JP2000004090A - Heat exchange device for electronic apparatus enclosure - Google Patents

Heat exchange device for electronic apparatus enclosure

Info

Publication number
JP2000004090A
JP2000004090A JP16644698A JP16644698A JP2000004090A JP 2000004090 A JP2000004090 A JP 2000004090A JP 16644698 A JP16644698 A JP 16644698A JP 16644698 A JP16644698 A JP 16644698A JP 2000004090 A JP2000004090 A JP 2000004090A
Authority
JP
Japan
Prior art keywords
heat
conductive plate
radiating
housing
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16644698A
Other languages
Japanese (ja)
Inventor
Hironobu Sonoda
広信 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP16644698A priority Critical patent/JP2000004090A/en
Publication of JP2000004090A publication Critical patent/JP2000004090A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a heat exchange device for an electronic apparatus enclosure which is small and thin, offers high heat exchange capability and is capable of controlling temperature with accuracy. SOLUTION: This heat exchange device for an electronic apparatus enclosure comprises a sealed enclosure 1 for housing electronic apparatus, and a heat exchanger 2 provided with a heat receiving portion 3 placed inside the enclosure, a heat radiating portion 4 placed outside the enclosure, and a metallic conductive plate 5, which separates the heat receiving portion and the heat radiating portion. The heat receiving portion and the heat radiating portion are positioned diagonally in the vertical direction. The conductive plate comprises a heat reception-side conductive plate 51 joined with a heat receiving fin board and a heat radiation-side conductive plate 52 which is joined with a heat radiating fin board, and a thermoelectric effect element 6 with its heat absorbing side in tight contact with the heat reception-side conductive plate and with its heat radiating side in tight contact with the heat radiation-side conductive plate is placed at the boundary between the two conductive plates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型電子機器筐
体内の熱を密閉性を保持したままで外気に放出する熱交
換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for releasing heat in a sealed electronic device housing to the outside air while maintaining hermeticity.

【0002】[0002]

