HRP940824A2 - Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods - Google Patents

Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods Download PDF

Info

Publication number
HRP940824A2
HRP940824A2 HRP-3067/80A HRP940824A HRP940824A2 HR P940824 A2 HRP940824 A2 HR P940824A2 HR P940824 A HRP940824 A HR P940824A HR P940824 A2 HRP940824 A2 HR P940824A2
Authority
HR
Croatia
Prior art keywords
cells
normal human
thymocytes
antibody
peripheral
Prior art date
Application number
HRP-3067/80A
Other languages
Croatian (hr)
Inventor
Patrick Chung-Shu Kung
Gioden Goldstein
Original Assignee
Ortho Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/100,072 external-priority patent/US4364935A/en
Application filed by Ortho Pharma Corp filed Critical Ortho Pharma Corp
Publication of HRP940824A2 publication Critical patent/HRP940824A2/en
Publication of HRP940824B1 publication Critical patent/HRP940824B1/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

Područje izuma Field of invention

Ovaj izum se općenito odnosi na nove hibridne stanične linije i podrobnije na nove stanične linije za produkciju monoklonskih antitijela na antigen pronađen u aproksimativno 95% normalnih humanih timocita, na tako producirana antitijela i na terapeutske i dijagnostičke postupke kao i na pripravke koji sadrže ta antitijela. This invention generally relates to new hybrid cell lines and more specifically to new cell lines for the production of monoclonal antibodies to an antigen found in approximately 95% of normal human thymocytes, to the antibodies thus produced and to therapeutic and diagnostic procedures as well as preparations containing these antibodies.

Opis stanja tehnike Description of the state of the art

Spajanje stanica mijeloma miša sa stanicama slezene imuniziranog miša po metodi Kohler i Milstein iz 1975 (Nature 256, 495-497 (1975)) pokazuje po prvi puta da je moguće dobiti kontinuiranu staničnu liniju za dobivanje homogenih (takozvanih "monoklonskih") antitijela. Od tada je uloženo mnogo napora za dobivanje različitih hibridnih stanica (zvanih "hibridomi") i za uporabu antitijela dobivenih pomoću tih hibridoma u različitim naučnim ispitivanjima. Pogledaj, na primjer, Current Topics in Microbiology and Immunology, Volume 81 - "Lymphocyte Hybridomas", F.Melchers, M.Potter; i N.Warner, izdavači Springer-Verlag, 1978. i navedene članke; C.J.Barnstable i sur., Cell, 14, 9-20 (svibanj, l978); P.Parham i W.F.Bodmer, Nature 276, 397-399 (studeni, 1978); Handbook of Experimental Immunology, treće izdanje, vol. 2, D.M.Wier, izdavač Blackwell, 1978, odjeljak 25; te Chemical and Engineering News, siječanj 1979, 15-17. Navedene bilješke istovremeno ukazuju na uspjehe kao i na probleme u namjerama proizvodnje monoklonskih antitijela iz hibridoma. Premda je opća tehnika dobro poznata, nailazi se na mnogo problema i potrebno je mnogo varijacija ovisno o svakom pojedinačnom slučaju. U stvari ne postoji sigurnost prilikom planiranja pripreme zadanog hibridoma, da će biti dobiven željeni hibridom, da će ako i bude dobiven davati antitijela ili da će tako dobivena antitijela imati željena svojstva. Stupanj uspješnosti će ovisiti prvenstveno o vrsti uporabljenog antigena i o izboru tehnike uporabljene za izolaciju željenog hibridoma. The fusion of murine myeloma cells with spleen cells of an immunized mouse by the method of Kohler and Milstein in 1975 (Nature 256, 495-497 (1975)) shows for the first time that it is possible to obtain a continuous cell line for the production of homogeneous (so-called "monoclonal") antibodies. Since then, many efforts have been made to obtain different hybrid cells (called "hybridomas") and to use the antibodies produced by these hybridomas in various scientific tests. See, for example, Current Topics in Microbiology and Immunology, Volume 81 - "Lymphocyte Hybridomas", F.Melchers, M.Potter; and N.Warner, publishers Springer-Verlag, 1978 and cited articles; C.J. Barnstable et al., Cell, 14, 9-20 (May, 1978); P. Parham and W. F. Bodmer, Nature 276, 397-399 (November, 1978); Handbook of Experimental Immunology, Third Edition, Vol 2, D.M.Wier, Blackwell Publishers, 1978, Section 25; and Chemical and Engineering News, January 1979, 15-17. The above notes point to successes as well as problems in the intentions of producing monoclonal antibodies from hybridomas. Although the general technique is well known, many problems are encountered and many variations are necessary depending on each individual case. In fact, there is no certainty when planning the preparation of a given hybridoma, that it will be obtained by the desired hybrid, that if it is obtained, it will give antibodies or that the antibodies thus obtained will have the desired properties. The degree of success will depend primarily on the type of antigen used and on the choice of technique used to isolate the desired hybridoma.

