IL141860A - Stent with variable features - Google Patents
Stent with variable featuresInfo
- Publication number
- IL141860A IL141860A IL141860A IL14186097A IL141860A IL 141860 A IL141860 A IL 141860A IL 141860 A IL141860 A IL 141860A IL 14186097 A IL14186097 A IL 14186097A IL 141860 A IL141860 A IL 141860A
- Authority
- IL
- Israel
- Prior art keywords
- stent
- rows
- cells
- lumen
- row
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0018—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0029—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0042—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in shape-memory transition temperatures, e.g. in martensitic transition temperature, in austenitic transition temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Description
STENT WITH VARIABLE FEATURES Eitan, Pearl, Latzer & Cohen-Zedek Advocates, Patent Attorneys & Notaries P-1303-IL1 STENT WITH VARIABLE FEATURES TO OPTIMIZE SUPPORT Related Applications The present patent application has been divided out from copending patent Application Number 121345.
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION The present invention relates generally to stents for implanting into a living body. In particular, the present invention relates to intraluminal stents especially suited for implanting in a variety of lumens having variable characteristics, such as variable curvature, side branching, variable diameter, variable wall compliance or "end effects" of either the lumen, as found, e.g., in ostia, or the stent as the parameters may change at its ends.
DESCRIPTION OF THE PRIOR ART It is well known to use a stent to expand and impar support to different bodily conduits, such as blood vessels, by expanding a tube-like structure inside the vessel requiring support against collapse or closure. U.S. Patent No. 5,449,373 shows a stent preferably used for vascular implantation as part of a balloon angioplasty procedure. The stent of U.S. Patent No. 5,449,37 may be delivered through, or implanted in, a curved vessel . One shortcoming of conventional stents is that they may have deficiencies due to "end effects" where th ends of the stent tend to "flare out" during insertion o after expansion or have a decreased radial force at the end. Still another shortcoming of conventional stents i they do not have different characteristics, (e.g., flexi bility and rigidity) , to accommodate any changing characteristics of the section of the lumen requiri different stent characteristics.
WO 96/26689 discloses a segmented articulated stent of open structure comprised of end-connected struts making up the segments with angular mterconnects between segments. The open structure of this stent embodiment does not provide desirable coverage or support of the body lumen in which it is implanted. Further, the angular interconnects between segments do not contribute any flexibility to the stent as they do not flex or. bend during normal use. i EP 541 443 discloses -a stent for implanting in a body lumen having a mesh of unconnected criss-crossing wires disposed « . j between axial ly rigid graft sections. One shortcoming of this stent is the lack of radial support to the body lumen: in the meshed wire * section. In addition, like other conventional stents, the rigid graft end sections are susceptible to "flare out" during insertion or after expansion.
SUMMARY AND OBJECTS OF THE INVENTION The present invention provides for various embodiments of an intraluminal stent which includes varied or different mechanical properties along the axial length of the stent in order to improve stent end effects, or to accommodate variable vessel features. As a result, the various embodiments of the present invention allow for variable porperties such as flexibility or radial support between, axial regions of the stent. These varied, properties can be accomplished- in a number of different ways.
It is an object of this -invention to provide an expandable stent for treating, a lumen having a unique characteristic along a portion of the lumen, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the unique characteristic of that portion of the lumen in contact with, the .adapted row or rows.
In one embodiment, one of the plurality- of -rows disposed between the proximal end and the distal end is provided with a cell size that is larger than the cells in the remaining rows.
It is a further object of this" invention to provide an expandable stent for treating a lumen having a non-uniform diameter, comprising: a. plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one. of the rows is adapted to accommodate the non-uniform diameter of the portion of the lumen in contact with the adapted row. 2a expandable stent for treating a lumen having a non-uniform radial force, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the non-uniform radial force of the portion of the lumen in contact with the adapted row.
It is a further object of this invention to provide an expandable stent for treating a lumen having a non-uniform longitudinal flexibility, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the non-uniform longitudinal flexibility of the portion of the lumen in contact with the adapted row.
Passages which are not in the ambit of the claims do not belong to the invention. The scope of protection is as defined in the claims, and as stipulated in the Patent Law ( 1967). 3 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows an illustration of the basic pattern of an embodiment of the stent of the present invention, shown in an unexpanded state,- Fig. 2 shows an illustration of the pattern of the stent of Fig. 1, in a partially expanded state,- Fig. 3 is a side view showing a conventional stent and a stent manufactured in accordance with one embodiment of the invention; Fig. 4 shows the stents of Fig. 3 crimped on a balloon catheter and bent prior to expansion- Fig. 5 shows the stents of Fig. 4 after they have been expanded in a curve; Fig. 6 shows the stents of Fig. 3 partially expanded on a substantially straight balloon catheter; Fig. 7 shows an alternative embodiment of the invention provided with a shortened C-shaped loop and in which two rows of cells are provided with thinner gauge U-shaped loops; Fig. 8 shows the stent of Fig. 7 partially expanded on a substantially straight balloon catheter; Fig. 9 shows the stent of Fig. 7 after it has been expanded on a curved catheter as it would be when inserted around a bend in a vessel ; Fig. 10 shows an alternative embodiment of a stent constructed in accordance with the invention and Fig. 11 shows the "S" or "Z" shaped loops constructed in accordance with the invention.
DETAILED DESCRIPTION OF THE INVENTION Fig. 1 shows the general configuration of one embodiment of a stent 1 fabricated in accordance with th present invention. The stent 1 may be fabricated of bio ' compatible materials such as stainless steel 316L, gold, tantalum, nitinol or other materials well known to those skilled in the art as suitable for this purpose. The dimensions and gauge of material utilized may be varied as specific applications dictate. The stents of the present invention generally may be constructed in a manner in accordance with the stent described in U.S. Patent No. 5,733,303 , the disclosure of which is incorporated herein by reference .
Fig. 1 is a side view of the distal end 2 of stent : of the present invention, showing the general pattern of the stent. As shown in Figs. 1 and 2 the pattern may be described as a plurality of cells 3 and 3'. Each cell 3 is provided with a first member 4, a second member 5, a third member 6, and a fourth member 7. A first C-shaped loop 10 is disposed between the first member 4 and the third member 6 and a second C-shaped loop 11 is disposed between the second member 5 and the fourth member 7. In each of the cells 3, first member 4, second—member-—5-,— third member 6, and fourth member 7 are substantially equal. Thus, first C-shaped loop 10 is displaced a distance Dl and second C-shaped loop 11 is displaced a distance D2 from the center of cell 3. In a preferred embodiment, Dl is substantially equal to D2. A first flexible connector 8 is disposed between the first member 4 and the second member 5 and a second flexible connector 9 is disposed between third member 6 and fourth member 7. The flexible connectors 8 and 9 may be made in a variety of shapes, e.g., an "S" or a "Z" shape as shown in FIG. 11. In a preferred embodiment, a "U" .shape is utilized as shown in Figs. 1 to 10.
Fig. 1 shows the pattern of stent 1 in an unexpanded state, i.e. , that state in which the stent 1 is first inserted in a particular vessel in which a balloon angioplasty procedure is to be performed, but before balloon inflation. Fig. 2 shows the pattern of stent 1 in a partially expanded state, i.e., that state after the balloon has been expanded, e.g. by a balloon, and the state in which the stent 1 remains in the vessel which it supports. The plurality of interconnected cells 3 and 3' form a plurality of interconnected rows 25, 26, 27, and 28 of cells disposed along the longitudinal axis of the stent 1. Figs. 1 and 2 show a distal row 25 disposed at the distal end 2, a row 26 adjacent to and proximal to distal row 25, a row 27 adjacent to and proximal to row 26, and a row 28 adjacent to and proximal to row 27. It will be appreciated that the number of rows, and the number of cells per row, and the shape of each cell, may be varied as specific applications require .
As shown in Figs. 1 and 2, the cells 3' in distal row 25 differ from the cells 3 in rows 26, 27, and 28. The first member 4' and the third member 6' of the cells 3' in row 25 are shorter than the first member 4 and the third member 6 of the cells 3 in rows 26, 27 and 28. In cell 3', first member 4' is substantially equal to third member 6' , however, first member 4' and third member 6' are shorter than second member 5' and fourth member 7' . The shorter members 4' and 6' result in a first C-shaped loop 10' that is not disposed as far away from the center of the cell 3' as second C-shaped loop 11' . Thus, first C-shaped loop 10' may be thought of as being "shorter" than second C-shaped loop 11' . As shown in FIG. 2, first C-shaped loop 10' is disposed a distance Dl' that is less than the distance D2 ' that second C-shaped loop 11' is disposed from the center of the cell 3' . In an especially preferred embodiment:, Dl ' is about: 15% less than D2 ' .
Figs. 1 and 2 also show that the distal row 25 of the stent 1 is provided with a first U-shaped loop 8' and a second U-shaped loop 9' that are more flexible than the first U-shaped loop 8 and second U-shaped loop 9 of cells 3 in rows 26, 27, and 28 of the stent 1. This greater flexibility in the U-shaped loops 8' and 9' may be accomplished in a variety of ways, for example, by utilizing a different material, by treating the material e.g., by utilizing stainless steel annealing to impart selective degrees of hardness to the different portions of the stent. Alternat ively, if, s.g. , NiTi (Nitinol) is utilized, selected portions of the stent may be selectively thermo-mechanically treated so that portions of the stent, e.g. , the U-shaped members, will remain in a martensitic phase while other portions of the stent will be transformed into austenitic phase in this section to yield different properties. Greater flexibility may also be achieved by changing the shape of the "U", for example to a "Z" or an "S" (as shown in FIG. 11) , or by reducing the amount of material utilized to make the U-shaped loops 8' and 9' . In the embodiment shown in Figs. 1 and 2, the U-shaped loops 8' and 9' of row 25 are provided with the same thickness of material as the U-shaped loops 8 and 9 of the cells 3 in rows 26, 27, and 28, however, U-shaped loops 8' and 9' are not as wide. As shown in Figs. 1 and 2, U-shaped loops 8' and 9' have a width Wl that is less than the width W2 of U-shaped loops 8 and 9 in the cells 3 of rows 26, 27, and 28. In a preferred embodiment, Wl is about 50% narrower than W2. In an especially preferred embodiment, Wl is about 40% narrower than W2.
Fig. 3 is a side-by-side comparison of two stent sections and shows a conventional stent 12 compared to the stent 1, shown in Figs. 1 and 2. Fig. 4 shows stents 1 and 12 shown in Fig. .3 as they appear when they are crimped on a balloon and bent as they would be during insertion around a curve in a vessel. As shown "in Fig. 4, conventional stent 12 flares at its leading edge 13 in contrast to stent 1 which does not. Fig. 5 shows the stents of Fig. 4 after the stents have been expanded in a curve. The tip of conventional stent 12 produces a protrusion or sharp point 13 which could cause local pressure and possible trauma to the vessel wall . In contrast, the stent 1 constructed in accordance with the invention bends gently at its end 2 without forming a protrusion or sharp point because the deformation of the of U-shaped loops 8' and 9' in distal row 25 make the end 2 softer.
Fig. 6 shows the stents 1 and 12 of Fig. 3 at partial expansion (before reaching maximum pressure) disposed on a substantially straight catheter. As shown, although the two stents 1 and 12 are subjected to the same outward force, the end 2 of stent 1 is less expanded than the end 13 of conventional stent 12 demonstrating the increased radial force of the end 2 of stent 1 constructed in accordance with the invention. At full pressure the radii of the stents 1 and 12 will be equal, however, the end 2 of stent 1 will have greater radial resistance to collapse than the end 13 of stent 12.
Fig. 7 shows an alternative embodiment of the invention. As shown in Fig. 7, the cells 3' in row 25 are provided with a first member 4' and third member 6' that are shorter than second member 5' and fourth member 7' . The cells 3' in row 25 are provided with a first U-shaped loop 8' and a second U-shaped loop 9' that are thinner than the U-shaped loops 8 and 9 in the cells 3 in rows 27 and 28. The cells 3" in row 26 are provided with first U-shaped loops 8" and second U-shaped loops 9" that are narrower than the U-shaped loops 8 and 9 in the cells 3 in rows 27 and 28.
Fig. 8 shows the stent 20 of Fig. 7 during partial expansion of the stent showing the decreased expansion of 8 row 25 at partial expansion because of the higher radial force of the end 2 of the stent which results from construction with shorter C-shaped loops 10' in row 25, construction with narrower, i.e. , more flexible, U-shaped loops 8' and 9' in row 25, and 8" and 9" in row 26.
Fig. 9 shows the stent 20 of Figs. 7 and 8 after it has been expanded in a curved vessel and shows the bends of the U-shaped loops 8' and 9' in row 25 and 8" and 9" in row 26 which allows the end portion 2 of the stent 20 to more readily conform to the curve of the vessel, creating smooth ends with no sharp points or projections projecting into the vessel wall.
The changes can be made on one side only or on both sides of the stent as specific applications dictate.
Additionally, different combinations of embodiments of the invention may be mixed such as using thinner U-shaped loops, longer U-shaped loops or different shaped loops, e.g. , "Z" or "S" .
One example of how this may be achieved is shown in Fig. 10. Fig. 10 shows how the stent shown in Fig. 7 may be modified, if additional flexibility is desired. As shown in Fig. 10, the distal row 25, and the proximal row 29 of stent 30 are provided with first and second U-shaped loops that are more flexible than the U-shaped loops in the other rows of the stent disposed between the distal and proximal rows 25 and 29. In the embodiment of the invention shown in Fig. 10, the distal row 25 is provided with shortened members 4' and 6' and more flexible U-shaped loops 8' and 9' , as previously discussed, and the proximal row 29 is provided with shortened second and fourth members 5'' and 7' ' and more flexible U-shaped loops 8' ' ' and 9' ' ' . This arrangement imparts greater radial strength and greater flexibility to both ends of the sten .
If even greater flexibility at the ends of the stent is desired, the stent shown in FIG. 10 may be modified by replacing the U-shaped loops in rows 26 and 28 with more flexible loops. Thus, the distal row, the row proximal to the distal row, the proximal row, and the row" distal to the proximal row are provided with U-shaped loops that are more flexible than the U-shaped loops in the cells in the remaining rows of the stent.
The present invention contemplates a number of different variations and changes in different properties to achieve other non uniform features such as, but not limited to, cell size, cell shape, radio-opacity, etc. on the above-described preferred embodiments. The specified changes are brought only as an example for the application of the general concept, which is the basis for the present invention that stents with varying mechanical properties between sections along the stent may correct undesired effects at singular points such as stent ends and provide for a better fit to a vessel with properties changing along its axis. It is to be understood that the above description is only of one preferred embodiment, and that the scope of the invention is to be measured by the claims as set forth below.
S: \NY2DOCS\P S\P 12\·; 1663-1
Claims (7)
1. An expandable stent for treating a lumen having a unique characteristic along a portion of the lumen, comprising: a plurality of interconnected flexible cells, the cells comprising a pair of flexible connectors and arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the unique characteristic of that portion of the lumen in contact with the adapted row.
2. An expandable stent for treating a lumen having a non-uniform diameter, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the non-uniform diameter of the portion of the lumen in contact with the adapted row.
3. An expandable stent for treating a lumen having a non-uniform radial force, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the non-uniform radial force of the portion of the lumen in contact with the adapted row.
4. An expandable stent for treating a lumen having a non-uniform longitudinal flexibility, comprising: a plurality of interconnected flexible cells, the cells arranged in a plurality of interconnected flexible rows defining a stent having a proximal end and a distal end and a longitudinal axis, wherein at least one of the rows is adapted to accommodate the non-uniform longitudinal flexibility of the portion of the lumen in contact with the adapted row. 1 1 141860/2
5. The stent of claim 1 , wherein one of the plurality of rows disposed between the proximal end and the distal end is provided with a cell size that is larger than the cells in the remaining rows.
6. A stent according to any of claims 1-5 substantially as described hereinabove.
7. A stent according to any of claims 1-5 substantially as illustrated in any of the drawings. Eitan, Mehulal, Pappo, Kugler P-1303-IL1 12
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/716,039 US5807404A (en) | 1996-09-19 | 1996-09-19 | Stent with variable features to optimize support and method of making such stent |
Publications (1)
Publication Number | Publication Date |
---|---|
IL141860A true IL141860A (en) | 2008-03-20 |
Family
ID=24876479
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL12134597A IL121345A (en) | 1996-09-19 | 1997-07-20 | Stent with variable features to optimize support and method of making such stent |
IL141860A IL141860A (en) | 1996-09-19 | 1997-07-20 | Stent with variable features |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL12134597A IL121345A (en) | 1996-09-19 | 1997-07-20 | Stent with variable features to optimize support and method of making such stent |
Country Status (19)
Country | Link |
---|---|
US (6) | US5807404A (en) |
EP (1) | EP0830853B1 (en) |
JP (1) | JP3676549B2 (en) |
KR (1) | KR19980024144A (en) |
CN (1) | CN1160026C (en) |
AR (3) | AR008280A1 (en) |
AT (1) | ATE292937T1 (en) |
AU (1) | AU739287B2 (en) |
BR (1) | BR9704254A (en) |
CA (1) | CA2211097C (en) |
CZ (1) | CZ293997A3 (en) |
DE (2) | DE69732992T2 (en) |
IL (2) | IL121345A (en) |
NO (2) | NO313907B1 (en) |
PL (1) | PL186758B1 (en) |
RU (1) | RU2199291C2 (en) |
SG (1) | SG90023A1 (en) |
SK (1) | SK126197A3 (en) |
UA (3) | UA49821C2 (en) |
Families Citing this family (389)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6775021B1 (en) | 1993-11-26 | 2004-08-10 | Canon Kabushiki Kaisha | Data communication apparatus for receiving and recording data and having means for adding a predetermined mark and a time of reception to the recorded data |
US6896696B2 (en) | 1998-11-20 | 2005-05-24 | Scimed Life Systems, Inc. | Flexible and expandable stent |
US7204848B1 (en) * | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US6602281B1 (en) * | 1995-06-05 | 2003-08-05 | Avantec Vascular Corporation | Radially expansible vessel scaffold having beams and expansion joints |
US6287336B1 (en) * | 1995-10-16 | 2001-09-11 | Medtronic, Inc. | Variable flexibility stent |
US5980553A (en) * | 1996-12-20 | 1999-11-09 | Cordis Corporation | Axially flexible stent |
US5895406A (en) * | 1996-01-26 | 1999-04-20 | Cordis Corporation | Axially flexible stent |
US6258116B1 (en) | 1996-01-26 | 2001-07-10 | Cordis Corporation | Bifurcated axially flexible stent |
US5938682A (en) * | 1996-01-26 | 1999-08-17 | Cordis Corporation | Axially flexible stent |
CA2192520A1 (en) | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
US6796997B1 (en) | 1996-03-05 | 2004-09-28 | Evysio Medical Devices Ulc | Expandable stent |
EP1477133B9 (en) | 1996-03-05 | 2007-11-21 | Evysio Medical Devices Ulc | Expandable stent |
US6235053B1 (en) * | 1998-02-02 | 2001-05-22 | G. David Jang | Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors |
US6241760B1 (en) * | 1996-04-26 | 2001-06-05 | G. David Jang | Intravascular stent |
US20040106985A1 (en) | 1996-04-26 | 2004-06-03 | Jang G. David | Intravascular stent |
JP4636634B2 (en) | 1996-04-26 | 2011-02-23 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Intravascular stent |
US20060173531A1 (en) * | 1996-09-19 | 2006-08-03 | Jacob Richter | Stent with variable features to optimize support and method of making such stent |
US5807404A (en) * | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
US6206911B1 (en) * | 1996-12-19 | 2001-03-27 | Simcha Milo | Stent combination |
US7959664B2 (en) | 1996-12-26 | 2011-06-14 | Medinol, Ltd. | Flat process of drug coating for stents |
US5906759A (en) * | 1996-12-26 | 1999-05-25 | Medinol Ltd. | Stent forming apparatus with stent deforming blades |
US8353948B2 (en) * | 1997-01-24 | 2013-01-15 | Celonova Stent, Inc. | Fracture-resistant helical stent incorporating bistable cells and methods of use |
US20040267350A1 (en) * | 2002-10-30 | 2004-12-30 | Roubin Gary S. | Non-foreshortening intraluminal prosthesis |
US5827321A (en) | 1997-02-07 | 1998-10-27 | Cornerstone Devices, Inc. | Non-Foreshortening intraluminal prosthesis |
DE29702671U1 (en) | 1997-02-17 | 1997-04-10 | Jomed Implantate GmbH, 72414 Rangendingen | Stent |
US5911732A (en) * | 1997-03-10 | 1999-06-15 | Johnson & Johnson Interventional Systems, Co. | Articulated expandable intraluminal stent |
US8172897B2 (en) * | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US10028851B2 (en) * | 1997-04-15 | 2018-07-24 | Advanced Cardiovascular Systems, Inc. | Coatings for controlling erosion of a substrate of an implantable medical device |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US6776792B1 (en) * | 1997-04-24 | 2004-08-17 | Advanced Cardiovascular Systems Inc. | Coated endovascular stent |
US6451049B2 (en) * | 1998-04-29 | 2002-09-17 | Sorin Biomedica Cardio, S.P.A. | Stents for angioplasty |
IT1292295B1 (en) * | 1997-04-29 | 1999-01-29 | Sorin Biomedica Cardio Spa | ANGIOPLASTIC STENT |
EP0876805B2 (en) | 1997-05-07 | 2010-04-07 | Cordis Corporation | Intravascular stent and stent delivery system for ostial vessel obstructions |
DE29708803U1 (en) * | 1997-05-17 | 1997-07-31 | Jomed Implantate GmbH, 72414 Rangendingen | Radially expandable stent for implantation in a body vessel in the area of a vascular branch |
DE29708879U1 (en) † | 1997-05-20 | 1997-07-31 | Jomed Implantate GmbH, 72414 Rangendingen | Coronary stent |
US5836966A (en) | 1997-05-22 | 1998-11-17 | Scimed Life Systems, Inc. | Variable expansion force stent |
FR2764794B1 (en) * | 1997-06-20 | 1999-11-12 | Nycomed Lab Sa | EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS |
ES2214600T3 (en) | 1997-06-30 | 2004-09-16 | Medex Holding Gmbh | INTRALUMINAL IMPLANT. |
DE19834956B9 (en) * | 1997-08-01 | 2005-10-20 | Eckhard Alt | Supporting prosthesis (stent) |
US6206910B1 (en) * | 1997-09-11 | 2001-03-27 | Wake Forest University | Compliant intraluminal stents |
US6746476B1 (en) | 1997-09-22 | 2004-06-08 | Cordis Corporation | Bifurcated axially flexible stent |
US6042606A (en) * | 1997-09-29 | 2000-03-28 | Cook Incorporated | Radially expandable non-axially contracting surgical stent |
US5972027A (en) * | 1997-09-30 | 1999-10-26 | Scimed Life Systems, Inc | Porous stent drug delivery system |
US6309414B1 (en) * | 1997-11-04 | 2001-10-30 | Sorin Biomedica Cardio S.P.A. | Angioplasty stents |
US6129755A (en) * | 1998-01-09 | 2000-10-10 | Nitinol Development Corporation | Intravascular stent having an improved strut configuration |
US6503271B2 (en) * | 1998-01-09 | 2003-01-07 | Cordis Corporation | Intravascular device with improved radiopacity |
US6533807B2 (en) * | 1998-02-05 | 2003-03-18 | Medtronic, Inc. | Radially-expandable stent and delivery system |
US5931866A (en) * | 1998-02-24 | 1999-08-03 | Frantzen; John J. | Radially expandable stent featuring accordion stops |
CA2322134C (en) | 1998-03-04 | 2009-04-07 | Scimed Life Systems, Inc. | Improved stent cell configurations |
US5938697A (en) | 1998-03-04 | 1999-08-17 | Scimed Life Systems, Inc. | Stent having variable properties |
US6558415B2 (en) * | 1998-03-27 | 2003-05-06 | Intratherapeutics, Inc. | Stent |
US6132461A (en) * | 1998-03-27 | 2000-10-17 | Intratherapeutics, Inc. | Stent with dual support structure |
US6179868B1 (en) * | 1998-03-27 | 2001-01-30 | Janet Burpee | Stent with reduced shortening |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
US20040254635A1 (en) | 1998-03-30 | 2004-12-16 | Shanley John F. | Expandable medical device for delivery of beneficial agent |
US6241762B1 (en) | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US8029561B1 (en) | 2000-05-12 | 2011-10-04 | Cordis Corporation | Drug combination useful for prevention of restenosis |
DE69935716T2 (en) | 1998-05-05 | 2007-08-16 | Boston Scientific Ltd., St. Michael | STENT WITH SMOOTH ENDS |
US6261319B1 (en) * | 1998-07-08 | 2001-07-17 | Scimed Life Systems, Inc. | Stent |
US5911754A (en) * | 1998-07-24 | 1999-06-15 | Uni-Cath Inc. | Flexible stent with effective strut and connector patterns |
US6461380B1 (en) | 1998-07-28 | 2002-10-08 | Advanced Cardiovascular Systems, Inc. | Stent configuration |
DE19839646A1 (en) † | 1998-08-31 | 2000-03-09 | Jomed Implantate Gmbh | Stent |
US6755856B2 (en) | 1998-09-05 | 2004-06-29 | Abbott Laboratories Vascular Enterprises Limited | Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation |
US7887578B2 (en) * | 1998-09-05 | 2011-02-15 | Abbott Laboratories Vascular Enterprises Limited | Stent having an expandable web structure |
DE19840645A1 (en) | 1998-09-05 | 2000-03-09 | Jomed Implantate Gmbh | Stent |
US7815763B2 (en) | 2001-09-28 | 2010-10-19 | Abbott Laboratories Vascular Enterprises Limited | Porous membranes for medical implants and methods of manufacture |
US6682554B2 (en) * | 1998-09-05 | 2004-01-27 | Jomed Gmbh | Methods and apparatus for a stent having an expandable web structure |
US20020019660A1 (en) * | 1998-09-05 | 2002-02-14 | Marc Gianotti | Methods and apparatus for a curved stent |
US6193744B1 (en) * | 1998-09-10 | 2001-02-27 | Scimed Life Systems, Inc. | Stent configurations |
WO2000015151A1 (en) | 1998-09-16 | 2000-03-23 | Isostent, Inc. | Linkage stent |
US6190403B1 (en) | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6325820B1 (en) * | 1998-11-16 | 2001-12-04 | Endotex Interventional Systems, Inc. | Coiled-sheet stent-graft with exo-skeleton |
US8092514B1 (en) | 1998-11-16 | 2012-01-10 | Boston Scientific Scimed, Inc. | Stretchable anti-buckling coiled-sheet stent |
SG75982A1 (en) * | 1998-12-03 | 2000-10-24 | Medinol Ltd | Controlled detachment stents |
US20050033399A1 (en) * | 1998-12-03 | 2005-02-10 | Jacob Richter | Hybrid stent |
US8382821B2 (en) | 1998-12-03 | 2013-02-26 | Medinol Ltd. | Helical hybrid stent |
US6383204B1 (en) | 1998-12-15 | 2002-05-07 | Micrus Corporation | Variable stiffness coil for vasoocclusive devices |
US6325825B1 (en) | 1999-04-08 | 2001-12-04 | Cordis Corporation | Stent with variable wall thickness |
US6273911B1 (en) | 1999-04-22 | 2001-08-14 | Advanced Cardiovascular Systems, Inc. | Variable strength stent |
DE19923133B4 (en) * | 1999-05-19 | 2007-07-05 | Neuß, Malte, Dipl.-Ing. (FH) Dr.med. | Radially expandable vascular support |
IL146555A0 (en) * | 1999-05-19 | 2002-07-25 | Malte Neuss | Radially expandable vessel support |
US6270521B1 (en) | 1999-05-21 | 2001-08-07 | Cordis Corporation | Stent delivery catheter system for primary stenting |
DE60020562T2 (en) * | 1999-07-02 | 2006-05-11 | Endotex Interventional Systems, Inc., Cupertino | BENDY, EXPERIENCED DEVELOPED STENT |
US6409754B1 (en) * | 1999-07-02 | 2002-06-25 | Scimed Life Systems, Inc. | Flexible segmented stent |
US6485507B1 (en) | 1999-07-28 | 2002-11-26 | Scimed Life Systems | Multi-property nitinol by heat treatment |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6458867B1 (en) | 1999-09-28 | 2002-10-01 | Scimed Life Systems, Inc. | Hydrophilic lubricant coatings for medical devices |
FR2799363B1 (en) * | 1999-10-11 | 2001-11-30 | Braun Celsa Sa | MEDICAL IMPLANT IN MEANDRES IN ZIGZAG |
US20010047200A1 (en) * | 1999-10-13 | 2001-11-29 | Raymond Sun | Non-foreshortening intraluminal prosthesis |
US6331189B1 (en) | 1999-10-18 | 2001-12-18 | Medtronic, Inc. | Flexible medical stent |
US7226475B2 (en) | 1999-11-09 | 2007-06-05 | Boston Scientific Scimed, Inc. | Stent with variable properties |
US6428569B1 (en) * | 1999-11-09 | 2002-08-06 | Scimed Life Systems Inc. | Micro structure stent configurations |
US6585758B1 (en) | 1999-11-16 | 2003-07-01 | Scimed Life Systems, Inc. | Multi-section filamentary endoluminal stent |
US6610087B1 (en) * | 1999-11-16 | 2003-08-26 | Scimed Life Systems, Inc. | Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance |
US6537310B1 (en) * | 1999-11-19 | 2003-03-25 | Advanced Bio Prosthetic Surfaces, Ltd. | Endoluminal implantable devices and method of making same |
US6562061B1 (en) | 2000-02-22 | 2003-05-13 | Scimed Life Systems, Inc. | Stent delivery balloon with securement structure |
US7621947B2 (en) | 2000-03-01 | 2009-11-24 | Medinol, Ltd. | Longitudinally flexible stent |
US8920487B1 (en) | 2000-03-01 | 2014-12-30 | Medinol Ltd. | Longitudinally flexible stent |
US7141062B1 (en) * | 2000-03-01 | 2006-11-28 | Medinol, Ltd. | Longitudinally flexible stent |
US6723119B2 (en) | 2000-03-01 | 2004-04-20 | Medinol Ltd. | Longitudinally flexible stent |
SG86458A1 (en) | 2000-03-01 | 2002-02-19 | Medinol Ltd | Longitudinally flexible stent |
US7758627B2 (en) | 2000-03-01 | 2010-07-20 | Medinol, Ltd. | Longitudinally flexible stent |
US8496699B2 (en) * | 2000-03-01 | 2013-07-30 | Medinol Ltd. | Longitudinally flexible stent |
US8202312B2 (en) * | 2000-03-01 | 2012-06-19 | Medinol Ltd. | Longitudinally flexible stent |
US7828835B2 (en) | 2000-03-01 | 2010-11-09 | Medinol Ltd. | Longitudinally flexible stent |
EP1132058A1 (en) * | 2000-03-06 | 2001-09-12 | Advanced Laser Applications Holding S.A. | Intravascular prothesis |
JP2003526448A (en) * | 2000-03-10 | 2003-09-09 | パラコー サージカル インコーポレイテッド | Inflatable cardiac harness for treating congestive heart failure |
US6616689B1 (en) | 2000-05-03 | 2003-09-09 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6602282B1 (en) * | 2000-05-04 | 2003-08-05 | Avantec Vascular Corporation | Flexible stent structure |
NO20040529L (en) * | 2000-05-08 | 2001-09-03 | Medinol Ltd | Longitudinal flexible stent. |
US8236048B2 (en) | 2000-05-12 | 2012-08-07 | Cordis Corporation | Drug/drug delivery systems for the prevention and treatment of vascular disease |
CN2430175Y (en) * | 2000-05-15 | 2001-05-16 | 臧式先 | Medical tubular rack |
US8034097B2 (en) * | 2000-05-22 | 2011-10-11 | Malte Neuss | Radially expandable vessel support |
US7070614B1 (en) | 2000-05-22 | 2006-07-04 | Malte Neuss | Radially expandable vessel support |
US7632303B1 (en) | 2000-06-07 | 2009-12-15 | Advanced Cardiovascular Systems, Inc. | Variable stiffness medical devices |
US6652576B1 (en) | 2000-06-07 | 2003-11-25 | Advanced Cardiovascular Systems, Inc. | Variable stiffness stent |
US6540775B1 (en) | 2000-06-30 | 2003-04-01 | Cordis Corporation | Ultraflexible open cell stent |
US6799637B2 (en) | 2000-10-20 | 2004-10-05 | Schlumberger Technology Corporation | Expandable tubing and method |
CA2421797A1 (en) | 2000-09-12 | 2002-03-21 | Boston Scientific Limited | Selectively etched radiopaque intraluminal device |
US8070792B2 (en) | 2000-09-22 | 2011-12-06 | Boston Scientific Scimed, Inc. | Stent |
US6669722B2 (en) * | 2000-09-22 | 2003-12-30 | Cordis Corporation | Stent with optimal strength and radiopacity characteristics |
US7766956B2 (en) | 2000-09-22 | 2010-08-03 | Boston Scientific Scimed, Inc. | Intravascular stent and assembly |
US6695833B1 (en) | 2000-09-27 | 2004-02-24 | Nellix, Inc. | Vascular stent-graft apparatus and forming method |
DE10050970A1 (en) * | 2000-10-10 | 2002-04-11 | Biotronik Mess & Therapieg | Coronary stent has tubular body with support sections, arm elements connected by connecting elements. |
ES2243556T3 (en) | 2000-10-16 | 2005-12-01 | Conor Medsystems, Inc. | EXPANDABLE MEDICAL DEVICE TO PROVIDE A BENEFICIAL AGENT. |
US6547818B1 (en) | 2000-10-20 | 2003-04-15 | Endotex Interventional Systems, Inc. | Selectively thinned coiled-sheet stents and methods for making them |
WO2003061502A1 (en) | 2000-10-26 | 2003-07-31 | Scimed Life Systems, Inc. | Stent having radiopaque markers and method of fabricating the same |
US20020072791A1 (en) * | 2000-12-07 | 2002-06-13 | Eder Joseph C. | Light-activated multi-point detachment mechanism |
EP1212986A1 (en) * | 2000-12-08 | 2002-06-12 | SORIN BIOMEDICA CARDIO S.p.A. | An angioplasty stent and manufacturing method thereof |
US6929660B1 (en) | 2000-12-22 | 2005-08-16 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US20010044650A1 (en) * | 2001-01-12 | 2001-11-22 | Simso Eric J. | Stent for in-stent restenosis |
NO335594B1 (en) | 2001-01-16 | 2015-01-12 | Halliburton Energy Serv Inc | Expandable devices and methods thereof |
US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
US6679911B2 (en) | 2001-03-01 | 2004-01-20 | Cordis Corporation | Flexible stent |
US6998060B2 (en) | 2001-03-01 | 2006-02-14 | Cordis Corporation | Flexible stent and method of manufacture |
US6955686B2 (en) | 2001-03-01 | 2005-10-18 | Cordis Corporation | Flexible stent |
US6790227B2 (en) | 2001-03-01 | 2004-09-14 | Cordis Corporation | Flexible stent |
US6585753B2 (en) * | 2001-03-28 | 2003-07-01 | Scimed Life Systems, Inc. | Expandable coil stent |
DE10118944B4 (en) | 2001-04-18 | 2013-01-31 | Merit Medical Systems, Inc. | Removable, essentially cylindrical implants |
US8182527B2 (en) | 2001-05-07 | 2012-05-22 | Cordis Corporation | Heparin barrier coating for controlled drug release |
US6629994B2 (en) * | 2001-06-11 | 2003-10-07 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6939373B2 (en) * | 2003-08-20 | 2005-09-06 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US6824560B2 (en) * | 2001-06-13 | 2004-11-30 | Advanced Cardiovascular Systems, Inc. | Double-butted superelastic nitinol tubing |
US6673106B2 (en) * | 2001-06-14 | 2004-01-06 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6818013B2 (en) * | 2001-06-14 | 2004-11-16 | Cordis Corporation | Intravascular stent device |
US6635083B1 (en) | 2001-06-25 | 2003-10-21 | Advanced Cardiovascular Systems, Inc. | Stent with non-linear links and method of use |
US6749629B1 (en) | 2001-06-27 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent pattern with figure-eights |
US6565659B1 (en) * | 2001-06-28 | 2003-05-20 | Advanced Cardiovascular Systems, Inc. | Stent mounting assembly and a method of using the same to coat a stent |
US6605110B2 (en) | 2001-06-29 | 2003-08-12 | Advanced Cardiovascular Systems, Inc. | Stent with enhanced bendability and flexibility |
WO2003009773A2 (en) | 2001-07-26 | 2003-02-06 | Alveolus Inc. | Removable stent and method of using the same |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
SG108867A1 (en) | 2001-09-06 | 2005-02-28 | Medinol Ltd | Self articulating stent |
IES20010828A2 (en) * | 2001-09-12 | 2003-03-19 | Medtronic Inc | Medical device for intraluminal endovascular stenting |
US7285304B1 (en) * | 2003-06-25 | 2007-10-23 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US7989018B2 (en) * | 2001-09-17 | 2011-08-02 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US6863683B2 (en) | 2001-09-19 | 2005-03-08 | Abbott Laboratoris Vascular Entities Limited | Cold-molding process for loading a stent onto a stent delivery system |
US20030176914A1 (en) * | 2003-01-21 | 2003-09-18 | Rabkin Dmitry J. | Multi-segment modular stent and methods for manufacturing stents |
EP1917931A3 (en) | 2001-12-03 | 2013-02-27 | Intek Technology LLC | Multi-segment modular stent and methods for manufacturing stents |
US6945994B2 (en) | 2001-12-05 | 2005-09-20 | Boston Scientific Scimed, Inc. | Combined balloon-expanding and self-expanding stent |
US20050182477A1 (en) * | 2001-12-20 | 2005-08-18 | White Geoffrey H. | Intraluminal stent and graft |
US7195648B2 (en) | 2002-05-16 | 2007-03-27 | Cordis Neurovascular, Inc. | Intravascular stent device |
US6656220B1 (en) | 2002-06-17 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Intravascular stent |
US8080052B2 (en) * | 2002-06-28 | 2011-12-20 | Cordis Corporation | Stent with diagonal flexible connecting links |
EP1542616B1 (en) | 2002-09-20 | 2015-04-22 | Endologix, Inc. | Stent-graft with positioning anchor |
JP4481559B2 (en) * | 2002-09-30 | 2010-06-16 | テルモ株式会社 | Stent for living indwelling and organ expansion device |
US20040093056A1 (en) | 2002-10-26 | 2004-05-13 | Johnson Lianw M. | Medical appliance delivery apparatus and method of use |
US20060271168A1 (en) * | 2002-10-30 | 2006-11-30 | Klaus Kleine | Degradable medical device |
US7959671B2 (en) | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7527644B2 (en) | 2002-11-05 | 2009-05-05 | Alveolus Inc. | Stent with geometry determinated functionality and method of making the same |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US7875068B2 (en) | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