【従来の技術】従来、密閉型の電子機器筐体の熱交換装
置としては、図4に示すような熱交換器を有したものが
提案されている。この熱交換器はロボット制御用コント
ローラに用いられる一例で、筐体の横方向長さ(以下、
厚さと呼ぶ)が500mmのものに対して、熱交換器の
厚さは85mmで長さ比で約1/6程度となっている。
図において、1は発熱を伴う電子機器(図示せず)が収
納される筐体で、2は熱交換器である。3は熱交換器2
の受熱部であり、筐体1内の高温になった内気の熱を受
け取る。4は熱交換器2の放熱部であり、外気を導入し
て内部の熱を放出する。5は熱交換器2を受熱部3と放
熱部4とを二つの通路に仕切りかつ、内部の熱を伝導す
る伝導板である。熱交換器2は、筐体1の内側に設けた
受熱部3と、外側に設けた放熱部4と、受熱部と放熱部
とを仕切る金属製の伝導板とから構成されている。受熱
部3は内気を導入する内気吸入口31と内気通路35の
入口近傍に設けた内気ファン32と、内気通路35の中
央部に設けた受熱フィン33と、内気排出口36とから
なる。放熱部4は外気吸入口41と、外気通路45の入
口近傍に設けた外気ファン42と、外気通路45中に設
けた放熱フィン43と、外気排出口46からなる。な
お、受熱フィン33および放熱フィン43はそれぞれ図
示しないフィン基板に固着されている。AH は高温の空
気となった内気、AC は外気である。次に動作について
説明する。筐体1内の高温になった内気AH は熱交換器
2の受熱部3の内気ファン32によって熱交換器2の中
に導入される。内気AH は受熱部3で通風方向を直角に
曲げられて内気通路35中を受熱フィン33に向かって
フィン基板に平行な流れとして通過する。この際、空気
とフィン表面との対流伝熱現象によって内気AH から受
熱フィン33へ熱が伝えられる。内気AH は受熱フィン
33に熱を渡したことによって温度が低下し、受熱部3
から筐体1の中へ排出される。受熱フィン33と放熱フ
ィン43とは伝導板5によって結合されているため、受
熱フィン33に伝わった熱は伝導によって放熱フィン4
3に伝えられる。一方、熱交換器2の外気側では外気フ
ァン42によって放熱部4の中へ外気A c が導入され、
通風方向を直角に曲げられた後、外気通路45中を放熱
フィン43に向かってフィン基板に平行な流れとして通
過する。この際、空気とフィン表面との対流伝熱現象に
よって放熱フィン43から外気Ac へ熱が伝えられ、外
気Ac は放熱部4から排出される。したがって、熱交換
器2は伝導板5によって高温の内気AH 側と外気Ac
とが仕切って構成されているため、熱交換器2がこのよ
うに作動することによって筐体1の密閉性を保ったまま
筐体1の内部の熱を効率よく外部へ排出することができ
る。また、もう一つの従来例として、内気通路中のフィ
ンと伝導板との間に熱電効果素子を挿入して熱交換器の
性能向上を図ったものもある(たとえば、実開平4−4
6594号公報)。これは密閉型の電子機器筐体の内側
に熱交換器の吸熱側があり、外側に放熱側がある。吸熱
側の冷却体の取付け面には熱電モジュールが挿入されて
いる。吸熱側の中央部にはファンが設置されている。放
熱側にも冷却体とファンとが 吸熱側と対抗する位置に
設置されている。このような構成においてファンが作動
すると筐体内の高温空気が吸気口から冷却側ケーシング
に流入して冷却体に接し、熱を冷却体に伝える。その
際、熱電モジュールの作用で冷却体が冷却されているの
で、冷却側ケーシングに流入した筐体内の高温空気と冷
却体との温度差が大きくなり、冷却体に移動する熱量と
空気の温度低下も大きくなる。結果として熱交換器の性
能が向上する。放熱側では筐体内空気からの伝熱熱量と
熱電モジュールに投入された電力に相当する熱量とが放
熱体に伝えられる。放熱側のファンが作動することによ
って吸気口から流入した外気が放熱体に接することによ
って放熱体3に伝えられていた筐体内空気からの伝熱熱
量と熱電モジュールに投入されゆe4bd電力に相当する熱
量とが外気に放出される。
2. Description of the Related Art Conventionally, a heat exchange device for a hermetically sealed electronic device housing.
As a device, one having a heat exchanger as shown in FIG.
Proposed. This heat exchanger is a controller for robot control.
This is an example used for rollers, and the width of the housing in the horizontal direction (hereinafter, referred to as
Thickness is 500 mm), the heat exchanger
The thickness is 85 mm and the length ratio is about 1/6.
In the figure, reference numeral 1 denotes an electronic device (not shown) that generates heat.
2 is a heat exchanger. 3 is a heat exchanger 2
The heat receiving portion receives the heat of the inside air that has become high temperature inside the housing 1.
Take away. Reference numeral 4 denotes a heat radiating portion of the heat exchanger 2, which introduces outside air.
To release the heat inside. 5 discharges the heat exchanger 2 with the heat receiving section 3
Partitions the heat section 4 into two passages and conducts internal heat
Conductive plate. Heat exchanger 2 was provided inside housing 1
Heat receiving part 3, heat radiating part 4 provided outside, heat receiving part and heat radiating part
And a metal conductive plate that separates the conductive plate. Receiving heat
The part 3 includes an inside air inlet 31 for introducing inside air and an inside air passage 35.
Inside air fan 32 provided near the inlet and inside air passage 35
From the heat receiving fins 33 provided in the center and the inside air outlet 36
Become. The heat radiating portion 4 is provided with an outside air inlet 41 and an outside air passage 45.
An external air fan 42 provided near the mouth and an external air
It comprises a radiation fin 43 and an outside air outlet 46. What
