HUE034699T2 - Berendezés és eljárás energia elõállítására szerves Rankine ciklussal - Google Patents

Berendezés és eljárás energia elõállítására szerves Rankine ciklussal Download PDF

Info

Publication number
HUE034699T2
HUE034699T2 HUE12705427A HUE12705427A HUE034699T2 HU E034699 T2 HUE034699 T2 HU E034699T2 HU E12705427 A HUE12705427 A HU E12705427A HU E12705427 A HUE12705427 A HU E12705427A HU E034699 T2 HUE034699 T2 HU E034699T2
Authority
HU
Hungary
Prior art keywords
heat exchanger
fluid
organic
energy
heat
Prior art date
Application number
HUE12705427A
Other languages
English (en)
Inventor
Claudio Spadacini
Original Assignee
Exergy Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43976149&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=HUE034699(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Exergy Spa filed Critical Exergy Spa
Publication of HUE034699T2 publication Critical patent/HUE034699T2/hu

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/22Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight
    • F22B21/24Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes of form other than straight or substantially straight bent in serpentine or sinuous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B27/00Instantaneous or flash steam boilers
    • F22B27/04Instantaneous or flash steam boilers built-up from water tubes
    • F22B27/06Instantaneous or flash steam boilers built-up from water tubes bent in serpentine or sinuous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: F01K 25110 <20060i> F22B 21124 <2006 01> 29.03.2017 Bulletin 2017/13 F22B 29106 <2°°e °1> F22B 27106 <2°°e °1> (21) Application number: 12705427.8 (86) International application number: PCT/IB2012/050385 (22) Date of filing: 27.01.2012 (87) International publication number: WO 2012/110905 (23.08.2012 Gazette 2012/34)
(54) APPARATUS AND PROCESS FOR GENERATION OF ENERGY BY ORGANIC RANKINE CYCLE
VORRICHTUNG UND VERFAHREN ZUR ENERGIEERZEUGUNG DURCH EINEN ORGANISCHEN RANKINE-KREISLAUF
APPAREIL ET PROCESSUS DE PRODUCTION D’ENERGIE PAR CYCLE DE RANKINE ORGANIQUE (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB EP-A2- 2 348 200 WO-A1-2006/060253 GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO WO-A1-2011/012516 WO-A1-2011/066089 PL PT RO RS SE SI SK SM TR DE-C-696 727 GB-A-1 158 981 GB-A- 2 062 111 GB-A- 2 296 964 (30) Priority: 18.02.2011 ITMI20110244 JP-A-60 251 388 US-A- 2 844 360 US-A- 4 627 386 US-A1- 2009 126 923 (43) Date of publication of application: 25.12.2013 Bulletin 2013/52 · JERRY TABOREK: ’Double-Pipe and Multitube
Heat Exchangers with plain and longitudinal (73) Proprietor: Exergy S.p.A. finned tubes’ HEAT TRANSFER ENGINEERING, 40123 Bologna (IT) [Online]23October2007,XP055164241 Retrieved from the Internet: (72) Inventor: SPADACINI, Claudio <URL:www.tandfonline.com/lol/uhte20> I-28925 Verbania Suna (Verbania) (IT) [retrieved on 2015-01-22] • RICHARD SHILLING ET AL: ’Heat transfer
(74) Representative: Brasca, Marco technology’THE INTERNATIONAL JOURNAL OF PGA S.p.A. HYDROCARBON ENGINEERING 01 October
Via Mascheroni, 31 1997, XP055164243 20145 Milano (IT) · CHEN H ET AL: "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, ELSEVIERS SCIENCE, NEW YORK, NY, US, vol. 14, no. 9, 1 December 2010 (2010-12-01), pages 3059-3067, XP027274749, ISSN: 1364-0321 [retrieved on 2010-07-30]
Description
Technical Field [0001] The present invention relates to an apparatus and process for energy generation by super-critical organic Rankine cycle.
Background Art [0002] Apparatuses based on a thermodynamic Rankine cycle are known that convert thermal energy into mechanical and/or electric energy in a simple and reliable manner. In these (ORC) apparatus working fluids of the organic type (of high or medium molecular weight) are preferably used in place of the traditional water/vapour system, because an organic fluid is suitable for conversion of heat sources at relatively low temperatures, generally between 100°C and 300°C, but also at higher temperatures, in a more efficient manner. The ORC conversion systems therefore have recently found increasingly wider applications in different sectors, such as in the geothermic field, in the industrial energy recovery, in apparatus for energy generation from biomasses and concentrated solar power (CSP), in regasifiers, etc.
[0003] An apparatus of known type for conversion of thermal energy by an organic Rankine cycle (ORC) comprises: at least one heat exchanger exchanging heat between a high-temperature source and a working fluid, so as to heat, evaporate and superheat the working fluid; at least one turbine fed by the working fluid in the vapour phase coming out of the heat exchanger so as to carry out conversion of the thermal energy present in the working fluid into mechanical energy according to a Rankine cycle; at least one generator operatively connected to the turbine, in which the mechanical energy produced by the turbine is converted into electric energy; at least one condenser where the working fluid coming out of the turbine is condensed and sent to at least one pump; from the pump the working fluid is fed to the heat exchanger.
