JP2000000566A - Intensive water treatment method - Google Patents

Intensive water treatment method

Info

Publication number
JP2000000566A
JP2000000566A JP10170142A JP17014298A JP2000000566A JP 2000000566 A JP2000000566 A JP 2000000566A JP 10170142 A JP10170142 A JP 10170142A JP 17014298 A JP17014298 A JP 17014298A JP 2000000566 A JP2000000566 A JP 2000000566A
Authority
JP
Japan
Prior art keywords
ozone
water
filtration
membrane
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10170142A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mori
吉彦 森
Susumu Ota
享 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10170142A priority Critical patent/JP2000000566A/en
Publication of JP2000000566A publication Critical patent/JP2000000566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical intensive water treatment method capable of obtaining sufficient treated water quality in performing intensive treatment for the intensive treatment of purified water or the reutilization of sewage or waste water, capable of keeping a high filter flux by low power energy and not requiring a wide arranging area. SOLUTION: In an intensive water treatment method, ozone is added to raw water and dead end filtering is performed by a pressure system using an ozone-resistant membrane. Further, a flocculant and ozone may be added to raw water to perform dead end filtering by the pressure system using the ozone-resistant membrane and, at this time, the membrane may be washed by air bubbling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浄水の高度処理や、
し尿や家庭用排水等の下水や工場排水の高度な処理方法
に関するものである。
TECHNICAL FIELD The present invention relates to advanced treatment of purified water,
The present invention relates to an advanced treatment method for sewage such as human waste and domestic wastewater and industrial wastewater.

【0002】[0002]

【従来の技術】従来の浄水処理の代表的な処理方法とし
ては、凝集沈殿ー砂濾過ー塩素消毒、凝集沈殿ー砂濾過
ー活性炭ー塩素消毒あるいは凝集沈殿ー砂濾過ーオゾン
ー活性炭ー塩素消毒などが行われている。又、し尿や家
庭用排水などの下水あるいは工場排水などの放流や再利
用のための代表的な処理方法として最初沈殿池ー曝気ー
最終沈殿池ー塩素消毒や最初沈殿池ー曝気ー最終沈殿池
ー凝集沈殿ー砂濾過ー塩素消毒などが行われてきた。
2. Description of the Related Art As a typical treatment method of conventional water purification treatment, coagulation sedimentation-sand filtration-chlorine disinfection, coagulation sedimentation-sand filtration-activated carbon-chlorine disinfection or coagulation sedimentation-sand filtration-ozone-activated carbon-chlorine disinfection, etc. Is being done. Also, as a typical treatment method for the discharge and reuse of sewage such as human waste and domestic wastewater or industrial wastewater, first sedimentation basin-aeration-final sedimentation basin-chlorination and first sedimentation basin-aeration-final sedimentation basin -Coagulation sedimentation-Sand filtration-Chlorination, etc. have been performed.

【0003】一方、生活用水の需要増大や無秩序な森林
伐採、異常気象等による渇水の対応策として貯水ダム等
の水源開発が行われているが、近年水源水質の悪化が進
行し、前述のような従来の方法では必ずしも良好な飲料
水が得られなくなってきており深刻な問題になってきて
いる。又し尿や家庭用排水などの下水あるいは工場から
の有機性排水などは含有される種々の懸濁物質や有機性
成分を前述のような方法で取り除いて放流されている。
しかし、近年環境問題が注目されこの様な放流水におい
ても、より高度に水質を向上した処理が要求されるよう
になってきている。さらには、水の有効利用のため、下
水や排水を水資源として再利用することが提案されてお
り、例えば公園の噴水や修景、親水用水、雑用水、工業
用水等として多種の用途が考えられており、特に修景、
親水用水としては実際に利用され始めている。
On the other hand, water sources such as water storage dams have been developed as a measure against drought due to increased demand for domestic water, disorderly deforestation, abnormal weather, etc. In recent years, the quality of water sources has deteriorated. However, it is becoming impossible to obtain good drinking water by the conventional methods, which is a serious problem. Sewage such as human waste and domestic wastewater or organic wastewater from factories is discharged after removing various suspended substances and organic components contained in the wastewater by the method described above.
In recent years, however, attention has been paid to environmental issues, and such effluents have been required to be treated with even higher water quality. In addition, it has been proposed to reuse sewage and wastewater as water resources for effective use of water.For example, various uses such as park fountains and scenic views, hydrophilic water, miscellaneous water, industrial water, etc. are considered. And especially landscapes,
It has begun to be actually used as hydrophilic water.

【0004】この様な高度の浄水処理、下排水処理を目
的として、限外濾過膜や精密濾過膜による膜濾過処理が
種々提案されているが、このような膜による濾過処理
は、膜の目詰まりによる濾過流束の低下が問題であり、
膜の目詰まり防止が大きな課題である。その為膜濾過法
では、膜の目詰まり防止を目的としてクロスフロー濾過
(タンジェント濾過)が用いられるのが一般的である。
さらには、特開平4−108518号公報には、膜の目
詰まり防止のため、原水にオゾンなどの酸化性ガスを添
加しタンジェント濾過を行うことが提案されている。
Various types of membrane filtration using ultrafiltration membranes or microfiltration membranes have been proposed for the purpose of such advanced water purification treatment and sewage treatment. The problem is a decrease in filtration flux due to clogging,
Preventing membrane clogging is a major issue. Therefore, in the membrane filtration method, cross-flow filtration (tangent filtration) is generally used for the purpose of preventing membrane clogging.
Further, Japanese Patent Application Laid-Open No. 4-108518 proposes that tangential filtration is performed by adding an oxidizing gas such as ozone to raw water to prevent clogging of the membrane.

【0005】[0005]

【発明が解決しようとする課題】膜濾過法に於いてはク
ロスフロー濾過法とデッドエンド濾過法の2つの方法の
どちらかが採用されている。クロスフロー濾過法は、濾
過水量の2倍程度の水量を膜に供給するのが一般的で、
膜に供給された水の約半分は原水に戻される。その為濾
水量に対して大きなポンプの動力エネルギーが必要にな
り、経済性が劣るのが課題である。
In the membrane filtration method, one of two methods, a cross flow filtration method and a dead end filtration method, is employed. In the cross-flow filtration method, it is general to supply a membrane with an amount of water about twice the amount of filtered water,
About half of the water supplied to the membrane is returned to the raw water. Therefore, a large amount of pump power is required for the amount of drainage, and the economic efficiency is inferior.

【0006】一方デッドエンド濾過法は、膜に供給した
原水をすべて濾過し、原水供給量と濾水量が同じである
ので、クロスフロー濾過法に比べ、濾水量に対するポン
プの動力エネルギーは低くなるものの、膜の目詰まりが
生じやすく、クロスフロー濾過に比べ濾過流束が低くな
り、所定量の濾過水量を得るために必要な膜面積が大き
くなり、膜の費用が高くなると共に設置面積も増大し、
やはり経済的でない。
On the other hand, in the dead-end filtration method, since the raw water supplied to the membrane is entirely filtered and the raw water supply amount and the filtrate amount are the same, the power energy of the pump with respect to the filtrate amount is lower than in the cross-flow filtration method. , Membrane clogging is likely to occur, the filtration flux is lower than that of cross-flow filtration, the membrane area required to obtain a predetermined amount of filtered water increases, the cost of the membrane increases, and the installation area increases. ,
After all it is not economical.

【0007】本発明は、このような課題を解決するもの
であり、その目的とするところは、浄水の高度処理や下
排水の高度処理を行うにあたり、十分な処理水質を得る
ことができ、かつ低い動力エネルギーで高い濾過流束を
維持でき、広大な設置面積を必要としない経済的な高度
水処理方法を提供せんとするものである。
[0007] The present invention is to solve such problems, and it is an object of the present invention to obtain sufficient treated water quality in performing advanced treatment of purified water and advanced treatment of sewage. It is an object of the present invention to provide an economical advanced water treatment method that can maintain a high filtration flux with low power energy and does not require a large installation area.

【0008】[0008]

【課題を解決するための手段】本発明者らは、膜濾過に
ついて鋭意検討した結果、オゾンの存在下でオゾン耐性
膜を用いて濾過すると、デッドエンド濾過でもクロスフ
ロー濾過と同等の高い濾過流束が得られること、さらに
は、膜の洗浄操作としてエアーバブリングを行うことに
よりデッドエンド濾過でもクロスフロー濾過と同等の高
い濾過流束が得られることを見い出し、本発明を完成す
るに至った。
Means for Solving the Problems As a result of diligent studies on membrane filtration, the present inventors have found that when filtration is performed using an ozone-resistant membrane in the presence of ozone, a high filtration flow rate equivalent to cross-flow filtration is obtained even in dead-end filtration. The present inventors have found that a bundle can be obtained, and that a high filtration flux equivalent to that of cross-flow filtration can be obtained even in dead-end filtration by performing air bubbling as a washing operation of the membrane, thereby completing the present invention.

【0009】すなわち、本発明は、(1)浄水処理や下
排水処理のための高度な水処理方法であって、原水中に
オゾンを添加すると共にオゾン耐性膜を用いて加圧方式
でデッドエンド濾過を行うことを特徴とする高度水処理
方法、(2)オゾンを添加するに先立って凝集剤を添加
することを特徴とする上記(1)記載の水処理方法、
(3)デッドエンド濾過を行った後、またはデッドエン
ド濾過を行う前に、エアーバブリングにより膜の洗浄を
行うことを特徴とする上記(1)または(2)記載の水
処理方法、に関する。
That is, the present invention provides (1) an advanced water treatment method for water purification treatment and sewage treatment, in which ozone is added to raw water and dead-end is performed by pressurization using an ozone-resistant film. An advanced water treatment method characterized by performing filtration, (2) a water treatment method according to the above (1), wherein a coagulant is added prior to adding ozone;
(3) The water treatment method according to the above (1) or (2), wherein the membrane is washed by air bubbling after performing dead end filtration or before performing dead end filtration.

【0010】以下に本発明の詳細を述べる。本発明に係
る浄水、下水、排水の高度処理方法の具体的なプロセス
の一例は、図1に示すように、先ず、河川水、伏流水、
湖沼水、貯水あるいは下水二次処理水または工場排水か
らなる原水1中にオゾン(O3 )を添加して該原水1中
の懸濁物質や有機物をオゾン分解するオゾン処理2を行
った後、オゾン耐性膜を用いて加圧方式でデッドエンド
濾過するものである。あるいは、図2に示すように河川
水、伏流水、湖沼水、貯水あるいは下水二次処理水また
は工場排水からなる原水1中に凝集剤添加2を行って原
水1中に含まれる懸濁物質を凝集した後、オゾン
(O3 )を添加して該原水1中の懸濁物質や有機物をオ
ゾン分解するオゾン処理3を行った後、オゾン耐性膜を
用いて加圧方式でデッドエンド濾過するものである。
The details of the present invention will be described below. As shown in FIG. 1, an example of a specific process of the advanced treatment method for purified water, sewage, and wastewater according to the present invention is as follows.
After ozone (O 3 ) is added to raw water 1 consisting of lake water, stored water or secondary sewage water or industrial wastewater, and ozone treatment 2 is performed to ozone decompose suspended substances and organic substances in the raw water 1, Dead-end filtration is performed by a pressure method using an ozone-resistant film. Alternatively, as shown in FIG. 2, a coagulant is added 2 to raw water 1 consisting of river water, underflow water, lake water, storage water or secondary sewage water or industrial wastewater, and suspended substances contained in raw water 1 are removed. After coagulation, ozone (O 3 ) is added, and an ozone treatment 3 for ozonolysis of suspended substances and organic substances in the raw water 1 is performed, followed by dead-end filtration by a pressure method using an ozone-resistant membrane. It is.

【0011】従来、河川水、伏流水、湖沼水、貯水ある
いは下水二次処理水または工場排水からなる原水を単に
膜濾過法で濾過すると、該原水中に含まれる懸濁物質や
使用する膜の孔径以上の大きさの有機物は膜で阻止さ
れ、所謂、濃度分極やケーキ相が発生すると同時に該原
水中の有機物は膜を目詰まりさせたり、或いは、膜内部
の網状組織に吸着を起こす結果、得られる膜の濾過流束
は清澄水の濾過流束に比べて数分の1から数十分の1に
まで低下し、膜濾過コストが高くなって経済的な実用性
が低下するものであった。
Conventionally, raw water consisting of river water, underground water, lake water, reservoir water or secondary sewage water or industrial wastewater is simply filtered by a membrane filtration method to obtain suspended substances contained in the raw water and membranes to be used. Organic substances having a size larger than the pore diameter are blocked by the membrane, so-called concentration polarization and a cake phase are generated, and at the same time, the organic substances in the raw water clog the membrane, or as a result of being adsorbed to the network inside the membrane, The filtration flux of the resulting membrane is reduced from a fraction to several tens of minutes compared to the filtration flux of the clarified water, which increases the membrane filtration cost and reduces the economic practicality. Was.

【0012】しかしながら、オゾン(O3 )等の酸化剤
の存在下で上記原水を膜濾過法で濾過すると、膜に付着
または目詰まりしている有機物をオゾン(O3 )等の酸
化剤により分解しながら濾過でき、極めて高い濾過流束
を得ることが出来る。即ち、オゾン(O3 )存在下での
濾過膜は、膜を通過するオゾン(O3 )によって膜に付
着した有機物を繰り返して攻撃するため、常時自己洗浄
しながら濾過を行うことになり、その結果、高い濾過流
束を得ることが出来る濾過方法となる。さらには、膜濾
過法では通常クロスフロー濾過法が用いられるが、オゾ
ンの併用あるいはオゾンとエアーバブリングの併用によ
って、デッドエンド濾過法でもクロスフロー法と同様の
高い濾過流束が得られ、動力エネルギーコストも低くで
きる。
[0012] However decomposition is filtered in the presence of an oxidizing agent such as ozone (O 3) to the raw water in the membrane filtration method, an organic substance adhering or clogging the membrane using an oxidizing agent such as ozone (O 3) It is possible to obtain a very high filtration flux while filtering. That is, ozone (O 3) filtration membrane in the presence, in order to attack repeatedly organics adhering to the membrane by ozone (O 3) which passes through the membrane, will be performing filtration while continuously self-cleaning, the As a result, a filtration method capable of obtaining a high filtration flux is obtained. Furthermore, the cross-flow filtration is usually used in the membrane filtration, but the combined use of ozone or the use of ozone and air bubbling can provide a high filtration flux similar to that of the cross-flow even in the dead-end filtration, and the power energy Cost can be reduced.

【0013】前記原水中にオゾンを添加する量としては
濾過水中にオゾンを0.05ppm以上残留させる量で
添加すれば好ましい。また、オゾン耐性膜をフッ素樹脂
膜で構成すれば好ましい。以下に、各単位プロセスの詳
細について説明する。 〔オゾン処理〕前記オゾン処理2において、添加するオ
ゾン(O3 )はオゾン単体でもオゾン化空気でも良く、
オゾン(O3 )の導入は、原水貯槽の適宜位置に設けた
散気管等を介して行えば良い。
The amount of ozone to be added to the raw water is preferably such that ozone remains in the filtered water in an amount of 0.05 ppm or more. Further, it is preferable that the ozone-resistant film is formed of a fluororesin film. The details of each unit process will be described below. [Ozone treatment] In the ozone treatment 2, ozone (O 3 ) to be added may be ozone alone or ozonized air.
Ozone (O 3 ) may be introduced through an air diffuser or the like provided at an appropriate position in the raw water storage tank.

【0014】また、水にオゾン(O3 )を添加する他の
構成として、オゾン耐性膜原水を誘導する管の途中でエ
ジェクター方式またはラインミキシング方式でオゾン
(O3)を添加しても良いし、あるいはオゾン耐性膜の
下部からオゾンを添加しても良い。オゾン(O3 )の添
加により原水1中に棲息する微生物類、例えばウイルス
類、バクテリア類、カビ類、原虫類を殺菌除去すること
が出来、更には、原水1中の懸濁物質や有機物をオゾン
分解すると共に後述するオゾン耐性膜に付着または目詰
まりしている有機物をオゾン分解しながら濾過でき、極
めて高い濾過流束を得ることが出来る。
[0014] As another configuration for adding ozone (O 3) in water, to the middle of the tube to induce ozone resistance film raw water may be added ozone (O 3) in the ejector system or line-mixing system Alternatively, ozone may be added from below the ozone resistant film. By adding ozone (O 3 ), microorganisms, such as viruses, bacteria, molds, and protozoa, which live in the raw water 1 can be sterilized and removed. Furthermore, suspended substances and organic matter in the raw water 1 can be removed. Organic substances adhering to or clogged with an ozone-resistant film to be described later can be filtered while decomposing with ozonolysis, and an extremely high filtration flux can be obtained.

【0015】即ち、オゾン(O3 )存在下での濾過膜
は、膜を通過するオゾン(O3 )によって膜に付着した
有機物を繰り返して攻撃するため、常時自己洗浄しなが
ら濾過を行うことになり、その結果、高い濾過流束を得
ることができる。また、オゾン耐性膜により濾過する際
に濾過速度の上昇を図るために濾過水に残留するオゾン
濃度は一般に0.05ppm 以上が好ましい。一方、微生
物類を殺菌し、臭気物質を除去するための原水へのオゾ
ン添加濃度は、原水水質にもよるが一般に0.5ppm
以上である。
[0015] That is, ozone (O 3) filtration membrane in the presence, in order to attack repeatedly organics adhering to the membrane by ozone (O 3) which passes through the membrane, to performing filtration while continuously self-cleaning As a result, a high filtration flux can be obtained. In addition, the concentration of ozone remaining in the filtered water is generally preferably 0.05 ppm or more in order to increase the filtration speed when filtering with an ozone-resistant membrane. On the other hand, the concentration of ozone added to raw water for sterilizing microorganisms and removing odorous substances is generally 0.5 ppm depending on the quality of raw water.
That is all.

【0016】また、オゾン濃度が高すぎると経済性が低
下することになるので、オゾン添加濃度は0.05〜5
0ppm 程度が好ましく、更に好ましくは0.1〜30pp
m の濃度のオゾン(O3 )を添加するのが良い。原水1
のオゾン(O3 )との接触時間は、膜構造の表面に付着
する有機物とオゾン水が連続的に供給されれば、特に接
触時間に留意する必要はない。通常、1秒〜30分の接
触時間が一般的である。 〔凝集剤添加〕膜濾過に際し、膜の孔径が精密濾過(M
F)領域となると孔径が大きくなるため、原水1中の懸
濁物質(SS)やバクテリア等が膜内に侵入する。従っ
て、懸濁物質やバクテリアが多い原水の場合には、高い
濾過流束を得るには多くのオゾン注入が必要になる。こ
のオゾン添加量を低減する目的で、オゾン添加に先立ち
ポリ塩化アルミニウム(PAC)、硫酸バン土、塩化第
一鉄、塩化第二鉄等の凝集剤を使用することが好まし
い。
On the other hand, if the ozone concentration is too high, the economic efficiency is reduced.
It is preferably about 0 ppm, more preferably 0.1 to 30 pp
It is preferable to add ozone (O 3 ) at a concentration of m. Raw water 1
The contact time with the ozone (O 3 ) need not be particularly considered as long as the organic matter and the ozone water adhering to the surface of the film structure are continuously supplied. Usually, a contact time of 1 second to 30 minutes is common. [Addition of flocculant] In membrane filtration, the pore size of
In the region F), the pore diameter becomes large, so that suspended substances (SS), bacteria, and the like in the raw water 1 enter the membrane. Therefore, in the case of raw water that is high in suspended solids and bacteria, a large amount of ozone injection is required to obtain a high filtration flux. For the purpose of reducing the amount of added ozone, it is preferable to use a coagulant such as polyaluminum chloride (PAC), bansulfate, ferrous chloride, and ferric chloride before adding ozone.

【0017】凝集剤の添加は、原水1を貯めるタンク等
の貯槽に添加しても良いし、あるいは、原水1をオゾン
添加を行う所に誘導する管の途中にラインミキシング方
式で添加しても良い。凝集剤の添加量は、原水1中に含
まれる懸濁物質を凝集できる量である必要があり、一般
的に原水1の1リットル中に1〜100mg添加すれば
よく、さらに好ましくは原水1の1リットル中に2〜5
0mg添加すればよい。 〔オゾン耐性膜による膜濾過処理〕オゾン耐性膜として
は、オゾン(O3 )により劣化しない濾過膜なら特に限
定されないが、例えば、オゾン耐性を有するセラミック
等の無機膜、ポリフッ化ビニリデン(PVDF)膜、ポ
リ4フッ化エチレン(PTFE)膜、エチレン−テトラ
フルオロエチレン共重合体(ETFE)膜、ポリフルオ
ロアクリレート(PFA)膜等のフッ素系樹脂膜等の有
機膜を適用することが出来る。特にポリフッ化ビニリデ
ン(PVDF)膜を使用すれば好ましい。
The coagulant may be added to a storage tank such as a tank for storing the raw water 1, or may be added to the raw water 1 by a line mixing method in the middle of a pipe for guiding the ozone addition. good. The amount of the coagulant added must be such that the suspended substances contained in the raw water 1 can be coagulated, and generally 1 to 100 mg is added to 1 liter of the raw water 1, more preferably 2 to 5 per liter
What is necessary is just to add 0 mg. [Film Filtration Treatment with Ozone-Resistant Membrane] The ozone-resistant membrane is not particularly limited as long as it is a filter membrane that is not deteriorated by ozone (O 3 ). For example, an inorganic membrane such as an ozone-resistant ceramic, a polyvinylidene fluoride (PVDF) membrane And an organic film such as a fluororesin film such as a polytetrafluoroethylene (PTFE) film, an ethylene-tetrafluoroethylene copolymer (ETFE) film, and a polyfluoroacrylate (PFA) film. It is particularly preferable to use a polyvinylidene fluoride (PVDF) film.

