HRP940809A2 - Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods - Google Patents

Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods Download PDF

Info

Publication number
HRP940809A2
HRP940809A2 HRP-1146/80A HRP940809A HRP940809A2 HR P940809 A2 HRP940809 A2 HR P940809A2 HR P940809 A HRP940809 A HR P940809A HR P940809 A2 HRP940809 A2 HR P940809A2
Authority
HR
Croatia
Prior art keywords
cells
monoclonal antibody
antibody
hybridoma
human
Prior art date
Application number
HRP-1146/80A
Other languages
Croatian (hr)
Inventor
Gideon Goldstein
Original Assignee
Gideon Goldstein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/033,669 external-priority patent/US4361549A/en
Application filed by Gideon Goldstein filed Critical Gideon Goldstein
Publication of HRP940809A2 publication Critical patent/HRP940809A2/en
Publication of HRP940809B1 publication Critical patent/HRP940809B1/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

Ovaj izum se općenito odnosi na nove nizove hibridnih stanica a specifičnije na nizove hibridnih stanica za proizvodnju kompletno utvrđenog monoklonalnog antitjela, na antigen nađen kod svih normalnih humanih T stanica i kutane T limfomne stanice, na tako proizvedeno antitjelo i terapeutske i dijagnostičke metode i smjese koje koriste to tijelo (antitijelo). Fuzije mišjih mielomskih stanica za stanice alezine iz imuniziranih miševa, koju su izvršili Kohler i Milstein 1975. godine/Nature 256, 495-497 (1975) / prvi put je pokazala da je moguće dobiti kontinuirani stanični niz koji stvara homogeno (takozvano “monoklonalno”) antitjelo. Od ovog prvobitnog rada, upravljeno je mnogo napora ka proizvodnji različitih hibridnih stanica ( koje se nazivaju “hibridome”) i primjeni antitjela načinjenih pomoću ovih hibridoma za različita znanstvena istraživanja. Vidjeti, na primjer, Current Topics in Microbiology and Immunology, vol, 81 - “Limphocyte Hibridomas”, F. elchers, N. Potter i N. Warner, (izdavači), Springer Verlag, 1978 i reference date u tom djelu; Cl. J. Rarnstable, et sl., Cell 14, 9-20 (maj, 1978); I.Harham i R.F. Bodmer, Nature 276, 397-399 (studeni, 1978); Handbook of Experimental Immunology, treće izdanje, vol. 2, D.N. Wier, izdavač, Blackwell, 1978, glava 25; i Chemical and Engineering News, 1 siječanj 1979, 15-17. This invention generally relates to new arrays of hybrid cells and more specifically to arrays of hybrid cells for the production of a fully established monoclonal antibody, to an antigen found in all normal human T cells and cutaneous T lymphoma cells, to the antibody thus produced and to therapeutic and diagnostic methods and mixtures which they use that body (antibody). The fusion of murine myeloma cells with alezin cells from immunized mice, performed by Kohler and Milstein in 1975/Nature 256, 495-497 (1975)/ showed for the first time that it is possible to obtain a continuous cell line that creates a homogeneous (so-called "monoclonal" ) antibody. Since this initial work, many efforts have been made towards the production of various hybrid cells (called "hybridomas") and the application of antibodies made using these hybridomas for various scientific researches. See, for example, Current Topics in Microbiology and Immunology, vol, 81 - “Lymphocyte Hibridomas”, F. elchers, N. Potter and N. Warner, (editors), Springer Verlag, 1978 and references therein; Cl. J. Ranstable, et al., Cell 14, 9-20 (May, 1978); I.Harham and R.F. Bodmer, Nature 276, 397-399 (November, 1978); Handbook of Experimental Immunology, third edition, vol. 2, D.N. Wier, editor, Blackwell, 1978, chapter 25; and Chemical and Engineering News, 1 January 1979, 15-17.

Ove reference simultano pokazuju uspjehe i komplikacije pri pokušaju da se monoklonalno antitjelo proizvede iz hibridome. Iako je opća tehnika dobro shvaćena po svom konceptu, postoji dosta teškoća koje se pri tome sreću i različitih varijacija za svaki specifičan slučaj. U stvari, ne postoji nikakva sigurnost, prije pokušaja da se napravi data hibridoma, da će se željena hibridoma i dobiti, zatim da će ona proizvesti antitijelo (čak i ako se dobije), ili da će tako dobiveno antitijelo imati željenu specifičnost. Stupanj uspjeha zavisi u principu od upotrebljenog tipa antigena i tehnike selekcije koja se koristi za izoliranje željene hibridoma. These references simultaneously demonstrate the successes and complications of attempting to produce a monoclonal antibody from a hybridoma. Although the general technique is well understood in terms of its concept, there are a lot of difficulties encountered and different variations for each specific case. In fact, there is no assurance, prior to attempting to make a given hybridoma, that the desired hybridoma will be obtained, that it will produce an antibody (even if it is obtained), or that the antibody thus obtained will have the desired specificity. The degree of success depends in principle on the type of antigen used and the selection technique used to isolate the desired hybridoma.

Pokušano dobivanje monoklonalnog antitijela za humane limfocitne antigene površinskih stanica priopćeno je samo u nekoliko primjera. Vidjeti, na primjer, Current Topics in Nierobiology and Immunonogy, ibid 66-69 i 164-169. U ovim priopćenim ogledalima upotrijebljeni su antigeni koji predstavljaju stanične vrste kultivirane humane limfoblastoidne leukemije i humane kronične limfocitne leukemije. Mnoge dobivene hibridome, izgleda, proizvede antitijelo za različite antigene kod svih humanih stanica. Nijedna od ovih hibridoma nije proizvela antitijelo protiv prethodno definirane klase humanih limfocita. Attempts to obtain a monoclonal antibody for human lymphocyte surface cell antigens have been reported only in a few examples. See, for example, Current Topics in Neurobiology and Immunology, ibid 66-69 and 164-169. Antigens representing cell types of cultured human lymphoblastoid leukemia and human chronic lymphocytic leukemia were used in these reported samples. Many of the resulting hybridomas appear to produce antibodies to different antigens in all human cells. None of these hybridomas produced antibody against a previously defined class of human lymphocytes.

Trebalo bi shvatiti da postoje dvije glavne klase limfocita koji su uključeni u imuni sustav ljudi i životinja. Prva od ovih klasa (stanice koje potječe od timusa ili T stanice) diferencirana je u timusu iz hemopoetičnih osnovnih stanica. Pošto se nalaze u timusu ove diferencirane stanice se označavaju kao “timociti”. Zrele T stanice izlaze iz timusa i cirkuliraju između tkiva, limfatika i krvne struje. Ove T stanice formiraju veliki dio rezervoara recirkulirajućih malih limfocita. One imaju imunološku specifičnost i direktno su uključene u stanicom posredovane imune reakcije (kao što je odbacivanje presada - transplantata) kao efektorske stanice. Iako T stanice ne luče humoralna antitijela, one su ponekad neophodne za lučenje ovih antitijela od strane druge klase limfocita o kojima će biti dolje diskutirano. Neki tipovi T stanica igraju regulatornu funkciju u drugim aspektima imunog sustava. Mehanizam ovog procesa kooperacije stanica nije u potpunosti shvaćen. It should be understood that there are two main classes of lymphocytes involved in the immune system of humans and animals. The first of these classes (thymus-derived cells or T cells) is differentiated in the thymus from hematopoietic stem cells. Since they are located in the thymus, these differentiated cells are called "thymocytes". Mature T cells leave the thymus and circulate between tissues, lymphatics and the bloodstream. These T cells form a large part of the reservoir of recirculating small lymphocytes. They have immunological specificity and are directly involved in cell-mediated immune reactions (such as graft rejection) as effector cells. Although T cells do not secrete humoral antibodies, they are sometimes necessary for the secretion of these antibodies by another class of lymphocytes, which will be discussed below. Some types of T cells play a regulatory function in other aspects of the immune system. The mechanism of this process of cell cooperation is not fully understood.

Druga klasa limfocita (stanice koje potiču od koštane srži ili B stanice) su oni limfociti koji luče antitijelo. Oni se također razvijaju iz hemopoetičnih osnovnih stanica, ali njihovo diferenciranje nije odrađeno od strane timusa. U pticama, oni se diferenciraju u jednom organu koji je analogan timusu i koji se zove kesa fabriciusa. Međutim, kod sisavaca nije otkriven ekvivalentni organ i smatra se da se ove B stanice diferenciraju u koštanoj srži. Another class of lymphocytes (cells derived from the bone marrow or B cells) are those lymphocytes that secrete an antibody. They also develop from hematopoietic stem cells, but their differentiation is not done by the thymus. In birds, they differentiate into a single organ analogous to the thymus called the sac of fabricius. However, no equivalent organ has been discovered in mammals and these B cells are thought to differentiate in the bone marrow.

Sada je shvaćeno da se T stanice dijele u najmanje nekoliko podtipova, označenih kao “pomažuće”, “prigušujuće” i “ubijajuće” T stanice, koje imaju funkciju da pospješuju, prigušuju ili uništavaju (razlažu) strane stanice. Ove podklase se mogu dobro shvatiti i razumjeti za murinske (miševi i štakori) sustave, ali su tek nedavno opisane za humane sustave. Vidjeti, na primjer, R. L. Evans et al., Jorrnal of Experimental Medicine, vol. 145, 221-232, 1977; i L. Chess i S. F. Schlosaman - “Funcional Analysis of Distinet Human T-Sell Subsets Bearing Enique Differentistion Antigens”, u “Centemporary Topics in Immunology”, izdavač O. Stutman, Plenum Press, 1977, vol. 7, 363-379. It is now understood that T cells are divided into at least several subtypes, designated as “helper”, “suppressor” and “killer” T cells, which function to promote, dampen or destroy (destroy) foreign cells. These subclasses can be well understood and understood for murine (mice and rat) systems, but have only recently been described for human systems. See, for example, R.L. Evans et al., Journal of Experimental Medicine, vol. 145, 221-232, 1977; and L. Chess and S. F. Schlosaman - "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens", in "Centtemporary Topics in Immunology", published by O. Stutman, Plenum Press, 1977, vol. 7, 363-379.

Sposobnost identifikacije ili prigušivanja klasa ili pod klase T stanice je značajna za dijagnozu ili liječenje različitih imunoreagulacionih oboljenja ili stanja. The ability to identify or suppress classes or subclasses of T cells is important for the diagnosis or treatment of various immunoregulatory diseases or conditions.