[0004] ORC cycles and related apparatus are known in which evaporation is sub-critical. Reproduced in Figs. 2a and 2b is a typical Rankine cycle not part of the invention, obtained with an organic fluid, by sub-critical evaporation. The organic fluid is pumped by the pump from pressure of point 1 (pump suction) to pressure of point 2 (pump delivery). From point 2 the fluid is heated until point 3. In the most general case heating contemplates the sensible-heat exchange with the working fluid in the liquid phase (from 2 to 2’), the latent-heat exchange between saturated liquid and saturated vapour (2’ to 2"), the sensible-heat exchange with vapour (2" to 3). When point 3 has been reached, the fluid is introduced into the turbine. The exit conditions out of the turbine are represented by point 4. From point 4 the fluid is cooled to point 5 and condensed until point 1. In known apparatus with sub-critical evaporation, heating of the organicfluid passes through three different sections: preheating, evapo ration and superheating (in some cases superheating can be absent). In these known apparatus different heat exchangers are normally used for thermal exchange of sensible heat and latent heat. The heat exchanger of known apparatus therefore comprises a preheater, an evaporator and, optionally, a superheater. This because usually a big volume is required for the evaporator as generallythe vapourofafluid has aspecific volume much bigger than the liquid. In addition, large exchange surfaces are required to make the vapour acquire sensible heat because the heat exchange coefficients of vapour are very low.
[0005] Document WO 2011/012516 of known art illustrates a steam generator including tubes passing through the generator, from a water inlet to an superheated steam outlet, disposed horizontally in banks perpendicularly passed through by fumes.
[0006] Document US 4 627 386 of known art shows a steam generator or boiler in which the thermal energy used for generating steam is obtained from a gas turbine.
[0007] In document JP 60 251388 of known art the exhaust gases of a gas turbine are introduced into a heat exchanger and heat exchange is carried out in an evaporator. The heat exchange tubes of the evaporator are disposed horizontally in groups.
[0008] Document WO 2006/060253 of known art depicts a method and an apparatus using an organic Rankine cycle for generating energy on a sea boat. The method comprises the following steps: providing an ORC device including at least one evaporator, a turbogenerator, a condenser and a cooler feeding pump; arranging the evaporator within an exhaust duct of a power plant of a sea boat; setting the power plant in operation and selectively pumping cooler through the ORC device.
[0009] Document WO 2011/066089, which is a prior right and it is not relevant for the assessment of inventive step, discloses a system for power generation using an Organic Rankine Cycle. The system includes: a heat exchanger configured to be mounted entirely inside a duct, the heat exchanger being configured to include a single inlet which traverses from an outer side of the duetto an inner side of a duct, a single outlet which traverses from the inner side of the duct to the outer side of the duct, and a conduit connecting the single inlet to the single outlet, the conduit being provided entirely inside the duct.
[0010] Document DE 696 727 discloses an heat exchanger comprising a plurality of tubes enclosed by a common outer tube.
[0011] Document US 2009/126923 discloses apparatus and methods for recovering and using geothermal energy. Such methods include at least partially vaporizing a working fluid by passing it through a flow loop that partially extends into a heated subterranean zone and employing the vaporized working fluid to power a turbine. A portion of the flow loop can comprise a depleted or partially depleted hydrocarbon well.
[0012] The document US-A-2844360 and publication "Double-pipe and multitube heat exchangers with plain and longitudinal finned tubes", Jerry Taborek, Heat transfer engineering, 2007-10-23, disclose double-pipe heat exchangers of the "hair-pin" type.
[0013] Publication "Heattransfertechnology", Richard Shilling et al., The international journal of hydrocarbon engineering, 1997-10-01, discloses hairpin heat exchangers too.
[0014] Publication "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat", Huijuan Chen et.al, Renewable and sustainable energy reviews, Elsevier, Vol.14, Issue 9, December 2010, discloses the use of supercritical ORC and proposes various potential working fluids, without going into detail about the heat exchanger used for heating the working fluid.
Disclosure of the Invention [0015] Within this scope, the Applicant has aimed at improving known plants under different points of view, in particular in relation to optimisation of the apparatus intended for heat exchange, based on the nature of the organic fluid used.
In greater detail, the Applicant has aimed at optimising the apparatus carrying out change of state, from liquid to vapour, of the organic liquid used.
[0016] The Applicant has found that adoption of a heat exchanger of the "hairpin" type makes the apparatus more flexible because with this exchanger once-through evaporation is carried out which does not require subcooling of the fluid entering the evaporator, which would be necessary in the pre-heater and boiler configuration. In addition, this exchanger makes the starting and turning off operations of the apparatus more flexible, because it can remain in operation under dry-running conditions, i.e. with the primary side started and the secondary side dry.
[0017] More particularly, the invention relates to the ORC apparatus of claim 1.
[0018] In another aspect, the present invention relates to the ORC process of claim 3.
