress corrosion. As a result of examining the relationship between the Tg of the resin and the aluminum film thickness t (Al film thickness) required for improving the reliability, t (Al film thickness) of the resin having a Tg of 140 to 160 degrees was 1.7 μm or more. It is understood that t (Al film thickness) is more preferably 1.9 μm or more for a resin having a Tg of 120 to 140 ° C., and t (Al film thickness) is 2.2 μm or more for a resin having a Tg of less than 120 ° C. Was. This is based on the reason that if the Al film thickness satisfies these relationships, the above strict reliability can be satisfied.

【0021】本発明に係わるアルミ膜の材質として、純
アルミに限定されるものでなく、アルミ合金(Al−S
i、Al−Cu、Al−Si−Cu)においても、同様
の効果が得られる。
The material of the aluminum film according to the present invention is not limited to pure aluminum, but may be an aluminum alloy (Al-S).
i, Al-Cu, Al-Si-Cu), the same effect can be obtained.

【0022】通常、狭ピッチ接続を実現するために接合
面積が小さくなるほど、接合部信頼性が低下することが
懸念されるが、本発明によれば、直径60μm以下の小ボ
ール接合部を有する半導体素子で特に高い信頼性の向上
効果を得ることができる。
In general, there is a concern that the reliability of the joint decreases as the joint area decreases to realize a narrow pitch connection. However, according to the present invention, a semiconductor having a small ball joint having a diameter of 60 μm or less is provided. A particularly high reliability improvement effect can be obtained with the element.

【0023】また、難燃剤としては前述した臭素および
アンチモンの他にも、近年、赤燐が一部で使用されてい
る。赤燐の場合にも、本発明に拘わる半導体素子におい
ては、Tgの低い樹脂を用いても難燃性等の高温保管性
や高温時の腐食抑制効果が得られることを確認した。
As the flame retardant, red phosphorus has recently been partially used in addition to the above-mentioned bromine and antimony. Also in the case of red phosphorus, it was confirmed that in the semiconductor device according to the present invention, even when a resin having a low Tg was used, high-temperature storage properties such as flame retardancy and an effect of suppressing corrosion at high temperatures were obtained.

【0024】また、金細線または金合金細線による接合
と同様、アルミ電極と金バンプまたは金合金バンプの接
合の場合にも、本発明に拘わる半導体素子において、高
温での金/ アルミ接合部の信頼性を高めることができ
る。
Further, as in the case of bonding with an aluminum electrode and a gold bump or a gold alloy bump, as in the case of bonding with a gold thin wire or a gold alloy thin wire, in a semiconductor device according to the present invention, the reliability of the gold / aluminum bonding portion at high temperature is high. Can be enhanced.

【0025】[0025]

【実施例】以下、実施例について説明する。金ワイヤと
しては市販の高純度金ワイヤ(純度>99.99 %)を用
い、線径は25μmとした。ワイヤボンディングに使用さ
れる高速自動ボンダーを使用して、アーク放電によりワ
イヤ先端に金ボール(初期ボール径:45μm)を作製
し、それをアルミ電極に接合した(圧着径:約5 7μ
m)。
Embodiments will be described below. A commercially available high-purity gold wire (purity> 99.99%) was used as the gold wire, and the wire diameter was 25 μm. Using a high-speed automatic bonder used for wire bonding, a gold ball (initial ball diameter: 45 μm) was formed at the tip of the wire by arc discharge and bonded to an aluminum electrode (crimp diameter: about 57 μm).
m).

【0026】接合部における腐食進行の評価として、金
細線を接合し、さらにエポキシ樹脂で封止した半導体素
子に、175℃で1000時間、あるいは185℃で1
000時間加熱処理した後に、電気抵抗を測定した。電
気抵抗の増加が、10%以下であれば腐食の抑制が顕著
であると判断して○印、50%以上で腐食の進行が顕著な
ものは×印、その中間である10%〜50%のものは△印
で表記した。尚、加熱前の初期の電気抵抗は1.5±0.
2 Ωであった。
As an evaluation of the progress of corrosion at the joint, a gold thin wire was joined, and the semiconductor element sealed with an epoxy resin was added to a semiconductor element at 175 ° C. for 1000 hours or at 185 ° C. for 1 hour.
After the heat treatment for 000 hours, the electric resistance was measured. If the increase in electric resistance is 10% or less, it is judged that the inhibition of corrosion is remarkable, and the mark is ○. If it is 50% or more, the progress of corrosion is remarkable. X, and 10% to 50% in the middle. Are marked with a triangle. The initial electrical resistance before heating was 1.5 ± 0.
2 Ω.