Na primjer, neke leukemije i limfome imaju različite prognoze u zavisnosti od toga da li su porijekla B ili T stanice. Na taj način, određivanje prognoze bolesti zavisi od razlikovanja ove dvije klase limfocita. Vidjeti, na primjer, A. C. Aisenberg i J. C. Long, The American Journal of Medicine, 58, 300 (ožujak, 1975); D. Belpomme et al. u “Immunological Diagnosis of Leukemiss and Lymphomas”, S. Thierfelder et al, izdavači, Springer, Heidelberg, 1977, 33-45; i D. Belpomme et al. British Journal of Haemotology, 1978, 38, 85. Neka bolesna stanja (npr. juvenilni reumatoidni artritis i neke leukemije) su u vezi sa neuravnoteženošću podklasa T stanica. Predloženo je da su autoimune bolesti općenito u vezi sa viškom “pomažućih” T stanica ili nedostatkom nekih “prigušujućih” T stanica, dok su maligna stanja općenito u vezi sa viškom “prigušujućih” T stanica. Kod nekih leukemija višak T stanica se proizvodi u usporenom stupnju razvoja. For example, some leukemias and lymphomas have different prognoses depending on whether they are of B or T cell origin. In this way, determining the prognosis of the disease depends on distinguishing between these two classes of lymphocytes. See, for example, A.C. Aisenberg and J.C. Long, The American Journal of Medicine, 58, 300 (March, 1975); D. Belpomme et al. in "Immunological Diagnosis of Leukemis and Lymphomas", S. Thierfelder et al, publishers, Springer, Heidelberg, 1977, 33-45; and D. Belpomme et al. British Journal of Haemotology, 1978, 38, 85. Some disease states (eg, juvenile rheumatoid arthritis and some leukemias) are associated with an imbalance of T cell subclasses. It has been proposed that autoimmune diseases are generally related to an excess of "helper" T cells or a deficiency of some "suppressor" T cells, while malignant conditions are generally related to an excess of "suppressor" T cells. In some leukemias, excess T cells are produced in a slow stage of development.

Na taj način dijagnoza može zavisiti od sposobnosti detekcije ove neuravnoteženosti ili viška. Vidjeti , na primjer, J. Kersey, et al., “Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses” u Haematology and Blood Transfusion, vol. 20, Springer-verlag, 1977, 17-24, i reference sadržane u tom radu. In this way, the diagnosis may depend on the ability to detect this imbalance or excess. See, for example, J. Kersey, et al., “Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses,” in Hematology and Blood Transfusion, vol. 20, Springer-verlag, 1977, 17-24, and references therein. .

Sa terapeutskog aspekta, postoji sugestija, koja još nije definitivno dokazana, da davanje antitijela protiv podtipa T stanice u višku može imati terapeutsku vrijednost u autoimunim bolestima ili malignim stanjima. Priopćeno je da su antiserumi protiv cjelokupne klase humanih T stanica (takozvani antihumani timocitni globulin ili ATG) terapeutski primjenljivi kod pacijenata koji primaju transplantate organa. Kako imuna reakcija, koja je posredovana stanicom, (mehanizam kojim se odbacuju transplantati) zavisi od T stanica, davanje antitjela za T stanice sprečava ili usporava ovaj proces odbacivanja. Vidjeti, na primjer, Cosimi, et al., “Randomized Clinical Trial of ATG in Cadaver Renal Allgraft Recipients: Importance of t Cell Konitoring”, Surgery, 400, 155-163 (1976) i reference sadržane u tom radu. Identifikacija i prigušivanje klasa i podklasa humanih T stanica ranije je izvršeno primjenom spontanih autoantitijela ili selektivnih antiseruma za humane T stanice koje su dobivene imunizacijom životinja sa humanim T stanicama, ispuštanjem krvi ovim životinjama da se dobije serum i adsorbiranje antiseruma sa (na primjer) autolognim ali ne i alogenim B stanicama da se uklone antitijela sa neželjenim reaktivnostima. Dobivanje ovih antiseruma je izrazito teško, naročito u stupnjevima adsorbcije i pročišćavanja. Čak i adsorbirani i pročišćeni antiserumi sadrže mnoge nečistoće pored željenog antitjela, što je posljedica nekoliko razloga. Prvo, serum sadrži milijune molekula antitijela čak i prije imunizacije T stanica. Drugo, imunizacija prouzrokuje proizvodnju antitijela protiv različitih antigena koji su nađeni kod svih humanih T stanica (datih injekcijom). From a therapeutic point of view, there is a suggestion, which has not yet been definitively proven, that administration of antibodies against a T cell subtype in excess may have therapeutic value in autoimmune diseases or malignant conditions. Antisera against an entire class of human T cells (so-called antihuman thymocyte globulin or ATG) have been reported to be therapeutically applicable in patients receiving organ transplants. As the cell-mediated immune response (the mechanism by which transplants are rejected) depends on T cells, administration of antibodies to T cells prevents or slows down this rejection process. See, for example, Cosimi, et al., “Randomized Clinical Trial of ATG in Cadaver Renal Allograft Recipients: Importance of t Cell Monitoring,” Surgery, 400, 155-163 (1976) and references therein. Identification and silencing of classes and subclasses of human T cells has previously been performed using spontaneous autoantibodies or selective antisera for human T cells obtained by immunizing animals with human T cells, bled these animals to obtain serum, and adsorbing the antisera with (for example) autologous but not allogeneic B cells to remove antibodies with unwanted reactivities. Obtaining these antisera is extremely difficult, especially in the stages of adsorption and purification. Even adsorbed and purified antisera contain many impurities in addition to the desired antibody, due to several reasons. First, serum contains millions of antibody molecules even before T cell immunization. Second, immunization causes the production of antibodies against various antigens found on all human T cells (given by injection).

Ne postoji selektivna proizvodnja antitijela protiv jednog antigena. Treće, titar specifičnog antitijela, koje je dobiveno takvim metodama, obično je sasvim nizak, (npr. inaktivan pri razrjeđenjima većim od 1:100) i odnos specifičnog prema nespecifičnom antitijelu je manji od 1/106. There is no selective production of antibodies against one antigen. Third, the titer of the specific antibody obtained by such methods is usually quite low (eg, inactive at dilutions greater than 1:100) and the ratio of specific to nonspecific antibody is less than 1/106.

Vidjeti, na primjer, Chess i Schlossman, rad dat u gornjoj referenci (na stranama 365 i dalje) i članak objavljen u Chemical and Engineering News (gore data referenca), u kojima su opisani nedostaci antiseruma ranije prakse i prednosti monoklonalnog antitijela. See, for example, Chess and Schlossman, the paper referenced above (on pages 365 et seq.) and an article published in Chemical and Engineering News (referenced above), which describe the disadvantages of prior art antisera and the advantages of the monoclonal antibody.

Otkrivena je nova hibridom (označena kao OKT3 i deponirana 26. travnja 1979. godine u American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, 20852, i označena brojem ATCC kao CRL 8001) koja je u stanju da proizvodi novo komplementno utvrđeno monoklonalno antitijelo protiv antigena nađenog kod praktično svih normalnih humanih perifernih T stanica i kutanih T limfomskih stanica. Tako proizvedeno antitijelo je monospecifično za odlučujući faktor kod normalnih humanih T stanica i kutanih T limfomskih stanica i ne sadrži drugi antihumani imunoglobulin, nasuprot ranijim antiserumima (koji su inherentno kontaminirani sa antitijelom reaktivnim za brojne humane antigene) i ranijim monoklonalnim antitijelima (koja nisu monospecifična za humani T stanični antigen). Čak što više, ova hibridoma se može kultivirati da proizvede antitijelo bez potrebe da se imuniziraju i ubiju životinje, čemu slijede mukotrpni stupnjevi adsorpcije i pročišćavanja koji su neophodni da se dobiju čak i nečisti antiserumi ranije prakse. A new hybridoma (designated OKT3 and deposited April 26, 1979 in the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD, 20852, and ATCC numbered CRL 8001) has been discovered which is capable of producing a new complement determined monoclonal an antibody against an antigen found in virtually all normal human peripheral T cells and cutaneous T lymphoma cells. The antibody thus produced is monospecific for the determining factor in normal human T cells and cutaneous T lymphoma cells and does not contain another antihuman immunoglobulin, in contrast to earlier antisera (which are inherently contaminated with antibody reactive for numerous human antigens) and earlier monoclonal antibodies (which are not monospecific for human T cell antigen). Even more, this hybridoma can be cultured to produce antibody without the need to immunize and kill the animals, followed by the laborious adsorption and purification steps necessary to obtain even the impure antisera of earlier practice.

Prema tome jedan predmet ovog izuma je da se osiguraju hibridome koje proizvode antitijela protiv antigena nađenog kod praktično svih normalnih humanih T stanica i kutanih T limfomskih stanica. Accordingly, one object of this invention is to provide hybridomas that produce antibodies against an antigen found on virtually all normal human T cells and cutaneous T lymphoma cells.

Daljnji aspekt ovog izuma je da se osiguraju metode za dobivanje ovih hibridoma. A further aspect of the present invention is to provide methods for obtaining these hybridomas.

Daljnji predmet ovog izuma je da se osigura praktično homogeno antitijelo protiv antigena nađenog kod praktično svih normalnih humanih T stanica i kutanih T limfomskih stanica. It is a further object of this invention to provide a substantially homogeneous antibody against an antigen found in substantially all normal human T cells and cutaneous T lymphoma cells.

Još jedan daljnji predmet ovog izuma je da se osiguraju metode za tretiranje (liječenje) ili dijagnozu bolesti a koje primjenjuju ova antitijela. It is a further object of the present invention to provide methods for treating (treating) or diagnosing diseases using these antibodies.

Drugi predmeti i prednosti ovog izuma biti će očiti iz ispitivanja ovog otkrića. Other objects and advantages of the present invention will be apparent from an examination of this disclosure.