DE10253634A1 (en) * | 2002-11-13 | 2004-05-27 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | endoprosthesis |
EP1567089B1 (en) * | 2002-11-15 | 2014-10-08 | Synecor, LLC | Polymeric endoprosthesis |
US6923829B2 (en) | 2002-11-25 | 2005-08-02 | Advanced Bio Prosthetic Surfaces, Ltd. | Implantable expandable medical devices having regions of differential mechanical properties and methods of making same |
US20040106952A1 (en) * | 2002-12-03 | 2004-06-03 | Lafontaine Daniel M. | Treating arrhythmias by altering properties of tissue |
US8435550B2 (en) * | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US7758881B2 (en) * | 2004-06-30 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US6849084B2 (en) * | 2002-12-31 | 2005-02-01 | Intek Technology L.L.C. | Stent delivery system |
US7179286B2 (en) * | 2003-02-21 | 2007-02-20 | Boston Scientific Scimed, Inc. | Stent with stepped connectors |
AU2004224415B2 (en) * | 2003-03-19 | 2011-07-14 | Vactronix Scientific, Llc | Endoluminal stent having mid-interconnecting members |
WO2004087214A1 (en) | 2003-03-28 | 2004-10-14 | Conor Medsystems, Inc. | Implantable medical device with beneficial agent concentration gradient |
US7637934B2 (en) | 2003-03-31 | 2009-12-29 | Merit Medical Systems, Inc. | Medical appliance optical delivery and deployment apparatus and method |
US7604660B2 (en) | 2003-05-01 | 2009-10-20 | Merit Medical Systems, Inc. | Bifurcated medical appliance delivery apparatus and method |
US7169179B2 (en) | 2003-06-05 | 2007-01-30 | Conor Medsystems, Inc. | Drug delivery device and method for bi-directional drug delivery |
US6916336B2 (en) * | 2003-06-09 | 2005-07-12 | Avantec Vascular Corporation | Vascular prosthesis |
US7491227B2 (en) * | 2003-06-16 | 2009-02-17 | Boston Scientific Scimed, Inc. | Coiled-sheet stent with flexible mesh design |
US7131993B2 (en) * | 2003-06-25 | 2006-11-07 | Boston Scientific Scimed, Inc. | Varying circumferential spanned connectors in a stent |
US9039755B2 (en) | 2003-06-27 | 2015-05-26 | Medinol Ltd. | Helical hybrid stent |
US9155639B2 (en) | 2009-04-22 | 2015-10-13 | Medinol Ltd. | Helical hybrid stent |
US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device |
US7198675B2 (en) * | 2003-09-30 | 2007-04-03 | Advanced Cardiovascular Systems | Stent mandrel fixture and method for selectively coating surfaces of a stent |
DE10352874B4 (en) * | 2003-11-10 | 2008-03-27 | Qualimed Innovative Medizinprodukte Gmbh | stent |
US8454676B1 (en) * | 2004-01-20 | 2013-06-04 | Advanced Cardiovascular Systems, Inc. | Transition matching stent |
US7243408B2 (en) * | 2004-02-09 | 2007-07-17 | Boston Scientific Scimed, Inc. | Process method for attaching radio opaque markers to shape memory stent |
WO2005099628A2 (en) * | 2004-04-13 | 2005-10-27 | Cook Incorporated | Implantable frame with variable compliance |
US20050288481A1 (en) * | 2004-04-30 | 2005-12-29 | Desnoyer Jessica R | Design of poly(ester amides) for the control of agent-release from polymeric compositions |
US7763064B2 (en) | 2004-06-08 | 2010-07-27 | Medinol, Ltd. | Stent having struts with reverse direction curvature |
US8568469B1 (en) | 2004-06-28 | 2013-10-29 | Advanced Cardiovascular Systems, Inc. | Stent locking element and a method of securing a stent on a delivery system |
US8241554B1 (en) | 2004-06-29 | 2012-08-14 | Advanced Cardiovascular Systems, Inc. | Method of forming a stent pattern on a tube |
US7763065B2 (en) | 2004-07-21 | 2010-07-27 | Reva Medical, Inc. | Balloon expandable crush-recoverable stent device |
US8048145B2 (en) | 2004-07-22 | 2011-11-01 | Endologix, Inc. | Graft systems having filling structures supported by scaffolds and methods for their use |
US8778256B1 (en) | 2004-09-30 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Deformation of a polymer tube in the fabrication of a medical article |
US7731890B2 (en) * | 2006-06-15 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Methods of fabricating stents with enhanced fracture toughness |
US8747879B2 (en) * | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device to reduce chance of late inflammatory response |
US7971333B2 (en) * | 2006-05-30 | 2011-07-05 | Advanced Cardiovascular Systems, Inc. | Manufacturing process for polymetric stents |
US20060020330A1 (en) * | 2004-07-26 | 2006-01-26 | Bin Huang | Method of fabricating an implantable medical device with biaxially oriented polymers |
US8747878B2 (en) | 2006-04-28 | 2014-06-10 | Advanced Cardiovascular Systems, Inc. | Method of fabricating an implantable medical device by controlling crystalline structure |
US20060041102A1 (en) * | 2004-08-23 | 2006-02-23 | Advanced Cardiovascular Systems, Inc. | Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same |
US9283099B2 (en) * | 2004-08-25 | 2016-03-15 | Advanced Cardiovascular Systems, Inc. | Stent-catheter assembly with a releasable connection for stent retention |
DE102004043231A1 (en) * | 2004-09-07 | 2006-03-09 | Biotronik Vi Patent Ag | Endoprosthesis made of magnesium alloy |
US7229471B2 (en) * | 2004-09-10 | 2007-06-12 | Advanced Cardiovascular Systems, Inc. | Compositions containing fast-leaching plasticizers for improved performance of medical devices |
US20060058869A1 (en) * | 2004-09-14 | 2006-03-16 | Vascular Architects, Inc., A Delaware Corporation | Coiled ladder stent |
US7887579B2 (en) | 2004-09-29 | 2011-02-15 | Merit Medical Systems, Inc. | Active stent |
US7875233B2 (en) | 2004-09-30 | 2011-01-25 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a biaxially oriented implantable medical device |
US8043553B1 (en) | 2004-09-30 | 2011-10-25 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article |
US8173062B1 (en) | 2004-09-30 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Controlled deformation of a polymer tube in fabricating a medical article |
US8292944B2 (en) | 2004-12-17 | 2012-10-23 | Reva Medical, Inc. | Slide-and-lock stent |
US20060216431A1 (en) * | 2005-03-28 | 2006-09-28 | Kerrigan Cameron K | Electrostatic abluminal coating of a stent crimped on a balloon catheter |
US8435280B2 (en) * | 2005-03-31 | 2013-05-07 | Boston Scientific Scimed, Inc. | Flexible stent with variable width elements |
US20060224226A1 (en) * | 2005-03-31 | 2006-10-05 | Bin Huang | In-vivo radial orientation of a polymeric implantable medical device |
EP1871292B1 (en) * | 2005-04-04 | 2019-10-23 | Flexible Stenting Solutions, Inc. | Flexible stent |
US20060276882A1 (en) * | 2005-04-11 | 2006-12-07 | Cook Incorporated | Medical device including remodelable material attached to frame |
US7381048B2 (en) * | 2005-04-12 | 2008-06-03 | Advanced Cardiovascular Systems, Inc. | Stents with profiles for gripping a balloon catheter and molds for fabricating stents |
US8628565B2 (en) * | 2005-04-13 | 2014-01-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US7731654B2 (en) | 2005-05-13 | 2010-06-08 | Merit Medical Systems, Inc. | Delivery device with viewing window and associated method |
US7291166B2 (en) * | 2005-05-18 | 2007-11-06 | Advanced Cardiovascular Systems, Inc. | Polymeric stent patterns |
US7622070B2 (en) * | 2005-06-20 | 2009-11-24 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing an implantable polymeric medical device |
JP2009500121A (en) | 2005-07-07 | 2009-01-08 | ネリックス・インコーポレーテッド | System and method for treatment of an intraluminal aneurysm |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
CN105233349B (en) | 2005-07-15 | 2019-06-18 | 胶束技术股份有限公司 | The polymer coating of drug powder comprising controlled morphology |
US8862243B2 (en) | 2005-07-25 | 2014-10-14 | Rainbow Medical Ltd. | Electrical stimulation of blood vessels |
US7658880B2 (en) * | 2005-07-29 | 2010-02-09 | Advanced Cardiovascular Systems, Inc. | Polymeric stent polishing method and apparatus |
US7297758B2 (en) * | 2005-08-02 | 2007-11-20 | Advanced Cardiovascular Systems, Inc. | Method for extending shelf-life of constructs of semi-crystallizable polymers |
US9149378B2 (en) | 2005-08-02 | 2015-10-06 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US7914574B2 (en) | 2005-08-02 | 2011-03-29 | Reva Medical, Inc. | Axially nested slide and lock expandable device |
US20070038290A1 (en) * | 2005-08-15 | 2007-02-15 | Bin Huang | Fiber reinforced composite stents |
US7476245B2 (en) * | 2005-08-16 | 2009-01-13 | Advanced Cardiovascular Systems, Inc. | Polymeric stent patterns |
US20070045255A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with an optimized process gas |
US9248034B2 (en) * | 2005-08-23 | 2016-02-02 | Advanced Cardiovascular Systems, Inc. | Controlled disintegrating implantable medical devices |
US20070045252A1 (en) * | 2005-08-23 | 2007-03-01 | Klaus Kleine | Laser induced plasma machining with a process gas |
US8043366B2 (en) | 2005-09-08 | 2011-10-25 | Boston Scientific Scimed, Inc. | Overlapping stent |
US8292946B2 (en) * | 2005-10-25 | 2012-10-23 | Boston Scientific Scimed, Inc. | Medical implants with limited resistance to migration |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