【0018】また、オゾン耐性膜の形状としては、中空
糸膜が好ましい。このようなオゾン耐性膜中に設けられ
る孔径としては、限外濾過(UF)膜から精密濾過(M
F)膜の孔径域を使用し得るが、膜の濾過流量が基本的
に高い点から精密濾過(MF)膜を使用するのが好まし
い。例えば、膜の孔径は0.001〜1μmが好まし
く、更に好ましくは0.05〜1μmが良い。
The ozone resistant membrane is preferably a hollow fiber membrane. The pore size provided in such an ozone-resistant membrane is determined by ultrafiltration (UF) membrane to microfiltration (M
F) The pore size range of the membrane may be used, but it is preferred to use a microfiltration (MF) membrane because the filtration flow rate of the membrane is basically high. For example, the pore size of the membrane is preferably 0.001 to 1 μm, and more preferably 0.05 to 1 μm.

【0019】濾過はデッドエンド濾過で行うが、クロス
フロー濾過と同等の高い濾過流束を得るためには、濾過
水中にオゾンを0.05ppm以上残留させるのが好ま
しい。エアーバブリングは、一定時間の濾過の後、濾過
を中止して膜面に気体を送り込み、膜面を振動させるこ
とにより膜の洗浄を行うものである。本来膜面に吸着す
る有機物は、オゾンにより分解され非吸着性にかわる
為、オゾン存在下では膜の孔を閉塞する非吸着性の物質
(有機物、無機物)がエアーバブリングにより有効にふ
るい落とされ、大きな洗浄効果が得られる。
The filtration is performed by dead-end filtration. To obtain a high filtration flux equivalent to that of the cross-flow filtration, it is preferable to leave 0.05 ppm or more of ozone in the filtered water. In air bubbling, after filtration for a certain period of time, filtration is stopped, gas is supplied to the membrane surface, and the membrane is washed by vibrating the membrane surface. Organic substances originally adsorbed on the membrane surface are decomposed by ozone and become non-adsorbent, and in the presence of ozone, non-adsorbable substances (organic and inorganic substances) that block the pores of the membrane are effectively eliminated by air bubbling. Great cleaning effect can be obtained.

【0020】エアーバブリングは、逆流洗浄と併用して
もよく、濾過ーエアーバブリングー逆流洗浄の順でもよ
いし、濾過ー逆流洗浄ーエアーバブリング、濾過ー(エ
アーバブリング同時逆流洗浄)の順で行っても良い。エ
アーバブリングは1秒以上6分以内が好ましい。1秒以
下ではその効果が少なく、エアーバブリング中は濾過を
行わないため6分以上では濾過水量が少なくなり好まし
くない。
Air bubbling may be used in combination with backwashing, or in the order of filtration-air bubbling-backwashing, or filtration-backflow washing-air bubbling, filtration- (simultaneous backwashing with air bubbling). May be. Air bubbling is preferably performed for 1 second to 6 minutes. If the time is less than 1 second, the effect is small, and no filtration is performed during air bubbling.

【0021】この様に、オゾン耐性膜を使用した膜濾過
法なのでデッドエンド濾過でも濾過流束が高く高効率で
あり、結果として全プロセスの設備費を低減出来るとと
もに、クロスフロー法に比べ動力エネルギーが低減でき
る。
As described above, since the membrane filtration method using an ozone-resistant membrane has a high filtration flux and high efficiency even in dead-end filtration, the equipment cost of the entire process can be reduced. Can be reduced.

【0022】[0022]

【発明の実施の形態】図により本発明に関わる高度水処
理方法の一実施形態を具体的に説明する。本発明に係る
浄水、下水、排水の高度処理方法のプロセスの一例は、
図1に示すように、原水に1中にオゾンを添加して該原
水1中の懸濁物質や有機物をオゾン分解するオゾン処理
2を行った後、オゾン耐性膜によるデッドエンド濾過処
理3を行う。あるいは図2に示すように原水に1中に凝
集剤を添加する4を行った後、オゾンを添加して懸濁物
質や有機物をオゾン分解するオゾン処理2を行った後、
オゾン耐性膜によるデッドエンド濾過処理3を行う。図
1、2には基本的なプロセスのみを示しており、必要に
応じてオゾン耐性膜による膜濾過処理の後段に活性炭処
理や逆浸透膜処理などの処理を行ってもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the advanced water treatment method according to the present invention will be specifically described with reference to the drawings. An example of the process of the advanced treatment method for purified water, sewage, and wastewater according to the present invention is as follows.
As shown in FIG. 1, after performing ozone treatment 2 for adding ozone to raw water 1 to ozone decompose suspended substances and organic substances in the raw water 1, dead-end filtration treatment 3 using an ozone-resistant membrane is performed. . Alternatively, as shown in FIG. 2, after performing 4 to add a flocculant to 1 in raw water, and performing ozone treatment 2 to add ozone to ozone decompose suspended substances and organic substances,
A dead end filtration process 3 using an ozone resistant film is performed. FIGS. 1 and 2 show only a basic process. If necessary, a treatment such as an activated carbon treatment or a reverse osmosis membrane treatment may be performed after the membrane filtration treatment using an ozone-resistant membrane.

