HUE033250T2 - Hûtõrendszer és -eljárás fotovoltaikus napelem panelekhez - Google Patents

Hûtõrendszer és -eljárás fotovoltaikus napelem panelekhez Download PDF

Info

Publication number
HUE033250T2
HUE033250T2 HUE14707428A HUE14707428A HUE033250T2 HU E033250 T2 HUE033250 T2 HU E033250T2 HU E14707428 A HUE14707428 A HU E14707428A HU E14707428 A HUE14707428 A HU E14707428A HU E033250 T2 HUE033250 T2 HU E033250T2
Authority
HU
Hungary
Prior art keywords
panels
fluid
ást
des
der
Prior art date
Application number
HUE14707428A
Other languages
English (en)
Inventor
De Cordoba Sanz Fernando Fernandez
Original Assignee
De Cordoba Sanz Fernando Fernandez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Cordoba Sanz Fernando Fernandez filed Critical De Cordoba Sanz Fernando Fernandez
Publication of HUE033250T2 publication Critical patent/HUE033250T2/hu

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • H02S40/425Cooling means using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H01L 311052 (2006 01> 30.11.2016 Bulletin 2016/48 (86) International application number: (21) Application number: 14707428.0 PCT/ES2014/070010 (22) Date of filing: 09.01.2014 (87) International publication number: WO 2014/108592 (17.07.2014 Gazette 2014/29)
(54) COOLING SYSTEM AND METHOD FOR PHOTOVOLTAIC SOLAR PANELS
KLIHLORRICHTUNG UND KLIHLVERFAHREN FUR PHOTOVOLTAISCHE MODULEN
SYSTEME ET PROCEDE DE REFRIGERATION POUR PANNEAUX SOLAIRES PHOTOVOLTAIQUES (84) Designated Contracting States: (74) Representative: Carpintero Lopez, Francisco et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Herrero & Asociados, S.L. GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Alcala 35 PL PT RO RS SE SI SK SM TR 28014 Madrid (ES) (30) Priority: 11.01.2013 ES 201330023 (56) References cited: US-A- 2 093 808 US-A1-2012 152 318 (43) Date of publication of application: 18.11.2015 Bulletin 2015/47 · David’s Tlug info: "Water cooling of photovoltaic panels", internet, 1 March 2012 (2012-03-01), (73) Proprietor: Fernandez de Cordoba Sanz, Fernando XP002724429, Retrieved from the Internet: 28109 Alcobendas (Madrid) (ES) URL:http://tlug.webs.bailey.homelinux.net/ solar/ [retrieved on 2012-03-01] (72) Inventor: Fernandez de Cordoba Sanz, Fernando 28109 Alcobendas (Madrid) (ES)
Description
Object of the Invention [0001] The present invention belongs to the field of renewable energies, and more specifically to cooling apparatuses or means for photovoltaic solar panels.
[0002] The main object of the present invention is a cooling system and a cooling method for photovoltaic solar panels that allow increasing their performance by keeping their surface at optimal temperature values, while at the same time it allows cleaning dust or fouling residues off of said surface, even further optimizing, if possible, the final work and performance of said panels.
Background of the Invention [0003] Installations consisting of photovoltaic solar panels, hereinafter PV panels, for obtaining electricity directly from solar radiation, through a plurality of semiconductor devices (photovoltaic cells) installed in said PV panels, are well-known today. More particularly, there are basically three types of installations for producing electric power based on the photovoltaic effect: solar installation with a fixed plate; installation with single-axis solar tracking; installation with dual-axis solar tracking.
[0004] In all of them, the system for generating electric power is the same, i.e., a material manufactured for that purpose (mono- or polycrystalline photoelectric silicon cell, or thin film silicon amorphous), it absorbs the luminous photons coming from solar radiation, and as they enter an excitation state, said photoelectric cells release energy by emitting free electrons (electricity). This is known as the photovoltaic effect.
[0005] The document by David TLUG available on the internet site http://tlug.webs.bailey.homelinux.net/solar is a closesly related prior art.
[0006] There are currently several countries which have passed suitable laws and regulations for encouraging the establishment of solar installations and thus having a non-depletable, clean and renewable energy source. Virtually from the onset of solar technology, the tests conducted in various laboratories have determined that the optimal operating temperature of the PV panels is in the range comprised between 20 and 30°C, assuming that there will always be a series of losses generated as a result of the photovoltaic cells working at temperatures exceeding the optimal temperature, generally between 40-60°C and even higher, due to the heating of the cells by the action of solar radiation. This causes the PV panels to frequently work below their ideal performance of 100%. Furthermore, another detrimental side effect of said overheating is the early deterioration of the PV panels, their service life being shortened and having a much lower performance afterafew years ofoperation.
[0007] Therefore, current attempts to avoid said temperature increase in solar panels have been unsuccessful primarily due to the fact that even though there are cooling systems capable of controlling the panel heating effect, the economic and energy cost thereof is generally very high and is not worth it for investing companies because the vast majority of them use electricity to run additional cooling machines. Furthermore, they are also unable to remove the dust covering the surface, likewise affecting theirperformance. Therefore, most solar installations today are exposed to the elements, without any thermal protection of any type.
[0008] In summary, the drawbacks of current photovoltaic solar panels are mainly:
They work at a temperature above their optimal operating value, which causes a substantial loss in their performance.
They accumulate a layerofdust, particles and fouling that are deposited on their surface, negatively affecting their performance.
The preceding points cause early deterioration of the internal components of said PV panels, hence affecting their normal operation.
Furthermore, the preceding point causes the associated repair, replacement and maintenance costs for parts to rise considerably, thereby increasing the cost of the installation.
Description of the Invention [0009] The present invention solves the aforementioned drawbacks by providing a cooling system as recited in claim 1 and method as recited in claim 8 for photovoltaic solar panels, hereinafter PV panels, which allow increasing the performance of solar panels by keeping their surface at optimal operating temperature values, while at the same time it allows cleaning and removing dust and/orfouling residue existing on said surface, even further optimizing, if possible, their final performance.
[0010] More particularly, the cooling system object of invention is particularly applicable to PV panels of the type that are installed in an inclined position with respect to the horizontal plane for optimal solar radiation capture, said cooling system comprising fluid sprayers arranged on the upper edge of the PV panels for supplying a continuous or discontinuous sheet of fluid over the outer surface of the PV panels; a collection tray fixed to the lower edge of the PV panels to collect and channel the excess fluid coming from said outer surface of the PV panels; a drain hose linked at one of its ends to the collection tray to extract the fluid housed in the collection tray.
[0011] Furthermore, the cooling system of the present invention comprises a first tank arranged outdoors for storing and cooling the fluid extracted through the drain hose, and a second thermally insulated tank suitable for receiving the low-temperature fluid coming from the first tank by means of an electric pump, said second tank having an outlet duct for recirculating the fluid back towards the fluid sprayers of the PV panels.
[0012] Itshould be indicated thatwith said second ther- mally insulated tank that is insulated by means of polyurethane foam, for example, the fluid does not experience significant temperature variations for the longest possible time in order to be recirculated back to the fluid sprayers.
[0013] In turn, although the electric pump is preferably connected to the power grid, it has been envisaged that the cooling system herein described may comprise a standalone solar panel equipment for the additional power supply of said electric pump.
[0014] On the other hand, the fluid sprayers discussed above are preferably located on an elongated common rod installed along the upper edge of the PV panels, said fluid sprayers being able to be sprinklers, micro sprinklers, drip sprayers, sheet sprayers or the like. In turn, the electric pump is preferably a combined, lift-force pump, and it is associated with a control unit managing the power supply to be provided to the pump.
[0015] It has also been envisaged that the fluid sprayers additionally comprise flow rate regulating means that allow the outflow of a larger or smaller amount of fluid according to the cooling needs of the PV panels, i.e., by balancing out the excessive heat that the PV panels may have during the day so that their performance is always close to 100%.
[0016] According to another object of the invention, a cooling method for PV panels is described below, said method comprising the following steps: outflowoffluidovertheoutersurfaceofthePV panels from fluid sprayers located on the upper edge thereof, collecting and channeling the excess fluid in a collection tray, extracting the fluid housed in the collection tray by means of a drain hose, storing and cooling the extracted fluid in a first tank located outdoors until said fluid reaches a minimum temperature, pumping the fluid once it is cooled to a second thermally insulated tank, and recirculating the fluid from the second tank towards the fluid sprayers of the PV panels.
[0017] The step of storing and cooling the fluid in the first tank is preferably performed until the time of day with the lowest outdoor temperature (which will generally be in the early morning hours every day).
[0018] Likewise, the step of recirculating fluid back towards the fluid sprayers of the PV panels is preferably performed by means of draining by gravity through the outlet duct of the aforementioned second tank, thereby providing simplicity, speed and a low economic cost of the installation.
Description of the Drawings [0019] To complement the description that is being made and for the purpose of aiding to better understand the features of the invention according to a preferred practical embodiment thereof, a set of drawings is attached as an integral part of said description in which the following has been depicted with an illustrative and nonlimiting character:
Figure 1 shows a schematic view of the different elements involved in the cooling system for photovoltaic solar panels object of invention.
Figure 2 shows a perspective view of a photovoltaic solar panel incorporating the cooling system of the present invention.
Preferred Embodiment of the Invention [0020] A preferred embodiment is described below making reference to the aforementioned drawings, without this limiting or reducing the scope of protection of the present invention.
[0021] Figure 1 schematically shows the different component elements of the cooling system of the invention, which comprises: fluid sprayers (10), shown more clearly in Figure 2, located on an elongated common rod (11) installed along the upper edge of the PV panels (2), which allow supplying a sheet of fluid overthe outer surface of said PV panels (2), a collection tray (20) fixed to the lower edge of the PV panels (2) to collect and channel the excess fluid coming from said outer surface of the PV panels (2), a drain hose (30) linked at one of its ends to the collection tray (20) to extract the fluid housed in the collection tray (20), a first tank (40) arranged outdoors for storing and cooling the fluid extracted through the drain hose (30), and a second thermally insulated tank (50) that is suitable for receiving the low-temperature fluid coming from the first tank (40) by means of an combined electric pump (60), said second tank (50) having an outlet duct (51) for recirculating the fluid towards the fluid sprayers (10) of the PV panels (2), and a standalone solar panel equipment (70) for the additional power supply of the electric pump (60).
[0022] Therefore, the present invention provides a closed cooling circuit for PV panels (2) which allows reducing the temperature of their outer surface to an optimal operating value (about 25°C), said panels (2) being cooled based on the outside temperature at the most favorable time of day, i.e., when the outside temperature is the minimum temperature, and also removing fouling and dust residues that may be covering the outersurface of said PV panels (2).
Claims 1. Cooling system (1) for photovoltaic solar panels (2), of the type that are installed in an inclined position with respect to the horizontal plane for optimal solar radiation capture, said cooling system (1) comprising: - fluid sprayers (10) arranged on the upper edge of the PV panels (2) for supplying a sheet of fluid over their outer surface, - a collection tray (20) fixed to the lower edge of the PV panels (2) to collect and channel the excess fluid coming from said outer surface of the PV panels (2), - a drain hose (30) linked at one of its ends to the collection tray (20) to extract the fluid housed therein, characterized in that the cooling system (1) further comprises: - a first tank (40) arranged outdoors for storing and cooling the fluid extracted through the drain hose (30), and - a second tank (50) for receiving the low-temperature fluid coming from the first tank (40) by means of an electric pump (60), wherein said second tank (50) is thermally insulated so that the fluid does not experience significant temperature variations for the longest possible time in order to be recirculated back to the fluid sprayers (10), said second tank (50) having an outlet duct (51) for recirculating the fluid towards the fluid sprayers (10) of the PV panels (2). 2. Cooling system (1) for photovoltaic solar panels (2) according to claim 1, characterized in that it additionally comprises a standalone solar panel equipment (70) for the additional power supply of the electric pump (60). 3. Cooling system (1) for photovoltaic solar panels (2) according to claim 1, characterized in that the fluid sprayers (10) are located on an elongated common rod (11) installed along the upper edge of the PV panels (2). 4. Cooling system (1) for photovoltaic solar panels (2) according to any one of claims 1 or 3, characterized in that the fluid sprayers (10) are sprinklers, micro sprinklers, drip sprayers, sheet sprayers or the like. 5. Cooling system (1) for photovoltaic solar panels (2) according to any one of claims 1, 3 or 4, characterized in that the fluid sprayers (10) additionally comprise flow rate regulating means. 6. Cooling system (1) for photovoltaic solar panels (2) according to claim 1, characterized in that the electric pump (60) is a combined, lift-force pump. 7. Cooling system (1) for photovoltaic solar panels (2) according to any one of claims 1 or 6, characterized in that the electric pump (60) is associated with a control unit managing the power supply to be provided to the pump (60). 8. Cooling method for photovoltaic solar panels, said cooling method comprises the following steps: -outflow of fluid over the outer surface of the PV panels (2) from fluid sprayers (10) located on the upper edge thereof, - collecting and channeling the excess fluid in a collection tray (20), - extracting the fluid housed in the collection tray (20) by means of a drain hose (30), characterized in that the cooling method further comprises: - storing and cooling the extracted fluid in a first tank (40) located outdoors until said fluid reaches a minimum temperature, - pumping the fluid once it is cooled to a second tank (50), said second tank (50) being thermally insulated so that the fluid does not experience significant temperature variations for the longest possible time, and - recirculating the fluid from the second tank (50) towards the fluid sprayers (10) of the PV panels (2), said panels (2) being cooled based on the outside temperature at the most favorable time of day, in particular when the outside temperature is the minimum temperature. 9. Cooling method according to claim 8, characterized in that the step of storing and cooling the fluid in the first tank (40) is performed until the time of day with the lowest outdoor temperature. 10. Cooling method according to claim 8, characterized in that the step of recirculating fluid is performed by means of draining by gravity.
Patentanspriiche 1. - Kiihlsystem (1) fur photovoltaische Solarpanels (2) des Typs, der zum optimalen Einfangen von Son-nenstrahlung in einer geneigten Stellung beziiglich der horizontalen Ebene installiert ist, wobei das Ktihl-system (1) umfasst: - Fluid-Spruheinrichtungen (10), angeordnetan der Oberkante der Photovoltaikpanels (2) zum Zuführen einer Fläche von Fluid über ihrer Außenfläche, - einen Sammeltrog (20), befestigt an der Unterkante der Photovoltaikpanels (2) zum Sammeln und Kanalisieren des überschüssigen Fluids, das von der Außenfläche der Photovoltaikpanels (2) kommt, - einen Ablaufschlauch (30), verbunden an einem seiner Enden mit dem Sammeltrog (20), um das darin befindliche Fluid abzuziehen, dadurch gekennzeichnet, dass das Kühlsystem (1) weiter umfasst: -einen ersten Behälter(40), angeordnet im Freien zum Speichern und Kühlen des durch den Ablaufschlauch (30) abgezogenen Fluids, und - einen zweiten Behälter (50) zum Empfangen des vom ersten Behälter (40) kommenden Fluids niedriger Temperatur mittels einer elektrischen Pumpe (60), wobei der zweite Behälter (50) wärmegedämmt ist, sodass das Fluid über die längstmögliche Zeit keine bedeutenden Temperaturänderungen erfährt, um zu den Fluid-Sprüheinrichtungen (10) zurückgeführt zu werden, wobei der zweite Behälter (50) eine Auslassleitung (51) zum Rückführen des Fluids zu den Fluid-Sprüheinrichtungen (10) der Photovoltaikpanels (2) aufweist. 2. - Kühlsystem (1) für photovoltaische Solarpanels (2) nach Anspruch 1, dadurch gekennzeichnet, dass es außerdem eine eigenständige Solarpaneleinrichtung (70) für die zusätzliche Stromversorgung der elektrischen Pumpe (60) umfasst. 3. - Kühlsystem (1) für photovoltaische Solarpanels (2) nach Anspruch 1, dadurch gekennzeichnet, dass sich die Fluid-Sprüheinrichtungen (10) auf einer länglichen gemeinsamen Stange (11) befinden, die entlang der Oberkante der Photovoltaikpanels (2) installiert ist. 4. - Kühlsystem (1) für photovoltaische Solarpanels (2) nach einem der Ansprüche 1 oder 3, dadurch gekennzeichnet, dass die Fluid-Sprüheinrichtungen (10) Sprinkler, Mikrosprinkler, Tröpfelsprüher, Flä-chensprüher oder dergleichen sind. 5. - Kühlsystem (1) für photovoltaische Solarpanels (2) nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, dass die Fluid-Sprüheinrichtungen (10) außerdem Durchflussregulierungseinrichtungen umfassen. 6. - Kühlsystem (1) für photovoltaische Solarpanels (2) nach Anspruch 1, dadurch gekennzeichnet, dass die elektrische Pumpe (60) eine kombinierte Auftriebspumpe ist. 7. - Kühlsystem (1 ) für photovoltaische Solarpanels (2) nach einem der Ansprüche 1 oder 6, dadurch gekennzeichnet, dass die elektrische Pumpe (60) mit einer Steuereinheit verbunden ist, die die für die Pumpe (60) vorzusehende Stromversorgung verwaltet. 8. - Kühlverfahren für photovoltaische Solarpanels, wobei das Kühlverfahren die folgenden Schritte umfasst: - Ausströmen von Fluid über die Außenfläche der Photovoltaikpanels (2) aus an deren Oberkante befindlichen Fluid-Sprüheinrichtungen (10), - Sammeln und Kanalisieren des überschüssigen Fluids in einem Sammeltrog (20), - Abziehen des im Sammeltrog (20) befindlichen Fluids mittels eines Ablaufschlauchs (30), dadurch gekennzeichnet, dass das Kühlverfahren weiter umfasst: - Speichern und Kühlen des abgezogenen Fluids in einem im Freien angeordneten ersten Behälter (40), bis das Fluid eine Tiefsttemperatur erreicht, - Pumpen des Fluids nach dem Abkühlen in einen zweiten Behälter (50), wobei der zweite Behälter (50) wärmegedämmt ist, sodass das Fluid überdie längstmögliche Zeit keine bedeutenden Temperaturänderungen erfährt, und - Rückführen des Fluids von dem zweiten Behälter (50) zu den Fluid-Sprüheinrichtungen (10) der Photovoltaikpanels (2), wobei die Panels (2) auf Grundlage der Außentemperatur zur günstigsten Tageszeit gekühlt werden, insbesondere wenn die Außentemperatur die Tiefsttemperatur ist. 9. - Kühlverfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Schritt des Speicherns und Küh-lens des Fluids in dem ersten Behälter (40) bis zu der Tageszeit mit der niedrigsten Außentemperatur durchgeführt wird. 10. - Kühlverfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Schritt des Rückführens von Fluid mittels Ablaufens durch Schwerkraft durchgeführt wird.
Revendications 1. Système de refroidissement (1) pour panneaux so- laires photovoltaïques (2), du type qui sont installés dans une position inclinée par rapport au plan horizontal pour une capture optimale des rayonnements solaires, ledit système de refroidissement (1) comprenant : - des pulvérisateurs de fluide (10) agencés sur le bord supérieur des panneaux PV (2) pour fournir un film de fluide sur leursurface externe, - un plateau collecteur (20) fixé au bord inférieur des panneaux PV (2) pour collecter et canaliser l’excès de fluide provenant de ladite surface externe des panneaux PV (2), - un tuyau souple d’évacuation (30) relié, à une de ses extrémités, au plateau collecteur (20) pour extraire le fluide logé dans celui-ci, caractérisé en ce que le système de refroidissement (1) comprend en outre : - un premier réservoir (140) agencé à l’extérieur pour stocker et refroidir le fluide extrait par le tuyau souple d’évacuation (30) et - un second réservoir (50) pour recevoir le fluide à basse température provenant du premier réservoir (40) au moyen d’une pompe électrique (60), dans lequel ledit second réservoir (50) est isolé thermiquement de sorte que le fluide ne subisse pas de variations de température notables pendant la période de temps la plus longue possible afin d’être remis en circulation vers les pulvérisateurs de fluide (10), ledit second réservoir (50) ayant un conduit de sortie (51) pour remettre en circulation le fluide vers les pulvérisateurs de fluide (10) des panneaux PV (2). 2. Système de refroidissement (1) pour panneaux solaires photovoltaïques (2) selon la revendication 1, caractérisé en ce qu’il comprend de plus un équipement de panneau solaire autonome (70) pour l’alimentation électrique supplémentaire de la pompe électrique (60). 3. Système de refroidissement (1) pour panneaux solaires photovoltaïques (2) selon la revendication 1, caractérisé en ce que les pulvérisateurs de fluide sont situés sur une tige commune allongée (11) installée le long du bord supérieurdes panneaux PV (2). 4. Système de refroidissement (1) pour panneaux solaires photovoltaïques (2) selon l’une quelconque des revendications 1 ou 3, caractérisé en ce que les pulvérisateurs de fluide (10) sont des têtes d’arrosage, des micro-têtes d’arrosage, des pulvérisateurs à jet d’eau, des pulvérisateurs en film ou analogue. 5. Système de refroidissement (1) pour panneaux so laires photovoltaïques (2) selon l’une quelconque des revendications 1,3 ou 4, caractérisé en ce que les pulvérisateurs de fluide (10) corn prennent de plus des moyens de régulation de débit. 6. Système de refroidissement (1) pour panneaux solaires photovoltaïques (2) selon la revendication 1, caractérisé en ce que la pompe électrique (60) est une pompe combinée à force de levage. 7. Système de refroidissement (1) pour panneaux solaires photovoltaïques (2) selon l’une quelconque des revendications 1 ou 6, caractérisé en ce que la pompe électrique (60) est associée à une unité de commande gérant l’alimentation électrique à fournir à la pompe (60). 8. Procédé de refroidissement pour panneaux solaires photovoltaïques, ledit procédé de refroidissement comprend les étapes suivantes : - la décharge de fluide par-dessus la surface externe des panneaux PV (2) des pulvérisateurs de fluide (10) situés sur son bord supérieur, - la collecte et la canalisation de l’excès de fluide dans un plateau collecteur (20), - l’extraction du fluide logé dans le plateau collecteur (20) au moyen d’un tuyau souple d’évacuation (30), caractérisé en ce que le procédé de refroidissement comprend en outre : - le stockage et le refroidissement du fluide extrait dans un premier réservoir (40) situé à l’extérieur jusqu’à ce que ledit fluide atteigne une température minimale, - le pompage du fluide une fois qu’il est refroidi vers un second réservoir (50), ledit second réservoir (50) étant thermiquement isolé de sorte que le fluide ne subisse pas de variations de température notables pendant la période de temps la plus longue possible, et - la remise en circulation du fluide venant du second réservoir (50) vers les pulvérisateurs de fluide (10) des panneaux PV (2), lesdits panneaux (2) étant refroidis sur la base de la température externe au moment de la journée le plus favorable, en particulier lorsque la température externe est la température minimale. 9. Procédé de refroidissement selon la revendication 8, caractérisé en ce que l’étape de stockage et de refroidissement du fluide dans le premier réservoir (40) est effectuée jusqu’au moment de la journée ayant la température externe la plus basse. 10. Procédé de refroidissement selon la revendication 8, caracterise en ce que I’etape de remise en circulation du fluide est effectuee au moyen d’une evacuation sous I’effetde la pesanteur.

Claims (2)

  1. H*5íO#S Μ ÍA*UM«»OUí> UU>4 XNm.ífrVir’íM * Kkí*i / ^ .’M < ' ,c\a * ||. $f&amp;<#*n(h»r Π) napsugárrá* opUmátj* bdogsslhpgá vtemjeshft M%0S: tes«|>é« JR$fyoU«ókus hapsto panda* he* (2). amely )dK<k«röisps (! hianakn&amp;z - íVJíiSiio \ scv tcjoh* > <5 t*\ uk Kok > P\ oan:. lel»M iliah a-x len '· anuok előjel- 42öfe:feöfe« Jhsifeon fíKÍduiV;résog Híj;<>ákásáin >y, • fl'fkklMsIíípíl^:dopy a PV pnsbk; (p) ák-0 sáéléhea v«. 8 Í*V pso«ls&amp; Pl idíiskík I Kí o>d OK x 0 . ^ ík^' Jjs>^ u 8 ^8 . .. 08.h. - krírötömldt (30), aaídy ogylh vsgan a gyünótókahoo :20¾ v«a kupc^Wmsí-ábhm ÉÉÉ Mmm slláw* Üiásáhox 8^ii|élte5«£Vi\ hogy a hötörentef * I) tóiiaim^levábtö • kokén ebé hstuíyt (40) az üdkoömfe <3ö) kérésiül dEávdten Omdu»* támlásához ésMtóslte, «8 • nsánxnk íanálvs (50) az ei*> tonáiyhék (40) vsihuno* szívaOvávat d>0| smüdoít atsosony hőmérséklet» fdkinto fogadására. ökoi a másad»* Mily (50) bőszlmdi, így a «Midamszöró iejekhaz 00) »ftén6 vk-szsdrdskuHhes a iokloroa k-be!d togbossaabb kiéig ««« szenved jdentbs höotéraékfdvátíessást, a Oíás^dskíadály {lO)ía:ii1oslos?aalí;8:Fl' pgoslkk ö) lloihorhsgéfó lejét (Mj &amp;#á:Órien# Víses&amp;keotsgseíer síbe® Mbmlfesfömávsi (5i} eehde&amp;ezrk:.: a. .0;' Ϊ, igvOyf-oiU szerben h*:}ören:S<?«r (Π toknnibokas; napokra pandekhez (dg azzd jd fent ez ve. hogy a .daevs síivos;>"a .w"> sohhko kzebeuví h\n-»su«ve’ önd.<\rí nvlkhdo x^denexmeínbíootad :"0> tus tintás. 0, Λ·?: k igéoypom ssoöoi bMesmkmr fi) kaovokaikes nspeteot panelekhez ;2), aszd p|esís:®?yev hagy a duMomssdfe fejek (lö) egy a pfeípandek yág felső uéfeiraesítfB: Mww^itofc hosoíttás fOáoo Otly vsnosk etlte Ipsévé; 0 k-i tegv a t íg^npor-i sxs.nn ht.aKend ,n * .> íd.nndoku' napikat paneiokbe - ¢.. y tzzaí jellemezte hogy: a jhmhmiszém lejeket Π0) os<bKOOk: snikvao-^aüaOk, e8apog$eíi> aeosáiejek kspoa asóráaképo naóróiejek vagy hssoolök kepeihs. 5 : ,¾ h> 8 ·?' vagy a 4 igénypo*« aeennú hütócendo?er «I) ioo-vooasku'. rupetem oavolokne.·; hi< ieiRy ínOsíkS. Mgy « 0al4usÉ^hO:«lesosk Sanaisoaanak. h. Λ- S :gs'K>;\'05 8.0^^,0:00008 0:.0^:^^^^00^0.0 !;.p''k'!0:|!00í eoOO K'-.k SíUsO jalksoeeae, hogy o 8 í 08 VJ*' I '«hl ’iiolW ^8 l ' \< 8 1 Ο Λ a: h >.=gy a 0. :geoyponi axarino hikikeodsíov ii) ioiovohaiko^ ?sope;eo> paneiekhea di). axe.al jelleasme, hogy a 8 hianios vzjvaiíyö (605 ogy a :sdvapyó (oO):í|póí|asos|! kezc;ό vo;-?«riovsys0gge: v;m tórauva. §, ikkholjáyfe íoiovohaikíK isapoiein p<«:okkhex? ;Ooai;v hisáopras Shróo *,s Pmvglimkm esetek (3) kkisd íáMeisaá azok Mtá;%zéUn efh«i jmsstí.ílusáasméró fejésMi (1¾ Mis msk: tkmsáfms k, -a iáisslágás ftóéím®* gydjtMfeákafí PÖ) pSjijiik is váKspií al> - a gyüjiSíáieáháSí (2ík Mvd'ltóáursP.üríí&amp;sdmliö'ílÖ} agán sisávöípakv aasasl jdkísso^gv hogy s Miöálmms sárim - ®s oMVöiimtí Poktmmk klMílfs ijlsö tisstáposo (41*)' íáfpyuk -is kisijíík: iRikdái|dlg:; kikig sá gmmsMhs íkííuíí sáiJaíei ei kkk> ér. * a pódámoi. iehoiást· kovod-m máiiKiik tünáiyba S5Ö) OKlnmmpzük, a i:?s:;;>dik kasály (50; háimpáláiL így a IMdum iklákáiQ soáhomsiOk idáig som .süanvcd kk-möa bém:«:><d\k;*váko«:xt. és - a dukkanm a második giiádlyi?#! pö) á PV pmái&amp;k p> pdiddmSáöp mjci (IP) pki vlsgkokáíiogiePak. 0 pane lakai (2) a nap lágkadvcaohh idosgskshoo psmáljo kpsoMmómáklyi: sgárkp, skáciáiissp iskkár, fúÓíkOa k köpd hofáéikékiái yaégagyápk a oPrsmiáPs tiÖÍóémápegáL Mijök.
  2. 0. A I: dglfivpom sserími kiMikiáfés^.&amp;aasiy fökámáaa'áí imp s Piddsao Psd ísOáiyóim f40}id«émi sárgásat p MiéPká osp iepimisopáhb küSsd hdmáísék ládái jákásmak sdOsaakálg véferfk< H), 4. S. ígeoyi>i?4i: Sáeiíiiti. íkMáyarékosgMi )sdíáárpys:! liopmáídkpdy vkSKgkOiápgtóféSp gnHpwkk aPan yégápiík.
HUE14707428A 2013-01-11 2014-01-09 Hûtõrendszer és -eljárás fotovoltaikus napelem panelekhez HUE033250T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201330023A ES2476515B1 (es) 2013-01-11 2013-01-11 Sistema y procedimiento de refrigeración para paneles solares fotovoltaicos

Publications (1)

Publication Number Publication Date
HUE033250T2 true HUE033250T2 (hu) 2017-11-28

Family

ID=50190473

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14707428A HUE033250T2 (hu) 2013-01-11 2014-01-09 Hûtõrendszer és -eljárás fotovoltaikus napelem panelekhez

Country Status (17)

Country Link
US (1) US20150357969A1 (hu)
EP (1) EP2945194B1 (hu)
JP (1) JP2016503284A (hu)
KR (1) KR20150132088A (hu)
CN (1) CN105122638B (hu)
AU (1) AU2014204746B2 (hu)
CA (1) CA2897933A1 (hu)
CL (1) CL2015001968A1 (hu)
CY (1) CY1120431T1 (hu)
ES (2) ES2476515B1 (hu)
HU (1) HUE033250T2 (hu)
MX (1) MX352200B (hu)
PT (1) PT2945194T (hu)
SG (1) SG11201505438SA (hu)
SI (1) SI2945194T1 (hu)
WO (1) WO2014108592A1 (hu)
ZA (1) ZA201504990B (hu)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9899957B2 (en) * 2014-04-28 2018-02-20 King Fahd University Of Petroleum And Minerals Smart dust-cleaner and cooler for solar PV panels
CN104686254A (zh) * 2015-01-27 2015-06-10 韩小桦 光伏发电与农业温室相结合的温室保温发电水循环系统
US10050584B2 (en) 2016-03-16 2018-08-14 Hardware Labs Performance Systems, Inc. Cooling apparatus for solar panels
KR101965817B1 (ko) 2017-09-01 2019-04-05 한국항공우주연구원 드론을 이용한 태양광 패널 냉각시스템
KR101965812B1 (ko) 2017-09-11 2019-04-05 주식회사 에스알 태양광 패널 냉각 시스템
CN109570172A (zh) * 2018-11-21 2019-04-05 江苏启力新能源科技有限公司 一种太阳能电池面板清洗装置
CN109600114B (zh) * 2019-02-13 2020-11-17 旻投电力发展有限公司 一种高效发电的建筑光伏系统
US11303244B2 (en) * 2020-01-29 2022-04-12 Saudi Arabian Oil Company Utilization of solar systems to harvest atmospheric moisture for various applications including panel cleaning
CN112676219A (zh) * 2020-12-04 2021-04-20 广州开发区粤电新能源有限公司 光伏组件降温清洁增效系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2093808A (en) * 1937-03-08 1937-09-21 Morris A Halprin Bottle holder and door knocker
FR2043460A6 (hu) * 1969-04-30 1971-02-19 Sogreah
JPS6257553U (hu) * 1985-09-26 1987-04-09
JPS62201955U (hu) * 1986-06-12 1987-12-23
JPH074120B2 (ja) * 1990-08-30 1995-01-25 株式会社吉崎技術研究所 ゴルフ場グリーンの散水冷却装置
JPH10308523A (ja) * 1997-05-07 1998-11-17 Toyota Motor Corp 太陽電池装置
CN1237503A (zh) * 1998-05-12 1999-12-08 北京降解塑料研究中心 一种稳定供料、水冷式复合降解塑料挤出机
JP2003063237A (ja) * 2001-08-22 2003-03-05 Denso Corp 車両用空調装置
US7418832B2 (en) * 2003-10-21 2008-09-02 William R Ferrono Portable mister for adjusting ambient temperature
US7858875B2 (en) * 2005-09-29 2010-12-28 Enfocus Engineering Corp. Radiant energy conversion system
US7645930B2 (en) * 2007-03-27 2010-01-12 Gm Global Technology Operations, Inc. Thermal optimization of a solar photovoltaic powered electrolyzer system
CN101409310A (zh) * 2008-11-14 2009-04-15 常州天合光能有限公司 具有水循环冷却系统的太阳能电池组件
CN201372969Y (zh) * 2009-02-27 2009-12-30 阳江市新力工业有限公司 一种光伏水泵冷却系统
ES2347116B1 (es) * 2009-03-12 2011-08-11 Francisco Chuecos Nicolas Panel solar fotovoltaico refrigerado.
CN101582465B (zh) * 2009-06-08 2010-11-03 徐洪 自洁式太阳能电池装置
DE202009009544U1 (de) * 2009-07-10 2009-10-01 Schmitt, Andreas Vorrichtung zur Steigerung des Wirkungsgrades einer Photovoltaik-Solaranlage
KR101018475B1 (ko) * 2009-08-28 2011-03-02 기재권 발전기능을 갖는 물탱크
JP5624305B2 (ja) * 2009-11-11 2014-11-12 三菱電機株式会社 断熱容器
US20110197943A1 (en) * 2010-02-17 2011-08-18 Harry Pleva Flow arrangement for a solar system
JP5445316B2 (ja) * 2010-05-10 2014-03-19 Jfeスチール株式会社 太陽電池用散水装置
FR2961024B1 (fr) * 2010-06-02 2014-06-20 Sunbooster Dispositif de refroidissement pour panneaux photovoltaiques
JP5548824B2 (ja) * 2010-07-22 2014-07-16 ハイレベン カンパニー リミテッド 太陽光発電設備の効率向上設備
JP5551027B2 (ja) * 2010-08-31 2014-07-16 三洋電機株式会社 雨水利用散水装置
JP5275307B2 (ja) * 2010-09-07 2013-08-28 シャープ株式会社 濾材を備えた飲水器とその濾材の洗浄方法
CN103080503B (zh) * 2010-09-30 2016-06-08 三菱日立电力系统株式会社 太阳热利用联合循环发电站
JP5418853B2 (ja) * 2010-10-08 2014-02-19 亀川工業株式会社 太陽熱温水装置及び太陽熱温水装置における表示方法
JP3168665U (ja) * 2011-04-11 2011-06-23 正昭 嶋本 太陽光受光表面部循環処理装置
CN202121424U (zh) * 2011-07-05 2012-01-18 沈阳华创风能有限公司 一种风力发电机组冷却系统
US20130269756A1 (en) * 2012-03-14 2013-10-17 Frank Pao Tall Slate BITERS
CN102721245A (zh) * 2012-07-02 2012-10-10 丰生微电机(上海)有限公司 便携式双泵循环水冷却系统及冷却方法