U zadovoljavanju prethodnih predmeta i prednosti, ovim izumom je data nova hibridoma koja proizvodi novo antitijelo za antigen nađen kod praktično svih normalnih humanih T stanica i kutanih T limfomskih stanica, zatim samo antitijelo i dijagnostičke i terapeutske metode koje primjenjuju ovo antitijelo. Hibridoma je dobivena općenito prema postupku Milstein-a i Kohlera. Nakon imunizacije miševa sa normalnim E rozetskim pozitivnim humanim T stanicama, stanice alezene imuniziranih miševa su fuzionirane sa stanicama iz mišjeg meilomskog niza i dobivene hibridome su prosijane radi dobivanja onih koje sadrže antitijelo koje daje selektivno vezivanje za normalne E rozetne pozitivne humane T stanice. Željene hibridome su zatim klonirane i okarakterizirane. Kao rezultat toga dobivena je hibridoma koja proizvodi antitijelo (označeno kao OKT3) protiv antigena kod praktično svih normalnih humanih T stanica. Ne samo da ovo antitijelo ne reagira sa praktično svim normalnim humanim perifernim T stanicama, već također ono ne reagira sa drugim normalnim perifernim krvnim limfoidnim stanicama. In fulfillment of the foregoing objects and advantages, the present invention provides a novel hybridoma that produces a novel antibody to an antigen found in virtually all normal human T cells and cutaneous T lymphoma cells, the antibody itself, and diagnostic and therapeutic methods utilizing this antibody. The hybridoma was obtained generally according to the procedure of Milstein and Kohler. After immunization of mice with normal E rosette positive human T cells, alezen cells from the immunized mice were fused with cells from a murine myeloma line and the resulting hybridomas were screened for those containing an antibody that selectively binds to normal E rosette positive human T cells. The desired hybridomas were then cloned and characterized. As a result, a hybridoma was obtained that produced an antibody (designated as OKT3) against an antigen on virtually all normal human T cells. Not only does this antibody fail to react with virtually all normal human peripheral T cells, but it also fails to react with other normal peripheral blood lymphoid cells.

Pored toga, antigen površinskih stanica prepoznat od strane ovog antitijela, detektiran je samo kod zrelih timocita i u potpunosti ga nema kod više od 90% normalnih humanih timocita. In addition, the surface cell antigen recognized by this antibody is detected only in mature thymocytes and is completely absent in more than 90% of normal human thymocytes.

Sa aspekta teškoća, na koje je ukazano u ranijoj praksi, i nedostataka uspjeha, koji je postignut pri upotrebi malignih staničnih vrsta kao antigena, bilo je veliko iznenađenje da je sadašnji postupak dao željenu hibridomu. Treba naglasiti da nepredvidljiva priroda dobivanja hibridne stanice ne dozvoljava da se izvrši ekstrapolacija od jednog sustava antigena ili stanice do nekog drugog sustava. Ustvari, sadašnji prijavioci su otkrili da upotreba vrste stanica T malignantnih stanica kao antigena prouzrokuje formiranje hibridoma koje nisu proizvele željeno antitijelo. Pokušaji da se koriste pročišćeni antigeni izdvojeni iz površine stanice također nisu bili uspješni. From the aspect of difficulties, which were pointed out in earlier practice, and lack of success, which was achieved when using malignant cell types as antigen, it was a great surprise that the current procedure gave the desired hybridoma. It should be emphasized that the unpredictable nature of obtaining a hybrid cell does not allow extrapolation from one antigen or cell system to another system. In fact, the present applicants have found that the use of a T cell type of malignant cells as an antigen causes the formation of hybridomas that did not produce the desired antibody. Attempts to use purified antigens isolated from the cell surface were also unsuccessful.

I predmetna hibridoma i proizvedeno antitijelo (njenom pomoću) identificirani su ovdje oznakom “OKT3”, pri čemu će specijalni materijal na koji se to odnosi, biti jasan iz konteksta. Both the subject hybridoma and the antibody produced (using it) are identified herein by the designation “OKT3”, the specialty material to which it refers will be clear from the context.

Dobivanje i karakteriziranje hibridoma i rezultirajućeg antitijela bolje će se razumjeti upućivanjem na sljedeći opis i primjere. The preparation and characterization of the hybridoma and the resulting antibody will be better understood by reference to the following description and examples.

Postupak za dobivanje hibridome općenito obuhvaća sljedeće stupnjeve: The procedure for obtaining a hybridoma generally includes the following steps:

A. Imuniziranje miševa sa E rozetnim pozitivnim pročišćenim normalnim humanim perifernim T stanicama. Iako je nađeno da su pogodniji ženski CAF1 miševi (prva generacija hibrida između Balb/cJ i A/J miševa), podrazumjeva se da se mogu koristiti i drugi tipovi miševa. Program imunizacije i koncentracije T stanica treba biti takav da se proizvedu primjenjive količine pogodno spremljenih splenocita. Nađeno je da su efektivne tri imunizacije u intervalima od četrnaest dana sa 2 x 107 stanica/miš/injekcija u 0,2 ml fosfatno puferirane slane otopine. A. Immunization of mice with E rosette positive purified normal human peripheral T cells. Although female CAF1 mice (a first generation hybrid between Balb/cJ and A/J mice) have been found to be more suitable, it is understood that other types of mice can be used. The program of immunization and concentration of T cells should be such as to produce applicable quantities of suitably stored splenocytes. Three immunizations at fourteen day intervals with 2 x 107 cells/mouse/injection in 0.2 ml phosphate buffered saline were found to be effective.

B. Uklanjanje slezena iz imuniziranih miševa i izrada slezenskih suspenzija u odgovarajućem mediju. Dovoljno je oko 1 ml medija na slezenu. Ove eksperimentalne tehnike su dobro poznate. B. Removal of spleens from immunized mice and preparation of spleen suspensions in the appropriate medium. About 1 ml of medium on the spleen is enough. These experimental techniques are well known.

C. Fuzioniranje suspendiranih slezenskih stanica sa mišijim mielomskim stanicama iz pogodne vrste stanica primjenom pogodnog pospješivača fuzije. Pogođen odnos je oko 5 alezinskih stanica na jednu mielomsku stanicu. Ukupna zapremnina od oko 0,5-1,0 ml fuzionog medija je odgovarajuća za oko 108 splenocita. Mnoge vrste stanica mišjih mieloma su poznate i mogu se naći u prometu, općenito kod članova akademskih udruženja ili različitih depozitnih banaka, kao što je Salk Institute Cell Distribution Centar, Le Jolla, CA. Vrsta stanica koja se upotrebljava pogodno treba da bude takozvanog tipa “otpornog na lijekove”, tako da nefuzionirane stanice mieloma neće preživjeti u selektivnom mediju, dok će hibridi preživjeti. Najopćija klasa su vrste stanica otpornih na 8-azagvanin, koje nemaju enzim hipoksantin gvanin fosforibozil transferazu i otuda neće biti potpomognute HAT-om (hipoksantin, aminopterin i timidin) medijom. Također je općenito pogodno da vrsta stanica mieolema koja su upotrebljava, bude takozvanog “nelučećeg tipa”, tako da ona sama ne proizvodi antitijelo, iako se mogu koristiti i lučeći tipovi. Međutim, u nekim slučajevima mogu biti pogodne vrste lučećih mieloma. Iako je pogodan pospješivač fuzije polietilenglikol, koji ima srednju molekulsku težinu od oko 1000 do oko 4000 (koji se komercijalno može nabaviti kao PEG 1000, itd.), također se mogu koristiti i drugi pospješivači fuzije, koji su poznati u znanosti. C. Fusion of suspended spleen cells with murine myeloma cells from a suitable cell type using a suitable fusion enhancer. The affected ratio is about 5 allesin cells to one myeloma cell. The total volume of about 0.5-1.0 ml of fusion medium is adequate for about 108 splenocytes. Many types of murine myeloma cells are known and can be found in circulation, generally from members of academic associations or various depository banks, such as the Salk Institute Cell Distribution Center, Le Jolla, CA. The type of cells used should preferably be of the so-called "drug-resistant" type, so that unfused myeloma cells will not survive in the selective medium, while the hybrids will. The most general class are 8-azaguanine-resistant cell types, which lack the enzyme hypoxanthine guanine phosphoribosyl transferase and hence will not be supported by HAT (hypoxanthine, aminopterin, and thymidine) media. It is also generally preferred that the type of myeloma cells used is of the so-called "non-secretory type", so that it does not produce the antibody itself, although secretory types can also be used. However, secretory types of myeloma may be suitable in some cases. Although a suitable fusion promoter is polyethylene glycol having an average molecular weight of about 1000 to about 4000 (commercially available as PEG 1000, etc.), other fusion promoters known in the art can also be used.

D. Razrjeđivanje i kultiviranje u odvojenim kontejnerima, smjese nefuzioniranih stanica slezene, nefuzioniranih stanica mieloma i fuzioniranih stanica u selektivnom mediju koji neće potpomagati nefuzionirane stanice mieloma u toku perioda vremena koji je dovoljan za omogućavanje uginuća nefuzioniranih stanica (oko tjedan dana). Razrjeđivanje može biti ograničavajućeg tipa, u kojem je zapremina razrjeđivača statistički izračunata da se izolira izvjestan broj stanica (npr. 1-4) u svakom odvojenom kontejneru (npr. svakom udubljenju mikrotitarske kadice). Medij je takav (npr. HAT medij) koji neće potpomoći nefuzioniranu vrstu stanica mieloma koja je otporna na ljekove (npr. koja je otporna na 8-azagvanin). Otuda se ove stanice mieloma gube. Kako nefuzionirane slezenske stanice nisu maligne, one imaju samo konačan broj generacija. Na taj način, poslije izvjesnog perioda vremena (oko tjedan dana) ove nefuzionirane slezenske stanice ne mogu se reproducirati. S druge strane, fuzionirane stanice nastavljaju da se reproduciraju jer posjeduju malignu kvalitetu mielomskog pretka i sposobnost preživljavanja u selektivnom mediju koja potječe od pretka - slezenske stanice. D. Diluting and culturing in separate containers, a mixture of unfused spleen cells, unfused myeloma cells, and fused cells in a selective medium that will not support the unfused myeloma cells for a period of time sufficient to allow the unfused cells to die (about one week). The dilution may be of the limiting type, in which the volume of diluent is statistically calculated to isolate a certain number of cells (eg, 1-4) in each separate container (eg, each well of a microtiter well). The medium is such (eg, HAT medium) that it will not support a non-fused type of myeloma cells that is drug resistant (eg, that is resistant to 8-azaguanine). Hence these myeloma cells are lost. As unfused spleen cells are not malignant, they only have a finite number of generations. In this way, after a certain period of time (about a week), these unfused spleen cells cannot reproduce. On the other hand, the fused cells continue to reproduce because they possess the malignant quality of the myeloma progenitor and the ability to survive in the selective medium derived from the progenitor - spleen cells.

E. Ispitivanje gornjeg sloja tekućine u svakom kontejneru (udubljenju) koji sadrži hibridomu, na prisustvo antitijela za E rozetne pozitivne pročišćene humane T stanice. E. Examination of the upper layer of liquid in each container (well) containing the hybridoma for the presence of antibodies to E rosette positive purified human T cells.

F. Selekcija (npr. primjenom ograničenog razrjeđivanja i kloniranja hibridoma koje proizvode željeno antitijelo. F. Selection (eg, using limited dilution and cloning of hybridomas that produce the desired antibody.

Kada je jedanput selekcionirano i klonirana željena hibridoma, rezultirajuće antitijelo se može proizvesti na jedan od dva načina. Najčistije monoklonalo antitijelo proizvodi se in vitro kultiviranjem željene hibridome u pogodnom mediju u toku pogodne dužine vremena, čemu slijedi izdvajanje željenog antitijela iz gornjeg djela tekućine. Once the desired hybridoma has been selected and cloned, the resulting antibody can be produced in one of two ways. The purest monoclonal antibody is produced in vitro by culturing the desired hybridoma in a suitable medium for a suitable length of time, followed by isolation of the desired antibody from the supernatant.

Pogodan medij i pogodna dužina vremena trajanja kultiviranja su poznati ili se lako mogu odrediti. Ova tehnika in vitro proizvodi praktično monospecifično monoklonalno antitijelo, praktično bez prisustva drugog specifičnog antihumanog imunog globulina. Prisutna je mala količina drugog imunog globulina jer medij sadrži ksenogeni serum (npr. telefi fetalni serum). Međutim, ovaj in vitro postupak ne mora proizvesti količinu ili koncentraciju antitijela, koja je dovoljna za neke svrhe, jer je koncentracija monoklonalnog antitijela samo oko 50 ug/ml. A suitable medium and a suitable length of cultivation time are known or can be easily determined. This technique in vitro produces a practically monospecific monoclonal antibody, practically without the presence of another specific antihuman immune globulin. A small amount of second immune globulin is present because the medium contains xenogeneic serum (eg telephi fetal serum). However, this in vitro procedure may not produce an amount or concentration of antibody that is sufficient for some purposes, as the concentration of the monoclonal antibody is only about 50 µg/ml.

Da bi se proizvela mnogo veća koncentracija nešto manje čistog monoklonskog antitijela, željena hibridoma može biti ubrizgana u miševe, pogodno u singene ili polusingene miševe. Hibridoma će prouzrokovati formiranje tumora, koji proizvode antitijelo, poslije nekog pogodnog vremena inkubacije, što će rezultirati u visokoj koncentraciji željenog antitijela (oko 5-20 mg/ml) u krvnoj struji i peritonalnom eksudatu (acite) kućnog miša domaćina. Iako ovi miševi domaćini također imaju normalna antitijela u njihovoj krvi i secitima, koncentracija ovih normalnih antitijela je samo oko 5% od koncentracije monoklonalnog antitijela. Čak što više, pošto ova normalna antitijela nisu antihumana po svojoj specifičnosti, dobiveno monoklonalno antitijelo iz pokupljenih peritonalnih eksudata ili iz seruma je praktično slobodno od onečišćavajućeg antihumanog imunog globulina. Ovo monoklonalno antitijelo je visokog titra (aktivno pri razrjeđenjima od 1:100.000 ili većim koncentracijama) i visokog odnosa specifičnog prema nespecifičnom imunom globulinu (oko 1/20). Mielomski nizovi, koji proizvode imuni globulin i inkorporiraju k svjetlost su nespecifični, “besmisleni” peptidi, koji samo razrjeđuju monoklonalno antitijelo a da mu ne oduzimaju njegovu specifičnost. To produce a much higher concentration of a slightly less pure monoclonal antibody, the desired hybridoma can be injected into mice, preferably syngeneic or semi-syngeneic mice. The hybridoma will cause the formation of tumors, which produce the antibody, after some suitable incubation time, which will result in a high concentration of the desired antibody (about 5-20 mg/ml) in the bloodstream and peritoneal exudate (acite) of the host house mouse. Although these host mice also have normal antibodies in their blood and tissues, the concentration of these normal antibodies is only about 5% of the concentration of the monoclonal antibody. Even more, since these normal antibodies are not anti-human in their specificity, the obtained monoclonal antibody from collected peritoneal exudates or from serum is practically free of contaminating anti-human immune globulin. This monoclonal antibody has a high titer (active at dilutions of 1:100,000 or higher) and a high ratio of specific to non-specific immune globulin (about 1/20). Myeloma arrays, which produce immune globulin and incorporate k light, are non-specific, "nonsense" peptides, which only dilute the monoclonal antibody without depriving it of its specificity.

Primjer 1 Example 1

Dobivanje monoklonalnog antitjela Obtaining a monoclonal antibody

A. Imunizacija i hibridizacija somatskih stanica A. Immunization and hybridization of somatic cells

Ženke CAF1 miševa (Jackson Laboratories, stare 6-8 tjedana) intraperitonalno su imunizirane sa 2 x 107 E rozetnih pročišćenih T stanica u 0,2 ml fosfatom puferirane slane otopine (kuhinjske soli) u intervalima od 14 dana. Četiri dana poslije treće imunizacije slezene su uklonjene iz miševa i suspenzija jedne stanice napravljena je prešanjem tkiva kroz mrežu od nerđajućeg čelika. Female CAF1 mice (Jackson Laboratories, 6-8 weeks old) were immunized intraperitoneally with 2 x 107 E of rosette-purified T cells in 0.2 ml of phosphate-buffered saline (table salt) at 14-day intervals. Four days after the third immunization, the spleens were removed from the mice and a single cell suspension was made by pressing the tissue through a stainless steel mesh.

Fuzija stanica izvršena je prema postupku koji su razvili Kohler i Milstein. 1 x 108 splenocira je fuzionirano u 0,5 ml fuzionog medija koji sadrži 35%-ni polietilenglikol (PEG 1000) i 5% dimetilsulfoksida u RPNI 1640 mediju Gibco, Grand Island, Ny, SAD) sa 2 x 107 P3x63Ag8W1 mielomskih stanica dobivenih od Dr. M. Scharff-a iz Albert Einstein College of Medicine, Bronx, Ny. Ove mielomske stanice luče IgG1 lake lance. Cell fusion was performed according to the procedure developed by Kohler and Milstein. 1 x 108 splenocytes were fused in 0.5 ml fusion medium containing 35% polyethylene glycol (PEG 1000) and 5% dimethylsulfoxide in RPNI 1640 medium Gibco, Grand Island, Ny, USA) with 2 x 107 P3x63Ag8W1 myeloma cells obtained from dr. M. Scharff from Albert Einstein College of Medicine, Bronx, Ny. These myeloma cells secrete IgG1 light chains.

B. Selekcija i razvoj hibridome B. Hybridoma selection and development

Poslije fuzije stanica, stanice su kultivirane u HAT mediju (hipoksantin, aminopterin i timidin) pri 37°C sa 5%-nim CO2 u vlažnoj atmosferi. Nekoliko tjedana kasnije, 40 do 100 µl gornjeg sloja tekućine iz kultura koje sadrže hibridome dodano je loptici od 106 perifernih limfocita razdvojenih u E rozetne pozitivne (E+) i E negativne (E ̄) populacije, koje su dobivene iz krvi zdravih humanih davalaca kao što je opisano od strane Mendes-a (J. Immunol. 111, 860 (1973). Detekcija mišjih hibridomskih antitijela vezanih za ove stanice određena je radicimunom analizom i/ili indirektnom imunofluorescencijom. U prvoj metodi, stanice su u početku reagirane sa 100 µl afinitivno pročišćenog 125I kozjeg-anti-mišjeg IgG 106 spm/ ug, 500µg/ml). (Detalji jodiranja kozjeg-anti-mišjeg IgG opisani su od strane Kung-a, et sl., J. Biol. Chem. 251, (8), 2399 (1976)). Alternativno, stanice, inkubirane sa gornjim dijelovima tekućine kulture obojene su fluorescentnim kozjim-anti-mišjim IgG (G/M FITC) (Meloy Laboratories, Springfield, Va; F/p = 2,5) i fluorescentne antitijelom prevučene stanice su zatim analizirane na Citofluorografu FC200/4800A (Ortho Instruments, Westwood, Ma) kao što je opisano u primjeru 3. Kulture hibridoma koje sadrže antitijela koja reagiraju specifično sa E+ limfocitima (T stanice) su selekcionirane i klonirane. Zatim su klonovi prenijeti intraperitonalno ubrizgavanjem 1 x 107 stanica datog klona (0,2 ml zapremine) u CAF1 miševe spremljene sa 2, 6, 10, 14-tetrametilpentadekanom, koji prodaje firma Aldrich Chemical Company pod imenom Pristine. Maligni peritonalni eksudati iz ovih miševa su zatim upotrebljeni da se okarakteriziraju limfociti kao što je dolje opisano u primjeru 2. Predmetno hibridno antitijelo OKT3 demonstrirano je standardnom tehnikom da predstavlja IgG2 podklasu i da se komplementno utvrđuje. After cell fusion, the cells were cultured in HAT medium (hypoxanthine, aminopterin and thymidine) at 37°C with 5% CO2 in a humidified atmosphere. Several weeks later, 40 to 100 µl of supernatant from hybridoma-containing cultures was added to a ball of 106 peripheral lymphocytes separated into E rosette positive (E+) and E negative (E ̄) populations, which were obtained from the blood of healthy human donors such as was described by Mendes (J. Immunol. 111, 860 (1973). Detection of murine hybridoma antibodies bound to these cells was determined by radioimmunoassay and/or indirect immunofluorescence. In the first method, cells were initially reacted with 100 µl of affinity of purified 125I goat-anti-mouse IgG 106 spm/ug, 500µg/ml). (Details of goat anti-mouse IgG iodination are described by Kung, et al., J. Biol. Chem. 251, (8), 2399 (1976)). Alternatively, cells incubated with culture supernatants were stained with fluorescent goat-anti-mouse IgG (G/M FITC) (Meloy Laboratories, Springfield, Va; F/p = 2.5) and fluorescent antibody-coated cells were then analyzed for FC200/4800A Cytofluorograph (Ortho Instruments, Westwood, Ma) as described in Example 3. Hybridoma cultures containing antibodies that react specifically with E+ lymphocytes (T cells) were selected and cloned. The clones were then transferred intraperitoneally by injecting 1 x 10 7 cells of a given clone (0.2 ml volume) into CAF1 mice primed with 2, 6, 10, 14-tetramethylpentadecane, sold by Aldrich Chemical Company under the name Pristine. Malignant peritoneal exudates from these mice were then used to characterize lymphocytes as described below in Example 2. The subject OKT3 hybrid antibody was demonstrated by standard techniques to represent the IgG2 subclass and to be complement determined.

Primjer 2 Example 2

Karakterizacija OKT3 reaktivnosti Characterization of OKT3 reactivity

A. Izolacija limfocitnih populacija A. Isolation of lymphocyte populations

Humane periferne krvne mononuklearne stanice izolirane iz zdravih dobrovoljnih davalaca (starosti 15-40 godina) primjenom Ficoll-Hypaque centrifugiranjem sa gradijantom gustoće (Pharmacia Fine Chemicals, Piscataway, Nj) čemu slijedi tehnika Boyuma, Scand, J. Clin. Lab. Invest. 21 (Suppl. 97) 77, 1968. Human peripheral blood mononuclear cells isolated from healthy volunteer donors (aged 15-40 years) using Ficoll-Hypaque density gradient centrifugation (Pharmacia Fine Chemicals, Piscataway, Nj) followed by the technique of Boyum, Scand, J. Clin. Lab. Invest. 21 (Suppl. 97) 77, 1968.

Nefrakcionirane mononuklearne stanice su razdvojene u površinske Ig+ (B) i Ig - (T plus nula) populacije primjenom Sephadex G-200 anti-F(ah`)2 kolonske kromatografije kao što je ranije opisano od strane Chess-a et sl., J. Immunol. 113, 1113 (1974). T stanice su izdvojene E rozentiranjem Ig – populacije sa 5%-nim ovčjim eritrocitima (Microbiological Associates, Bethesda, MD). Rozetirana smjesa je raslojena preko Ficoll-Betheseda, MD). Rozetirana smjesa je raslojena preko Ficoll-Hyapaque-a i izdvojena E+ loptica je tretirana sa 0,155 M otopinom NH4Cl (10 ml na 108 stanica). Tako dobivena populacija T stanica je bila<2% EAC rozetno pozitivna i <95% E rozetno pozitivna kao što je to određeno primjenom standardnih metoda. Pored toga, nerotirajuća Ig- (nula stanica) populacija je sakupljena sa Ficollove međupovršine. Ova posljednja je populacija je <5 % E+ i ≤2 % slg+. Površinska 1g+ (B) populacija je dobivena sa Sephadex G-200 kolone čemu je sljedilo eluiranje sa normalnim humanim gama globulinom kao što je to ranije opisano. Ova populacija je bila >95 % površinski Ig+ i >5 % E+. Unfractionated mononuclear cells were separated into surface Ig+ (B) and Ig - (T plus null) populations using Sephadex G-200 anti-F(ah`)2 column chromatography as previously described by Chess et al., J Immunol. 113, 1113 (1974). T cells were isolated by E rosecenting of the Ig population with 5% sheep erythrocytes (Microbiological Associates, Bethesda, MD). The rosette mixture was layered over Ficoll-Bethesed, MD). The rosette mixture was layered over Ficoll-Hyapaque and the separated E+ ball was treated with 0.155 M NH4Cl solution (10 ml per 108 cells). The resulting T cell population was <2% EAC rosette positive and <95% E rosette positive as determined using standard methods. In addition, the non-rotating Ig- (zero cell) population was collected from the Ficoll interface. This latter population is <5% E+ and ≤2% slg+. The surface 1g+ (B) population was recovered from a Sephadex G-200 column followed by elution with normal human gamma globulin as described earlier. This population was >95% surface Ig+ and >5% E+.

Iz mononuklearne populacije adherencijom ne polistirol dobiveni su normalni humani makrofagi. Na taj način, mononuklearne stanice su ponovo suspendirane u finalnom mediju kulture (RPMI 1640, 2,5 mM HEPES /4-(2-hidroksietil)-1-piperazinpropansulfonska kiselina)/ puferu, 0,5%-ni natrij-bikar-bonat, 200 mK L-glutamina i 1%-ni penicilin-streptomicin, čemu je dodato 20%-nog humanog AB seruma koji je inaktiviran toplinom) pri koncentraciji od 2 x 106 stanica i inkubiran u plastičnim petri šalicama (100 x 20 mm) (Falcon Tissue Culture Dish; Oxnard, CA) pri 37°C u toku noći. Poslije ekstenzivnog ispiranja da se udalje stanice koje nisu prionule, adnerentna populacija je odvojena oštrim ispiranjem hladnim medijog, koji ne sadrži serum i sadrži 2,5 mM EDTA, i povremenim grebanjem gumenih štapićem (čepom) šprice za injekcije. Više od 85% populacije stanica je bilo u stanju da uzima (ingestrira) čestice lateksa i ima morfološke karakteristike monocita pri bojenju Wright-Giemsa-metodom. Normal human macrophages were obtained from the mononuclear population by non-polystyrene adherence. In this way, the mononuclear cells were resuspended in the final culture medium (RPMI 1640, 2.5 mM HEPES /4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid)/buffer, 0.5% sodium bicarbonate , 200 mK L-glutamine and 1% penicillin-streptomycin, to which 20% heat-inactivated human AB serum was added) at a concentration of 2 x 106 cells and incubated in plastic petri dishes (100 x 20 mm) ( Falcon Tissue Culture Dish; Oxnard, CA) at 37°C overnight. After extensive washing to remove non-adherent cells, the adherent population was dissociated by vigorous washing with cold serum-free medium containing 2.5 mM EDTA and occasional scraping with the rubber swab (cap) of the injection syringe. More than 85% of the cell population was able to take up (ingestrate) latex particles and had morphological characteristics of monocytes when stained by the Wright-Giemsa method.

B. Normalni timus B. Normal thymus

Normalna humana timusna žlijezda je dobivena od pacijenata starosti od 2 mjeseca do 14 godina koji su bili podvrgnuti korektivnoj kirurgiji srca. Svježe dobiveni dijelovi timusne žlijezde odmah su stavljeni u 5%-ni fetalni teleći serum u mediju 199 (Gibco), fino usitnjeni pomoću kirurških kliješta i škara, i zatim prerađeni u jednostanične suspenzije prešanjem kroz žičanu mrežu. Ove stanice su zatim raslojene preko Ficoll-Hypaque-a i vrtane i isprane kao što je ranije opisano u gornjem djelu A. Tako dobiveni timociti su bili >.95% sposobni za život i ≥90 % E rozetno pozitivni. Normal human thymus was obtained from patients aged 2 months to 14 years who had undergone corrective heart surgery. Freshly obtained thymus sections were immediately placed in 5% fetal calf serum in medium 199 (Gibco), finely minced using surgical forceps and scissors, and then processed into single-cell suspensions by pressing through a wire mesh. These cells were then layered over Ficoll-Hypaque and pelleted and washed as described earlier in Part A above. Thymocytes thus obtained were >.95% viable and ≥90% E rosette positive.

C. Vrste stanice C. Cell types

Epstein-Barr-ov virus (EBV transformirao je B stanične vrste iz četiri normalne individue (Laz 007, Laz 156, Laz 256 i SB) i opisao ih. Vrste T stanica CEM, HJD-1, Laz 191 i HHl, dobivene iz leukemijskih pacijenata, date su od strane Dr. H. Lazarus-a, Sidney Farber Cancer Institute, Boston, MA. Epstein-Barr virus (EBV transformed B cell types from four normal individuals (Laz 007, Laz 156, Laz 256 and SB) and described them. T cell types CEM, HJD-1, Laz 191 and HHl, obtained from leukemic patients, were provided by Dr. H. Lazarus, Sidney Farber Cancer Institute, Boston, MA.

D. T stanice akutne limfoblastne leukemije D. T cells of acute lymphoblastic leukemia

(T-ALL) i T stanice kronične limfatične leukemije (T-CILL) (T-ALL) and T cells of chronic lymphocytic leukemia (T-CILL)

Stanice leukemije su dobivene iz 12 pacijenata sa T-ALL. Ove stanice individua su ranije određene kao T loza stanica pomoću njihovog spontanog rozetnog formiranja sa ovčjim eritrocitima ( >20% E+) i reaktivnosti sa heteroserumima specifičnim za T stanice, anti-HTL (anti-B.K.) i A99, kao što je ranije opisano od strane Schlossman-3, et. al., Proc. Nat. Acad. Sci. 73, 1288 (1976). Stanice tumora iz tri individue su bile reaktivne (TH2+) sa zečjim i/ili konjskim anti-TH2 dok stanice iz preostalih devet individua nisu bile reaktivne (TH2 ̄ ). Također su upotrjebljene i stanice leukemije iz dva pacijenta sa TH2 ̄ T-CLL. Obje vrste, stanice (T stanice) akutne i kronične leukemije su konzervirane na niskoj temperaturi od -196°C primjenom parne faze tekućeg dušika i držane u 10%-nom dimetilsulfoksidu i 20%-nom AR humanom serumu sve do vremena površinske karakterizacije. Analizirane populacije tumora su bile >90% blasti što je utvrđeno Wright-Giemsa morfologijom u svim primjerima. Leukemia cells were obtained from 12 patients with T-ALL. These cells from individuals were previously designated as T cell lineages by their spontaneous rosette formation with sheep erythrocytes (>20% E+) and reactivity with T cell-specific heterosera, anti-HTL (anti-B.K.) and A99, as previously described by sides Schlossman-3, et. al., Proc. Nat. Acad. Sci. 73, 1288 (1976). Tumor cells from three individuals were reactive (TH2+) with rabbit and/or horse anti-TH2, while cells from the remaining nine individuals were not reactive (TH2 ̄ ). Leukemia cells from two patients with TH2 ̄ T-CLL were also used. Both types, cells (T cells) of acute and chronic leukemia were preserved at a low temperature of -196°C using the vapor phase of liquid nitrogen and kept in 10% dimethylsulfoxide and 20% AR human serum until the time of surface characterization. The analyzed tumor populations were >90% blasts as determined by Wright-Giemsa morphology in all examples.

Primjer 3 Example 3

Citofluorofgrafska analiza Cytofluorographic analysis

Citofluorgrafska analiza svih populacija stanica izvršena je indirektnom imunofluorescencijom sa kozjim-antimišjim IgG (G/M FITC) Meloy laboratories) konjugiranim sa fluoresceinom na citofluorografu FC200/4800A (Ortho Instruments). Ukratko, 1-2 x 106 stanica tretirano je sa 0,15 ml OKT3 pri razrjeđenju od 1:1000, inkubirano pri 4°C u toku 30 ;minuta i dva puta isprano. Stanice su zatim reagirane sa 0,15 ml G/M FITC (razrjeđene 1 :40) pri 4°C u toku 30 minuta, centrifugirane i isprane tri puta. Ove stanice su zatim analizirane sa citofluorografu i na analizatoru visinskog pulsa registrirana je jačina fluorescencije po jednoj stanici. Sličan mehanizam reaktivnosti je zapažen pri razrjeđenju od 1:1000.000, ali daljnje razrjeđenje je prouzrokovalo gubitak reaktivnosti. Cytofluorographic analysis of all cell populations was performed by indirect immunofluorescence with goat-anti-mouse IgG (G/M FITC) Meloy laboratories) conjugated with fluorescein on a cytofluorograph FC200/4800A (Ortho Instruments). Briefly, 1-2 x 106 cells were treated with 0.15 ml OKT3 at a dilution of 1:1000, incubated at 4°C for 30 minutes and washed twice. The cells were then reacted with 0.15 ml G/M FITC (diluted 1:40) at 4°C for 30 minutes, centrifuged and washed three times. These cells were then analyzed with a cytofluorograph and the intensity of fluorescence per cell was registered on the height pulse analyzer. A similar mechanism of reactivity was observed at a dilution of 1:1000,000, but further dilution caused loss of reactivity.

Osnovno obojenje je dobiveno zamjenom 0,15 ml alikvota peritonalnih eksudata (1:1000) iz Balb/cJ miša koji je intraperitonalno imuniziran, sa klonom koji ne proizvodi hibrid. Baseline staining was obtained by replacing a 0.15 ml aliquot of peritoneal exudates (1:1000) from an intraperitoneally immunized Balb/cJ mouse with a non-hybrid producing clone.

S1. 1 pokazuje sliku fluorescencije koja je dobivena na citofluorografu poslije reagiranja normalnih humanih perifernih T stanica sa OKT3 pri razrjeđenju od 1:1000 i G/M PITC. Radi usporedbe na sl. 1-5 prikazani su rezultati sa monoklonalnim antitijelima OKT1 i OKT4 koji su dobiveni pod ekvivalentnim uvjetima. S1. 1 shows a fluorescence image obtained on a cytofluorograph after reacting normal human peripheral T cells with OKT3 at a dilution of 1:1000 and G/M PITC. For comparison, Fig. 1-5 shows the results with monoclonal antibodies OKT1 and OKT4, which were obtained under equivalent conditions.

S1.2 prikazuje sliku fluorescencije koja je dobivena na citofluorografu poslije reagiranja humanih timocita sa OKT3 i G/M FITC. S1.2 shows the fluorescence image obtained on a cytofluorograph after reaction of human thymocytes with OKT3 and G/M FITC.

S1.3 prikazuje sliku fluomescencije koja je dobivena na citofluorografu poslije reagiranja leukemijskih stanica dobivenih iz pacijenata oboljelih od kronične limfoblastne leukemije (B stanice) sa 0KT3 i G/M FITC. S1.3 shows the image of fluomescence obtained on a cytofluorograph after the reaction of leukemic cells obtained from patients suffering from chronic lymphoblastic leukemia (B cells) with 0KT3 and G/M FITC.

S1. 4 prikazuje sliku fluorescencije koja je dobivena na citofluorografu poslije reagiranja vrste humanih T stanica HJD-1 sa OKT3 i G/M FITC. S1. 4 shows a fluorescence image obtained on a cytofluorograph after the reaction of human T cell type HJD-1 with OKT3 and G/M FITC.

Podaci i karakteristične vrijednosti koji su dati na sl. 1-5 kao i dopunski podaci za OKT3 (kao i za OKT1 i OKT4) sakupljeni su na tabeli 1. Data and characteristic values given in Fig. 1-5 as well as supplementary data for OKT3 (as well as for OKT1 and OKT4) are collected in Table 1.

Dobivanje hibridoma i dobivanje i okarakteriziranje rezultirajućeg monoklonalnog, antitijela izvršeni su kao što je opisano u gornjim primjerima. Iako su velike količine predmetnog antitijela dobivene ubrizgavanjem predmetnog hibridoma intraperitonalno u miševe i skupljanjem malignih peritonalnih eksudata, očigledno se podrazumijeva da se hibridoma može kultivirati in vitro primjenom tehnike koje su dobro poznate u znanosti i praksi i antitijelo ukloniti iz gornjeg sloja tekućine. Hybridoma production and production and characterization of the resulting monoclonal antibody were performed as described in the examples above. Although large amounts of the subject antibody have been obtained by injecting the subject hybridoma intraperitoneally into mice and collecting malignant peritoneal exudates, it is understood that the hybridoma can be cultured in vitro using techniques well known in the art and practice and the antibody removed from the upper fluid layer.

Kao što je pokazano na sl. 1, cjelokupna populacija T stanica ih humane pariferne krvi date normalne individue može reagirati sa OKT3, dok cjelokupne populacije B stanica, nula stanica i makrofaga, koje su izolirane iz iste individue, nisu reaktivne u odnosu na OKT3. Slični rezultati su dobiveni na populacijama limfocita iz 15 drugih normalnih individua. Na taj način je monoklonalno antitijelo karakterizirano tako što je ono reaktivno sa antigenom sadržanim na površini praktično svih normalnih humanih perifernih T stanica, dok je nereaktivno sa bilo kojim antigenima na površini tri druga tipa stanica koja su gore diskutirana. Ova različita reaktivnost je test kojim se predmetno antitijelo OKT3 može detektirati i razlikovati od drugih antitijela. As shown in Fig. 1, the entire human peripheral blood T cell population of a given normal individual can react with OKT3, while the entire population of B cells, null cells and macrophages, which are isolated from the same individual, are not reactive with OKT3. Similar results were obtained on lymphocyte populations from 15 other normal individuals. Thus, a monoclonal antibody is characterized by being reactive with an antigen contained on the surface of virtually all normal human peripheral T cells, while being unreactive with any antigens on the surface of the three other cell types discussed above. This differential reactivity is a test by which the subject OKT3 antibody can be detected and distinguished from other antibodies.

Kao što je prikazano na sl. 2, ogromna većina normalnih humanim timocita iz šestomjesečne bebe potpuno je nereaktivna sa OKT3, dok je oko 5 do 10% timocita reaktivno. Implikacija ovog nalaza je da se vrijeme procesa diferencijacije, kojim se polazne osnovne stanice pretvaraju u zrele T stanice, timociti stječu na nekom stupnju isti površinski antigen koji je nađen kod T stanica, koje su reaktivne u odnosu na 0KT3. Vjeruje se da su ovi timociti u kasnijim stupnjevima diferencijacije baš upravo prije izlaza iz timusa u krvnu struju. Slični rezultati (5-10%-na reaktivnost) dobiveni su uz primjenu šest dopunskih timusnih vrsta (uzoraka) iz normalnih individua starosti od 2 mjeseca do 19 godina. Slika reaktivnosti data na sl. 2 daje drugu metodu za detekciju predmetnog antitijela OKT3 i njegovo razlikovanje od drugih antitijela. As shown in Fig. 2, the vast majority of normal human thymocytes from a six-month-old baby are completely unreactive with OKT3, while about 5 to 10% of thymocytes are reactive. The implication of this finding is that during the differentiation process, which transforms the initial basic cells into mature T cells, thymocytes acquire to some degree the same surface antigen found in T cells, which are reactive in relation to 0KT3. It is believed that these thymocytes are in the later stages of differentiation just before exiting the thymus into the bloodstream. Similar results (5-10% reactivity) were obtained using six additional thymus species (samples) from normal individuals aged 2 months to 19 years. The reactivity image given in Fig. 2 provides another method for detecting the subject OKT3 antibody and distinguishing it from other antibodies.

Predmetno antitijelo također se može koristiti za određivanje odnosa cirkulirajućih limfocita koji su T stanice. Kao što je pokazano na tabeli 1, ≥95% svih T stanica reagira sa OKT3 antitijelom. Ovaj izum obuhvaća na taj način i postupak za određivanje (u nekoj individui) odnosa cirkulirajućih limfocita koji su T stanice, koji obuhvaća miješanje OKT3 antitijela sa limfocitnom smjesom iz ove individue i određivanje načina dobivanja limfocita koji su OKT3+ i na taj način T stanice. The subject antibody can also be used to determine the proportion of circulating lymphocytes that are T cells. As shown in Table 1, ≥95% of all T cells reacted with the OKT3 antibody. This invention thus includes a procedure for determining (in an individual) the ratio of circulating lymphocytes that are T cells, which includes mixing OKT3 antibodies with a lymphocyte mixture from this individual and determining how to obtain lymphocytes that are OKT3+ and thus T cells.

Daljnja karakterizacija predmetnog antitijela OKT3 prikazana je reaktivnošću prema različitim vrstama humanih T stanica što je ilustrirano na sl. 4 i 5. Kao što se može vidjeti, reaktivnost predmetnog antigena prema vrstama humanih T stanica bila je heterogena, bila je slaba za vrstu HJD-1 i nepostojeća za vrste CEM, Laz 191 i HMI. Ova diferencijalna reaktivnost OKT3 prema različitim vrstama humanih T stanica (koje se lako mogu dobiti) osigurava još jednu metodu za karakteriziranje i opisivanje predmetnog T antitijela. Further characterization of the subject OKT3 antibody was shown by its reactivity against different types of human T cells, which is illustrated in Fig. 4 and 5. As can be seen, the reactivity of the subject antigen against the types of human T cells was heterogeneous, it was weak for the type HJD-1 and non-existent for types CEM, Laz 191 and HMI. This differential reactivity of OKT3 to different types of human T cells (which are readily obtainable) provides another method for characterizing and describing the T antibody in question.

Nepostojanje reakcije OKT3 sa vrstama humanih B stanica Laz 007, Laz 156, laz 256 i SB prikazano je na tabeli 1. Ovo dalje potvrđuje nedostatak reaktivnosti OKT3 sa B stanicama koje su dobivene iz periferne krvi normalne humene populacije i osigurava još jednu drugu metodu karakteriziranja i razlikovanja predmetnog antitijela OKT3. Specifična reakcija OKT3 antitijela sa antigenom kod kutanih T staničnih limfoma ilustrirana je na tabeli 2 na kojoj je prikazano razlikovanje od OKT1 i OKT4. Ovo antitijelo na taj način osigurava reagens za potvrđivanje dijagnoze kutanih T staničnih limfoma u pacijentu za kojeg se sumnja da ima spomenutu bolest. Liječenje kutanih T staničnih limfoma davanjem terapeutski efektivne količine OKT3 antitijela se također smatra kao djelom ovog izuma. The absence of reactivity of OKT3 with human B cell types Laz 007, Laz 156, laz 256 and SB is shown in Table 1. This further confirms the lack of reactivity of OKT3 with B cells obtained from the peripheral blood of a normal human population and provides yet another method of characterizing and differentiation of the OKT3 antibody in question. The specific reaction of OKT3 antibodies with antigen in cutaneous T cell lymphomas is illustrated in Table 2, which shows the differentiation from OKT1 and OKT4. This antibody thus provides a reagent for confirming the diagnosis of cutaneous T cell lymphoma in a patient suspected of having said disease. Treatment of cutaneous T cell lymphomas by administration of a therapeutically effective amount of OKT3 antibody is also contemplated as part of the present invention.

Prema ovom izumu data je hibridoma koja je u stanju da proizvodi antitijelo protiv antigena koji je nađen kod praktično svih normalnih humanih T stanica i kutanih T limfomskih stanica, zatim postupak za dobivanje ove hibridoma, monoklonalno antitijelo protiv antigena nađenog kod praktično svih humanih T stanica, postupci za dobivanje ovog antitijela, i postupci i metode za liječenje ili dijagnozu oboljenja koja koriste ovo antitijelo. According to this invention, there is provided a hybridoma that is able to produce an antibody against an antigen found in practically all normal human T cells and cutaneous T lymphoma cells, then a process for obtaining this hybridoma, a monoclonal antibody against an antigen found in practically all human T cells, methods for obtaining this antibody, and methods and methods for the treatment or diagnosis of diseases using this antibody.

Iako je opisana samo jedna hibridoma koja proizvodi jedno monoklonalno antitjelo protiv antigene humanih T stanica, smatra se da ovaj izum obuhvaća sva monoklonalna antitjela koja pokazuju gore opisane karakteristike. Određeno je da predmetno antitijelo OKT3 pripada podklasi Ig G2, koja je jedna od četiri podklase mišjih (murinskih) IgG. Ove podklase imunog globulina G razlikuju se jedna od druge u takozvanim "fiksiranim" regijama, iako će antitijelo za neki specifični antigen imati takozvanu "promjenljivu" regiju koja je funkcionalno identična bez obzira kojoj podklasi imunog globulina G pripada. Na taj način ,monoklonalno antitijelo koje pokazuje ovdje opisane karakteristike može biti podklase IgG1, IgG2s, IG2b ili IgG3 ili klasa IgM, IgA ili nekih drugih poznatih Ig klasa. Razlike između ovih klasa ili podklasa neće utjecati na selektivnost reakcione slike ovog antitijela, a1i mogu utjecati na daljnju reakciju antitijela sa drugim materijalima, kao što je (na primjer) komplementna ili anti-mišja antitijela. Iako se predmetno antitijelo specifično IgG2, podrazumijeva se da su antitijela koja imaju ovdje uključene mehanizme reaktivnosti obuhvaćena ovim izumom bez obzira na klasu ili podklasu imunog globulina kojoj pripadaju. Although only one hybridoma has been described that produces a single monoclonal antibody against a human T cell antigen, the present invention is intended to encompass all monoclonal antibodies exhibiting the characteristics described above. The OKT3 antibody in question was determined to belong to the Ig G2 subclass, which is one of the four mouse (murine) IgG subclasses. These immunoglobulin G subclasses differ from each other in so-called "fixed" regions, although an antibody to a specific antigen will have a so-called "variable" region that is functionally identical regardless of which immunoglobulin G subclass it belongs to. In this way, the monoclonal antibody that shows the characteristics described here can be of the IgG1, IgG2s, IG2b or IgG3 subclasses or of the IgM, IgA or some other known Ig classes. Differences between these classes or subclasses will not affect the selectivity of the reaction pattern of this antibody, and may affect the further reaction of the antibody with other materials, such as (for example) complement or anti-mouse antibodies. Although the antibody in question is specifically IgG2, it is understood that antibodies having the mechanisms of reactivity included herein are encompassed by this invention regardless of the class or subclass of immune globulin to which they belong.

U opsegu ovog izuma nalaze se i metode za dobivanje monoklonalnih antitijela, koja su gore opisana, uz korištenje gore ilustriranih hibridomskih tehnika. Iako je ovdje dat samo jedan primjer hibridoma, podrazumijeva se da bi onaj, koji je stručnjak u ovoj oblasti, mogao raditi prema gore datim metodama imunizacije, fuzije i selekcije i dobiti hibridome koje mogu proizvesti antitijela sa gore opisanim karakteristikama reaktivnosti. Pošto individualna hibridoma, koja je proizvedena iz poznatih vrsta mišjih mielomskih i slezenskih stanica dobivenih iz poznatih vrsta miševa, dalje ne može biti identificirana osim referencom na antitijelo proizvedeno od strane ove hibridome, podrazumijeva se da su sve hibridome, koje proizvode antitijelo sa gore opisanim karakteristikama obuhvaćene predmetom ovog izuma, kao i metode za izradu ovog antitijela uz korištenje ove hibridome. Also within the scope of this invention are the methods for obtaining monoclonal antibodies, which are described above, using the hybridoma techniques illustrated above. Although only one example of a hybridoma is provided herein, it is understood that one skilled in the art could work according to the above immunization, fusion and selection methods to obtain hybridomas capable of producing antibodies with the reactivity characteristics described above. Since an individual hybridoma, which is produced from known species of murine myeloma and spleen cells obtained from known species of mice, cannot be further identified except by reference to the antibody produced by this hybridoma, it is understood that all hybridomas, which produce an antibody with the characteristics described above covered by the subject of this invention, as well as methods for making this antibody using this hybridoma.

Daljnji aspekti ovog izuma su metode liječenja ili dijagnoze oboljenja, koje koriste monoklonalno antitijelo 0KT3 ili neko drugo monoklonalno antitijelo koje pokazuje gore dati mehanizam reaktivnosti. Kao što je gore diskutirano, predmetno antitijelo omogućava liječenje pacijenata koji imaju izvjesne T stanice kronične limfoblastre leukemije davanjem terapeutski efektivnih količina ovog antitijela. Davanje terapeutski efektivne količine antitijela OKT3 nekom individualnom subjektu koji podlježe presađivanju organa, smanjiti će ili eliminirati odbacivanje ovog presada (transplantata). Further aspects of the present invention are methods of treating or diagnosing diseases, which use the monoclonal antibody 0KT3 or another monoclonal antibody that exhibits the above mechanism of reactivity. As discussed above, the subject antibody enables the treatment of patients having certain T cell chronic lymphoblastic leukemia by administering therapeutically effective amounts of this antibody. Administration of a therapeutically effective amount of OKT3 antibody to an individual subject undergoing organ transplantation will reduce or eliminate rejection of the transplant.

Predmetno antitijelo također omogućava detekciju kutanih T staničnih limfoma u nekoj individui miješanjem limfomske T stanične smjese iz gore spomenute individue sa dijagnostički efektivnom količinom OKT3 antitijela. Prisustvo reakcije potvrđuje identitet ove bolesti. Kutana T stanična limfoma može se liječiti davanjem individui, koja treba takvo liječenje, terapeutski efektivne količine antitijela OKT3. Ovo antitijelo će reagirati i smanjiti količinu Z limfomskih stanica, čime će dovesti do poboljšanja bolesti. Sa aspekta ovih dijagnostičkih i terapeutskih metoda, ovaj pronalazak dopunski uključuje dijagnostičke i terapeutske smjese koje obuhvaćaju dijagnostički ili terapeutski efektivnu količinu antitijela OKT3 u dijagnostički ili farmaceutski prihvatljivom nosaču. The subject antibody also enables the detection of cutaneous T cell lymphomas in an individual by mixing the lymphoma T cell mixture from the aforementioned individual with a diagnostically effective amount of OKT3 antibody. The presence of a reaction confirms the identity of this disease. Cutaneous T cell lymphoma can be treated by administering to an individual in need of such treatment a therapeutically effective amount of an OKT3 antibody. This antibody will react and reduce the amount of Z lymphoma cells, leading to an improvement in the disease. In terms of these diagnostic and therapeutic methods, the present invention additionally includes diagnostic and therapeutic compositions comprising a diagnostically or therapeutically effective amount of OKT3 antibody in a diagnostically or pharmaceutically acceptable carrier.

Tabela 1 Table 1

Reaktivnost i osobine monoklonalnog antitjela. Monoclonal antibody reactivity and properties.

[image] [image]

* Iz pacijenata starosti od 2 mjeseca do 18 godina. * From patients aged 2 months to 18 years.

+ Dobivena od Dr. H. Lazarusa, Sidney Farber Cancer Centar. + Obtained from Dr. H. Lazarus, Sidney Farber Cancer Center.

B stanične vrste Laz 256, 156, 007 i SB dobivene Epstein -Barr-ovom virusnom transformacijom humanih perifernih B stanica i HJD-1, CE1, Laz 191 i H41 utvrđenih iz leukemijskih pacijenata. B cell types Laz 256, 156, 007 and SB obtained by Epstein-Barr viral transformation of human peripheral B cells and HJD-1, CE1, Laz 191 and H41 obtained from leukemic patients.

Tabela 2 Table 2

[image] [image]

Izvor stanica: PBL = periferni krvni limfociti Cell source: PBL = peripheral blood lymphocytes

Čvor = limfni čvor Node = lymph node

Claims (20)