【0023】以下、本発明の実施の形態を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail.

【0024】[0024]

【実施例1】原水1として、濁度が3〜4度、COD
(化学的酸素要求量)値が2mg/L、水温が12℃の
河川表流水を用い、図1に示すように、原水1→オゾン
処理2→オゾン耐性膜によるデッドエンド濾過処理3を
順次実施し、さらに後段に活性炭処理を行った。
Example 1 Raw water 1 has a turbidity of 3 to 4 degrees and COD
Using river surface water with a (chemical oxygen demand) value of 2 mg / L and a water temperature of 12 ° C., as shown in FIG. 1, raw water 1 → ozone treatment 2 → dead end filtration treatment 3 using an ozone resistant membrane was sequentially performed. Then, an activated carbon treatment was performed at a later stage.

【0025】オゾン耐性膜によるデッドエンド濾過処理
3においてオゾン耐性膜として0.1μm孔径のPVD
F(ポリフッ化ビニリデン)製精密濾過(MF)膜を使
用した。この0.1μm孔径のPVDF製中空糸モジュ
ールは、内径が0.7mmφ、外径が1.25mmφの糸を
1800本束ねて3インチ径のPVC(ポリ塩化ビニ
ル)ケーシングに納めた外圧型モジュールであって、膜
面積が7.0m2 、清澄水流束が毎時1.8m3 の時、
モジュール濾過圧が0.5Kgf/cm2 である。
In the dead end filtration process 3 using an ozone resistant membrane, a 0.1 μm pore diameter PVD is used as the ozone resistant membrane.
A microfiltration (MF) membrane made of F (polyvinylidene fluoride) was used. This PVDF hollow fiber module having a pore diameter of 0.1 μm is an external pressure type module in which 1,800 yarns having an inner diameter of 0.7 mmφ and an outer diameter of 1.25 mmφ are bundled and housed in a 3-inch diameter PVC (polyvinyl chloride) casing. When the membrane area is 7.0 m 2 and the clarified water flux is 1.8 m 3 / h,
The module filtration pressure is 0.5 kgf / cm 2 .

【0026】上記原水1を原水タンクへ供給し、ポンプ
で前記PVDF製中空糸モジュールに毎時1.5m3
量で供給する。ポンプの出口とモジュールの間にエジェ
クター方式のオゾン添加口が取り付けられており、空気
を原料としたオゾン(O3 )を添加する。オゾンを添加
するとデッドエンド濾過ではモジュール内に空気層がで
きるので、エジェクターとモジュールの間には、余剰の
空気を抜く目的でバッファータンクを設けた。モジュー
ル入口直前のオゾン濃度は2ppmであり、この時の濾
過水中の残留オゾン濃度は0.2ppmであった。活性
炭処理槽はLVが250m/日、SVが10/Hrにな
るよう設計したものを用いた。
The raw water 1 is supplied to a raw water tank and supplied to the PVDF hollow fiber module by a pump at an amount of 1.5 m 3 per hour. An ejector type ozone addition port is provided between the outlet of the pump and the module, and adds ozone (O 3 ) using air as a raw material. When ozone is added, an air layer is formed in the module by dead-end filtration. Therefore, a buffer tank was provided between the ejector and the module for the purpose of removing excess air. The ozone concentration immediately before the module entrance was 2 ppm, and the residual ozone concentration in the filtered water at this time was 0.2 ppm. The activated carbon treatment tank used was designed so that the LV was 250 m / day and the SV was 10 / Hr.

【0027】デッドエンド濾過は定流量濾過を行い、P
VDF製中空糸モジュールより濾水流束を毎時1.5m
3 で取り出すとともに、原水タンクへは濾過流量の毎時
1.5m3 の原水1を供給した。運転条件は濾過を10
分行った後逆流洗浄を15秒間行うという操作を繰り返
し、12時間毎に毎時2Nm3 の空気をモジュール下部
から供給してエアーバブリングを120秒間行った。そ
の結果、濾過流束のレベルが初期値の毎時1.5m3
3ヶ月間に亘って維持でき、その間の圧力上昇は0.0
3Kg/cm2 であった。
In the dead end filtration, constant flow filtration is performed.
1.5 m / h of drainage flux from VDF hollow fiber module
At the same time , the raw water was supplied to the raw water tank at a filtration flow rate of 1.5 m 3 per hour. The operating condition is 10 filtration.
After that, the operation of performing backflow cleaning for 15 seconds was repeated, and air of 2 Nm 3 / h was supplied from the lower part of the module every 12 hours to perform air bubbling for 120 seconds. As a result, the level of the filtration flux can be maintained at the initial value of 1.5 m 3 / h for 3 months, during which the pressure rise is 0.0
It was 3 kg / cm 2 .

【0028】活性炭処理槽出の水の分析を行った結果、
COD(化学的酸素要求量)値は0.4mg/L、濁度
は0.02度、大腸菌、一般細菌は検出されず、その他
の項目も飲料水としての基準を十分に満たしていた。
As a result of analyzing the water discharged from the activated carbon treatment tank,
The COD (Chemical Oxygen Demand) value was 0.4 mg / L, the turbidity was 0.02 degrees, Escherichia coli and general bacteria were not detected, and the other items sufficiently satisfied the criteria for drinking water.