The heat receiving fins 33 and the heat radiating fins 43 are each shown in FIG.
It is fixed to a fin substrate not shown. AHIs hot sky
Anxious shy, ACIs open air. Next, about operation
explain. High temperature inside air A in the housing 1HIs a heat exchanger
2 inside the heat exchanger 2 by the inside air fan 32 of the heat receiving section 3.
Will be introduced. Shy AHIs at a right angle to the ventilation direction at the heat receiving part 3.
Bent inside the inside air passage 35 toward the heat receiving fin 33
It passes as a flow parallel to the fin substrate. At this time, air
Air A due to the convective heat transfer phenomenon betweenHReceived from
Heat is transmitted to the heat fins 33. Shy AHIs the heat receiving fin
33, the temperature is lowered by passing the heat to
From the housing 1. Heat receiving fins 33 and heat radiating fins
Since it is connected to the pin 43 by the conductive plate 5,
The heat transmitted to the heat fins 33 is transferred to the heat radiation fins 4 by conduction.
It is conveyed to 3. On the other hand, on the outside air side of the heat exchanger 2,
Outside air A into the radiator 4 by the fan 42 cWas introduced,
After the ventilation direction is bent at a right angle, heat is radiated in the outside air passage 45
As a flow parallel to the fin substrate toward the fin 43,
Spend. At this time, the convection heat transfer between the air and the fin surface
Therefore, the outside air AcHeat is transmitted to the outside
Ki AcIs discharged from the heat radiating section 4. Therefore, heat exchange
The vessel 2 is heated by the conductive plate 5 to a high temperature inside air A.HSide and outside air Ac~ side
And the heat exchanger 2 is
By maintaining the airtightness of the housing 1
The heat inside the housing 1 can be efficiently discharged to the outside
You. As another conventional example, a filter in an inside air passage is provided.
Insert a thermoelectric element between the
In some cases, performance has been improved (for example, Japanese Utility Model Laid-Open No. 4-4).
No. 6594). This is inside the sealed electronics housing
There is a heat-absorbing side of the heat exchanger and a heat-dissipating side on the outside. Heat absorption
Thermoelectric module is inserted into the mounting surface of the cooling body on the side
I have. A fan is installed at the center on the heat absorption side. Release
Cooling body and fan also on the heat side at a position opposed to the heat absorption side
is set up. The fan operates in such a configuration
Then, the high-temperature air in the casing flows from the intake port to the cooling-side casing.
To contact the cooling body and transfer heat to the cooling body. That
The cooling body is being cooled by the action of the thermoelectric module.
The high-temperature air in the housing that
The temperature difference with the heat sink increases and the amount of heat transferred to the cooling
The temperature drop of the air also increases. As a result of the heat exchanger
Performance is improved. On the heat dissipation side, the amount of heat transferred from the air inside the housing
The amount of heat corresponding to the power input to the thermoelectric module
It is transmitted to the heat. When the fan on the heat radiation side operates,
The outside air that has flowed in through the air inlet contacts the radiator.
Heat transfer from the air in the housing that was transmitted to the heat radiator 3
Quantity and heat equivalent to e4bd power input to the thermoelectric module
The amount is released to the outside air.