[0019] By the term "hairpin" it is intended a heat exchanger comprising more inner tubes inserted into an outershell in which the innertubesand outer shell extend along rectilinear stretches mutually connected by curvilinear stretches, like a street with "hairpin" bends. A first fluid flows in the inner tubes and a second fluid flows between the inner tubes and outer shell.
[0020] This type of exchanger, also referred to as "double-tube exchanger" is known by itself in the technical literature. For instance, the text "Process Heat Transfer, Principles and Applications", by Robert W. Sert, published in April 2007 by Elsevier Science &amp; Technology Books (ISBN: 0123735882) at pages 3/86 and 3/87 describes the hairpin exchanger as provided with an inner tube or a bundle of inner tubes, surrounded by an outer tube and in which both the inner tube and outer tube extend as a tube coil formed with at least two rectilinear stretches connected by a curved stretch.
[0021] Using the hairpin heat exchanger inside the ORC cycle, said heat exchanger is able to carry out a state conversion from liquid to superheated vapour by a single apparatus, enabling the sizes of the whole plant and the industrial spaces dedicated thereto to be reduced.
[0022] Since the hairpin heat exchanger further is of easy manufacture, limited costand high reliability, it helps in making the whole plant cheaper and more reliable.
[0023] The hairpin heat exchanger is able to stably carry out the preheating, once-through evaporation and superheating steps both at nominal load and at partial and transitory loads, for super-critical ORC cycles. By "once-through" evaporation it is intended a process in which physical distinction between preheater, evaporator and superheater is not provided, but the fluid goes on without a break from the starting liquid state to the final superheated vapour state. As a result, the plant can be used with different organic fluids and optimised as a function of the nature of same.
[0024] The hairpin heat exchanger performing all the above mentioned exchange steps in a single tube without a break is consequently also self-draining during the turning-off step.
[0025] In addition, the exchanger of the hairpin type is able to come into operation under dry-running conditions. The term "dry-running conditions" is understood as indicating the conditions according to which the only hot side of the exchanger is fed with the fluid. Using the hairpin exchanger for carrying out a once-through evaporation it is possible to supply the diathermic oil alone on the skirt side and subsequently supply the organic fluid on the cold side.
[0026] The configuration of the hairpin type further has the advantage of enabling heat exchange with great temperature differences between fluid entry and fluid exit, i.e. with high thermal lengths, the mechanical stress being low. In fact, using this geometry, it is possible to uncouple the expansion on the outer shell from the expansion of the tubes.
[0027] The hairpin heat exchanger is able to withstand high temperature differences, even beyond 100-200°C, between the incoming heating fluid (Fig. 3b, point A) and outgoing heating fluid (Fig. 3b, point B).
[0028] Preferably, the hairpin heat exchanger is with or without buffers.
[0029] The hairpin heat exchanger comprises an inner-tube bundle surrounded by a shell.
[0030] In accordance with the process, in step i) heating of the organic working fluid is of the super-critical type.
[0031] The advantage of performing the cycle making a super-critical evaporation resides in optimising the conversion performances from thermal energy into electric energy. The operating conditions optimising the thermal cycle performances, such as pressure of the evaporation, depend on the fluid nature. By changing the type of organic fluid used, there is also a change in the process parameters optimising the cycle efficiency, and conse- quently in the nature of the evaporation that can be sub-critical.
Brief Description of the Drawings [0032] Further features and advantages will become more apparent from the detailed description of a preferred but not exclusive embodiment of an apparatus and a process for energy generation through the super-critical organic Rankine cycle in accordance with the present invention.
[0033] The detailed description of these configurations will be set out hereinafter with reference to the accompanying drawings, given by way of non-limiting example, in which:
Fig. 1 diagrammatically shows the base configuration of an apparatus for energy generation through the organic Rankine cycle according to the present invention;
Figs. 2a and 2b respectively show an organic Rankine cycle (ORC) with sub-critical evaporation (not part of the present invention) and diagram T-Q reproducing the conversions taking place in the evaporator;
Figs. 3a and 3b respectively depict an organic Rankine cycle (ORC) with super-critical evaporation according to the present invention and diagram T-Q reproducing the conversions taking place in the evaporator.
Detailed Description of the Preferred Embodiments of the Invention [0034] With reference to the mentioned figures, generally denoted at 10 is an apparatus for energy generation through the super-critical organic Rankine cycle (ORC) according to the present invention.
[0035] Apparatus 10 comprises an endless circuit in which an organic working fluid flows which has a high or medium molecular weight. This fluid can preferably be selected from the group comprising hydrocarbons, fluorocarbons and siloxanes.
[0036] Fig. 1 shows the circuit of the Rankine cycle in its base configuration and contemplates: a pump 20, a heat exchanger 30, a turbine 40 connected to an electric generator 50, a condenser 60.
[0037] Pump 20 admits the organic working fluid from condenser 60 into the heat exchanger 30. In the heat exchanger 30 the fluid is heated, evaporated and then fed in the vapour phase to turbine 40, where conversion of the thermal energy present in the working fluid into mechanical energy and then into electrical energy through generator 50 is carried out. Downstream of turbine 40, in condenser 60, the working fluid is condensed and sent again to the heat exchanger through the pump 20.
[0038] Pump 20, turbine 40, generator 50 and con denser 60 will be not further described herein as they are of known type.
[0039] The heat exchanger 30 is of the "hairpin" type, i.e. it comprises several inner tubes (tube bundle) 70 in which circulation of the organic working fluid occurs. Tubes 70 are inserted in an outer shell/skirt/jacket 80 and between the tubes 70 and shell 80 a hot fluid, diathermal oil for example, is caused to flow. The inner tubes 70 and outer shell 80 extend along rectilinear stretches 70b, 80b connected to each other by curvilinear stretches 70a, 80a.
[0040] In the non-limiting diagrammatic example shown, the hairpin heat exchanger 30 comprises a U-shaped bundle of inner tubes 70 (schematically represented) having two rectilinear stretches 70b connected by a curvilinear connecting stretch 70a. The inner tubes 70 extends inside the outer shell 80 that will takes the same U-shaped configuration with two rectilinearstretch-es 80b connected by a curvilinear connecting stretch 80a. A first end 90 (inlet) of the inner tubes 70 is in fluid connection, through suitable pipeline, with pump 20. A second end 100 (outlet) of the inner tubes 70 is in fluid connection, through suitable pipeline, with turbine 40. In the vicinity of the second end 100 of the inner tubes 70, the outer shell 80 has an inlet 110 for the hot fluid and, in the vicinity of the first end 90 of the inner tubes 70, the outer shell 80 has an outlet 120 for said hot fluid. The organic working fluid flows from the first end 90 to the second end 100 while the hot fluid runs from inlet 110 to outlet 120, so that the heat exchanger 30 shown works in counter-current. According to variants not shown, the heat exchanger 30 can have "n" rectilinear stretches connected by "n-1" curvilinear stretches.
[0041] In accordance with the process of the invention, the working fluid running in the hairpin heat exchanger 30 passes without a break from the initial liquid state to the final state of superheated vapour. Evaporation takes place in the absence of contact between liquid and vapour and therefore under the so-called "once-through" condition.
[0042] Figs. 2a and 2b describe the heat exchange during heating of the organic fluid in the more general case of sub-critical heating not part of the invention. During heat exchange the hot fluid (diathermic oil, for example) entering at point A is cooled by transfer of heat Q until it reaches the conditions of point B. The organic fluid coming out of pump 20 at the described conditions from point 2 absorbs heat Q and is heated. The thermal profile followed by the fluid during heating is reproduced by curve 2-2’-2"-3 in Fig. 2a, not part of the invention.
[0043] Reproduced in Figs. 3a and 3b is an organic Rankine cycle, ORC, with super-critical evaporation according to the invention. Unlike the evaporation described in Fig. 2a, the fluid is pumped by the pump until a pressure higher than the critical one. By heating from this point until point 3 it is not possible to identify points 2’ and 2" characterising the phase transition. In particu- lar, the specific fluid volume changes continuously, without discontinuity from liquid to vapour. This is true at the nominal pressure, but itshould be pointed outthatduring the starting and turning-off transients, crossing of the sub-critical region is unavoidable.
[0044] In super-critical ORC cycles heating takes place without phase changes, however in the starting and turn-ing-off transients and during the consequent pressurisa-tion/depressurization transients the saturation curve is crossed and therefore particular care and attention is paid to systems adapted to avoid formation of liquid pockets in areas where there is the presence of superheated vapour.
[0045] The conversion of state from liquid to vapour in the single hairpin exchanger is able to exchange both the sensible heat necessary to bring the fluid to conditions of saturated liquid (preheating, PH, Fig. 2a, stretch 2-2’), and the latent heat for bringing the saturated liquid to the conditions of saturated vapour (evaporation, EV, Fig. 2a stretch 2’-2"), as well as the sensible heat necessary for vapour superheating (superheating, SH, Fig. 2a stretch 2"-3). The thermal energy exchanged in the apparatus with hairpin exchanger according to the invention enables the fluid to carry out conversions involving heat exchange under super-critical conditions (see Fig. 3a).
Claims 1. An ORC apparatus for generation of energy by super-critical organic Rankine cycle, comprising: - a single heat exchanger (30) to exchange heat between a heat source and an organic working fluid, so as to heat and evaporate and superheat said working fluid; - at least one turbine (40) fed with the vaporised working fluid coming out of the heat exchanger (30), to make a conversion of the thermal energy present in the working fluid into mechanical energy according to a Rankine cycle; - at least one condenser (60) where the working fluid coming out of said at least one turbine (40) is condensed and sent to at least one pump; the working fluid being then fed to said heat exchanger (30); characterised in that the heat exchanger (30) is of the hairpin type and comprises a bundle of inner tubes (70) surrounded by an outershell (80); wherein both the bundle of inner tubes (70) and the outer shell (80) extend along at least two rectilinear stretches (70b, 80b) mutually connected by at least one curvilinear stretch (70a, 80a); wherein circulation of the organic working fluid occurs in the bundle of inner tubes (70) and a hot fluid is caused to flow between the bundle of inner tubes (70) and the shell (80); wherein the hairpin heat exchanger (30) is of countercurrent type. 2. An apparatus as claimed in claim 1, further comprising at least one generator (50) operatively linked to said at least one turbine (40), wherein the mechanical energy produced by the turbine (40) is converted into electric energy. 3. An ORC process for generation of energy by supercritical organic Rankine cycle, comprising: i) feeding an organic working fluid through a single heat exchanger (30) to exchange heat between a heat source and said working fluid, so as to heat and evaporate said working fluid; ii) feeding the vaporised organic working fluid coming out of the heat exchanger (30) to at least one turbine (40) to make a conversion of the thermal energy present in the working fluid into mechanical energy according to a Rankine cycle; iii) feeding the organic working fluid coming out of said at least one turbine (40) to at least one condenser (60) where the working fluid is condensed; iv) sending the organic working fluid coming out of the condenser (60) to said heat exchanger (30); characterised in that step i) comprises: making the organic working fluid flow through a heat exchanger (30) of the hairpin type comprising a bundle of inner tubes (70) surrounded by an outer shell (80); wherein both the bundle of inner tubes (70) and the outer shell (80) extend along atleasttworectilinearstretches(70b,80b) mutually connected by at least one curvilinear stretch (70a, 80a); wherein circulation of the organic working fluid occurs in the bundle of inner tubes (70) and a hot fluid is caused to flow between the bundle of inner tubes (70) and the shell (80); wherein the hairpin heat exchanger (30) is of countercurrent type; wherein in step i) heating of the organic working fluid is of the super-critical type. 4. A process as claimed in claim 3, wherein the organic working fluid is selected from the group comprising: hydrocarbons, fluorocarbons and siloxanes. 5. A process as claimed in claim 3, wherein the heat exchanger (30) of the hairpin type comes into operation in dry-running conditions.
Patentansprüche 1. ORC-Vorrichtung zum Erzeugen von Energie durch einen überkritischen organischen Rankine-Zyklus, umfassend: - einen einzelnen Wärmetauscher (30) zum Austauschen von Wärme zwischen einer Wärmequelle und einem organischen Arbeitsfluid, um so das Arbeitsfluid zu erwärmen und zu verdampfen und zu überhitzen; - wenigstens eine Turbine (40), welche mit dem verdampften Arbeitsfluid gespeist wird, welches aus dem Wärmetauscher (30) kommt, um eine Umwandlung der thermischen Energie, welche in dem Arbeitsfluid vorliegt, in mechanische Energie gemäß einem Rankine-Zyklus durchzuführen; - wenigstens einen Kondensator (60), bei welchem das aus der wenigstens einen Turbine (40) kommende Arbeitsfluid kondensiert und zu der wenigstens einen Pumpe geschickt wird; wobei das Arbeitsfluid dann zu dem Wärmetauscher (30) geschickt wird; dadurch gekennzeichnet, dass der Wärmetauscher (30) vom Haarnadel-Typ ist und ein Bündel von inneren Leitungen (70) umfasst, welche von eineräußeren Hülle (80) umgeben sind, wobei sowohl das Bündel von inneren Leitungen (70) als auch die äußere Hülle (80) sich entlang wenigstens zweier geradliniger Strecken (70b, 80b) erstrecken, welche gegenseitig durch wenigstens eine kurvenförmige Strecke (70a, 80a) verbunden sind; wobei eine Zirkulation des organischen Arbeitsfluids in dem Bündel von inneren Leitungen (70) auftritt und ein heißes Fluid dazu veranlasst wird, zwischen dem Bündel von inneren Leitungen (70) und der Hülle (80) zu strömen; wobei der Haarnadel-Wärmetauscher (30) vom Gegenstrom-Typ ist. 2. Vorrichtung nach Anspruch 1, ferner umfassend wenigstens einen Generator (50), welcher mit der wenigstens einen Turbine (40) betriebsmäßig verbunden ist, wobei die von der Turbine (40) erzeugte mechanische Energie in elektrische Energie umgewandelt wird. 3. ORC-Prozess zum Erzeugen von Energie durch einen überkritischen organischen Rankine-Zyklus, umfassend: i) Führen eines organischen Arbeitsfluids durch einen einzelnen Wärmetauscher (30) zum Austauschen von Wärme zwischen einer Wärmequelle und dem Arbeitsfluid, um so das Arbeitsfluid zu erwärmen und zu verdampfen; ii) Zuführen des aus dem Wärmetauscher (30) kommenden verdampften organischen Arbeitsfluids zu wenigstens einerTurbine (40), um eine Umwandlung der in dem Arbeitsfluid vorliegenden thermischen Energie in mechanische Energie gemäß einem Rankine-Zyklus durchzuführen; iii) Zuführen des aus der wenigstens einen Turbine (40) kommenden organischen Arbeitsfluids zu wenigstens einem Kondensator (60), wo das Arbeitsfluid kondensiert wird; iv) Schicken des aus dem Kondensator (60) kommenden organischen Arbeitsfluids zu dem Wärmetauscher (30); dadurch gekennzeichnet, dass Schritt i) umfasst: Veranlassen des organischen Arbeitsfluids dazu, durch einen Wärmetauscher (30) des Haarnadel-Typs zu strömen, welcher ein Bündel von inneren Leitungen (70) umfasst, welche von einer äußeren Hülle (80) umgeben sind; wobei sowohl das Bündel von inneren Leitungen (70) als auch die äußere Hülle (80) sich entlang wenigstens zweier geradliniger Strecken (70b, 80b) erstrecken, welche gegenseitig durch wenigstens eine kurvenförmige Strecke (70a, 80a) verbunden sind; wobei eine Zirkulation des organischen Arbeitsfluids in dem Bündel von inneren Leitungen (70) auftritt und ein heißes Fluid dazu veranlasst wird, zwischen dem Bündel von inneren Leitungen (70) und der Hülle (80) zu strömen; wobei der Haarnadel-Wärmetauscher (30) vom Gegen-strom-Typ ist; wobei in Schritt i) das Erwärmen des organischen Arbeitsfluids vom überkritischen Typ ist. 4. Prozess nach Anspruch 3, wobei das organische Arbeitsfluid aus der Gruppe ausgewählt ist, welche umfasst: Kohlenwasserstoffe, Fluorkohlenstoffe und Siloxane. 5. Prozess nach Anspruch 3, wobei der Wärmetauscher (30) vom Haarnadel-Typ in Trockenlauf-Zu-ständen in Betrieb kommt.
Revendications 1. Appareil à cycle de Rankine à caloporteurorganique pour la production d’énergie par cycle de Rankine à caloporteur organique supercritique, comprenant : - un échangeur thermique unique (30) pour échanger de la chaleur entre une source de chaleur et un liquide de travail organique, afin de chauffer et d’évaporer et de super-chauffer ledit liquide de travail ; - au moins une turbine (40) alimentée avec le liquide de travail vaporisé sortant de l’échangeur thermique (30), pour effectuer une conversion de l’énergie thermique présente dans le liquide de travail en énergie mécanique selon un cycle de Rankine ; - au moins un condenseur (60) où le liquide de travail sortantde ladite au moins une turbine (40) est condensé et envoyé vers au moins une pompe ; le liquide de travail étant ensuite alimenté au niveau dudit échangeur thermique (30); caractérisé en ce que l’échangeur thermique (30) est du type en épingle à cheveux et comprend un faisceau de tubes internes (70) entouré d’une enveloppe externe (80) ; où à la fois le faisceau de tubes internes (70) et l’enveloppe externe (80) s’étendent le long d’au moins deux étendues rectilignes (70b, 80b) mutuellement connectées par au moins une étendue curviligne (70a, 80a) ; où la circulation du liquide de travail organique se produit dans le faisceau de tubes internes (70) et un liquide chaud est conduit à s’écouler entre le faisceau de tubes internes (70) et l’enveloppe (80) ; où l’échangeur thermique en épingle à cheveux (30) est du type à contre-courant. 2. Appareil tel que revendiqué selon la revendication 1, comprenant en outre au moins un générateur (50) fonctionnellement lié à ladite au moins une turbine (40), où l’énergie mécanique produite par la turbine (40) est convertie en énergie électrique. 3. Procédé à cycle de Rankine à caloporteurorganique pour la production d’énergie par l’intermédiaire d’un cycle de Rankine à caloporteurorganique supercritique, comprenant : i) l’alimentation d’un liquide de travail organique à travers un échangeur thermique unique (30) pour échanger de la chaleur entre une source de chaleur et ledit liquide de travail, afin de chauffer et de faire s’évaporer ledit liquide de travail ; ii) l’alimentation du liquide de travail organique vaporisé sortant de l’échangeur thermique (30) au niveau d’au moins une turbine (40) pour effectuer une conversion de l’énergie thermique présente dans le liquide de travail en énergie mécanique selon un cycle de Rankine ; iii) l’alimentation du liquide de travail organique sortant de ladite au moins une turbine (40) au niveau d’au moins un condenseur (60) où le liquide de travail est condensé ; iv) l’envoi du liquide de travail organique sortant du condenseur (60) audit échangeur thermique (30); caractérisé en ce que l’étape i) comprend : le fait de faire s’écouler le liquide de travail organique à travers un échangeur thermique (30) du type en épingle à cheveux comprenant un faisceau de tubes internes (70) entouré d’une enveloppe externe (80) ; où à la fois le faisceau de tubes internes (70) et l’enveloppe externe (80) s’étendent le long d’au moins deux étendues rectilignes (70b, 80b) mutuellement connectées par au moins une étendue curviligne (70a, 80a) ; où la circulation du liquide de travail organique se produit dans le faisceau de tubes internes (70) et un liquide chaud est conduit à s’écouler entre le faisceau de tubes internes (70) et l’enveloppe (80) ; où l’échangeurthermique en épingle à cheveux (30) est du type à contre-courant ; où dans l’étape i) le chauffage du liquide de travail organique est du type supercritique. 4. Procédé tel que revendiqué selon la revendication 3, dans lequel le liquide de travail organique est sélectionné dans le groupe comprenant : les hydrocarbures, les hydrocarbures fluorés et les siloxanes. 5. Procédé tel que revendiqué selon la revendication 3, dans lequel l’échangeur thermique (30) du type en épingle à cheveux entre en fonctionnement sous des conditions de marche à sec.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 2011012516 A [0005] · WO 2011066089 A [0009] • US 4627386 A [0006] · DE 696727 [0010] • JP60251388 A[0007] · US 2009126923 A[0011] • WO 2006060253 A [0008] · US 2844360 A [0012]
Non-patent literature cited in the description • RICHARD SHILLING etal. Heattransfertechnology. · ROBERT W. SERT. Process Heat Transfer, Princi-
The international journal ofhydrocarbon engineering, pies and Applications. Elsevier Science &amp; Technolo- 01 October 1997 [0013] gy Books, April 2007, 3,, 86, , 3, , 87 [0020] • A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. HUIJUAN CHEN. Renewable and sustainable energy reviews.
Elsevier, December 2010, vol. 14, 9 [0014]