【0029】[0029]

【比較例1】前記実施例1において、原水タンクからP
VDF製中空糸モジュールへの原水供給量を毎時3m3
とし、濾水流束を毎時1.5m3 で取り出し、濃縮循環
水として毎時1.5m3 の循環水を原水タンクに戻した
以外は実施例1と同様に行った。
[Comparative Example 1] In Example 1, the raw water tank
Raw water supply to the VDF hollow fiber module is 3 m 3 / h
And then, taken out drainage flux per hour 1.5 m 3, except that the return circulation water per hour 1.5 m 3 as a concentrate circulating water in the raw water tank was conducted in the same manner as in Example 1.

【0030】その結果、濾過流束のレベルが初期値の毎
時1.5m3 で3ヶ月に亘って維持でき、その間の圧力
上昇も0.03Kg/cm2 であったが、ポンプの動力
エネルギーが実施例1に比べ2倍必要であった。
As a result, the filtration flux level could be maintained at the initial value of 1.5 m 3 / h for 3 months, and the pressure increase during that time was 0.03 kg / cm 2 , but the power energy of the pump was Twice as much as Example 1 was required.

【0031】[0031]

【実施例2】原水1として濁度が10度、COD(化学
的酸素要求量)値が13〜20mg/リットル、BOD
(生物的酸素要求量)値が20〜30mg/リットル、
水温が25℃の下水二次処理水を用いた。デッドエンド
濾過の後段に活性炭処理槽を設けない以外は実施例1と
同様にしてデッドエンド濾過処理を行った。ただし、モ
ジュール入り口直前のオゾン濃度を10mg/リットル
とし、定流量濾過の濾水流束を1.3m3 で取り出すと
ともに、原水タンクへは濾過流束の毎時1.3m3 の原
水1を供給した。
Example 2 Raw water 1 has a turbidity of 10 degrees, a COD (chemical oxygen demand) of 13 to 20 mg / liter, and a BOD
(Biological oxygen demand) value is 20-30mg / l,
The sewage secondary treatment water whose water temperature was 25 ° C was used. The dead-end filtration was performed in the same manner as in Example 1 except that no activated carbon treatment tank was provided after the dead-end filtration. However, the ozone concentration immediately before the entrance of the module was 10 mg / liter, the filtrate flux of the constant flow filtration was taken out at 1.3 m 3 , and the raw water tank was supplied with 1.3 m 3 of raw water 1 per hour of the filtrate flux.

【0032】運転条件は濾過を10分行った後毎時2N
3 の空気をモジュール下部から供給してエアーバブリ
ングを60秒間行い、続いて逆流洗浄を15秒間行っ
た。その結果、濾過流束のレベルが初期値の毎時1.3
3 で5ヶ月間に亘って維持でき、この間の圧力上昇は
0.04Kg・cm2 であった。得られた濾水の水質
は、濁度が0.05度、COD値が12mg/リット
ル、BOD値が1mg/リットルと修景用水、親水用水
として十分な水質であった。
The operating conditions are as follows: after performing filtration for 10 minutes, 2N / hour
Air bubbling was performed for 60 seconds by supplying m 3 air from the lower part of the module, and then backwashing was performed for 15 seconds. As a result, the level of the filtration flux was 1.3 hours / hour of the initial value.
m 3 could be maintained for 5 months, during which the pressure rise was 0.04 Kg · cm 2 . The water quality of the obtained filtrate was 0.05 degrees in turbidity, the COD value was 12 mg / liter, and the BOD value was 1 mg / liter, which was sufficient water quality for landscape water and hydrophilic water.

【0033】[0033]

【実施例3】実施例2に於いて、エアーバブリングを行
わない以外は実施例2と同様に運転した。その結果、1
ヶ月後の圧力上昇は0.2Kg/cm2 とエアーバブリ
ングを行った実施例2より圧力上昇が大きかったが、少
ない動力エネルギーでの運転が可能であった。
Example 3 The same operation as in Example 2 was performed except that air bubbling was not performed. As a result, 1
After 2 months, the pressure rise was 0.2 kg / cm 2, which was larger than that in Example 2 in which air bubbling was performed, but operation with less power energy was possible.

【0034】[0034]

【実施例4】実施例2において、原水にポリ塩化アルミ
ニウム(PAC)を酸化アルミニウム換算量で原水に対
し10mg/リットルの割合で、ラインミキシング方式
で添加した後、モジュール入り口のオゾン濃度が5mg
/リットルになるようにオゾンを添加する以外は、実施
例2と同様にデッドエンド濾過を行った。その結果、濾
過流束のレベルが初期値の毎時1.3m3 で5ヶ月間に
亘って維持でき、この間の圧力上昇は0.04Kg・c
2 であった。
Example 4 In Example 2, after adding polyaluminum chloride (PAC) to the raw water by a line mixing method at a rate of 10 mg / liter relative to the raw water in terms of aluminum oxide, the ozone concentration at the module entrance was 5 mg.
The dead-end filtration was performed in the same manner as in Example 2 except that ozone was added so that the volume became 1 / liter. As a result, the level of the filtration flux can be maintained at the initial value of 1.3 m 3 / h for 5 months, during which the pressure rise is 0.04 kg · c.
m 2 .

【0035】すなわち、凝集剤の添加により少ないオゾ
ン量で、高い濾過流束を得ることができた。
That is, a high filtration flux could be obtained with a small amount of ozone by adding a coagulant.

【0036】[0036]

【発明の効果】本発明によれば、浄水や下排水の高度処
理において優れた処理水質を得ることができ、かつ低い
動力エネルギーで高い濾過流束を維持することができ
る。
According to the present invention, it is possible to obtain excellent treated water quality in advanced treatment of purified water and sewage, and to maintain high filtration flux with low power energy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る浄水、下水、排水の高度処理方法
の一実施態様を示すフロー図である。
FIG. 1 is a flowchart showing one embodiment of an advanced treatment method for purified water, sewage, and wastewater according to the present invention.