US20070151961A1 (en) * | 2006-01-03 | 2007-07-05 | Klaus Kleine | Fabrication of an implantable medical device with a modified laser beam |
US20070156230A1 (en) | 2006-01-04 | 2007-07-05 | Dugan Stephen R | Stents with radiopaque markers |
US7951185B1 (en) | 2006-01-06 | 2011-05-31 | Advanced Cardiovascular Systems, Inc. | Delivery of a stent at an elevated temperature |
US20070179219A1 (en) * | 2006-01-31 | 2007-08-02 | Bin Huang | Method of fabricating an implantable medical device using gel extrusion and charge induced orientation |
US20070191926A1 (en) * | 2006-02-14 | 2007-08-16 | Advanced Cardiovascular Systems, Inc. | Stent pattern for high stent retention |
US8828077B2 (en) | 2006-03-15 | 2014-09-09 | Medinol Ltd. | Flat process of preparing drug eluting stents |
US7964210B2 (en) * | 2006-03-31 | 2011-06-21 | Abbott Cardiovascular Systems Inc. | Degradable polymeric implantable medical devices with a continuous phase and discrete phase |
CA2650590C (en) | 2006-04-26 | 2018-04-03 | Micell Technologies, Inc. | Coatings containing multiple drugs |
US20070254012A1 (en) * | 2006-04-28 | 2007-11-01 | Ludwig Florian N | Controlled degradation and drug release in stents |
US8003156B2 (en) * | 2006-05-04 | 2011-08-23 | Advanced Cardiovascular Systems, Inc. | Rotatable support elements for stents |
US7761968B2 (en) * | 2006-05-25 | 2010-07-27 | Advanced Cardiovascular Systems, Inc. | Method of crimping a polymeric stent |
US7951194B2 (en) | 2006-05-26 | 2011-05-31 | Abbott Cardiovascular Sysetms Inc. | Bioabsorbable stent with radiopaque coating |
US8752268B2 (en) | 2006-05-26 | 2014-06-17 | Abbott Cardiovascular Systems Inc. | Method of making stents with radiopaque markers |
US7842737B2 (en) | 2006-09-29 | 2010-11-30 | Abbott Cardiovascular Systems Inc. | Polymer blend-bioceramic composite implantable medical devices |
US20070282434A1 (en) * | 2006-05-30 | 2007-12-06 | Yunbing Wang | Copolymer-bioceramic composite implantable medical devices |
US7959940B2 (en) * | 2006-05-30 | 2011-06-14 | Advanced Cardiovascular Systems, Inc. | Polymer-bioceramic composite implantable medical devices |
US8343530B2 (en) * | 2006-05-30 | 2013-01-01 | Abbott Cardiovascular Systems Inc. | Polymer-and polymer blend-bioceramic composite implantable medical devices |
US20080058916A1 (en) * | 2006-05-31 | 2008-03-06 | Bin Huang | Method of fabricating polymeric self-expandable stent |
US8034287B2 (en) | 2006-06-01 | 2011-10-11 | Abbott Cardiovascular Systems Inc. | Radiation sterilization of medical devices |
US20070282433A1 (en) * | 2006-06-01 | 2007-12-06 | Limon Timothy A | Stent with retention protrusions formed during crimping |
US20070281073A1 (en) * | 2006-06-01 | 2007-12-06 | Gale David C | Enhanced adhesion of drug delivery coatings on stents |
US8486135B2 (en) | 2006-06-01 | 2013-07-16 | Abbott Cardiovascular Systems Inc. | Implantable medical devices fabricated from branched polymers |
US20080124372A1 (en) * | 2006-06-06 | 2008-05-29 | Hossainy Syed F A | Morphology profiles for control of agent release rates from polymer matrices |
WO2007146021A2 (en) | 2006-06-06 | 2007-12-21 | Cook Incorporated | Stent with a crush-resistant zone |
KR100728253B1 (en) * | 2006-06-07 | 2007-06-13 | 고충원 | Stent for branch blood vessel and balloon catheter comprising the same |
US20070286941A1 (en) * | 2006-06-13 | 2007-12-13 | Bin Huang | Surface treatment of a polymeric stent |
US8603530B2 (en) * | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
US8048448B2 (en) * | 2006-06-15 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Nanoshells for drug delivery |
US8535372B1 (en) | 2006-06-16 | 2013-09-17 | Abbott Cardiovascular Systems Inc. | Bioabsorbable stent with prohealing layer |
US8333000B2 (en) | 2006-06-19 | 2012-12-18 | Advanced Cardiovascular Systems, Inc. | Methods for improving stent retention on a balloon catheter |
US20070290412A1 (en) * | 2006-06-19 | 2007-12-20 | John Capek | Fabricating a stent with selected properties in the radial and axial directions |
US8017237B2 (en) | 2006-06-23 | 2011-09-13 | Abbott Cardiovascular Systems, Inc. | Nanoshells on polymers |
US9072820B2 (en) * | 2006-06-26 | 2015-07-07 | Advanced Cardiovascular Systems, Inc. | Polymer composite stent with polymer particles |
US8128688B2 (en) * | 2006-06-27 | 2012-03-06 | Abbott Cardiovascular Systems Inc. | Carbon coating on an implantable device |
US20070299511A1 (en) * | 2006-06-27 | 2007-12-27 | Gale David C | Thin stent coating |
US7794776B1 (en) | 2006-06-29 | 2010-09-14 | Abbott Cardiovascular Systems Inc. | Modification of polymer stents with radiation |
US7740791B2 (en) * | 2006-06-30 | 2010-06-22 | Advanced Cardiovascular Systems, Inc. | Method of fabricating a stent with features by blow molding |
US8240020B2 (en) * | 2006-06-30 | 2012-08-14 | Advanced Cardiovascular Systems, Inc. | Stent retention mold and method |
US20080009938A1 (en) * | 2006-07-07 | 2008-01-10 | Bin Huang | Stent with a radiopaque marker and method for making the same |
US7823263B2 (en) | 2006-07-11 | 2010-11-02 | Abbott Cardiovascular Systems Inc. | Method of removing stent islands from a stent |
US7757543B2 (en) | 2006-07-13 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Radio frequency identification monitoring of stents |
US20080014244A1 (en) * | 2006-07-13 | 2008-01-17 | Gale David C | Implantable medical devices and coatings therefor comprising physically crosslinked block copolymers |
US7998404B2 (en) * | 2006-07-13 | 2011-08-16 | Advanced Cardiovascular Systems, Inc. | Reduced temperature sterilization of stents |
US7794495B2 (en) * | 2006-07-17 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Controlled degradation of stents |
US7886419B2 (en) * | 2006-07-18 | 2011-02-15 | Advanced Cardiovascular Systems, Inc. | Stent crimping apparatus and method |
US8016879B2 (en) * | 2006-08-01 | 2011-09-13 | Abbott Cardiovascular Systems Inc. | Drug delivery after biodegradation of the stent scaffolding |
US20080091262A1 (en) * | 2006-10-17 | 2008-04-17 | Gale David C | Drug delivery after biodegradation of the stent scaffolding |
US9173733B1 (en) | 2006-08-21 | 2015-11-03 | Abbott Cardiovascular Systems Inc. | Tracheobronchial implantable medical device and methods of use |
US8834554B2 (en) | 2006-08-22 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US8882826B2 (en) * | 2006-08-22 | 2014-11-11 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US7988720B2 (en) | 2006-09-12 | 2011-08-02 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US7923022B2 (en) * | 2006-09-13 | 2011-04-12 | Advanced Cardiovascular Systems, Inc. | Degradable polymeric implantable medical devices with continuous phase and discrete phase |
US8778009B2 (en) * | 2006-10-06 | 2014-07-15 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US8099849B2 (en) | 2006-12-13 | 2012-01-24 | Abbott Cardiovascular Systems Inc. | Optimizing fracture toughness of polymeric stent |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
US9387100B2 (en) * | 2007-01-08 | 2016-07-12 | Cardinal Health Switzerland GmbH | Intraluminal medical device having variable axial flexibility about the circumference of the device |
CN101711137B (en) | 2007-01-08 | 2014-10-22 | 米歇尔技术公司 | Stents having biodegradable layers |
US7704275B2 (en) | 2007-01-26 | 2010-04-27 | Reva Medical, Inc. | Circumferentially nested expandable device |
US8974514B2 (en) * | 2007-03-13 | 2015-03-10 | Abbott Cardiovascular Systems Inc. | Intravascular stent with integrated link and ring strut |
US20080243228A1 (en) * | 2007-03-28 | 2008-10-02 | Yunbing Wang | Implantable medical devices fabricated from block copolymers |
US8262723B2 (en) | 2007-04-09 | 2012-09-11 | Abbott Cardiovascular Systems Inc. | Implantable medical devices fabricated from polymer blends with star-block copolymers |
US20080269746A1 (en) | 2007-04-24 | 2008-10-30 | Osteolign, Inc. | Conformable intramedullary implant with nestable components |
US8128679B2 (en) | 2007-05-23 | 2012-03-06 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with torque-absorbing connectors |
US8016874B2 (en) | 2007-05-23 | 2011-09-13 | Abbott Laboratories Vascular Enterprises Limited | Flexible stent with elevated scaffolding properties |
US8211162B2 (en) * | 2007-05-25 | 2012-07-03 | Boston Scientific Scimed, Inc. | Connector node for durable stent |
US7829008B2 (en) * | 2007-05-30 | 2010-11-09 | Abbott Cardiovascular Systems Inc. | Fabricating a stent from a blow molded tube |
US7959857B2 (en) * | 2007-06-01 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Radiation sterilization of medical devices |
US8202528B2 (en) * | 2007-06-05 | 2012-06-19 | Abbott Cardiovascular Systems Inc. | Implantable medical devices with elastomeric block copolymer coatings |
US8293260B2 (en) | 2007-06-05 | 2012-10-23 | Abbott Cardiovascular Systems Inc. | Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices |
US20080306582A1 (en) * | 2007-06-05 | 2008-12-11 | Yunbing Wang | Implantable medical devices with elastomeric copolymer coatings |