Pokušaj pripreme monoklonskih antitijela na antigene površine stanica limfocita je prijavljen u svega nekoliko slučajeva. Pogledaj, na primjer, Current Topics in Microbiology and Immunology, Ibid, 66-69 i 164-169. Antigeni uporabljeni u ovim navedenim primjerima su kultivirane stanične linije humane limfoblastoidne leukemije i humane kronične limfocitne leukemije. Pokazalo se da mnogi od dobivenih hibridoma proizvode antitijela za različite antigene na humanim stanicama.. Niti jedan od dobivenih hibridoma ne proizvodi antitijela protiv ranije određenog tipa humanih limfocita. Attempts to prepare monoclonal antibodies against lymphocyte cell surface antigens have been reported in only a few cases. See, for example, Current Topics in Microbiology and Immunology, Ibid, 66-69 and 164-169. The antigens used in these examples are cultured cell lines of human lymphoblastoid leukemia and human chronic lymphocytic leukemia. It was shown that many of the obtained hybridomas produce antibodies for different antigens on human cells. None of the obtained hybridomas produce antibodies against a previously determined type of human lymphocytes.

U novije vrijeme, prijavljeni izumitelji i ostali suradnici su autorizirali predmete koji obuhvaćaju pripremu i testiranje hibridoma koji proizvode antitijela na određene antigene T-stanica. Pogledaj, na primjer, Reinherz, E.L. i sur. J.Imanunology 123, 1312-1317 (1979); Reinherz,E.L. i sur. Proc.natl. Acad.Scie.76, 4061-4065 (1979); te Kung P.C. i sur. Science 206, 347-349 (1979). More recently, the assigned inventors and others have patented subject matter involving the preparation and testing of hybridomas that produce antibodies to specific T-cell antigens. See, for example, Reinherz, E.L. et al. J. Humanology 123, 1312-1317 (1979); Reinherz, E.L. et al. Proc. natl. Acad. Sci. 76, 4061-4065 (1979); and Kung P.C. et al. Science 206, 347-349 (1979).

Razumljivo je da postoje dvije osnovne grupe limfocita sadržana u imuno sistemu ljudi i sisavaca. Prvi od njih je (stanice 0dobivene iz timusa ili T-stanice) diferenciran u timusu iz hematopoetskog staničnog sustava. Dok su unutar timusa, stanice se nazivaju "timocitima". Zrele T stanice izlaze iz timusa i cirkuliraju između tkiva, limfe i krvi. Navedene T stanice tvore veliki udio recirkulirajućih malih limfocita. One imaju imunološku specifičnost i sadržane su direktno u stanični posredovanom imuno odgovoru kao izvršne stanice. Iako T stanice ne izlučuju humoralna antitijela, ponekad su neophodne za izlučivanje tih antitijela pomoću druge vrste limfocita koji su opisani u daljnjem.. tekstu. Neki tipovi T stanica imaju regulacijsku ulogu u nekim drugim aspektima imuno sustava. Mehanizam ovih procesa stanične kooperacije nije još uvijek potpuno razjašnjen. It is understandable that there are two basic groups of lymphocytes contained in the immune system of humans and mammals. The first of these (thymus-derived cells or T-cells) is differentiated in the thymus from the hematopoietic cell system. While inside the thymus, the cells are called "thymocytes". Mature T cells leave the thymus and circulate between tissues, lymph and blood. The mentioned T cells form a large proportion of recirculating small lymphocytes. They have immunological specificity and are included directly in the cell-mediated immune response as executive cells. Although T cells do not secrete humoral antibodies, they are sometimes necessary for the secretion of these antibodies by another type of lymphocyte, which is described below. Some types of T cells have a regulatory role in some other aspects of the immune system. The mechanism of these processes of cellular cooperation is still not fully elucidated.

Druga grupa limfocita (stanice dobivene iz koštane srži ili B-stanice) su one stanice koje izlučuju antitijela. One se također razvijaju iz hematopoetskog staničnog sustava, ali njihova diferencijacija se ne određuje pomoću timusa. Kod ptica, one se diferenciraju u organu analognom timusu nazvanom Bursa of Fabricius. Kod sisavaca, naravno, ne postoji odgovarajući organ i smatra se da se te B stanice diferenciraju unutar koštane srži. Another group of lymphocytes (cells derived from the bone marrow or B-cells) are those cells that secrete antibodies. They also develop from the hematopoietic cell system, but their differentiation is not determined by the thymus. In birds, they differentiate into an organ analogous to the thymus called the Bursa of Fabricius. In mammals, of course, there is no corresponding organ and it is thought that these B cells differentiate within the bone marrow.

Sada se spoznalo da se T stanice dijele u najmanje nekoliko subtipova, nazvanih "pomoćničke", "supresorske" i "ubilačke" T stanice koje imaju ulogu poticanja reakcije, suprimiranja reakcije, odnosno ubijanja (lize) stranih stanica. Ove subvrste su dobro razumljive u zatvorenim sistemima, ali su tek odnedavno opisani za humane sisteme. Pogledaj, na primjer, R.L.Evans, i sur. Journal of Experimental Medicine, Volume 145, 221-232, 1977; i Chess i S.F. Schlossman "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens" , u "Contemporary Topics in Immunobiology", O . Stuman, izdavač Plenum Press, 1977, vol. 7, 363-379. Sposobnost određivanja ili suprimirnnja vrsta ili subvrsta T stanica je važno za dijagnosticiranje ili liječenje različitih imunoregulacijskih oboljenja ili stanja. It is now known that T cells are divided into at least several subtypes, called "helper", "suppressor" and "killer" T cells that have the role of stimulating the reaction, suppressing the reaction, or killing (lysing) foreign cells. These subspecies are well understood in closed systems, but have only recently been described for human systems. See, for example, R.L. Evans, et al. Journal of Experimental Medicine, Volume 145, 221-232, 1977; and Chess and S.F. Schlossman "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens", in "Contemporary Topics in Immunobiology", O . Stuman, publisher Plenum Press, 1977, vol. 7, 363-379. The ability to determine or suppress T cell types or subtypes is important for diagnosing or treating various immunoregulatory diseases or conditions.

Na primjer, različite leukemije i limfomi imaju različite prognoze ovisno o tome da li su B staničnog ili T staničnog podrijetla. Tako, procjena prognoze oboljenja ovisi o mogućnosti razlikovanja ovih dviju vrsta limfocita. Pogledaj, na primjer, A.C. Aisenberg i J.C. Long, The American Journal of Medicine, 58:300 (ožujak, 1975); D.Belpomme i sur. "Immunological Diagnosis of Leukpmias and Lymphomas", S.Thierfelder i sur., ed. Springer, Heidelberg 1977, 33-45; te D.Belpomme i sur. British Journal of Haematology, 1978, 38, 85. For example, different leukemias and lymphomas have different prognoses depending on whether they are of B cell or T cell origin. Thus, the assessment of the prognosis of the disease depends on the ability to differentiate between these two types of lymphocytes. See, for example, A.C. Aisenberg and J.C. Long, The American Journal of Medicine, 58:300 (March, 1975); D. Belpomme et al. "Immunological Diagnosis of Leukemias and Lymphomas", S. Thierfelder et al., ed. Springer, Heidelberg 1977, 33-45; and D. Belpomme et al. British Journal of Haematology, 1978, 38, 85.

Određena bolesna stanja (npr. juvenilni reumatoidni artritis, maligna oboljenja i agamaglobulinemija) su povezana s neravnotežom subvrsta T stanica. Smatrano je da su autoimuna oboljenja općenito povezana s viškom "pomoćničkih" T stanica ili manjkom određenih "supresorskih" T stanica, dok je agamaglobulinpmija povezana s viškom određenih "supresorskih" T stanica ili manjkom "pomoćničkih" T stanica. Maligna su oboljenja općenito povezana s viškom "supresorskih" T stanica. Certain disease states (eg, juvenile rheumatoid arthritis, malignancies, and agammaglobulinemia) are associated with an imbalance of T cell subtypes. Autoimmune diseases were generally thought to be associated with an excess of "helper" T cells or a deficiency of certain "suppressor" T cells, while agammaglobulinemia was associated with an excess of certain "suppressor" T cells or a deficiency of "helper" T cells. Malignancies are generally associated with an excess of "suppressor" T cells.

Kod određenih leukemija, višak T stanica se producira u zaustavljenom stadiju razvoja. Tako dijagnoza može ovisiti o sposobnosti otkrivanja disbalansa ili viška i mogućnosti određenja koji je razvojni stadij u suvišku. Pogledaj, na primjer, J.Kersey i suradnici "Surface Markers Define Human Lymphoid Malignmancies with Differing Prognoses" u Haematology and Blood Transfusion, Vol. 20, Spriger-Verlag, 1977, 17-24, i bilješke sadržane u njima; te E.L. Reinherz i sur., J.CIin.Invest., 64, 392.397 (1979). In certain leukemias, excess T cells are produced at an arrested stage of development. Thus, the diagnosis may depend on the ability to detect an imbalance or excess and the ability to determine which developmental stage is in the excess. See, for example, J. Kersey et al., "Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses," in Hematology and Blood Transfusion, Vol. 20, Spriger-Verlag, 1977, 17-24, and notes contained therein; and E.L. Reinherz et al., J. CIin. Invest., 64, 392,397 (1979).

Stečena agamaglobulinemija, bolesno stanje u kojem se ne proizvodi imunoglobulin, obuhvaća barem dva različita tipa. Kod tipa I imunoglobulin se ne proizvodi zbog viška supresorskih T stanica, dok je to kod tipa II zbog manjka pomoćničkih T stanica. U oba slučaja nema poremećaja niti manjka pacijentovih B stanica, limfocita koji su odgovorni za trenutačno izlučivanje antitijela; naravno, te B stanice su ili suprimirane ili "ne pomognute", što rezultira velikim smanjenjem ili odsutnošću produkcije imunoglobulina. Tip stečene agamaglobulinemije može tako biti određen testiranjem na višak supresorskih T stanica ili na odsutnost pomoćničkih T stanica. Acquired agammaglobulinemia, a disease state in which immunoglobulin is not produced, includes at least two different types. In type I, immunoglobulin is not produced due to an excess of suppressor T cells, while in type II it is due to a lack of helper T cells. In both cases, there is no disorder or lack of the patient's B cells, the lymphocytes that are responsible for the immediate secretion of antibodies; naturally, these B cells are either suppressed or "unhelped", resulting in greatly reduced or absent immunoglobulin production. The type of acquired agammaglobulinemia can thus be determined by testing for an excess of suppressor T cells or for the absence of helper T cells.

S terapeutskog stanovišta, postoje neki prijedlozi, premda još uvijek nedokazani, da primjena antitijela protiv subvrste T stanica koje su u suvišku može biti terapeutski korisna u slučaju autoimunih ili malignih oboljenja. Na primjer, pomoćničke T stanice karcinoma (određene kutane T stanice limfoma i određene T stanice akutne limfoblastične leukemije) mogu biti tretirane antitijelom za antigen pomoćničke T stanice. Tretiranje autoimunog oboljenja uzrokovanog viškom pomoćničkih stanica može također biti obavljeno na isti način. Tretiranje oboljenja (npr. malignih oboljenja ili stečene agamaglobulinemije tipa I) uzrokovanog viškom supresorskih T stanica može biti provedeno primjenom antitijela za antigen supresorskih T stanica. From a therapeutic point of view, there are some suggestions, although still unproven, that the administration of antibodies against a subtype of T cells that are in excess may be therapeutically useful in the case of autoimmune or malignant diseases. For example, cancer helper T cells (certain cutaneous lymphoma T cells and certain acute lymphoblastic leukemia T cells) can be treated with an antibody to a helper T cell antigen. Treatment of an autoimmune disease caused by an excess of helper cells can also be done in the same way. Treatment of diseases (e.g. malignant diseases or acquired agammaglobulinemia type I) caused by an excess of suppressor T cells can be carried out using antibodies for the antigen of suppressor T cells.

Primjena antiseruma protiv cijele grupe humanih T stanica (takozvanog antihumanog timocit globulina ili ATG) se pokazala korisnom kod pacijenata s transplatiranim organima. Zbog toga što stanično posredovan imuno odgovor (mehanizam kojim se transplatanti odbacuju) ovisi o T stanicnma, primjena antitijela za T stanice sprječava ili usporava taj proces odbacivanja. Pogledaj, na primjer, Cosimi i sur. "Randomized Clinical Trial of ATG in Cadaver Renal Allgraft Recipients: Importance of T Cell Monitoring", Surgery 40:155-163 (1976) i navedene članke. The use of an antiserum against an entire group of human T cells (so-called antihuman thymocyte globulin or ATG) has been shown to be useful in patients with transplanted organs. Because the cell-mediated immune response (the mechanism by which transplants are rejected) depends on T cells, the administration of antibodies to T cells prevents or slows down this rejection process. See, for example, Cosimi et al. "Randomized Clinical Trial of ATG in Cadaver Renal Allograft Recipients: Importance of T Cell Monitoring," Surgery 40:155-163 (1976) and articles cited.

Identifikacija i supresija vrsta i podvrsta humanih T stanica je ranije bila provođena uporabom spontanih autoantitijela ili selektivnih antiseruma za humane T stanice dobivenih imunizacijom životinja pomoću humanih T stanica, vađenjem krvi životinja da bi se dobio serum i adsorpcijom antiseruma s (na primjer) autolognim ali ne alogenetskim B stanicama da bi se uklonila antitijela nepoželjnih reaktivnosti. Priprema navedenih antiseruma je izuzetno teška, posebno adsorpcija i pročišćavanje. Čak i tako pročišćen i adsorbiran antiserum sadrži mnoga onečišćenja kao dodatak željenim antitijelima, zbog nekoliko razloga. Prvo, serum sadrži milijune molekula antitijela čak i prije imunizacije T stanicama. Drugo, imunizacija uzrokuje produkciju antitijela protiv različitih antigena pronađenih u svim injiciranim humanim T stanicama. Ne postoji selektivna produkcija antitijela protiv jednog antigena. Treće, titar specifičnih antitijela dobivenih takvim postupcima je obično prilično nizak (npr. inaktivacija nastupa pri razrijeđenju većem od 1:100) i odnos specifičnih prema nespecifičnim antitijelima je manji od 1/106. Identification and suppression of human T cell types and subtypes has previously been accomplished using spontaneous autoantibodies or human T cell-selective antisera obtained by immunizing animals with human T cells, drawing blood from animals to obtain serum, and adsorbing antisera with (for example) autologous but not with allogeneic B cells to remove antibodies of undesirable reactivity. Preparation of said antisera is extremely difficult, especially adsorption and purification. Even so purified and adsorbed antiserum contains many impurities in addition to the desired antibodies, for several reasons. First, serum contains millions of antibody molecules even before T cell immunization. Second, immunization causes the production of antibodies against various antigens found in all injected human T cells. There is no selective production of antibodies against one antigen. Third, the titer of specific antibodies obtained by such procedures is usually quite low (eg, inactivation occurs at dilutions greater than 1:100) and the ratio of specific to nonspecific antibodies is less than 1/106.

Pogledaj, na primjer, Chess i Schlossman-ove članke navedene ranije u tekstu (na 365 str. i dalje), kao i već ranije navedene članke u Chemical and Engineering News, u kojima su opisani nedostaci antiseruma dobivanih ranije poznatim postupcima i prednosti monoklonskih antitijela. See, for example, the Chess and Schlossman articles cited earlier in the text (on pp. 365ff.), as well as the Chemical and Engineering News articles cited earlier, which describe the disadvantages of antisera obtained by previously known methods and the advantages of monoclonal antibodies .

Sažetak izuma Summary of the invention

Otkriven je novi hibridom (označen kao 0KT10) koji može producirati nova monoklonska antitijela protiv antigena pronađenog u aproksimativno 95% normalnih humanih timocita, 5% .normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Null stanica) i u 10-20% stanica koštane srži. A new hybridoma (designated 0KT10) has been discovered that can produce new monoclonal antibodies against an antigen found in approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and in 10-20% of bone marrow cells.

Tako producirano antitijelo je monospecifično za određenu determinantu na aproksimativno 95% normalnih humanih timocita i ne sadrži u biti niti jedan drugi anti-humani imunoglobulin, za razliku od antiseruma dobivenih ranijim postupcima (koji su nasljedno kontaminirani antitijelima reaktivnima na brojne humane antigene) i monoklonskih antitijela dobivenih ranije poznatim postupcima (koja nisu specifična za humani timocit antigen). Nadalje, ovaj hibridom se može kultivirati tako da producira antitijela bez potrebe imunizacije i ubijanja životinja, te bez teško provedivih koraka adsorpcije i pročišćavanja neophodnih za dobivanje čak i nečistih antiseruma po ranije poznatim postupcima. The antibody produced in this way is monospecific for a specific determinant on approximately 95% of normal human thymocytes and contains essentially no other anti-human immunoglobulin, in contrast to antisera obtained by earlier procedures (which are hereditarily contaminated with antibodies reactive to numerous human antigens) and monoclonal antibodies obtained by previously known procedures (which are not specific for human thymocyte antigen). Furthermore, this hybridoma can be cultivated to produce antibodies without the need for immunization and killing of animals, and without the difficult steps of adsorption and purification necessary to obtain even impure antisera by previously known procedures.

Također je jedan predmet prikazanog izuma da osigura hibridome koji će producirati antitijela protiv antigena pronađenog na oko 95% normalnih humanih timocita. It is also an object of the present invention to provide hybridomas that will produce antibodies against an antigen found on about 95% of normal human thymocytes.

Idući aspekt prikazanog izuma je osigurati postupke pripreme navedenih hibridoma. Another aspect of the presented invention is to provide procedures for the preparation of said hybridomas.

Daljnji aspekt prikazanog izuma je osigurati homogena antitijela za antigen pronađen na oko 95% normalnih humanih timocita. A further aspect of the present invention is to provide homogeneous antibodies to an antigen found on about 95% of normal human thymocytes.

Idući aspekt je osigurati postupke liječenja ili dijagnosticiranja bolesti ili identifikacije T stanica ili podvrsta timocita uporabom navedenih antitijela. A further aspect is to provide procedures for treating or diagnosing diseases or identifying T cells or subtypes of thymocytes using said antibodies.

Ostali aspekti kao i prednosti izuma će postati jasni iz navedene prijave. Other aspects as well as advantages of the invention will become clear from the above application.

Na zadovoljstvo, ovim je izumom pronađen novi hibridom koji producira nova antitijela za antigen pronađen na aproksimativno 95% normalnih humanih timocita, antitijelo kao takvo, te dijagnostički i terapeutski postupci koji koriste antitijelo. Hibridom je pripremljen općenito slijedeći postupak po Milstein i Kohler-u. Nakon imunizacije miša stanicama leukemije čovjeka pomoću T stanica akutne limfoblastične leukemije (T-ALL), stanice slezene imuniziranog miša se fuzioniraju sa stanicama iz linije mijeloma miša te se rezultirajući hibridomi provjere na sadržaj antitijela koja daju selektivno vezivanje na normalne E rozeta pozitivne humane T stanice i/ili timocite. Željeni hibridomi se neposredno zatim kloniraju i označavaju. Kao rezultat, dobiva se hibridom koji producira antitijela (označena kao 0KT10) protiv antigena na aproksimativno 95% normalnih humanih timocita. Ne samo što ovo antitijelo reagira s oko 95% normalnih humnaih timocita, već također reagira s oko 95% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Null stanica) i s 10-20% stanica koštane srži. Happily, this invention has found a new hybridoma that produces new antibodies to an antigen found on approximately 95% of normal human thymocytes, an antibody as such, and diagnostic and therapeutic procedures using the antibody. The hybridoma was prepared generally following the procedure of Milstein and Kohler. After immunizing a mouse with human leukemia cells using acute lymphoblastic leukemia (T-ALL) T cells, spleen cells from the immunized mouse are fused with cells from a mouse myeloma line and the resulting hybridomas are screened for antibodies that selectively bind to normal E rosette-positive human T cells. and/or thymocytes. The desired hybridomas are immediately cloned and labeled. As a result, a hybridoma is obtained that produces antibodies (designated as 0KT10) against antigens on approximately 95% of normal human thymocytes. Not only does this antibody react with about 95% of normal human thymocytes, but it also reacts with about 95% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and 10-20% of bone marrow cells.

Sa stanovišta naznačenih poteškoća u dosadašnjim postupcima i nedostatku uspjeha pokazanim uporabom malignih staničnih linija kao antigena, iznenađujuće je da prikazani postupak osigurava željeni hibridom. Važno je naglasiti da nepredvidiva priroda pripreme stanica hibrida ne dozvoljava ekstrapolacije od jednog antigena ili staničnog sistema do drugog. U stvari, prijavitelji izuma su otkrili da je uporaba T stanica maligne stanične linije ili pročišćenih antigena odijeljenih sa stanične površine, kao antigena, potpuno neuspješna. From the point of view of the indicated difficulties in the previous procedures and the lack of success demonstrated by the use of malignant cell lines as antigens, it is surprising that the presented procedure provides the desired hybridoma. It is important to emphasize that the unpredictable nature of hybrid cell preparation does not allow extrapolations from one antigen or cell system to another. In fact, the inventors have discovered that the use of malignant cell line T cells or purified antigens separated from the cell surface as antigens is completely unsuccessful.

I navedeni hibridom i tako produciran antitijela su u tekstu označeni oznakom "0KT10", a pojedinačni materijali će biti razumljivi iz samog konteksta. Prikazni hibridom je deponiran 2l. studenog 1979. godine kod American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland~20852 i pridružen mu je ATCC broj pristupa CRL 8022. Both the hybrid and produced antibodies are labeled "0KT10" in the text, and the individual materials will be understood from the context. 2l was deposited with the display hybrid. November 1979 at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland~20852 and is assigned ATCC accession number CRL 8022.

Priprema i značajke hibridoma i rezultirajućeg antitijela će biti razumljiviji iz teksta i slijedećih opisa kao i iz The preparation and characteristics of the hybridoma and the resulting antibody will be more understandable from the text and the following descriptions as well as from

Primjera. For example.

Detaljni opis izuma Detailed description of the invention

Postupak pripreme hibridoma općenito sadrži slijedeće korake: The hybridoma preparation process generally includes the following steps:

A. Imunizaciju miševa pomoću leukemijskih T-ALL stanica. Premda je pronađeno da su ženke CAF1 miševa najpogodnije, mogu se uporabiti i ostali sojevi. Plan imunizacije i koncentracije timocita trebaju biti takovi da produciraju korisne količine prikladnih splenocita. Najučinkovitijim su se pokazale tri imunizacije u četrnaest dnevnim razmacima s 2x107 stanica/miš/injekcija u 0.2 ml fosfatno puferirane fiziološke otopine. A. Immunization of mice using leukemic T-ALL cells. Although female CAF1 mice have been found to be most suitable, other strains can be used. The immunization schedule and thymocyte concentration should be such as to produce useful amounts of suitable splenocytes. Three immunizations at fourteen-day intervals with 2x107 cells/mouse/injection in 0.2 ml of phosphate-buffered saline proved to be the most effective.

B. Uklanjanje slezene iz imuniziranih miševa i pripremu suspenzije slezene u odgovarajućem mediju. Dovoljno je oko jedan mililitar medija po slezeni. Ova eksperimentalna tehnika je dobro poznata. B. Removal of spleen from immunized mice and preparation of spleen suspension in appropriate medium. About one milliliter of medium per spleen is enough. This experimental technique is well known.