【0027】またボール接合部の接合強度については、
175℃で1000時間加熱処理した試料の樹脂を除去
した後に、4 0本のシェアテストの平均値により接合強
度の変化を評価した。比較として、加熱前の初期シェア
強度は約50±3gfであった。
Regarding the joint strength of the ball joint,
After removing the resin from the sample heat-treated at 175 ° C. for 1000 hours, the change in bonding strength was evaluated by the average value of 40 shear tests. For comparison, the initial shear strength before heating was about 50 ± 3 gf.

【0028】封止樹脂として3種類のビフェニール系エ
ポキシ系樹脂を用いて比較し、臭素およびアンチモンの
濃度を変えた樹脂を用いた。ガラス転移温度Tgは樹脂
a、b,cでそれぞれ110 、130 、150 ℃である。
A comparison was made using three types of biphenyl-based epoxy resins as the sealing resin, and resins having different concentrations of bromine and antimony were used. The glass transition temperatures Tg of the resins a, b and c are 110, 130 and 150 ° C., respectively.

【0029】表1に、本発明に係わる半導体素子におけ
る結果と、本発明から外れる半導体素子の評価結果を示
す。アルミ配線で比較すると、本発明例1〜14では純
アルミであり、15〜22はアルミ合金である。また封
止樹脂で比較すると、本発明例1〜8は樹脂c、本発明
例9 〜11は樹脂b、本発明例12 〜14は樹脂aを用い
た。
Table 1 shows the results of the semiconductor device according to the present invention and the evaluation results of the semiconductor device outside the present invention. Compared with the aluminum wiring, the invention examples 1 to 14 are pure aluminum, and 15 to 22 are aluminum alloys. In comparison with the sealing resin, Examples 1 to 8 of the present invention used resin c, Examples 9 to 11 of the invention used resin b, and Examples 12 to 14 used a resin a.

【0030】[0030]

【表1】 [Table 1]

【0031】本発明例はいずれもアルミ膜厚が1.6μ
m以上であり、175℃1000時間加熱しても、電気
抵抗は増加しておらず、さらにシェア強度は40gf以
上の高い値であった。実施例6,9,12ではアルミ膜
厚が1.6 、1.8 、2.0 μmであり、185℃1000時
間の加熱では少し電気抵抗が増加していたものの、17
5℃1000時間の試験では電気抵抗は増加しておら
ず、さらにシェア強度の低下は認められなかった。
In each of the examples of the present invention, the aluminum film thickness was 1.6 μm.
m, and even after heating at 175 ° C. for 1000 hours, the electric resistance did not increase, and the shear strength was a high value of 40 gf or more. In Examples 6, 9, and 12, the aluminum film thickness was 1.6, 1.8, and 2.0 μm, and the electrical resistance was slightly increased by heating at 185 ° C. for 1000 hours.
In the test at 5 ° C. for 1000 hours, the electric resistance did not increase, and no decrease in the shear strength was observed.

【0032】それに比して、アルミ膜厚が1.6μmよ
りも薄い比較例では、175℃1000時間加熱により
電気抵抗が50%以上増加し、シェア強度は20gf以下
まで低下しており、接合部において腐食反応が起こって
いると考えられる。
In comparison, in the comparative example in which the aluminum film thickness was smaller than 1.6 μm, the electric resistance increased by 50% or more and the shear strength decreased to 20 gf or less by heating at 175 ° C. for 1000 hours. It is considered that a corrosion reaction has occurred in.

【0033】以上の結果から、ガラス転移温度が160
℃以下の封止樹脂において、アルミ電極材の膜厚は1.6
μm以上であれば、接合信頼性が向上することが確認さ
れた。
From the above results, a glass transition temperature of 160
In a sealing resin at a temperature of ℃ or less, the thickness of the aluminum electrode material is 1.6
It was confirmed that when the thickness was not less than μm, the bonding reliability was improved.