【0003】[0003]

【発明が解決しようとする課題】一般的に、熱交換器の
性能を評価する指標としては熱交換器の交換熱量を高温
側と低温側の温度差で除算した熱コンダクタンスで表さ
れるが、小型化のためには単位体積当たりの熱コンダク
タンスが大きい方がよい。ところが、前者の従来技術で
は受熱フィン33と放熱フィン43とを近接して配置し
なければならないため、次のような問題点があった。 (1) フィンの高さ、あるいはファン2台分の厚さと通風
空間の厚さなどが積算されて高温側および外気側の通風
路体積が大きくなるため、熱交換器の厚さが厚くなり小
型化ができない。 (2) 内気ファン32から吐出した高温の内気AH や外気
ファン42から吐出した外気Ac が伝導板5に垂直に衝
突した後、吐出方向を変換しそれぞれのフィン33、4
3の基板に平行に流れて排出口36および46から排出
されるため対流伝熱性能の向上が望めない。このような
構成で伝導板5とフィン33、43の位置を変えずに、
内気ファン32や外気ファン42をファンからの吐出風
がフィン33、43の基板に直接衝突するような配置に
すると対流伝熱性能は向上するが、逆に熱交換器の厚さ
が厚くなり小型化ができない。また、後者の従来技術で
は、冷却性能の向上を図るため熱電モジュールを冷却体
の取り付けると熱電モジュールの厚さ分だけ熱交換器の
厚さが厚くなる問題点があった。そこで、本発明は厚さ
を増加することなく対流伝熱性能を向上させあるいは熱
電効果素子を活用することにより、小型・薄型で熱交換
性能が高くかつ高精度の温度コントロールができる電子
機器筐体の熱交換装置を提供することを目的とする。
Generally, an index for evaluating the performance of a heat exchanger is represented by a heat conductance obtained by dividing the heat exchange amount of the heat exchanger by a temperature difference between a high temperature side and a low temperature side. For miniaturization, it is better that the thermal conductance per unit volume is large. However, in the former conventional technique, since the heat receiving fins 33 and the heat radiating fins 43 must be arranged close to each other, there are the following problems. (1) The height of the fins or the thickness of the two fans and the thickness of the ventilation space are added to increase the ventilation path volume on the high-temperature side and the outside air side. Can not be changed. (2) inside air after the outside air A c discharged from the inside air A H and the outside air fan 42 of the high-temperature discharged from the fan 32 collides vertically conductive plate 5, each of the fins to convert the discharge direction 33,4
Therefore, the convection heat transfer performance cannot be improved because the gas flows in parallel with the substrate 3 and is discharged from the discharge ports 36 and 46. With such a configuration, without changing the positions of the conductive plate 5 and the fins 33 and 43,
When the inside air fan 32 and the outside air fan 42 are arranged so that the air blown from the fans directly collides with the substrates of the fins 33 and 43, the convection heat transfer performance is improved, but on the contrary, the thickness of the heat exchanger is increased and the size is reduced Can not be changed. Further, in the latter conventional technique, there is a problem that when a thermoelectric module is attached to a cooling body in order to improve the cooling performance, the thickness of the heat exchanger is increased by the thickness of the thermoelectric module. Therefore, the present invention improves the convection heat transfer performance without increasing the thickness, or utilizes a thermoelectric effect element to provide a small, thin, high heat exchange performance and highly accurate temperature control housing for electronic equipment. It is an object of the present invention to provide a heat exchange device.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は電子機器を収納する密閉型の筐体と、前記
筐体の内側に設けた受熱部と外側に設けた放熱部および
前記受熱部と放熱部とを仕切る金属製の伝導板とを有し
た熱交換器とからなり、前記受熱部は前記筐体内に発生
した熱により高温になった内気を導入する内気通路と、
前記内気通路の熱を取り入れる受熱フィンと、前記受熱
フィンと前記伝導板とを結合する受熱フィン基板と、前
記内気通路に内気を導入する内気ファンとを有し、前記
放熱部は外気を導入する外気通路と、前記外気通路に前
記外気を導入する外気ファンと、前記伝導板に結合され
た放熱フィン基板と、前記放熱フィン基板に結合された
放熱フィンとを有し、前記受熱フィンに前記内気を、前
記放熱フィンに前記外気をそれぞれ流して熱交換させる
電子機器筐体の熱交換装置において、前記受熱部と前記
放熱部とを垂直方向の対角の位置になるよう配設し、前
記伝導板は前記受熱フィン基板を結合する受熱側伝導板
と前記放熱フィン基板を結合する放熱側伝導板の二つか
らなり、二つの伝導板の境界部に吸熱側面を前記受熱側
伝導板に放熱面側を前記放熱側伝導板にそれぞれ密着さ
せた熱電効果素子を設けた構成にしている。また、前記
筐体内に設けた内気温度を測定する温度センサと、前記
温度センサからの温度データと予め記憶させた指標温度
とを比較して前記指標温度に近づけるように前記熱電効
果素子への投入電力を制御する制御部とを備えている。
また、前記受熱側伝導板および前記放熱側伝導板の側断
面の形状がL形にするとなおよい。上記手段により単位
体積当たりの熱コンダクタンスを増加させることができ
るので、小型・薄型で熱交換性能の高い電子機器筐体の
熱交換装置が得られる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a sealed housing for housing electronic equipment, a heat receiving portion provided inside the housing, and a heat radiating portion provided outside the housing. A heat exchanger having a metal conductive plate for partitioning the heat receiving portion and the heat radiating portion, wherein the heat receiving portion introduces inside air that has become hot due to heat generated in the housing;