C. Fuziju suspendiranih stanica slezene sa stanicama mijeloma miša prikladne stanične linije uporabom prikladnog promotora fuzije. Preferiran odnos je oko 5 stanica slezene po stanici mijeloma. Ukupni volumen od oko 0.5-1.0 ml fuzijskog medija je odgovarajući za oko 108 splenocita. Poznate su i na raspolaganju su mnoge stanične linije mijeloma, bilo od različitih akademskih zajednica ili deponirajućih banaka poput Salk Institute Cekll Distribution Center, La Jolla, CA. C. Fusion of suspended spleen cells with mouse myeloma cells of the appropriate cell line using the appropriate fusion promoter. The preferred ratio is about 5 spleen cells per myeloma cell. The total volume of about 0.5-1.0 ml of fusion medium is adequate for about 108 splenocytes. Many myeloma cell lines are known and available, either from various academic communities or from depository banks such as the Salk Institute Cell Distribution Center, La Jolla, CA.

Povoljno je uporabiti staničnu liniju takozvanog "drug resistant" tipa, tako da nefuzionirane stanice mijeloma ne prežive u selektivnom mediju, dok hibridi preživljavaju. Najčešća je 8-azagvanin rezistentna stanična linija kojoj nedostaje enzim hipoksantin gvanin fosforibosil transferaza i stoga ne može opstati u HAT (hipoksantin, aminopterin i timidin) mediju. Također je opće prihvaćeno da treba uporabiti staničnu liniju mijeloma takozvanog ne-sekrecijskog tipa, tako da ona sama ne producira antitijela premda se mogu uporabiti i sekrecijski tipovi. U određenim slučajevima, naravno, preferiraju se sekrecijske mijelomske linije. Premda je preferirani fuzijski promotor polietilen glikol prosječne molekularne težine od oko 1000 do oko 4000 (uobičajeno je raspoloživi kao PEG 1000, itd.), također se mogu uporabiti i ostali fuzijski promotori poznati u struci. It is advantageous to use a cell line of the so-called "drug resistant" type, so that unfused myeloma cells do not survive in the selective medium, while hybrids survive. The most common is the 8-azaguanine resistant cell line that lacks the enzyme hypoxanthine guanine phosphoribosyl transferase and therefore cannot survive in HAT (hypoxanthine, aminopterin and thymidine) medium. It is also generally accepted that a myeloma cell line of the so-called non-secretory type should be used, so that it itself does not produce antibodies, although secretory types can also be used. In certain cases, of course, secretory myeloma lines are preferred. Although the preferred fusion promoter is polyethylene glycol having an average molecular weight of about 1000 to about 4000 (commonly available as PEG 1000, etc.), other fusion promoters known in the art can also be used.

D. Razrjeđivanje i kultiviranje u odijeljenim spremnicima, smjese nefuzioniranih stanica slezene, nefuzioniranih stanica mijeloma, te fuzioniranih stanica u selektivnom mediju koji neće podržavati nefuzionirane stanice mijeloma tijekom vremenskog razdoblja dovoljnog za ugibanje nefuzioniranih stanice (oko tjedan dana). Razrjeđivanje može biti limitirajućeg tipa, tako da je volumen sredstva za razrjeđivanje statistički izračunan tako da izolira određeni broj stanica (npr. 1-4) u svakom odijeljenom spremniku (na prirnjer u svakoj udubini mikrotitarske posudice). Medij je svega jedan (npr. HAT medij) i to onaj koji neće podržavati "drug-resistant" (npr., 8-azagvanin rezistentan) nefuzioniranu staničnu liniju mijeloma. Stoga, te stanice mijeloma ugibaju. Kako nefuzionirane stanice slezene nisu maligne, one imaju samo određen broj generacija. Tako, nakon određenog vremenskog razdoblja (oko tjedan dana), ove nefuzionirane stanice slezene prestaju s reprodukcijom. Fuzionirane stanice, s druge strane, nastavljaju reprodukciju zbog toga što imaju maligna svojstva mijelomskog roditelja i sposobnost preživljavanja u selektivnom mediju roditeljskih stanica slezene. D. Diluting and culturing in separate containers, a mixture of unfused spleen cells, unfused myeloma cells, and fused cells in a selective medium that will not support unfused myeloma cells for a period of time sufficient to kill the unfused cells (about a week). The dilution can be of the limiting type, so that the volume of the dilution agent is statistically calculated to isolate a certain number of cells (eg 1-4) in each separate container (or rather in each well of the microtiter dish). There is only one medium (eg HAT medium) and that is the one that will not support a "drug-resistant" (eg 8-azaguanine resistant) unfused myeloma cell line. Therefore, these myeloma cells die. Since unfused spleen cells are not malignant, they only have a certain number of generations. Thus, after a certain period of time (about a week), these unfused spleen cells stop reproducing. The fused cells, on the other hand, continue to reproduce because they have the malignant properties of the myeloma parent and the ability to survive in the selective medium of the parental spleen cells.