【0034】[0034]

【発明の効果】以上説明したように、本発明において
は、適正な封止樹脂およびアルミ膜厚を選定することに
より、金とアルミの接合部において優れた接合信頼性を
有し、且つ高い難燃効果をもつ耐熱性に優れた半導体素
子を提供することができる。
As described above, according to the present invention, by selecting an appropriate sealing resin and aluminum film thickness, it is possible to obtain excellent bonding reliability and high difficulty in the bonding portion between gold and aluminum. It is possible to provide a semiconductor element having a combustion effect and excellent in heat resistance.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/92 603G Fターム(参考) 4M109 AA01 EB07 EC02 5F044 AA14 EE04 EE08 EE15 EE21 FF04 JJ03 5G301 AA02 AB13 AB20 AD01 AD10Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) H01L 21/92 603G F-term (Reference) 4M109 AA01 EB07 EC02 5F044 AA14 EE04 EE08 EE15 EE21 FF04 JJ03 5G301 AA02 AB13 AB20 AD01 AD10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 素子上のアルミ電極が金細線または金合
金細線により接続され、ガラス転移温度が160℃以下
の封止樹脂により封止された半導体素子であって、アル
ミ電極材の膜厚は1.6μm以上であることを特徴とする
半導体素子。
A semiconductor element in which an aluminum electrode on the element is connected by a thin gold wire or a thin gold alloy wire and sealed with a sealing resin having a glass transition temperature of 160 ° C. or less, and the thickness of the aluminum electrode material is A semiconductor element having a thickness of 1.6 μm or more.
【請求項2】 素子上のアルミ電極が金バンプまたは金
合金バンプにより接続され、ガラス転移温度が160℃
以下の封止樹脂により封止された半導体素子であって、
アルミ電極材の膜厚は1.6μm以上であることを特徴と
する半導体素子。
2. An aluminum electrode on the element is connected by a gold bump or a gold alloy bump, and has a glass transition temperature of 160 ° C.
A semiconductor element sealed with the following sealing resin,
A semiconductor element, wherein the thickness of the aluminum electrode material is 1.6 μm or more.
【請求項3】 前記封止樹脂中の臭素及び/又はアンチ
モンの含有量が総計で0.1 〜10重量%であること特
徴とする請求項1又は2に記載の半導体素子。
3. The semiconductor device according to claim 1, wherein the total content of bromine and / or antimony in the sealing resin is 0.1 to 10% by weight.
JP18402698A 1998-06-30 1998-06-30 Semiconductor element Expired - Fee Related JP3809018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18402698A JP3809018B2 (en) 1998-06-30 1998-06-30 Semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18402698A JP3809018B2 (en) 1998-06-30 1998-06-30 Semiconductor element

Publications (2)

Publication Number Publication Date
JP2000022050A true JP2000022050A (en) 2000-01-21
JP3809018B2 JP3809018B2 (en) 2006-08-16

Family

ID=16146060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18402698A Expired - Fee Related JP3809018B2 (en) 1998-06-30 1998-06-30 Semiconductor element

Country Status (1)

Country Link
JP (1) JP3809018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032643A (en) * 2004-07-15 2006-02-02 Sumitomo Bakelite Co Ltd Semiconductor unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032643A (en) * 2004-07-15 2006-02-02 Sumitomo Bakelite Co Ltd Semiconductor unit
JP4513440B2 (en) * 2004-07-15 2010-07-28 住友ベークライト株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3809018B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3461829B2 (en) Power semiconductor device having buffer layer
JPH02123685A (en) Method of bonding wire containing gold with solder
JP3527356B2 (en) Semiconductor device
JP3169781B2 (en) Lead frame for semiconductor device
JP3126926B2 (en) Gold alloy fine wire for semiconductor element and semiconductor device
JP2737953B2 (en) Gold alloy wire for gold bump
JPH10294337A (en) Semiconductor device and manufacture thereof
Baggerman et al. Reliable Au-Sn flip-chip bonding on flexible prints
JP2001060760A (en) Circuit electrode and formation process thereof
JP3809018B2 (en) Semiconductor element
JPH10233408A (en) Metal junction structure and semiconductor device
JP3673366B2 (en) Semiconductor element
JP2962351B2 (en) Bonding structure to semiconductor chip and semiconductor device using the same
JPH10303235A (en) Gold alloy wire for bonding on semiconductor device
JP3542867B2 (en) Semiconductor device
JP3590603B2 (en) Semiconductor device and manufacturing method thereof
JPH1167812A (en) Gold and silver alloy thin wire for semiconductor device
WO2022259633A1 (en) Semiconductor device and semiconductor device manufacturing method
JPS60224237A (en) Semiconductor device and manufacture thereof
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP3593206B2 (en) Gold alloy fine wires and bumps for bumps
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JP2006247690A (en) Brazing filler metal, method for manufacturing semiconductor device using the same, and semiconductor device
KR102065765B1 (en) Terminal bonding method of semiconductor chip using solder bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060519

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees