JPH10309576A - Water treatment by ozone resistant membrane - Google Patents

Water treatment by ozone resistant membrane

Info

Publication number
JPH10309576A
JPH10309576A JP9132941A JP13294197A JPH10309576A JP H10309576 A JPH10309576 A JP H10309576A JP 9132941 A JP9132941 A JP 9132941A JP 13294197 A JP13294197 A JP 13294197A JP H10309576 A JPH10309576 A JP H10309576A
Authority
JP
Japan
Prior art keywords
ozone
activated carbon
membrane
module
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9132941A
Other languages
Japanese (ja)
Inventor
Kojiro Fujii
康二郎 藤井
Ikurou Matsuo
育朗 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9132941A priority Critical patent/JPH10309576A/en
Publication of JPH10309576A publication Critical patent/JPH10309576A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prolong the regeneration cycle of activated carbon by adding ozone into raw water, filtering by using a ozone resistant membrane and treating the filtrate with the activated carbon. SOLUTION: A subject raw water is supplied from a raw water tank to an external pressure type module at the rate of about 3 m<3> /hr by a pump and ozone using air as a starting material is introduced from an ozone ejecting port of an ejector system attached between the outlet of the pump and the module. The external pressure type module, which has, for example, about 1800 pieces of yarns having about 0.1 μm pore diameter and put in an about 3 inch diameter casing and has about 7.0 m<2> membrane surface area is made to about 1.8 m<3> /hr.module, 0.5 kg/cm<2> a clean water flow flux. Then, the concentration of ozone just before the inlet of the module is made to about 3.5 ppm. The resultant filtrate is retained in a tank and is introduced into an activated carbon vessel after the remaining ozone is decomposed with sodium thiosulfate. The, activated carbon uses, for example, a charcoal type and the thickness is made to 1 m. The degraded module is regenerated by ozone ejecting and an improved COD value is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、濾過膜を使用して
水を浄化するに際し、オゾン共存下でオゾン耐性膜によ
る高い濾過速度で膜濾過を行い、更にオゾン酸化で微生
物処理し易くなった膜濾過水を活性炭で可溶性有機物を
低減させると言う、オゾン処理と膜濾過と活性炭処理と
を組合せて相互の相乗効果による高効率で高度に水処理
できる水の浄化方法に関する。
The present invention relates to a method for purifying water using a filtration membrane, in which the membrane is filtered at a high filtration rate by an ozone-resistant membrane in the presence of ozone, and the microorganism is easily treated by ozone oxidation. The present invention relates to a method for purifying water that can efficiently and highly treat water by a synergistic effect of a combination of ozone treatment, membrane filtration, and activated carbon treatment, in which membrane filtered water is used to reduce soluble organic matter with activated carbon.

【0002】[0002]

【従来の技術】従来、水の浄化方法は取水した原水をま
ず塩素または次亜塩素酸ナトリウムを添加して殺菌して
浄化プロセス内で微生物等の増殖及びその悪影響を阻止
し、次いで懸濁物質量に対応する凝集剤を添加し、懸濁
物質をフロック化させ沈澱分離し、そのオーバーフロー
したフロックを次の砂濾過工程で分離し、原水を清澄化
すると言う凝集沈澱方法である。また、原水中の懸濁物
質が少ない時には凝集剤をラインミキシングし砂濾過す
る方法や加圧浮上させる方法もある。最近では、限外濾
過(UF)法や精密濾過(MF)法で上記方法を代替す
る技術も開発され小規模水道等で実用化が始まってい
る。
2. Description of the Related Art Conventionally, a method of purifying water is to sterilize the raw water withdrawn by first adding chlorine or sodium hypochlorite to prevent the growth of microorganisms and the adverse effects thereof in the purification process, This is a coagulation sedimentation method in which a flocculant corresponding to the amount is added, the suspended substance is flocculated and separated by sedimentation, the overflowed floc is separated in the next sand filtration step, and the raw water is clarified. When the amount of suspended solids in the raw water is small, there are a method of line-mixing the flocculant and filtering it with sand, and a method of floating under pressure. Recently, a technique to replace the above method by an ultrafiltration (UF) method or a microfiltration (MF) method has been developed, and practical use has begun in small-scale water supply and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、凝集沈
澱法は、最近の半導体産業で要求される除濁のレベルや
上水道で要求される原水中に極めて少量存在するクリプ
トスポロジウム等の原虫類の除去等に関してはそれらの
要求を満足するに至っていない。また、最近の膜分離法
は、凝集沈澱法の欠点である除濁のレベルや原虫やバク
レリヤ類等に対して対応可能な技術として脚光を浴びて
いるものの、経済性の観点によりその使用が限られてい
る。更に、UF法やMF法の膜分離では溶解性有機物
(DOC)や色度除去が半導体用途等で不十分な除去レ
ベルにある。従って、濁質物質の徹底除去、DOCの除
去や衛生上又は経済性の観点から更に優れた新規プロセ
スの出現が求められている。
However, the coagulation-sedimentation method removes protozoa such as cryptosporium which are present in very small amounts in raw water required for the level of turbidity required in the recent semiconductor industry and waterworks. However, these requirements have not been satisfied. In addition, recent membrane separation methods have been spotlighted as a technology that can cope with the level of turbidity and protozoa and bacterium, which are disadvantages of the coagulation sedimentation method, but their use is limited from the viewpoint of economy. Have been. Furthermore, in membrane separation by the UF method or the MF method, the removal of soluble organic substances (DOC) and chromaticity is at an insufficient level for semiconductor applications and the like. Therefore, there is a need for a thorough removal of suspended matter, removal of DOC, and the emergence of a new process that is more excellent in terms of hygiene or economy.

【0004】[0004]

【課題を解決するための手段】かかる課題について種々
検討した結果、オゾンの共存下またはオゾンと凝集剤の
存在下で膜濾過法を組合せ且つその濾過水を活性炭処理
することにより、各要素技術の相乗効果を実現し且つ経
済的要求を満足する新規水処理プロセスを提供できるこ
とを見出し、本発明を完成するに至った。即ち、本発明
は: 原水中にオゾンを添加し、オゾン耐性膜を用いて濾
過し、次いでその濾過水を活性炭で処理する水処理方法
を提供する。 濾過水中にオゾンを0.05ppm以上残留させる
量で添加する点にも特徴を有する。また、 原水にオゾンを添加するに先立ち、原水中に含まれ
る懸濁物質を凝集できる凝集剤を添加する点にも特徴を
有する。また、 オゾン耐性膜がフッ素樹脂膜である点にも特徴を有
する。また、 活性炭が微生物活性炭である点にも特徴を有する。
As a result of various studies on such a problem, it has been found that a combination of a membrane filtration method in the coexistence of ozone or in the presence of ozone and a flocculant, and a treatment of the filtered water with activated charcoal, makes it possible to use each element technology. It has been found that a novel water treatment process that achieves a synergistic effect and satisfies economic requirements can be provided, and has completed the present invention. That is, the present invention provides: a water treatment method in which ozone is added to raw water, filtered using an ozone-resistant membrane, and then the filtered water is treated with activated carbon. Another feature is that ozone is added in an amount that causes 0.05 ppm or more to remain in the filtered water. Another feature is that a coagulant capable of coagulating suspended substances contained in raw water is added before adding ozone to raw water. Another characteristic is that the ozone resistant film is a fluororesin film. Another characteristic is that the activated carbon is a microbial activated carbon.

【0005】以下、本発明を詳細に説明する。 (A) 本発明のハイブリッド化された膜濾過プロセスの
特徴等 従来技術の課題 (i) 膜濾過の課題 1)従来、膜濾過法で濾過すると、原水中の懸濁物質や
使用の膜の孔径以上の大きさの有機物の或る成分は膜で
阻止され、いわゆる濃度分極やケーキ相が発生する。同
時に、原水中の有機物は膜へ目詰まり又は膜内部の網状
組織に吸着を起こす。この結果、得られる膜の流束は清
澄水の流束に比べて数分の1から数十分の1にまで低下
し、膜濾過コストが往々にして高くなり、経済性上実用
性がなくなる。
Hereinafter, the present invention will be described in detail. (A) Characteristics of the hybridized membrane filtration process of the present invention, etc. Issues in the prior art (i) Issues in membrane filtration 1) Conventionally, filtration by the membrane filtration method results in suspended substances in raw water and pore size of the membrane used. A certain component of the organic substance having the above size is blocked by the film, and a so-called concentration polarization or cake phase occurs. At the same time, organic matter in the raw water clogs the membrane or adsorbs to the network inside the membrane. As a result, the flux of the resulting membrane is reduced from a fraction to a few tens of minutes compared to the flux of the clarified water, the cost of membrane filtration is often increased, and economically impractical. .

【0006】2)従って、オゾン等の酸化剤の存在下で
濾過すると、膜に付着又は目詰まりしている有機物を分
解させながら濾過でき、極めて高い流束を得ることがで
きる。即ち、オゾン存在下での膜濾過は、膜を通過する
オゾンによって膜に付着した有機物を繰り返し攻撃する
ため、常時自己洗浄しながら濾過を行うことになり、そ
の結果、高い流束を得ることができる濾過方法となる。
2) Therefore, when filtration is performed in the presence of an oxidizing agent such as ozone, the filtration can be performed while decomposing organic substances attached or clogged on the membrane, and an extremely high flux can be obtained. That is, in the membrane filtration in the presence of ozone, since organic substances attached to the membrane are repeatedly attacked by ozone passing through the membrane, filtration is performed while always performing self-cleaning, and as a result, a high flux is obtained. It becomes a possible filtration method.

【0007】3)この濾過法は、例えば、特許第2,5
70,496号公報により公知である。上記公報では、
オゾン及び/又は凝集剤と膜濾過との組合せにより、濾
過流束を高め、且つ水質の改善には、原水中に粉末状活
性炭や凝集剤等を加えて濾過する方法を提案している。
また、飲料に供するような高度処理された一定の水質を
得るためには、この方法ではまだ不十分である。
3) This filtration method is disclosed in, for example, Japanese Patent No. 2,5
No. 70,496. In the above publication,
In order to increase the filtration flux and improve the water quality by combining ozone and / or a flocculant with membrane filtration, a method of filtering by adding powdered activated carbon or a flocculant to raw water has been proposed.
In addition, this method is still insufficient for obtaining a highly treated and constant water quality such as for drinking.

【0008】(ii) オゾン処理の問題点 従来、オゾンと接触した原水中の可溶性有機物(通常、
フミン質、フルポ酸が主体であって微生物類により分解
し難い)は、オゾンと反応し酸化される。オゾンと接触
するために水のBOD値は却って高くなる。これは、フ
ミン分子中の二重結合がオゾンで酸化され、アルデヒ
ド、カルボニル基、カルボン酸基等になるためであり、
今まで微生物で消化されなかった有機物が消化され易く
なったためである。また、高分子が低分子化するために
同様に微生物消化が起こるためである。オゾン処理で高
くなったBOD値の水を上水道に用いる場合は、微生物
の増殖を抑えるための添加塩素量の増加等が必要となる
が、水質悪化を招くので、粒状活性炭等による後処理が
必要となってくる。
(Ii) Problems with ozone treatment Conventionally, soluble organic matter (usually,
Humic substances and fluoic acid, which are hardly decomposed by microorganisms), are oxidized by reacting with ozone. The BOD value of water is rather high due to contact with ozone. This is because the double bond in the humic molecule is oxidized by ozone and becomes an aldehyde, a carbonyl group, a carboxylic acid group, etc.
This is because organic substances that have not been digested by microorganisms are now easily digested. Another reason is that microbial digestion similarly occurs because the macromolecule is reduced in molecular weight. When water with a BOD value increased by ozone treatment is used for water supply, it is necessary to increase the amount of added chlorine to suppress the growth of microorganisms, but the water quality deteriorates, so post-treatment with granular activated carbon is required. It becomes.

【0009】(iii) 活性炭処理の問題点 1)特許第2,570,496号公報では、水質改善の
ために原水へ粉末状活性炭を添加し有機物吸着を行って
いる。該粉末状活性炭は膜によって阻止され、濃縮され
新たな濃縮廃棄物となる欠点がある。また、粉末状活性
炭に原水中の懸濁物質やコロイド物質が吸着するため、
その活性サイトが必ずしも可溶な有機物を有効に吸着す
るとは限らない。有機物の量が多いと、粉末状活性炭の
添加量が増え、膜濃縮度の限界が早く来て濾水回収量が
減ずる恐れがある。 2)これに対し、前段に膜設備を設けた活性炭は、膜濾
過によって懸濁物質やコロイド状物質が確実に除去され
るため、これらの付着等によって汚染を受けて表面の活
性サイトが減ずることがなくなる。従って、活性炭の再
生サイクルを延長することができて、経済的にも有効と
なる。
(Iii) Problems with activated carbon treatment 1) In Japanese Patent No. 2,570,496, powdery activated carbon is added to raw water to adsorb organic substances in order to improve water quality. The powdered activated carbon has the disadvantage that it is blocked by the membrane and is concentrated, resulting in new concentrated waste. In addition, suspended and colloidal substances in raw water are adsorbed on powdered activated carbon,
The active site does not always effectively adsorb soluble organic matter. If the amount of the organic matter is large, the amount of the powdered activated carbon to be added increases, and the limit of the membrane concentration comes earlier, and there is a possibility that the amount of collected drainage may decrease. 2) On the other hand, activated carbon provided with a membrane facility at the preceding stage is capable of reliably removing suspended substances and colloidal substances by membrane filtration, so that the active sites on the surface are reduced due to contamination due to such adhesion. Disappears. Therefore, the regeneration cycle of the activated carbon can be extended, which is economically effective.

【0010】 本発明の方法の特徴 本発明の方法は、基本的に、原水中にオゾンを添加し、
オゾン耐性膜を用いて濾過し、次いでその濾過水を活性
炭で処理する水処理方法である。 1)本発明の方法によると、膜濾過プロセスに有機物除
去プロセスを連結し、ハイブリット化することにより、
単位プロセスを単独に動かすことよりも画期的な効果を
得ている。
[0010] The method of the present invention basically comprises adding ozone to raw water,
This is a water treatment method in which filtration is performed using an ozone-resistant membrane, and then the filtered water is treated with activated carbon. 1) According to the method of the present invention, by connecting an organic matter removal process to a membrane filtration process and performing hybridization,
It has achieved a revolutionary effect over running the unit process alone.

【0011】2)本発明では、活性炭槽への処理の前
に、好ましくは滞留槽でオゾンを自己分解させるか、或
いはチオ硫酸ナトリウム等の還元剤により0.2ppm
の残留オゾンを分解させておき、次いで活性炭に微生物
を繁殖させた活性炭、即ち活性能を付与したバイオアク
テイブカーボン(BAC)を床とする槽中で処理する。
特に、微生物被覆活性炭を用いると、フミン質等がオゾ
ン処理により酸化され消化し易くなった有機物を分解す
ることができる。従って、活性炭の吸着に微生物消化機
能が付与され、より高度に処理された水質を得ることが
できる。また、オゾンでは処理し難いアンモニアも微生
物で消化させて減ずることが可能となる。
2) In the present invention, before the treatment in the activated carbon tank, ozone is preferably self-decomposed in a retention tank, or 0.2 ppm with a reducing agent such as sodium thiosulfate.
Is then decomposed, and then treated in a tank having activated carbon in which microorganisms are propagated on activated carbon, that is, bioactive carbon (BAC) provided with activation ability as a floor.
In particular, when the microorganism-coated activated carbon is used, humic substances and the like can be oxidized by the ozone treatment and organic substances which are easily digested can be decomposed. Therefore, a microbial digestion function is imparted to the adsorption of activated carbon, and a more highly treated water quality can be obtained. In addition, it is possible to reduce ammonia which is difficult to treat with ozone by digesting it with microorganisms.

【0012】3)上記特許第2,570,496号公報
の方法では、オゾンと活性炭とが共存するために、微生
物は生育することができず、その効果はない。しかも、
本発明の方法を上水道に適用する場合、前段の塩素殺菌
プロセスの必要がなくてトリハロメタンの生成がない。
また、COD値が低いため、消毒に使う塩素の濃度が低
くてすみ、トリハロメタンの発生が極力抑えられる。 4)以上の通り、本発明の方法は、原水→(必要に応じ
て凝集剤添加)→オゾン添加→オゾン耐性膜→微生物活
性炭処理からなるハイブリッドのプロセスであり、各々
の単位プロセスが相互に融合しあい、単位プロセス以上
の効果を発揮でき、高効率で高度処理ができる画期的プ
ロセスとなる。
3) In the method disclosed in Japanese Patent No. 2,570,496, since ozone and activated carbon coexist, microorganisms cannot grow and have no effect. Moreover,
When the method of the present invention is applied to waterworks, there is no need for a previous chlorine disinfection process and no trihalomethane formation.
Further, since the COD value is low, the concentration of chlorine used for disinfection can be low, and the generation of trihalomethane can be suppressed as much as possible. 4) As described above, the method of the present invention is a hybrid process consisting of raw water → (addition of a coagulant if necessary) → addition of ozone → ozone resistant membrane → microbial activated carbon treatment, and each unit process is mutually fused. However, this is an epoch-making process that can exhibit more effects than the unit process and can perform highly efficient and advanced processing.

【0013】(B) オゾン処理 オゾンの導入 1)オゾンはオゾン単体でもオゾン化空気でも良く、原
水を貯めるタンク等の貯槽への導入はタンクの適宜位置
に設けた散気管等を介して行えば良い。また、タンクか
らオゾン耐性膜に原水を誘導する管の途中でエジェクタ
ー方式又はラインミキシング方式でオゾンを注入しても
良い。 2)オゾンの添加により、通常河川や湖沼等の原水中に
生息する原水中の微生物類、例えばウイルス類、バクテ
リヤ類、カビ類、クリプトスポリジウム等の原虫類を殺
菌・除去する。
(B) Ozone treatment Introduction of ozone 1) Ozone may be ozone alone or ozonized air. The introduction of ozone into a storage tank such as a tank for storing raw water may be performed through an air diffuser provided at an appropriate position in the tank. good. Further, ozone may be injected by an ejector method or a line mixing method in the middle of a pipe for guiding raw water from a tank to an ozone-resistant film. 2) Addition of ozone sterilizes and removes microorganisms in raw water that normally inhabit raw water such as rivers and lakes, for example, protozoa such as viruses, bacteria, molds, and cryptosporidium.

【0014】 オゾン濃度等 1)オゾン耐性膜濾過により浄水する際に、濾過速度の
上昇を図り、微生物類を殺菌し、臭気物質を除去するた
めのオゾン注入濃度は、一般に0.05ppm以上であ
る。オゾン濃度が高すぎると経済性を下げることになる
ので、1〜10ppm、好ましくは2〜5ppmが良
い。 2)原水のオゾンとの接触時間は膜構造の表面に付着し
た有機物とオゾン水が連続的に濾過され供給されれば、
特に接触時間に留意する必要はない。通常、1〜20m
g/L、好ましくは2〜10mg/Lの注入率で、0.
5〜30分、好ましくは5〜20分程度の接触時間が一
般的である。
Ozone Concentration 1) When purifying water by ozone-resistant membrane filtration, the ozone injection concentration for increasing the filtration speed, sterilizing microorganisms and removing odorous substances is generally 0.05 ppm or more. . If the ozone concentration is too high, the economic efficiency is reduced. Therefore, 1 to 10 ppm, preferably 2 to 5 ppm is good. 2) The contact time of raw water with ozone is as long as organic substances and ozone water attached to the surface of the membrane structure are continuously filtered and supplied.
It is not necessary to pay particular attention to the contact time. Usually 1-20m
g / L, preferably 2 to 10 mg / L, at an injection rate of 0.1 g / L.
The contact time is generally 5 to 30 minutes, preferably about 5 to 20 minutes.

【0015】(C) オゾン耐性膜の材質等 1)オゾン耐性膜としては、オゾンにより劣化しない濾
過膜なら特に制限されないが、例えば、セラミック等の
無機膜;オゾン耐性を有するポリフッ化ビニリデン(P
VdF)、ポリ4フッ化エチレン(PTFE)膜、エチ
レン−テトラフルオロエチレン共重合体(ETFE)
膜、ポリフルオロアクリレート(PFA)膜等のフッ素
系樹脂膜等の有機膜を挙げることができるが、ポリフッ
化ビニリデン膜の使用が好ましい。 2)このようなオゾン耐性膜中に設けられる孔径として
は、UFからMF単位の孔径域を使用しうるが、膜濾過
法の弱点である経済性追求の点、及び膜の透水量が基本
的に高い点からMFの使用が良い。例えば望ましい孔径
は0.001〜1μm、好ましくは0.05〜1μmで
ある。
(C) Materials of the ozone-resistant film 1) The ozone-resistant film is not particularly limited as long as it is a filter film which does not deteriorate by ozone. For example, an inorganic film such as ceramic; polyvinylidene fluoride (P) having ozone resistance
VdF), polytetrafluoroethylene (PTFE) membrane, ethylene-tetrafluoroethylene copolymer (ETFE)
An organic film such as a film and a fluorine-based resin film such as a polyfluoroacrylate (PFA) film can be used, but a polyvinylidene fluoride film is preferably used. 2) As the pore diameter provided in such an ozone-resistant membrane, a pore diameter range from UF to MF can be used, but the point of pursuing economic efficiency, which is a weak point of the membrane filtration method, and the water permeability of the membrane are fundamental. The use of MF is good because of its high cost. For example, a desirable pore diameter is 0.001 to 1 μm, preferably 0.05 to 1 μm.

【0016】(D) 凝集剤の併用 1)膜濾過に際し、膜の孔径がMF領域となると孔径が
大きくなるため、原水中の粘度物やバクテリヤ等が膜内
に浸入する。特に粘度物による目詰まりは通常の膜濾過
方式では洗浄できない。従って、MF膜を使用する膜濾
過法では、一般にポリ塩化アルミニウム(PAC)等の
凝集剤を使用することが好ましい。凝集剤の使用を必要
としない場合の膜の孔径は0.1μm以下であり、それ
以上の孔径の膜では凝集剤を添加して微少な懸濁物質を
粗大化させないと、目詰まりのため流束が低下し膜の寿
命が短くなる傾向がある。
(D) Combined Use of Coagulant 1) During membrane filtration, when the pore size of the membrane is in the MF region, the pore size increases, so that viscous substances, bacteria, and the like in raw water enter the membrane. In particular, clogging with a viscous substance cannot be washed by a normal membrane filtration method. Therefore, in a membrane filtration method using an MF membrane, it is generally preferable to use a flocculant such as polyaluminum chloride (PAC). When the use of a flocculant is not necessary, the pore size of the membrane is 0.1 μm or less, and in the case of a membrane having a pore size larger than that, unless a flocculant is added to coarsen a minute suspended substance, flow due to clogging occurs. The bundle tends to decrease and the life of the membrane tends to shorten.

【0017】2)凝集剤を併用し粗大化させると、0.
4〜1μm程度の孔径のMF膜まで使用可能となり、高
い流束で良好な経済性が得られる。このように、凝集剤
を併用する場合は、有機懸濁物質や高分子物質が凝集剤
中に取り込まれ、オゾンとの接触が少なくなるので、必
要なオゾン量は凡そ半減できる効果が期待できる。 3)凝集剤の添加量は、原水中に含まれる懸濁物質を凝
集できる量である必要があり、一般に、1〜100mg
/原水1L、好ましくは2〜50mg/原水1Lであ
る。
2) When coarsening is performed by using a coagulant together,
It is possible to use an MF membrane having a pore diameter of about 4 to 1 μm, and good economics can be obtained with a high flux. As described above, when a coagulant is used in combination, an organic suspended substance or a high-molecular substance is taken into the coagulant and contact with ozone is reduced, so that an effect that the necessary amount of ozone can be reduced by almost half can be expected. 3) The amount of the coagulant to be added needs to be an amount capable of coagulating a suspended substance contained in raw water, and is generally 1 to 100 mg.
/ L of raw water, preferably 2 to 50 mg / L of raw water.

【0018】(E) 活性炭による後処理 本発明の工程の1つである活性炭による後処理は、粒状
活性炭を含む槽にオゾン耐性膜を透過した濾水を導き、
後処理することからなる。活性炭としては、微生物被覆
活性炭が好ましく使用できる。即ち、活性炭に微生物を
繁殖させた活性炭、即ち活性能を付与したバイオアクテ
イブカーボン(BAC)を床とする槽中での処理であ
る。特に、該微生物被覆活性炭を用いると、フミン質等
がオゾン処理により酸化され消化し易くなった有機物を
除去することができる。従って、活性炭の吸着に微生物
消化機能が付与され、より高度に処理された水質を得る
ことができる。また、オゾンでは処理し難いアンモニア
も微生物で消化させて減ずることが可能となる。
(E) Post-Treatment with Activated Carbon In the post-treatment with activated carbon, one of the steps of the present invention, the filtrate permeated through the ozone-resistant membrane is introduced into a tank containing granular activated carbon,
Post-processing. As the activated carbon, microorganism-coated activated carbon can be preferably used. That is, the treatment is performed in a tank having activated carbon obtained by propagating microorganisms on activated carbon, that is, bioactive carbon (BAC) provided with activation ability as a floor. In particular, when the microorganism-coated activated carbon is used, humic substances and the like are oxidized by ozone treatment, and organic substances which are easily digested can be removed. Therefore, a microbial digestion function is imparted to the adsorption of activated carbon, and a more highly treated water quality can be obtained. In addition, it is possible to reduce ammonia which is difficult to treat with ozone by digesting it with microorganisms.

【0019】[0019]

【実施例】本発明を下記の実施例により具体的に説明す
るが、これらは本発明の範囲を制限しない。 (実施例1) (1) 河川表流水 濁度 :10〜20度 COD値:6〜8ppm 水温 :16℃ (2) 浄水プロセス 原水→オゾン処理→0.1μmPVdFMF膜濾過→滞
留槽→活性炭処理
The present invention will be illustrated by the following examples, which do not limit the scope of the present invention. (Example 1) (1) River surface water Turbidity: 10 to 20 degrees COD value: 6 to 8 ppm Water temperature: 16 ° C. (2) Water purification process Raw water → ozone treatment → 0.1 μm PVdFMF membrane filtration → retention tank → activated carbon treatment

【0020】(3) 上記対象原水を原水タンクへ供給
し、ポンプで0.1μm孔径の糸1800本を3インチ
径のPVCケーシングに納めた外圧型モジュール(膜面
積;7.0m2 、清澄水流束;1.8m3 /時・モジュ
ール;0.5kg/cm2 )に3m3 /時の量で供給す
る。ポンプの出口とモジュールの間にエジェクター方式
のオゾン注入口が取り付けられており、空気を原料とし
たオゾンを導入する。モジュール入口直前のオゾン濃度
は3.5ppmであった。
(3) An external pressure type module (membrane area: 7.0 m 2 , clear water flow) in which the target raw water is supplied to a raw water tank, and 1800 threads having a pore diameter of 0.1 μm are accommodated in a 3-inch diameter PVC casing by a pump. Bundles: 1.8 m 3 / hour module; 0.5 kg / cm 2 ) are supplied at a rate of 3 m 3 / hour. An ejector-type ozone injection port is provided between the pump outlet and the module to introduce ozone using air as a raw material. The ozone concentration immediately before the module entrance was 3.5 ppm.

【0021】定流量濾過のため設定流束を1.7m3
時・モジュール、16℃に設定した時の平均濾過圧が
0.5kg/cm2 であり、2ケ月間安定に推移した。
濾過速度は5.8m/日の高流束であった。1.3m3
/時の循環水量を原水タンクに戻し、原水タンクへは濾
水量の1.7m3 /時の河川表流水を供給した。濾過水
中のオゾン濃度は0.2ppmに設定し、ポンプ出口の
オゾン濃度を連動させた。モジュールは、20分に30
秒の割合で濾水タンクより濾水で逆洗し、その逆洗排水
は膜濾過装置系外へ排出した。この時の濾水のCOD値
は4〜5.5であり、約1/3の低下を示した。
For a constant flow rate filtration, the set flux is 1.7 m 3 /
When the module and the module were set at 16 ° C., the average filtration pressure was 0.5 kg / cm 2 , which was stable for two months.
The filtration speed was 5.8 m / day high flux. 1.3m 3
The amount of circulating water per hour was returned to the raw water tank, and the raw water tank was supplied with 1.7 m 3 / hour of the surface drainage of the river. The ozone concentration in the filtered water was set to 0.2 ppm, and the ozone concentration at the pump outlet was linked. Module is 30 minutes in 20 minutes
It was backwashed with filtrate from the filtrate tank at a rate of seconds, and the backwash drainage was discharged out of the membrane filtration system. At this time, the COD value of the drainage water was 4 to 5.5, indicating a decrease of about 1/3.

【0022】濾水を0.7m3 のタンクに滞留させ、チ
オ硫酸ソーダで残留オゾンを分解させ、次いで活性炭槽
へ導いた。活性炭は木炭系を使い、1mの厚みとした。
2ケ月後の活性炭出口のCOD値は0.3〜0.8pp
mであった。本装置でオゾン注入を停止すると、モジュ
ール流束は0.35m3 /時・モジュールまで低下し、
安定域に達した。この時の濾過速度は1.2m/日の値
であり、分画分子量は13,000、PAN UF膜と
同一値になった。この時点で再度オゾンを注入し始める
と、1時間で1.7m3 /時・モジュールへ復帰した。
オゾン注入を停止した時のCOD値は5.2ppmであ
った。
The filtrate was retained in a 0.7 m 3 tank, the residual ozone was decomposed with sodium thiosulfate, and then led to an activated carbon tank. Activated carbon was charcoal-based and had a thickness of 1 m.
The COD value at the activated carbon outlet after two months is 0.3-0.8 pp
m. When the ozone injection is stopped in this device, the module flux decreases to 0.35 m 3 / h / module,
The stable area has been reached. At this time, the filtration speed was a value of 1.2 m / day, the molecular weight cut off was 13,000, which was the same value as that of the PAN UF membrane. When the injection of ozone was started again at this point, the module returned to 1.7 m 3 / hour / module in one hour.
When the ozone injection was stopped, the COD value was 5.2 ppm.

【0023】(実施例2)実施例1の装置に0.4μm
のPVdF膜モジュール(膜面積;7.0m2 )に取り
換えた。原水タンクに凝集剤PACを25ppm添加
し、pH=7にNaOHで調整した。PACを入れ、懸
濁物質を凝集させて、オゾンを導入した。このときの水
温は約20℃であった。濾過水側のオゾン濃度は0.2
ppmになるようにオゾン発生機からオゾンを原水供給
ラインへ導入した。この時のオゾン濃度は2〜2.5p
pmであった。PACを添加することにより、原水へ注
入するオゾン濃度を低下させることができた。
(Embodiment 2) 0.4 μm to the apparatus of Embodiment 1
Was replaced with a PVdF membrane module (membrane area: 7.0 m 2 ). 25 ppm of a flocculant PAC was added to the raw water tank, and the pH was adjusted to 7 with NaOH. The PAC was charged, the suspended material was agglomerated, and ozone was introduced. The water temperature at this time was about 20 ° C. Ozone concentration on the filtered water side is 0.2
Ozone was introduced from the ozone generator to the raw water supply line so as to be ppm. The ozone concentration at this time is 2-2.5p
pm. By adding PAC, the concentration of ozone injected into the raw water could be reduced.

【0024】循環供給量を4.5cm3 /時とし、モジ
ュール設定水量を2.5m3 /時・20℃とし、濃縮循
環水を2.0m3 /時とした。この時の平均濾過圧は
0.4kg/cm2 であり、濾過圧は安定に推移した。
このときの流束は8.5m/日にも及ぶ高流束であっ
た。この時の原水のCOD値は6.8ppmであり、濾
水のCOD値は2.7ppmであった。微生物活性炭槽
出口のCOD値は0.5ppmであった。
The circulating supply rate was 4.5 cm 3 / hour, the set water amount of the module was 2.5 m 3 / hour at 20 ° C., and the concentrated circulating water was 2.0 m 3 / hour. At this time, the average filtration pressure was 0.4 kg / cm 2 , and the filtration pressure remained stable.
The flux at this time was as high as 8.5 m / day. At this time, the COD value of the raw water was 6.8 ppm, and the COD value of the filtrate was 2.7 ppm. The COD value at the outlet of the microorganism activated carbon tank was 0.5 ppm.