US8425591B1 (en) | 2007-06-11 | 2013-04-23 | Abbott Cardiovascular Systems Inc. | Methods of forming polymer-bioceramic composite medical devices with bioceramic particles |
US8048441B2 (en) | 2007-06-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Nanobead releasing medical devices |
US7901452B2 (en) * | 2007-06-27 | 2011-03-08 | Abbott Cardiovascular Systems Inc. | Method to fabricate a stent having selected morphology to reduce restenosis |
US7867273B2 (en) * | 2007-06-27 | 2011-01-11 | Abbott Laboratories | Endoprostheses for peripheral arteries and other body vessels |
US7955381B1 (en) | 2007-06-29 | 2011-06-07 | Advanced Cardiovascular Systems, Inc. | Polymer-bioceramic composite implantable medical device with different types of bioceramic particles |
US7988723B2 (en) | 2007-08-02 | 2011-08-02 | Flexible Stenting Solutions, Inc. | Flexible stent |
JP5580737B2 (en) | 2007-08-17 | 2014-08-27 | ミクラス エンドバスキュラー エルエルシー | Twisted primary wind coil for vascular treatment, method for forming the same, and secondary wind coil |
DE102007050666A1 (en) | 2007-10-24 | 2009-04-30 | Biotronik Vi Patent Ag | Nitinol stent with improved axial flexural rigidity and associated manufacturing process |
EP2211773A4 (en) | 2007-11-30 | 2015-07-29 | Reva Medical Inc | Axially-radially nested expandable device |
US20090149943A1 (en) * | 2007-12-06 | 2009-06-11 | Numed, Inc. | Flexible stent |
US8920488B2 (en) | 2007-12-20 | 2014-12-30 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having a stable architecture |
US7850726B2 (en) | 2007-12-20 | 2010-12-14 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having struts linked by foot extensions |
US8337544B2 (en) | 2007-12-20 | 2012-12-25 | Abbott Laboratories Vascular Enterprises Limited | Endoprosthesis having flexible connectors |
US8538535B2 (en) | 2010-08-05 | 2013-09-17 | Rainbow Medical Ltd. | Enhancing perfusion by contraction |
CN102083397B (en) | 2008-04-17 | 2013-12-25 | 米歇尔技术公司 | Stents having bioabsorbable layers |
EP2278939B1 (en) | 2008-04-25 | 2021-04-14 | Endologix LLC | Stent graft delivery system |
CA2726596A1 (en) | 2008-06-04 | 2009-12-10 | Nellix, Inc. | Sealing apparatus and methods of use |
WO2010009335A1 (en) | 2008-07-17 | 2010-01-21 | Micell Technologies, Inc. | Drug delivery medical device |
US9149376B2 (en) | 2008-10-06 | 2015-10-06 | Cordis Corporation | Reconstrainable stent delivery system |
CA2737753C (en) | 2008-10-10 | 2017-03-14 | Reva Medical, Inc. | Expandable slide and lock stent |
AU2010210275B2 (en) * | 2009-02-09 | 2015-12-03 | Evysio Medical Devices Ulc | Stent |
GB2468861B (en) * | 2009-03-23 | 2011-05-18 | Cook William Europ | Conformable stent structure and method of making same |
WO2010120552A2 (en) | 2009-04-01 | 2010-10-21 | Micell Technologies, Inc. | Coated stents |
EP3366326A1 (en) | 2009-04-17 | 2018-08-29 | Micell Technologies, Inc. | Stents having controlled elution |
BRPI1013573A2 (en) * | 2009-04-24 | 2016-04-12 | Flexible Stenting Solutions Inc | flexible devices |
EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
US8114149B2 (en) * | 2009-10-20 | 2012-02-14 | Svelte Medical Systems, Inc. | Hybrid stent with helical connectors |
CN106901881B (en) * | 2009-10-30 | 2019-06-18 | 科迪斯公司 | With improved flexible and durability intraluminal device |
US9649211B2 (en) * | 2009-11-04 | 2017-05-16 | Confluent Medical Technologies, Inc. | Alternating circumferential bridge stent design and methods for use thereof |
GB2476479B (en) | 2009-12-22 | 2012-06-20 | Cook Medical Technologies Llc | Implantable device |
US8361140B2 (en) * | 2009-12-29 | 2013-01-29 | Boston Scientific Scimed, Inc. | High strength low opening pressure stent design |
US20110276078A1 (en) | 2009-12-30 | 2011-11-10 | Nellix, Inc. | Filling structure for a graft system and methods of use |
US8568471B2 (en) | 2010-01-30 | 2013-10-29 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds |
US8808353B2 (en) | 2010-01-30 | 2014-08-19 | Abbott Cardiovascular Systems Inc. | Crush recoverable polymer scaffolds having a low crossing profile |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
WO2011127452A1 (en) | 2010-04-10 | 2011-10-13 | Reva Medical, Inc | Expandable slide and lock stent |
CA2797110C (en) | 2010-04-22 | 2020-07-21 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
US8328863B2 (en) | 2010-04-22 | 2012-12-11 | Abbott Cardiovascular Systems Inc. | Optimal ratio of polar and bending moment of inertia for stent strut design |
CA2805631C (en) | 2010-07-16 | 2018-07-31 | Micell Technologies, Inc. | Drug delivery medical device |
US8328072B2 (en) * | 2010-07-19 | 2012-12-11 | Medtronic Vascular, Inc. | Method for forming a wave form used to make wound stents |
EP2600802B1 (en) * | 2010-08-02 | 2019-05-29 | Cardinal Health Switzerland 515 GmbH | Flexible helical stent having intermediate structural feature |
KR20160103151A (en) * | 2010-08-02 | 2016-08-31 | 코디스 코포레이션 | Flexible helical stent having different helical regions |
US8556511B2 (en) | 2010-09-08 | 2013-10-15 | Abbott Cardiovascular Systems, Inc. | Fluid bearing to support stent tubing during laser cutting |
EP2616020B1 (en) | 2010-09-13 | 2022-03-16 | Meril Life Sciences Pvt Ltd. | Stents with low strut thickness and variable strut geometry |
US8512395B2 (en) | 2010-12-30 | 2013-08-20 | Boston Scientific Scimed, Inc. | Stent with horseshoe shaped bridges |
US8801768B2 (en) | 2011-01-21 | 2014-08-12 | Endologix, Inc. | Graft systems having semi-permeable filling structures and methods for their use |
JP2014511247A (en) | 2011-03-03 | 2014-05-15 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Low strain high strength stent |
US8790388B2 (en) | 2011-03-03 | 2014-07-29 | Boston Scientific Scimed, Inc. | Stent with reduced profile |
JP5976777B2 (en) | 2011-04-06 | 2016-08-24 | エンドーロジックス インコーポレイテッド | Methods and systems for the treatment of intravascular aneurysms |
US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
US8726483B2 (en) | 2011-07-29 | 2014-05-20 | Abbott Cardiovascular Systems Inc. | Methods for uniform crimping and deployment of a polymer scaffold |
WO2013035092A2 (en) | 2011-09-09 | 2013-03-14 | Enopace Biomedical Ltd. | Wireless endovascular stent-based electrodes |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
EP2811939B8 (en) | 2012-02-10 | 2017-11-15 | CVDevices, LLC | Products made of biological tissues for stents and methods of manufacturing |
WO2013172938A1 (en) | 2012-05-14 | 2013-11-21 | C.R. Bard, Inc. | Uniformly expandable stent |
US20140067038A1 (en) * | 2012-08-29 | 2014-03-06 | W. L. Gore & Associates, Inc. | Devices and systems for retaining a medical device at a treatment site |
EP2710984B1 (en) * | 2012-09-19 | 2015-08-26 | Biotronik AG | Implant and system formed of a balloon catheter and implant |
DE102012220129B4 (en) * | 2012-11-05 | 2022-12-15 | Optimed Medizinische Lnstrumente Gmbh | stent |
AU2014214700B2 (en) | 2013-02-11 | 2018-01-18 | Cook Medical Technologies Llc | Expandable support frame and medical device |
USD723165S1 (en) | 2013-03-12 | 2015-02-24 | C. R. Bard, Inc. | Stent |
KR20150143476A (en) | 2013-03-12 | 2015-12-23 | 미셀 테크놀로지즈, 인코포레이티드 | Bioabsorbable biomedical implants |
US10201638B2 (en) | 2013-03-14 | 2019-02-12 | Endologix, Inc. | Systems and methods for forming materials in situ within a medical device |
WO2014159337A1 (en) | 2013-03-14 | 2014-10-02 | Reva Medical, Inc. | Reduced - profile slide and lock stent |
WO2014186532A1 (en) | 2013-05-15 | 2014-11-20 | Micell Technologies, Inc. | Bioabsorbable biomedical implants |
CN105899166B (en) * | 2013-11-06 | 2018-07-06 | 伊诺佩斯生医有限公司 | The intravascular electrode based on stent of radio-type |
US9375810B2 (en) * | 2014-01-24 | 2016-06-28 | Q3 Medical Devices Limited | Bidirectional stent and method of use thereof |
EP3388032B1 (en) | 2014-03-18 | 2019-06-26 | Boston Scientific Scimed, Inc. | Reduced granulation and inflammation stent design |
US9999527B2 (en) | 2015-02-11 | 2018-06-19 | Abbott Cardiovascular Systems Inc. | Scaffolds having radiopaque markers |
DE102015102181A1 (en) * | 2015-02-16 | 2016-08-18 | Biotronik Ag | Vascular support and method for producing a vascular support |
US9700443B2 (en) | 2015-06-12 | 2017-07-11 | Abbott Cardiovascular Systems Inc. | Methods for attaching a radiopaque marker to a scaffold |
US10792149B2 (en) * | 2016-04-27 | 2020-10-06 | Strait Access Technologies Holdings (Pty) Ltd | Expandable stent and methods of crimping and expanding such stent |
US10238513B2 (en) | 2017-07-19 | 2019-03-26 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US10849769B2 (en) * | 2017-08-23 | 2020-12-01 | Vesper Medical, Inc. | Non-foreshortening stent |
US11517457B2 (en) | 2019-07-03 | 2022-12-06 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US11400299B1 (en) | 2021-09-14 | 2022-08-02 | Rainbow Medical Ltd. | Flexible antenna for stimulator |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1237201A1 (en) | 1985-03-04 | 1986-06-15 | Всесоюзный научный центр хирургии | Intravascular frame |