A heat receiving fin for taking in heat of the inside air passage, a heat receiving fin substrate connecting the heat receiving fin and the conductive plate, and an inside air fan for introducing inside air to the inside air passage, wherein the heat radiating unit introduces outside air An external air passage, an external air fan for introducing the external air into the external air passage, a radiating fin substrate coupled to the conductive plate, and a radiating fin coupled to the radiating fin substrate; In the heat exchange device of an electronic device housing for exchanging heat by flowing the outside air to the radiation fins, the heat receiving portion and the heat radiation portion are disposed at diagonal positions in a vertical direction, and the conduction is performed. The plate is composed of a heat-receiving side conductive plate that couples the heat-receiving fin substrate and a heat-radiating side conductive plate that couples the heat-radiating fin substrate. ~ side And a configuration in which a thermoelectric effect element is brought into close contact to each of the radiation side conductive plate. Further, a temperature sensor provided in the housing and measuring inside air temperature is compared with the temperature data from the temperature sensor and a previously stored index temperature, and the temperature is input to the thermoelectric effect element so as to approach the index temperature. A control unit for controlling electric power.
Further, it is more preferable that the heat receiving side conductive plate and the heat radiating side conductive plate have an L-shaped cross section. Since the thermal conductance per unit volume can be increased by the above means, a heat exchange device for an electronic device housing which is small and thin and has high heat exchange performance can be obtained.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は電子機器筐体の熱交換装置の全体
構成を示す構成図、図2は図1の熱交換器の詳細を示す
側断面図である。図において、2は熱交換器、3は熱交
換器2の受熱部、4は同じく放熱部である。51は受熱
側伝導板、52は放熱側伝導板、6は熱電効果素子、7
は筐体1の内部空気温度を測定するための温度センサ、
8は熱電効果素子6に供給する電力量を演算し電源9に
信号を送る制御部である。熱交換器2は受熱部3と放熱
部4とを側断面からみて上下方向の対角の位置になるよ
うに配置している。受熱部3と放熱部4とを仕切る金属
製の伝導板5は、受熱側と放熱側との境界部で分離し、
L形の受熱側伝導板51と放熱側伝導板52にしたもの
である。そして、この境界部に熱電効果素子6を設けて
いる。熱電効果素子6は、吸熱側面を受熱側伝導板51
に密着しており、放熱面側は外気側伝導板52に密着し
ている。制御部8には、熱電効果素子8を付加した時の
熱交換特性データおよび筐体1内の空気の目標温度であ
る指標温度のデータとが入力されている。温度センサ6
からの温度信号と予め記憶させた指標温度とを比較して
前記指標温度に近づけるように前記熱電効果素子6へ供
給する投入電力量を演算し制御する。熱交換特性データ
を図3に示す。図3は熱電効果素子6に投入する電力に
対する単位体積当たりの熱コンダクタンスを示してお
り、単位体積当たりの熱コンダクタンスは熱電効果素子
6への投入電力に対して極大点を有する非線形の関係に
ある。しかも熱伝導体の材質によって極大点の位置が変
化する。このような特性を熱交換器2の仕様に合わせて
予め制御部8にデータとして入力しておくことによって
より精度の高い筐体1の内空気の温度コントロールが可
能になる。本実施例では熱伝導体の材質としてアルミニ
ウムを用いている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing the overall configuration of a heat exchange device for an electronic device housing, and FIG. 2 is a side sectional view showing details of the heat exchanger of FIG. In the figure, 2 is a heat exchanger, 3 is a heat receiving portion of the heat exchanger 2, and 4 is a heat radiating portion. 51 is a heat receiving side conductive plate, 52 is a heat dissipation side conductive plate, 6 is a thermoelectric effect element, 7
Is a temperature sensor for measuring the internal air temperature of the housing 1,
A control unit 8 calculates the amount of power supplied to the thermoelectric effect element 6 and sends a signal to the power supply 9. The heat exchanger 2 has the heat receiving portion 3 and the heat radiating portion 4 arranged at diagonal positions in the vertical direction when viewed from the side cross section. The metal conductive plate 5 that separates the heat receiving section 3 and the heat radiating section 4 is separated at the boundary between the heat receiving side and the heat radiating side,
This is an L-shaped heat-receiving-side conductive plate 51 and a heat-dissipating-side conductive plate 52. The thermoelectric effect element 6 is provided at this boundary. The thermoelectric effect element 6 includes a heat-absorbing side conductive plate 51
The heat radiation surface side is in close contact with the outside air side conductive plate 52. The heat exchange characteristic data when the thermoelectric effect element 8 is added and the data of the index temperature which is the target temperature of the air in the housing 1 are input to the control unit 8. Temperature sensor 6
Is compared with a previously stored index temperature to calculate and control the amount of power supplied to the thermoelectric effect element 6 so as to approach the index temperature. The heat exchange characteristic data is shown in FIG. FIG. 3 shows the thermal conductance per unit volume with respect to the power supplied to the thermoelectric effect element 6, and the thermal conductance per unit volume has a non-linear relationship having a maximum point with respect to the power supplied to the thermoelectric effect element 6. . In addition, the position of the maximum point changes depending on the material of the heat conductor. By inputting such characteristics as data to the control unit 8 in advance in accordance with the specifications of the heat exchanger 2, it is possible to control the temperature of the air inside the housing 1 with higher accuracy. In this embodiment, aluminum is used as the material of the heat conductor.

【0006】つぎに、動作について説明する。いま、電
子機器の筐体1に電源が入り作動し始めると、熱交換器
2の内気ファン32と外気ファン42が作動する。内気
H は内気吸入口31から吸入され受熱部3の内気フィ
ン33を通過し、内気排出口36から筐体1に排出され
る。外気Ac は外気吸入口41から吸入され放熱部4の
放熱フィン43を通過し、外気排出口46から大気に排
出される。内気AH の熱は、受熱フィン33と接触し受
熱フィン基板34から受熱側伝導板51に伝わり熱電効
果素子6を通過して放熱側伝導板52に伝わる。ここで
一部の熱は外気Ac と接触し放熱される。さらに、残っ
た熱は放熱フィン基板44、放熱フィン43へと伝わ
り、外気Ac と接触し放熱される。筐体1内の温度が負
荷の増加や周囲の環境などによってさらに上昇し、設定
された値を超えると、制御部8は温度センサ7のデータ
により、熱電効果素子6を動作させる電力量を演算し電
源9に指令を送る。電源9から直流電力が供給される
と、熱電効果素子6が動作し、熱電効果素子6の受熱側
伝導板51側の面が冷却され、放熱側伝導板52側が放
熱面となり、熱コンダクタンスが大きくなる。したがっ
て、冷却効率は高くなり、内気AH の温度は下がる。反
対に筐体1内の温度が負荷の減少や周囲の環境などによ
って下降し、設定値以下になると、熱電効果素子6への
電力の供給が減少する。このような動作を繰り返すこと
によって筐体1の内気AH の温度は指標温度近くに維持
される。このように、受熱フィン33と放熱フィン43
との間のスペースに熱電効果素子6を挿入したので、熱
電効果素子6を付加しても熱交換器のサイズを大きくす
ることなく熱交換性能を向上させることができる。この
熱電効果素子を内蔵した熱交換器、筐体内の温度セン
サ、熱交換器の特性データを入力したコントローラ、熱
電効果素子への投入電力源をシステム化することによっ
て精度の高い筐体内の内気温度制御が可能となる。
Next, the operation will be described. Now, when the housing 1 of the electronic device is turned on and starts operating, the inside air fan 32 and the outside air fan 42 of the heat exchanger 2 operate. Shy A H is passed through the inside air fin 33 is sucked receiving portion 3 from inside air suction port 31, it is discharged from inside air discharge port 36 in the housing 1. The outside air Ac is sucked from the outside air suction port 41, passes through the radiating fins 43 of the heat radiating unit 4, and is discharged from the outside air discharging port 46 to the atmosphere. The heat of the inside air A H contacts the heat receiving fins 33, is transmitted from the heat receiving fin substrate 34 to the heat receiving side conductive plate 51, passes through the thermoelectric effect element 6, and is transmitted to the heat radiating side conductive plate 52. Here, part of the heat comes into contact with the outside air Ac and is radiated. Further, the remaining heat radiation fin substrate 44, transmitted to the radiation fin 43 is in contact with the heat dissipation with ambient air A c. When the temperature in the housing 1 further rises due to an increase in load or the surrounding environment and exceeds a set value, the control unit 8 calculates the amount of power for operating the thermoelectric effect element 6 based on the data of the temperature sensor 7. And sends a command to the power supply 9. When DC power is supplied from the power supply 9, the thermoelectric effect element 6 operates, the surface of the thermoelectric effect element 6 on the heat receiving side conductive plate 51 side is cooled, and the heat radiating side conductive plate 52 side becomes a heat radiating surface, and the thermal conductance is large. Become. Therefore, the cooling efficiency is high, the temperature of the inside air A H decreases. Conversely, when the temperature in the housing 1 decreases due to a decrease in the load or the surrounding environment and becomes equal to or less than the set value, the supply of power to the thermoelectric effect element 6 decreases. Temperature inside air A H of the housing 1 by repeating such an operation is maintained near the index temperature. Thus, the heat receiving fins 33 and the radiation fins 43
Since the thermoelectric effect element 6 is inserted into the space between them, the heat exchange performance can be improved without increasing the size of the heat exchanger even if the thermoelectric effect element 6 is added. A highly accurate inside air temperature in the enclosure by systemizing a heat exchanger incorporating this thermoelectric element, a temperature sensor inside the enclosure, a controller that inputs the heat exchanger characteristic data, and a power supply to the thermoelectric element. Control becomes possible.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、熱
交換器を受熱部と放熱部とを側断面からみて上下方向の
対角の位置になるように配置し、さらに受熱部と放熱部
とを仕切る伝導板を受熱側と放熱側との境界部で分離
し、この境界部に熱電効果素子を配置した構造にしたの
で、熱交換器のサイズを大きくすることなく熱交換性能
が著しく高く、かつ高精度の温度コントロールができる
電子機器筐体の熱交換装置を得る効果がある。
As described above, according to the present invention, the heat exchanger is arranged so that the heat receiving portion and the heat radiating portion are at diagonal positions in the vertical direction when viewed from the side cross section. Since the conductive plate that separates the heat radiating section is separated at the boundary between the heat receiving side and the heat radiating side, and the thermoelectric effect element is arranged at this boundary, the heat exchange performance can be improved without increasing the size of the heat exchanger. There is an effect of obtaining a heat exchange device for an electronic device housing which is extremely high and can perform temperature control with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す熱交換装置の全体構成を
示す構成図である。
FIG. 1 is a configuration diagram illustrating an overall configuration of a heat exchange device according to an embodiment of the present invention.

【図2】本発明の実施例を示す熱交換器の側断面であ
る。
FIG. 2 is a side sectional view of a heat exchanger showing an embodiment of the present invention.

【図3】本発明の熱交換器に使用した熱電効果素子の熱
交換特性を示す特性図である。
FIG. 3 is a characteristic diagram showing heat exchange characteristics of a thermoelectric effect element used in the heat exchanger of the present invention.

【図4】従来の熱交換器を示す側断面図である。FIG. 4 is a side sectional view showing a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1:筐体 2:熱交換器 3:受熱部 31:内気吸入口 32:内気ファン 33:受熱フィン 34:受熱フィン基板 35:内気通路 36:内気排出口 4:放熱部 41:外気吸入口 42:外気ファン 43:放熱フィン 44:放熱フィン基板 45:外気通路 46:外気排出口 5:伝導板 51:受熱側伝導板 52:放熱側伝導板 6:熱電効果素子 7:温度センサ 8:制御部 9:電源 AH :内気 Ac :外気1: Housing 2: Heat exchanger 3: Heat receiving unit 31: Inside air inlet 32: Inside air fan 33: Heat receiving fin 34: Heat receiving fin substrate 35: Inside air passage 36: Inside air outlet 4: Heat radiating unit 41: Outside air inlet 42 : External air fan 43: Radiation fin 44: Radiation fin board 45: External air passage 46: External air discharge port 5: Conductive plate 51: Heat receiving side conductive plate 52: Radiation side conductive plate 6: Thermoelectric effect element 7: Temperature sensor 8: Control unit 9: power A H: shy A c: outside air

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子機器を収納する密閉型の筐体と、前
記筐体の内側に設けた受熱部と外側に設けた放熱部およ
び前記受熱部と放熱部とを仕切る金属製の伝導板とを有
した熱交換器とからなり、 前記受熱部は前記筐体内に発生した熱により高温になっ
た内気を導入する内気通路と、前記内気通路の熱を取り
入れる受熱フィンと、前記受熱フィンと前記伝導板とを
結合する受熱フィン基板と、前記内気通路に内気を導入
する内気ファンとを有し、 前記放熱部は外気を導入する外気通路と、前記外気通路
に前記外気を導入する外気ファンと、前記伝導板に結合
された放熱フィン基板と、前記放熱フィン基板に結合さ
れた放熱フィンとを有し、 前記受熱フィンに前記内気を、前記放熱フィンに前記外
気をそれぞれ流して熱交換させる電子機器筐体の熱交換
装置において、 前記受熱部と前記放熱部とを垂直方向の対角の位置にな
るよう配設し、前記伝導板は前記受熱フィン基板を結合
する受熱側伝導板と前記放熱フィン基板を結合する放熱
側伝導板の二つからなり、前記二つの伝導板の境界部に
吸熱側面を前記受熱側伝導板に放熱面側を前記放熱側伝
導板にそれぞれ密着させた熱電効果素子を設けたことを
特徴とする電子機器筐体の熱交換装置。
1. A sealed housing for housing an electronic device, a heat receiving portion provided inside the housing, a heat radiating portion provided outside, and a metal conductive plate separating the heat receiving portion and the heat radiating portion. A heat exchanger having a heat exchanger, wherein the heat receiving portion is an internal air passage for introducing internal air heated to a high temperature by the heat generated in the housing, a heat receiving fin that takes in the heat of the internal air passage, the heat receiving fin, and the heat receiving fin. A heat receiving fin substrate that couples the conductive plate, and an inside air fan that introduces inside air into the inside air passage, wherein the heat radiating unit includes an outside air passage that introduces outside air, and an outside air fan that introduces the outside air into the outside air passage. An electronic device comprising: a radiating fin substrate coupled to the conductive plate; and a radiating fin coupled to the radiating fin substrate, wherein the inside air flows through the heat receiving fin and the outside air flows through the radiating fin to exchange heat. Equipment housing In the heat exchange device, the heat receiving portion and the heat radiating portion are disposed at diagonal positions in a vertical direction, and the conductive plate connects the heat receiving side conductive plate connecting the heat receiving fin substrate and the heat radiating fin substrate. And a thermoelectric effect element in which a heat-absorbing side is closely attached to the heat-receiving-side conductive plate and a heat-radiating side is closely attached to the heat-radiating-side conductive plate at a boundary between the two conductive plates. A heat exchange device for an electronic device housing.
【請求項2】 前記筐体内に設けた内気温度を測定する
温度センサと、前記温度センサからの温度データと予め
記憶させた指標温度とを比較して前記指標温度に近づけ
るように前記熱電効果素子への投入電力を制御する制御
部とを備えたことを特徴とする請求項1に記載の電子機
器筐体の熱交換装置。
2. A thermo sensor provided in the housing for measuring inside air temperature, and comparing the temperature data from the temperature sensor with a previously stored index temperature so as to approach the index temperature. The heat exchange device for an electronic device housing according to claim 1, further comprising a control unit configured to control power supplied to the electronic device housing.
【請求項3】 前記受熱側伝導板および前記放熱側伝導
板の側断面の形状がL形であることを特徴とする請求項
1または2に記載の電子機器筐体の熱交換装置。
3. The heat exchanger according to claim 1, wherein the heat-receiving-side conductive plate and the heat-radiating-side conductive plate have an L-shaped cross section.
JP16644698A 1998-06-15 1998-06-15 Heat exchange device for electronic apparatus enclosure Pending JP2000004090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16644698A JP2000004090A (en) 1998-06-15 1998-06-15 Heat exchange device for electronic apparatus enclosure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16644698A JP2000004090A (en) 1998-06-15 1998-06-15 Heat exchange device for electronic apparatus enclosure