Claims (3)

  1. Szabadalmi igénypontok
    1, OR,C berendezés energia előállítására szuper-kritikus szerves Ranklne ciklussal, amely tartalmaz:; * agy önálló hueserflőt (B0) agy hőforrás és egy szerves munkaközeg között hőcseréhez, a munfcakózeg melegítéséhez és el párologtatáséhoz és szupudíutéséhez; a hőcserélőből (30) kilépő elpárologtatott munkaközeggel flpláit iegalibb egy tuflíilt (40), a munkaközegben jelenlévő termikus energia mechanikus epergllyl aíakitásához a Ranklne Ciklusnak megfelelően; ahol a legalább egy turbfefbif :pf) W!i}?§ :gMSkakőteg. kendenzáiődfk is fpvábhjut legáíább egy szivattyúhoz; a munkákizeg ezután a hőcserélőbe (30) jut; iazzaf jellemezve, hogy aőeöserélő (30) hajtő típusú, ás kőlsf héjjal (80) körülvett beísi csiköteget (70) tartalmaz; ahol a belső csőköteg: (70) éé S külső héj (80) legalább Rét egyenes vonalú szakaszon (7öb, 80b) fut,, és össze van kötve legalább egy görbe vonalú szakasszal ψΜ* 80a); ahol a szervesrrnunkaközeg a belső csőkötegben (70) kering, és tőrre közeg van áramoltatva a belső csőkötég: (70) és a héj (80) között; ahol a hajtő hőcserélő (30) ellené re m ú 11 p u sú,
  2. 7, Az i< Igénypont szerinti berendezés, amely tartalmaz még legalább egy generátort (50), amely együttműködőén csatlakozik a legalább egy turbinához (40), ahol a turbinával (40) eliáiíítoft mechanikai energia villamos energiává alakul,
  3. 3. ORC eljárás energia előállítására szoper-kfittkosiszerves^^ Ranklne ciklussal, amelynek során: I) szerves munkaközeget vezetünk át egy önálló hőcserélőn (30) keresztül egy hőforrás és a szerves munkaközeg között hőcseréhez,, a munkaközeg melegítéséhez is elpá rolog tatásához; II) a hőcserélőből (30) kilépő elpárologtatott munkakőzeget legalább egy turbinába (40) vezetjük, a munkakozegben jelenlévő termikus energia meebaníküs energiává alakításához a Ranklne dkiusnak megteíelően; Ül) S: legalább égy turbinából (40) kilépő szerves munkakozeget legalább egy kondenzátorba (60) vezetjük, ahol a munkaközeg kondenzálodik; iv) a kondenzátorból (60) kilépő szerves munkaközeget a hőcserélőbe (30) vezetek; szzaji|aíiernezvef hogy az 0 lépés se?ránt a: szerves ntunkaközegei najtű típusit hőeseifélőn (30) vi.a;^IÍ!(ii:..^%:· enwiy' &amp;Ö&amp;S&amp; :W|I^ (8ö) körülvett belső csőköteget tartalmaz; ahol a belső csőköteg í?0) és a külső héj (80) legalább két egyenes vonalé szakaszon (70b, 8"öb) fut, is össze; van kötve legalább egy görbe vonalú szakasszal {70» t $Qa); sboi a szerves munkaközeg a belső csőkötegben (70) kering, es forró közeg vab áramoltatva a belső csőköteg (70) és a héj (80) között; ahol a hajtű hőcserélő (30) ellenáramú típusú; ahol az I) lépésben a szerves munkakozeg ütése sannerkritíkusv 4. A 3, igénypont szerinti eljárás, amelynél a szerves munkaközeget az alábbiakat tartalmazó csoportból választjuk: szénhidrogének, fluor-szénhidrogének és szlloxánok, S- A 3. igénypont, szerinti eljárás, amelynél a hajtő típusú hőcserélő (30) száraz özemé feltételek kőzett működik*
HUE12705427A 2011-02-18 2012-01-27 Berendezés és eljárás energia elõállítására szerves Rankine ciklussal HUE034699T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ITMI2011A000244A IT1404174B1 (it) 2011-02-18 2011-02-18 Impianto e processo per la produzione di energia tramite ciclo rankine organico