US5102417A (en) | 1985-11-07 | 1992-04-07 | Expandable Grafts Partnership | Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft |
RU1768154C (en) | 1988-06-22 | 1992-10-15 | Всесоюзный научный центр хирургии АМН СССР | Prosthetic appliance for hollow organ |
CA1322628C (en) * | 1988-10-04 | 1993-10-05 | Richard A. Schatz | Expandable intraluminal graft |
US5193895A (en) * | 1990-01-18 | 1993-03-16 | Koito Manufacturing Co., Ltd. | Warning light |
US5344426A (en) * | 1990-04-25 | 1994-09-06 | Advanced Cardiovascular Systems, Inc. | Method and system for stent delivery |
JPH0717314Y2 (en) * | 1990-10-18 | 1995-04-26 | ソン ホーヨン | Self-expanding intravascular stent |
FR2671280B1 (en) | 1991-01-03 | 1993-03-05 | Sgro Jean Claude | SELF-EXHIBITING VASCULAR STENT WITH PERMANENT ELASTICITY, LOW SHORTENING AND ITS APPLICATION MATERIAL. |
US5135536A (en) * | 1991-02-05 | 1992-08-04 | Cordis Corporation | Endovascular stent and method |
JP2749447B2 (en) | 1991-03-25 | 1998-05-13 | ミードックス メディカルズ インコーポレイテッド | Artificial blood vessel |
CA2380683C (en) * | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
FR2683449A1 (en) * | 1991-11-08 | 1993-05-14 | Cardon Alain | ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION. |
US5354308A (en) * | 1992-05-01 | 1994-10-11 | Beth Israel Hospital Association | Metal wire stent |
WO1995014500A1 (en) * | 1992-05-01 | 1995-06-01 | Beth Israel Hospital | A stent |
US5540712A (en) | 1992-05-01 | 1996-07-30 | Nitinol Medical Technologies, Inc. | Stent and method and apparatus for forming and delivering the same |
US5496365A (en) * | 1992-07-02 | 1996-03-05 | Sgro; Jean-Claude | Autoexpandable vascular endoprosthesis |
GR1002388B (en) * | 1993-01-06 | 1996-07-03 | Ethicon Inc. | Stent. |
US5643312A (en) | 1994-02-25 | 1997-07-01 | Fischell Robert | Stent having a multiplicity of closed circular structures |
US5449373A (en) * | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US5733303A (en) | 1994-03-17 | 1998-03-31 | Medinol Ltd. | Flexible expandable stent |
US6582461B1 (en) * | 1994-05-19 | 2003-06-24 | Scimed Life Systems, Inc. | Tissue supporting devices |
DE4418336A1 (en) | 1994-05-26 | 1995-11-30 | Angiomed Ag | Stent for widening and holding open receptacles |
JP3566986B2 (en) * | 1994-06-17 | 2004-09-15 | テルモ株式会社 | Method for producing stent for indwelling in vivo |
US5575818A (en) * | 1995-02-14 | 1996-11-19 | Corvita Corporation | Endovascular stent with locking ring |
CA2186029C (en) * | 1995-03-01 | 2003-04-08 | Brian J. Brown | Improved longitudinally flexible expandable stent |
US7204848B1 (en) * | 1995-03-01 | 2007-04-17 | Boston Scientific Scimed, Inc. | Longitudinally flexible expandable stent |
US5591197A (en) | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
CA2171896C (en) | 1995-03-17 | 2007-05-15 | Scott C. Anderson | Multi-anchor stent |
US5562697A (en) * | 1995-09-18 | 1996-10-08 | William Cook, Europe A/S | Self-expanding stent assembly and methods for the manufacture thereof |
US5776161A (en) * | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US5843117A (en) | 1996-02-14 | 1998-12-01 | Inflow Dynamics Inc. | Implantable vascular and endoluminal stents and process of fabricating the same |
CA2192520A1 (en) * | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
NZ331269A (en) * | 1996-04-10 | 2000-01-28 | Advanced Cardiovascular System | Expandable stent, its structural strength varying along its length |
US5954743A (en) * | 1996-04-26 | 1999-09-21 | Jang; G. David | Intravascular stent |
US5922021A (en) * | 1996-04-26 | 1999-07-13 | Jang; G. David | Intravascular stent |
US6039756A (en) * | 1996-04-26 | 2000-03-21 | Jang; G. David | Intravascular stent |
US6241760B1 (en) | 1996-04-26 | 2001-06-05 | G. David Jang | Intravascular stent |
DE19617823A1 (en) | 1996-05-03 | 1997-11-13 | Sitomed Medizintechnik Vertrie | Vascular prosthesis for coronary use |
US5776183A (en) * | 1996-08-23 | 1998-07-07 | Kanesaka; Nozomu | Expandable stent |
US20060173531A1 (en) | 1996-09-19 | 2006-08-03 | Jacob Richter | Stent with variable features to optimize support and method of making such stent |
US5807404A (en) * | 1996-09-19 | 1998-09-15 | Medinol Ltd. | Stent with variable features to optimize support and method of making such stent |
CA2214627A1 (en) | 1997-03-05 | 1998-09-05 | Divysio Solutions Ulc | Expandable stent |
AU6464298A (en) | 1997-03-13 | 1998-09-29 | United States Surgical Corporation | Flexible tissue supporting device |
US6451049B2 (en) * | 1998-04-29 | 2002-09-17 | Sorin Biomedica Cardio, S.P.A. | Stents for angioplasty |
US5913895A (en) * | 1997-06-02 | 1999-06-22 | Isostent, Inc. | Intravascular stent with enhanced rigidity strut members |
ES2214600T3 (en) * | 1997-06-30 | 2004-09-16 | Medex Holding Gmbh | INTRALUMINAL IMPLANT. |
US20010047200A1 (en) * | 1999-10-13 | 2001-11-29 | Raymond Sun | Non-foreshortening intraluminal prosthesis |
US8070792B2 (en) | 2000-09-22 | 2011-12-06 | Boston Scientific Scimed, Inc. | Stent |
US7320949B2 (en) * | 2002-04-02 | 2008-01-22 | Kabushiki Kaisha Ohara | Optical glass |
US7527644B2 (en) | 2002-11-05 | 2009-05-05 | Alveolus Inc. | Stent with geometry determinated functionality and method of making the same |
US7112216B2 (en) * | 2003-05-28 | 2006-09-26 | Boston Scientific Scimed, Inc. | Stent with tapered flexibility |
WO2006047679A1 (en) | 2004-10-26 | 2006-05-04 | Cordis Corporation | Stent having phased hoop sections |
-
1996
- 1996-09-19 US US08/716,039 patent/US5807404A/en not_active Expired - Lifetime
-
1997
- 1997-07-19 SG SG9702598A patent/SG90023A1/en unknown
- 1997-07-20 IL IL12134597A patent/IL121345A/en not_active IP Right Cessation
- 1997-07-20 IL IL141860A patent/IL141860A/en not_active IP Right Cessation
- 1997-07-21 AU AU28733/97A patent/AU739287B2/en not_active Expired
- 1997-07-22 CA CA002211097A patent/CA2211097C/en not_active Expired - Lifetime
- 1997-07-30 DE DE69732992T patent/DE69732992T2/en not_active Expired - Lifetime
- 1997-07-30 EP EP97113109A patent/EP0830853B1/en not_active Expired - Lifetime
- 1997-07-30 AT AT97113109T patent/ATE292937T1/en not_active IP Right Cessation
- 1997-08-04 AR ARP970103546A patent/AR008280A1/en unknown
- 1997-08-04 BR BR9704254A patent/BR9704254A/en not_active IP Right Cessation
- 1997-08-14 KR KR1019970038981A patent/KR19980024144A/en not_active Application Discontinuation
- 1997-08-17 CN CNB971186820A patent/CN1160026C/en not_active Expired - Fee Related
- 1997-08-21 PL PL97321724A patent/PL186758B1/en not_active IP Right Cessation
- 1997-08-22 NO NO19973878A patent/NO313907B1/en not_active IP Right Cessation
- 1997-09-15 UA UA97094609A patent/UA49821C2/en unknown
- 1997-09-15 DE DE19740506A patent/DE19740506A1/en not_active Withdrawn
- 1997-09-16 RU RU97115719/14A patent/RU2199291C2/en not_active IP Right Cessation
- 1997-09-18 SK SK1261-97A patent/SK126197A3/en unknown
- 1997-09-18 JP JP25378597A patent/JP3676549B2/en not_active Expired - Lifetime
- 1997-09-18 CZ CZ972939A patent/CZ293997A3/en unknown
-
1998
- 1998-03-17 US US09/040,145 patent/US6676697B1/en not_active Expired - Lifetime
-
1999
- 1999-01-29 AR ARP990100374A patent/AR012274A2/en unknown
- 1999-01-29 AR ARP990100373A patent/AR017447A2/en unknown
-
2000
- 2000-06-21 US US09/599,158 patent/US7044963B1/en not_active Expired - Lifetime
- 2000-09-19 UA UA2000095373A patent/UA59435C2/en unknown
- 2000-09-19 UA UA2000095374A patent/UA57829C2/en unknown
-
2002
- 2002-11-15 NO NO20025480A patent/NO20025480D0/en not_active Application Discontinuation
-
2006
- 2006-03-09 US US11/373,007 patent/US7534257B2/en not_active Expired - Fee Related
-
2008
- 2008-10-02 US US12/170,350 patent/US7976576B2/en not_active Expired - Fee Related
-
2010
- 2010-05-10 US US12/776,518 patent/US7998193B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IL141860A (en) | Stent with variable features | |
EP0991375B1 (en) | Expandable stent with variable thickness | |
CA2247891C (en) | An expandable stent | |
JP4278874B2 (en) | Stent having struts with different geometric shapes | |
US5928280A (en) | Expandable endovascular stent | |
EP1565129B1 (en) | Expandable stents | |
US9320627B2 (en) | Flexible stent with torque-absorbing connectors | |
US6409752B1 (en) | Flexible stent having a pattern formed from a sheet of material | |
US20060173531A1 (en) | Stent with variable features to optimize support and method of making such stent | |
US20070250148A1 (en) | Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends | |
JP2010534088A (en) | Expandable stent that is longitudinally flexible | |
WO2006036912A2 (en) | Systems, apparatus and methods related to helical, non-helical or removable stents with rectilinear ends | |
AU768602B2 (en) | Stent with variable features to optimize support and method of making such stent | |
MXPA97006013A (en) | Small tube with variable characteristics parapootize the support and method for manufacturing my |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
KB | Patent renewed | ||
EXP | Patent expired |