Publications (1)

Publication Number Publication Date
JP2000004090A true JP2000004090A (en) 2000-01-07

Family

ID=15831567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16644698A Pending JP2000004090A (en) 1998-06-15 1998-06-15 Heat exchange device for electronic apparatus enclosure

Country Status (1)

Country Link
JP (1) JP2000004090A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641285B1 (en) 2005-03-31 2006-11-06 주식회사 퓨처웍스 Cooling device for a case and telecommunication equipment case unit with the cooling device
KR100687280B1 (en) 2006-03-03 2007-02-27 주식회사 창조이십일 Dual heat exchanging structure of air conditioning system for communication equipment
JP2013239490A (en) * 2012-05-11 2013-11-28 Toshiba Corp Electronic apparatus housing structure
CN104976859A (en) * 2014-04-01 2015-10-14 杨然森 Electronic cold-hot integrated cabinet
CN108617130A (en) * 2018-07-27 2018-10-02 国网辽宁省电力有限公司铁岭供电公司 A kind of electrical cabinet with heat sinking function
CN108735055A (en) * 2018-06-14 2018-11-02 黄永怀 A kind of electronic instruction chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641285B1 (en) 2005-03-31 2006-11-06 주식회사 퓨처웍스 Cooling device for a case and telecommunication equipment case unit with the cooling device
KR100687280B1 (en) 2006-03-03 2007-02-27 주식회사 창조이십일 Dual heat exchanging structure of air conditioning system for communication equipment
JP2013239490A (en) * 2012-05-11 2013-11-28 Toshiba Corp Electronic apparatus housing structure
CN104976859A (en) * 2014-04-01 2015-10-14 杨然森 Electronic cold-hot integrated cabinet
CN108735055A (en) * 2018-06-14 2018-11-02 黄永怀 A kind of electronic instruction chamber
CN108617130A (en) * 2018-07-27 2018-10-02 国网辽宁省电力有限公司铁岭供电公司 A kind of electrical cabinet with heat sinking function

Similar Documents

Publication Publication Date Title
CN109952002B (en) Cooling and heat dissipation box body and heat dissipation control method
WO2020062253A1 (en) Circuit board, computing device and cooling case
US6637505B1 (en) Apparatus for cooling a box with heat generating elements received therein and a method for cooling same
KR101023734B1 (en) Apparatus for temperature test for memory module
JP2003218572A (en) Method and device for radiating heat from outdoor apparatus
JP2000004090A (en) Heat exchange device for electronic apparatus enclosure
JP4687093B2 (en) Air conditioner
JP3364764B2 (en) Sealed equipment housing cooling device
JP2005044857A (en) Cooling mechanism
JP2001015969A (en) Cooling apparatus
JP2001119183A (en) Cooling unit and cooling method for electronic apparatus
KR20220013367A (en) Isolated conduction/convection dual heat sink for onboard memory microcontroller
JP2580507Y2 (en) Electronic equipment cooling device
JPH1187961A (en) Heat-dissipating structure of electronic device
JP2001257494A (en) Electronic apparatus
JPH10206046A (en) Heat exchanger
JPH09140013A (en) Control panel
JPS59130450A (en) Cooling structure for integrated circuit package
JPH118485A (en) Cooling structure of electronic equipment
JP4422390B2 (en) Electronic device cooling device
KR20010054521A (en) Cooling apparatus for a controller used thermoelectric cooling module
JP3827594B2 (en) CPU cooling device
CN220292421U (en) Heat dissipating device and electronic equipment
JP3077903U (en) Micro thin plate type water cooling device usable for computer CPU
JP2531328Y2 (en) Radiator heat dissipation structure