Publications (1)

Publication Number Publication Date
HUE034699T2 true HUE034699T2 (hu) 2018-02-28

Family

ID=43976149

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE12705427A HUE034699T2 (hu) 2011-02-18 2012-01-27 Berendezés és eljárás energia elõállítására szerves Rankine ciklussal

Country Status (8)

Country Link
US (1) US20140026575A1 (hu)
EP (1) EP2676008B1 (hu)
ES (1) ES2628616T3 (hu)
HR (1) HRP20170934T1 (hu)
HU (1) HUE034699T2 (hu)
IT (1) IT1404174B1 (hu)
PT (1) PT2676008T (hu)
WO (1) WO2012110905A1 (hu)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1404174B1 (it) 2011-02-18 2013-11-15 Exergy Orc S R L Ora Exergy S P A Impianto e processo per la produzione di energia tramite ciclo rankine organico
ITBS20130184A1 (it) * 2013-12-19 2015-06-20 Turboden Srl Metodo di controllo di un ciclo rankine organico
IT201900006817A1 (it) * 2019-05-14 2020-11-14 Turboden Spa Circuito di scambio termico per impianto geotermico
CN115450720A (zh) * 2022-09-19 2022-12-09 许子澍 一种低温增压二氧化碳超临界发电系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE696727C (de) * 1938-05-31 1940-09-27 Siemens Schuckertwerke Akt Ges Waermeaustauscher, insbesondere Gastemperaturwechsler, fuer kontinuierlich arbeitende Absorptionsmaschinen
US2520755A (en) 1948-09-13 1950-08-29 Brown Fintube Co Multiple tube heat exchanger
BE535180A (hu) 1954-01-27
US2865827A (en) * 1955-05-27 1958-12-23 Orrington E Dwyer Power generation from liquid metal nuclear fuel
GB1158981A (en) * 1966-02-22 1969-07-23 Atomic Energy Authority Uk Improvements relating to Heat Exchangers.
CA1055479A (en) * 1975-08-27 1979-05-29 James W. Barr (Jr.) Descaling of heat exchanger
JPS5930887B2 (ja) * 1979-10-11 1984-07-30 大阪瓦斯株式会社 中間熱媒体式液化天然ガス冷熱発電システム
US4627386A (en) * 1983-04-08 1986-12-09 Solar Turbines, Inc. Steam generators and combined cycle power plants employing the same
JPS60251388A (ja) * 1984-05-25 1985-12-12 Toshiba Corp 排熱回収熱交換器
DE3741882C1 (en) * 1987-12-10 1989-02-02 Gea Luftkuehler Happel Gmbh Steam generator with once-through forced flow
GB2296964B (en) * 1995-01-13 1998-12-16 Stork Ketels Bv Installation for generating steam
US20060112693A1 (en) * 2004-11-30 2006-06-01 Sundel Timothy N Method and apparatus for power generation using waste heat
WO2007131281A1 (en) * 2006-05-15 2007-11-22 Newcastle Innovation Limited A method and system for generating power from a heat source
US8708046B2 (en) * 2007-11-16 2014-04-29 Conocophillips Company Closed loop energy production from geothermal reservoirs
IT1395108B1 (it) * 2009-07-28 2012-09-05 Itea Spa Caldaia
US20110061388A1 (en) * 2009-09-15 2011-03-17 General Electric Company Direct evaporator apparatus and energy recovery system
US20110100009A1 (en) * 2009-10-30 2011-05-05 Nuovo Pignone S.P.A. Heat Exchanger for Direct Evaporation in Organic Rankine Cycle Systems and Method
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
IT1404174B1 (it) 2011-02-18 2013-11-15 Exergy Orc S R L Ora Exergy S P A Impianto e processo per la produzione di energia tramite ciclo rankine organico

Also Published As

Publication number Publication date
EP2676008B1 (en) 2017-03-29
US20140026575A1 (en) 2014-01-30
ES2628616T3 (es) 2017-08-03
ITMI20110244A1 (it) 2012-08-19
WO2012110905A1 (en) 2012-08-23
IT1404174B1 (it) 2013-11-15
HRP20170934T1 (hr) 2017-09-22
EP2676008A1 (en) 2013-12-25
PT2676008T (pt) 2017-07-03

Similar Documents

Publication Publication Date Title
RU2561221C2 (ru) Система прямого испарения и способ для систем с циклом ренкина на органическом теплоносителе
JP4607116B2 (ja) 複数の熱源から熱を取得するための方法および装置
US20060174622A1 (en) Electrical generating system using solar energy and gas turbine
US20120085095A1 (en) Utilization of process heat by-product
US9279347B2 (en) High temperature ORC system
US20130047611A1 (en) Solar power plant part of a solar thermal power plant and solar thermal power plant provided with solar collector surfaces for a heat transfer medium and working medium
CA2885583A1 (en) Hybrid rankine cycle
JP4636906B2 (ja) 原子力発電システム
KR20160015235A (ko) 폐열 회수 시스템 및 방법
HUE034699T2 (hu) Berendezés és eljárás energia elõállítására szerves Rankine ciklussal
US20160033128A1 (en) Power generation system and method to operate
CN107208572B (zh) 换热器、能量回收装置以及船舶
MXPA05003380A (es) Evaporador de proceso directo para generador de vapor.
US20080011457A1 (en) Method and apparatus for acquiring heat from multiple heat sources
CN105518384A (zh) 用于防止塔型聚焦太阳能电站的锅炉中蒸干的方法和装置
WO2002101206A1 (en) Stratified vapor generator
Arpit et al. A state-of-the-art review of heat recovery steam generators and waste heat boilers
TW591196B (en) Process and apparatus to recover heat from a combustion engine turbine exhaust, and process and apparatus to recover heat from a hot gas stream
JP6132616B2 (ja) ガスタービンプラント、及びガスタービンプラントの運転方法
RU2383814C1 (ru) Парогенератор
KR20130134513A (ko) 복수기 배출수의 여열 및 태양열을 이용한 해수 온도차 발전 시스템
WO2013136407A1 (ja) コンバインドサイクル発電システム
JPS61258904A (ja) ランキンサイクルに逆ブレイトンサイクルを結合させた汽力発電所