【図2】本発明に係る浄水、下水、排水の高度処理方法
の他の実施態様を示すフロー図である。
FIG. 2 is a flowchart showing another embodiment of the advanced treatment method for purified water, sewage, and drainage according to the present invention.

【符号の説明】[Explanation of symbols]

1…原水 2…オゾン処理 3…オゾン耐性膜によるデッドエンド濾過処理 4…凝集剤添加 1. Raw water 2. Ozone treatment 3. Dead end filtration treatment using an ozone resistant membrane 4. Coagulant addition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/78 ZAB C02F 1/78 ZAB 9/00 502 9/00 502R 502P 502G 504 504E Fターム(参考) 4D006 GA07 HA19 HA95 KA03 KA43 KA64 KA72 KB12 KB13 KB30 KC03 KC13 KD08 KD19 KD21 KE03Q KE24Q KE28Q MA01 MA22 MA33 MC28 MC29X MC30 PA01 PA02 PB04 PB08 PC54 4D050 AA02 AA15 AB04 AB06 AB07 BB02 BD03 BD08 CA06 CA09 CA16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/78 ZAB C02F 1/78 ZAB 9/00 502 9/00 502R 502P 502G 504 504E F-term (Reference) 4D006 GA07 HA19 HA95 KA03 KA43 KA64 KA72 KB12 KB13 KB30 KC03 KC13 KD08 KD19 KD21 KE03Q KE24Q KE28Q MA01 MA22 MA33 MC28 MC29X MC30 PA01 PA02 PB04 PB08 PC54 4D050 AA02 AA15 AB04 AB03 AB07 CA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浄水処理や下排水処理のための高度の水
処理方法であって、原水中にオゾンを添加すると共にオ
ゾン耐性膜を用いて加圧方式でデッドエンド濾過を行う
ことを特徴とする高度な水処理方法。
1. An advanced water treatment method for water purification treatment and sewage treatment, wherein ozone is added to raw water and dead-end filtration is performed by a pressurization method using an ozone-resistant membrane. Advanced water treatment methods.
【請求項2】 オゾンを添加するに先立って凝集剤を添
加することを特徴とする請求項1記載の高度な水処理方
法。
2. The advanced water treatment method according to claim 1, wherein a coagulant is added before adding ozone.
【請求項3】 デッドエンド濾過を行った後、またはデ
ッドエンド濾過を行う前に、エアーバブリングにより膜
の洗浄を行うことを特徴とする請求項1または請求項2
記載の高度な水処理方法。
3. The membrane is washed by air bubbling after performing dead-end filtration or before performing dead-end filtration.
Advanced water treatment method as described.
JP10170142A 1998-06-17 1998-06-17 Intensive water treatment method Pending JP2000000566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10170142A JP2000000566A (en) 1998-06-17 1998-06-17 Intensive water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10170142A JP2000000566A (en) 1998-06-17 1998-06-17 Intensive water treatment method

Publications (1)

Publication Number Publication Date
JP2000000566A true JP2000000566A (en) 2000-01-07

Family

ID=15899457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10170142A Pending JP2000000566A (en) 1998-06-17 1998-06-17 Intensive water treatment method

Country Status (1)

Country Link
JP (1) JP2000000566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263640A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for producing pure water by using ceramic membrane
CN114477574A (en) * 2022-03-17 2022-05-13 黄河水利职业技术学院 Sewage treatment device capable of performing multistage sewage filtration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263640A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for producing pure water by using ceramic membrane
JP4653535B2 (en) * 2005-03-25 2011-03-16 メタウォーター株式会社 Water purification production method
CN114477574A (en) * 2022-03-17 2022-05-13 黄河水利职业技术学院 Sewage treatment device capable of performing multistage sewage filtration

Similar Documents

Publication Publication Date Title
KR100384668B1 (en) Water Treating Method
JP6194887B2 (en) Fresh water production method
JP2009006209A (en) Cleaning method of hollow fiber membrane module
JP2001191086A (en) Water treating apparatus
JP4215381B2 (en) Water treatment method and apparatus
Mavrov et al. Treatment of low-contaminated waste water from the food industry to produce water of drinking quality for reuse
JP2005185985A (en) Method and apparatus for producing water
JP3712110B2 (en) Purification method of sewage secondary treated water
JPH11239789A (en) Advanced method for water treatment
JP5055746B2 (en) Water circulation system using membrane
WO2000027510A1 (en) Method for filtration with membrane
JPH06238136A (en) Method for washing filter membrane module
US20140076808A1 (en) Sanitary cold water treatment systems and methods
JP2000000566A (en) Intensive water treatment method
JP2005193119A (en) Method for clarifying filter membrane module with chemical
JP3444202B2 (en) Water treatment equipment
JP2005177744A (en) Producing apparatus of reclaimed water and producing method of reclaimed water
JP3986370B2 (en) Cleaning method for membrane filter module
JP2000024660A (en) Water treatment and device therefor
JPH0871556A (en) Method for desalinating seawater by reverse osmosis
JPH11165192A (en) Method for high degree treatment of sewage and effluent
JP3697938B2 (en) Wastewater treatment equipment
JP2003340247A (en) Device and method for treating water
JP2002035554A (en) Method for treating water and its apparatus
JPH10309576A (en) Water treatment by ozone resistant membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080627