1. Mišje monoklonsko antitijelo koje fiksira komplement, naznačeno time, da (i) reagira uglavnom sa svim normalnim humanim perifernim T stanicama, ali (ii) ne reagira s nijednom od normalnih humanih perifernih stanica iz skupine koju čine B stanice, nula stanice i makrofagi.1. A murine monoclonal antibody that fixes complement, characterized in that it (i) reacts with essentially all normal human peripheral T cells, but (ii) does not react with any of the normal human peripheral cells from the group consisting of B cells, null cells and macrophages . 2. Monoklonsko antitijelo prema zahtjevu 1, naznačeno time, da spada u razred IgG.2. Monoclonal antibody according to claim 1, characterized in that it belongs to the IgG class. 3. Monoklonsko antitijelo prema zahtjevu 2, naznačeno time, da spada u razred IgG.3. Monoclonal antibody according to claim 2, characterized in that it belongs to the IgG class. 4. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 3, naznačeno time, da reagira s pribl. 5 % do pribl. 10 % normalnih humanih timocita.4. Monoclonal antibody according to any one of claims 1 to 3, characterized in that it reacts with approx. 5 % to approx. 10% of normal human thymocytes. 5. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 4, naznačeno time, da reagira sa svim T stanicama kutanog limfoma.5. Monoclonal antibody according to any one of claims 1 to 4, characterized in that it reacts with all T cells of cutaneous lymphoma. 6. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 5, naznačeno time, da reagira s leukemijskim stanicama čovjeka s kroničnom limfoblastičnom leukemijom T stanica, ali ne reagira s leukemijskim stanicama s akutnom limfoblastičnom leukemijom T stanica, akutnom limfoblastičnom leukemijom nula stanica ili kroničnom limfoblastičnom leukemijom B stanica.6. The monoclonal antibody according to any one of claims 1 to 5, characterized in that it reacts with leukemic cells of a human with T cell chronic lymphoblastic leukemia, but does not react with leukemic cells with T cell acute lymphoblastic leukemia, zero cell acute lymphoblastic leukemia or chronic lymphoblastic leukemia. B cell leukemia. 7. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 6, naznačeno time, da je proizvedeno pomoću hibridoma nastalog fuzijom stanica slezene iz miša, prethodno imuniziranog s humanim T stanicama, i stanica iz linije mišjeg mijeloma.7. Monoclonal antibody according to any one of claims 1 to 6, characterized in that it is produced using a hybridoma formed by the fusion of spleen cells from a mouse, pre-immunized with human T cells, and cells from a mouse myeloma line. 8. Monoklonsko antitijelo, naznačeno time, da je proizvedeno iz hibridoma ATCC CRL 8001 (OKT3).8. Monoclonal antibody, indicated that it is produced from hybridoma ATCC CRL 8001 (OKT3). 9. Terapeutski sastav tvari, naznačen time, da u mješavini s farmaceutski prihvatljivim nosačem sadrži terapeutski učinkovitu količinu antitijela prema bilo kojem od zahtjeva 1 do 8, koja količina je učinkovita za smanjenje ili eliminaciju odbacivanja transplantata u primaocu presađenog organa.9. Therapeutic composition of matter, characterized in that in admixture with a pharmaceutically acceptable carrier, it contains a therapeutically effective amount of antibody according to any one of claims 1 to 8, which amount is effective for reducing or eliminating transplant rejection in the recipient of the transplanted organ. 10. Hibridom, naznačen time, da proizvodi monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 7, koji je dobiven fuzijom stanica slezene iz miša, prethodno imuniziranog s humanim T stanicama, i stanica iz mišje mijelomske linije.10. A hybridoma, characterized in that it produces a monoclonal antibody according to any one of claims 1 to 7, which is obtained by fusion of spleen cells from a mouse, previously immunized with human T cells, and cells from a murine myeloma line. 11. Hibridom, naznačen time, da je to ATCC CRL 8001 (OKT3).11. Hybridoma, indicated that it is ATCC CRL 8001 (OKT3). 12. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 8, naznačeno time, da se upotrebljava za liječenje primaoca transplantiranog organa za smanjenje ili eliminaciju odbacivanja alografta spomenutog presađenog organa.12. Monoclonal antibody according to any one of claims 1 to 8, characterized in that it is used for the treatment of a transplanted organ recipient to reduce or eliminate allograft rejection of said transplanted organ. 13. Metoda za određivanje udjela limfocita koji cirkuliraju u pojedincu, koji su T stanice, naznačena time, da uključuju miješanje monoklonskog antitijela prema bilo kojem zahtjevu od 1 do 8 s uzorkom limfocita dobivenih iz dotične osobe i određivanje udjela od spomenutog uzorka limfocita koji reagira sa spomenutim antitijelom, i stoga su to T stanice.13. A method for determining the proportion of lymphocytes circulating in an individual, which are T cells, characterized in that they include mixing the monoclonal antibody according to any of claims 1 to 8 with a sample of lymphocytes obtained from the person in question and determining the proportion of said lymphocyte sample that reacts with said antibody, and therefore they are T cells. 14. Metoda za proizvodnju monoklonskih antitijela prema bilo kojem od zahtjeva 1 do 7 naznačena time, da obuhvaća slijedeće stupnjeve: (i) imunizaciju miša s E rozeta pozitivnim očišćenim humanim T stanicama; (ii) vađenje slezene iz spomenutog miša i izradu suspenzije stanica slezene; (iii) spajanje stanica slezene s mišijim mijelomskim stanicama u prisutnosti promotora fuzije; (iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; (v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem od zahtjeva 1 do 7; (vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; i (vii) skupljanje antitijela iz supernatanta iznad spomenutih klonova.14. The method for the production of monoclonal antibodies according to any one of claims 1 to 7, characterized in that it includes the following stages: (i) immunization of mice with E rosette positive purified human T cells; (ii) extracting the spleen from said mouse and making a suspension of spleen cells; (iii) fusing spleen cells with murine myeloma cells in the presence of a fusion promoter; (iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; (v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; (vi) selecting and cloning hybridomas that produce the desired antibody; and (vii) collecting antibodies from the supernatant above said clones. 15. Metoda za proizvodnju monoklonskog antitijela prema bilo kojem od zahtjeva 1 do 7, naznačena time, da obuhvaća slijedeće stupnjeve: (i) imunizaciju miša s E rozeta pozitivnim očišćenim humanim T stanicama; (ii) vađenje slezene iz miša i izradu suspenzije stanica slezene; (iii) spajanje stanica slezene s mišijm mijelomskim stanicama u prisutnosti promotora fuzije; (iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; (v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem od zahtjeva 1 do 7; (vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; (vii) prijenos spomenutih klonova intraperitonealno u miša; i (viii) skupljanje malignog ascita ili seruma iz spomenutog miša.15. The method for producing a monoclonal antibody according to any one of claims 1 to 7, characterized in that it includes the following steps: (i) immunization of mice with E rosette positive purified human T cells; (ii) extracting the spleen from the mouse and making a spleen cell suspension; (iii) fusion of spleen cells with murine myeloma cells in the presence of a fusion promoter; (iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; (v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; (vi) selecting and cloning hybridomas that produce the desired antibody; (vii) transferring said clones intraperitoneally into a mouse; and (viii) collecting malignant ascites or serum from said mouse. 16. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje uzgoj hibridoma ATCC CRL 8001 u prikladnom mediju i skupljanje antitijela iz supernatanta iznad spomenutog hibridoma.16. A method for the production of a monoclonal antibody, characterized in that it includes growing the hybridoma ATCC CRL 8001 in a suitable medium and collecting the antibody from the supernatant above said hybridoma. 17. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje ubrizgavanje ATCC CRL 8001 u miša i dobivanje antitijela iz malignog ascita ili seruma iz spomenutog miša.17. A method for producing a monoclonal antibody, characterized in that it includes injecting ATCC CRL 8001 into a mouse and obtaining the antibody from malignant ascites or serum from said mouse. 18. Antitijelo prema zahtjevu 5, zahtjevu 6 ili zahtjevu 7, naznačeno time, da se ovisno o zahtjevu 5 ili zahtjevu 8 upotrebljava za potvrđivanje prisutnosti kutanog limfoma T stanica u osobi.18. Antibody according to claim 5, claim 6 or claim 7, characterized in that, depending on claim 5 or claim 8, it is used to confirm the presence of cutaneous T cell lymphoma in a person. 19. Antitijelo prema zahtjevu 5, zahtjevu 6 ili zahtjevu 7, naznačeno time, da se ovisno o zahtjevu 5 ili zahtjevu 8 upotrebljava za liječenje osobe s kutanim limfomom T stanica.19. The antibody according to claim 5, claim 6 or claim 7, characterized in that, depending on claim 5 or claim 8, it is used for the treatment of a person with cutaneous T cell lymphoma. 20. Metoda za proizvodnju terapeutskog sastava prema zahtjevu 9, naznačena time, da obuhvaća miješanje farmaceutski prihvatljivog nosača s količinom antitijela prema bilo kojem od zahtjeva 1 do 8 učinkovitom za smanjenje ili eliminaciju odbacivanja transplantata u primaocu presađenog organa.20. A method for producing a therapeutic composition according to claim 9, characterized in that it comprises mixing a pharmaceutically acceptable carrier with an amount of antibody according to any one of claims 1 to 8 effective to reduce or eliminate graft rejection in the recipient of the transplanted organ.
HRP-1146/80A 1979-04-26 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods HRP940809B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/033,669 US4361549A (en) 1979-04-26 1979-04-26 Complement-fixing monoclonal antibody to human T cells, and methods of preparing same
YU114680A YU48442B (en) 1979-04-26 1980-04-25 PROCEDURE FOR OBTAINING A MONOCLONAL ANTIBODY OKT 3

Publications (2)

Publication Number Publication Date
HRP940809A2 true HRP940809A2 (en) 1997-12-31
HRP940809B1 HRP940809B1 (en) 1999-10-31

Family

ID=26709987

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-1146/80A HRP940809B1 (en) 1979-04-26 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods

Country Status (2)

Country Link
HR (1) HRP940809B1 (en)
SI (1) SI8011146A8 (en)

Also Published As

Publication number Publication date
HRP940809B1 (en) 1999-10-31
SI8011146A8 (en) 1997-12-31

Similar Documents

Publication Publication Date Title
EP0018795B1 (en) Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
US4515893A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
EP0018794B1 (en) Monoclonal antibody to human helper t cells, method of preparing it, hybrid cell line producing it, its diagnostic and therapeutic uses and diagnostic and therapeutic compositions comprising it
US4657760A (en) Methods and compositions using monoclonal antibody to human T cells
US4658019A (en) Complement-fixing monoclonal antibody to human T cells
EP0017381B1 (en) Monoclonal antibody to human t cells, method for preparing it, hybrid cell line producing it, therapeutic composition comprising it and diagnostic method using it
EP0030815A2 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses, and pharmaceutical compositions comprising this antibody
FI75600C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN MONOCLONAL ANTIKROPP MOT EN MAENSKLIG MONOCYTANTIGEN MEDELST EN NY HYBRIDCELLINJE.
EP0030450A2 (en) Hybrid cell line for producing complement-fixing, monoclonal antibody to human suppressor T cells, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
JPH0159871B2 (en)
EP0030814B1 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4654210A (en) Methods and compositions using complement fixing monoclonal antibody to human T cells
IE50672B1 (en) Hybrid cell line for producing monoclonal antibody to human thymocyte antigen,antibody,method of preparation of this antibody,diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
HRP940809A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods
HRP940824A2 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
HRP940790A2 (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof
HRP940808A2 (en) Hybrid cell line for producing monoclonal antibody to helper t cells, antibody and method of preparation thereof
HRP940823A2 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody
HRP940822A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods
SI8013275A8 (en) Process for obtaining monoclonal antibody
HRP940831A2 (en) Hybrid cell line for producing monoclonal antibody to a human monocyte antigen, natibody, and methods

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19990425

Year of fee payment: 20

B1PR Patent granted
PB20 Patent expired after termination of 20 years

Effective date: 20000425