【0025】[0025]

【発明の効果】本発明の方法によると、オゾン添加と活
性炭処理とを組合せたので、原水中の溶解性有機物の量
を低減できる。また、本発明ではオゾン処理時に凝集剤
を添加したので、オゾン添加量の減量と濾過速度の向上
が可能となる。要するに、以下の効果が期待できる。 (イ) 高流束の高効率なプロセスの提供、 (ロ)簡略化され
た浄水プロセスの提供、従って、メンテナンス性が良好
である。 (ハ)良好な処理水質(オゾン、膜処理、活性炭処理の組
合せ)、 (ニ)省スペース化、 (ホ)トリハロメタンの発生
が抑えられる。 (ヘ)オゾンの添加により、ウイルス類、バクテリヤ類、
カビ類、クリプトスポリジウム等の原虫を殺菌し、濾別
しているため、濾水中の微生物対策は万全である。
According to the method of the present invention, since the addition of ozone and the treatment with activated carbon are combined, the amount of soluble organic matter in raw water can be reduced. Further, in the present invention, the coagulant is added at the time of the ozone treatment, so that the amount of added ozone can be reduced and the filtration speed can be improved. In short, the following effects can be expected. (B) Providing a high-efficiency process with a high flux, (b) Providing a simplified water purification process, and thus maintaining good maintenance. (C) Good treated water quality (combination of ozone, membrane treatment and activated carbon treatment), (d) space saving, and (e) suppression of trihalomethane generation. (F) By adding ozone, viruses, bacteria,
Protozoa such as molds and Cryptosporidium are sterilized and filtered off, so that measures against microorganisms in the filtrate are thorough.

フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 9/00 502 C02F 9/00 502H 503 503A 504 504B 504E Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 9/00 502 C02F 9/00 502H 503 503A 504 504B 504E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水中にオゾンを添加し、オゾン耐性膜
を用いて濾過し、次いでその濾過水を活性炭で処理する
ことを特徴とする水処理方法。
1. A water treatment method comprising adding ozone to raw water, filtering using ozone-resistant membrane, and treating the filtered water with activated carbon.
JP9132941A 1997-05-08 1997-05-08 Water treatment by ozone resistant membrane Pending JPH10309576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9132941A JPH10309576A (en) 1997-05-08 1997-05-08 Water treatment by ozone resistant membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9132941A JPH10309576A (en) 1997-05-08 1997-05-08 Water treatment by ozone resistant membrane

Publications (1)

Publication Number Publication Date
JPH10309576A true JPH10309576A (en) 1998-11-24

Family

ID=15093085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9132941A Pending JPH10309576A (en) 1997-05-08 1997-05-08 Water treatment by ozone resistant membrane

Country Status (1)

Country Link
JP (1) JPH10309576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035554A (en) * 2000-07-24 2002-02-05 Nkk Corp Method for treating water and its apparatus
JP2006263640A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for producing pure water by using ceramic membrane
CN105293786A (en) * 2015-11-27 2016-02-03 湖北君集水处理有限公司 System and method for advanced treatment of dyeing and printing wastewater by virtue of adsorption catalytic oxidation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035554A (en) * 2000-07-24 2002-02-05 Nkk Corp Method for treating water and its apparatus
JP2006263640A (en) * 2005-03-25 2006-10-05 Ngk Insulators Ltd Method for producing pure water by using ceramic membrane
JP4653535B2 (en) * 2005-03-25 2011-03-16 メタウォーター株式会社 Water purification production method
CN105293786A (en) * 2015-11-27 2016-02-03 湖北君集水处理有限公司 System and method for advanced treatment of dyeing and printing wastewater by virtue of adsorption catalytic oxidation method

Similar Documents

Publication Publication Date Title
US6464877B1 (en) Water treating method
US7678278B2 (en) Method of treating water with an inorganic powder reagent
JP3698093B2 (en) Water treatment method and water treatment apparatus
JP4309633B2 (en) Water treatment method
JP2008229418A (en) Method and apparatus for industrial water treatment
JP2001191086A (en) Water treating apparatus
JP3338505B2 (en) Method for membrane purification of surface water with improved recovery rate and method of operating the same
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JP4318518B2 (en) Water purification treatment method and water purification treatment system
JP4013565B2 (en) Manganese removal method and apparatus
JPH10192851A (en) Water purifying treatment apparatus
JPH11253940A (en) Purified water treatment
JP3384029B2 (en) Water purification device and water purification method
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
JPH10309576A (en) Water treatment by ozone resistant membrane
JPH119973A (en) Method for filtration back-washing of membrane module for turbidity removal
JPH11239789A (en) Advanced method for water treatment
JP3444202B2 (en) Water treatment equipment
JP2002346347A (en) Method and apparatus for filtration
WO2000027510A1 (en) Method for filtration with membrane
JP3986370B2 (en) Cleaning method for membrane filter module
JP3609470B2 (en) Water purification method and purification device
JP2011218267A (en) Water processing method and water processing device
JP3697938B2 (en) Wastewater treatment equipment