Also Published As

Publication number Publication date
ES2617701T3 (es) 2017-06-19
ES2476515B1 (es) 2015-03-13
KR20150132088A (ko) 2015-11-25
CL2015001968A1 (es) 2016-03-11
MX2015008964A (es) 2016-04-04
CA2897933A1 (en) 2014-07-17
AU2014204746B2 (en) 2017-07-20
ES2476515A1 (es) 2014-07-14
ZA201504990B (en) 2016-04-28
CY1120431T1 (el) 2019-07-10
EP2945194B1 (en) 2016-11-30
US20150357969A1 (en) 2015-12-10
SI2945194T1 (sl) 2017-08-31
WO2014108592A1 (es) 2014-07-17
SG11201505438SA (en) 2015-08-28
EP2945194A1 (en) 2015-11-18
MX352200B (es) 2017-11-14
CN105122638A (zh) 2015-12-02
JP2016503284A (ja) 2016-02-01
AU2014204746A1 (en) 2015-08-27
CN105122638B (zh) 2017-12-19
PT2945194T (pt) 2017-02-15

Similar Documents

Publication Publication Date Title
HUE033250T2 (hu) Hûtõrendszer és -eljárás fotovoltaikus napelem panelekhez
CN206640550U (zh) 一种自清洁降温型光伏发电装置
US9273439B1 (en) Method and apparatus for ensuring a minimum bypass flow from a hydropower diversion box
KR20150087503A (ko) 물의 충돌제트를 이용한 태양전지 모듈 냉각장치
CN204351054U (zh) 清水喷淋洗梗机
CN208590204U (zh) 一种应急dtro主控柜用散热装置
CN205381415U (zh) 一种飞机清洗架
PT1298985E (pt) Sistema de bebedouro para fornecimento de liquido potavel a aves domesticas
CN104264631B (zh) 一种漂浮式拦污栅
CN204410571U (zh) 防污型接水盘支架
CN213027938U (zh) 一种太阳能光电用散热装置
CN208771990U (zh) 一种适用于户用光伏组件的清洗装置
CN205249139U (zh) 一种自清洗太阳能光伏电站
WO2014089566A1 (en) Solar panel with water pump
CN219498629U (zh) 一种分户低压光伏并网接入箱
CN210993117U (zh) 一种油水分离的润滑油箱
CN208909862U (zh) 一种易清洁的四格保温台
CN220346398U (zh) 一种均匀冷却结构
CN210700557U (zh) 一种玛咖药物粉碎装置
DE202012010739U1 (de) Reinigungsanlage für Reinigungsverfahren mit einer Reinigungsflüssigkeit und einem Hydro-Fluor-Ether
CN203874516U (zh) 自动推浮渣装置
CN213180228U (zh) 一种环保监测用污水水位监测装置
CN211745914U (zh) 一种具有输水功能的吊瓜种植架
CN211093534U (zh) 一种新型四盆保温池
CN210586260U (zh) 一种中药饮片加工用瓶身除尘装置