E. Evaluaciju supernatanta u svakom spremniku (posudici) koji sadrži hibridom na prisutnost antitijela za E rozeta pozitivne pročišćene humane T stanice ili timocite. E. Evaluation of the supernatant in each container (dish) containing the hybridoma for the presence of antibodies to E rosette positive purified human T cells or thymocytes.

F. Selekciju (npr., ograničavanjem razrijeđivanja) i kloniranje hibridoma za produkciju željenog antitijela. F. Selection (eg, by limiting dilution) and cloning of hybridomas for production of the desired antibody.

Jednom kada je željeni hibridom izabran i kloniran, rezultirajuća antitijela mogu biti producirana na jedan od dva načina. Najčišće monoklonsko antitijelo je producirano in vitro kultiviranjem željenog hibridoma u prikladnom mediju tijekom prikladnog vremenskog razdoblja, nakon čega slijedi otkrivanje željenog antitijela iz supernatanta. Prikladni medij i prikladna duljina vremenskog razdoblja kultiviranja su opće poznati ili se lako odrede. Ta in vitro tehnika producira u biti monospecifično antitijelo, u biti slobodno od ostalih specifičnih antihumanih imunoglobulina. Ako medij sadrži ksenogenski serum (npr. serum ovaca) postoji i mala količina ostalih imunoglobulina. Naravno, in vitro postupak ne mora producirati dovoljnu količinu ili koncentraciju antitijela za neke određene svrhe jer je koncentracija monoklonskih antitijela svega oko 50 μg/ml. Once the desired hybridoma has been selected and cloned, the resulting antibodies can be produced in one of two ways. The purest monoclonal antibody is produced in vitro by culturing the desired hybridoma in a suitable medium for a suitable period of time, followed by detection of the desired antibody from the supernatant. A suitable medium and a suitable length of time for cultivation are generally known or easily determined. This in vitro technique produces an essentially monospecific antibody, essentially free of other specific antihuman immunoglobulins. If the medium contains xenogeneic serum (e.g. sheep serum) there is also a small amount of other immunoglobulins. Of course, the in vitro procedure does not have to produce a sufficient amount or concentration of antibodies for some specific purposes because the concentration of monoclonal antibodies is only about 50 μg/ml.

Da bi se producirala znatno veća koncentracija malo manje čistih monoklonskih antitijela, željeni hibridom se može injicirati miševima, poželjno je singenetskim ili semisingenetskim miševima. Hibridom će nakon određenog inkubacijskog vremena uzrokovati formiranje tumora koji produciraju antitijelo, što će rezultirati većom koncentracijom željenog antitijela (oko 5-20 mg/ml) u krvnom optoku i peritonealnom ekskudatu (ascites) domaćina. Premda taj domaćin ima i normalna antitijela u svojoj krvi i ascitesu, koncentracija ovih normalnih antitijela je svega oko 5% koncentracije monoklonskih antitijela. Štoviše, zbog toga što ova normalna antitijela nisu antihumnna u svojoj specifičnosti, monoklonska antitijela dobivena iz ascitesa ili seruma su u biti slobodna od kontaminacije antihumanim imunoglobulinom. Ova monoklonska antitijela su većeg titra (aktivna su pri razrijeđenju 1:50,000 ili više) i veći je odnos specifičnih prema nespecifičnim imunoglobulinima (oko 1/20). Imunoglobulini producirani ugradnjom malih mijelomskih lanaca su nespecifični, "nonsense" peptidi koji uglavnom razrjeđuju monoklonska antitijela bez smanjivanja njihove vrijednosti zbog specifičnosti. In order to produce a significantly higher concentration of slightly less pure monoclonal antibodies, the desired hybrid can be injected into mice, preferably syngenetic or semisyngenic mice. After a certain incubation time, the hybridoma will cause the formation of tumors that produce the antibody, which will result in a higher concentration of the desired antibody (about 5-20 mg/ml) in the bloodstream and peritoneal exudate (ascites) of the host. Although this host also has normal antibodies in his blood and ascites, the concentration of these normal antibodies is only about 5% of the concentration of monoclonal antibodies. Moreover, because these normal antibodies are not antihuman in their specificity, monoclonal antibodies obtained from ascites or serum are essentially free from contamination by antihuman immunoglobulin. These monoclonal antibodies have a higher titer (they are active at a dilution of 1:50,000 or more) and the ratio of specific to non-specific immunoglobulins is higher (about 1/20). Immunoglobulins produced by the incorporation of small myeloma chains are nonspecific, "nonsense" peptides that generally dilute monoclonal antibodies without reducing their value due to specificity.

Primjer I Examples

Produkcija monoklonskih antitijela Production of monoclonal antibodies

A. Imunizacija i hibridizacija somatskih stanica A. Immunization and hybridization of somatic cells

Ženke CAF1 miševa (Jackson Labaratories; 6-8 tjedana stare) se imuniziraju intraperitonealno s 2x107 humanih leukemijskih T-ALL stanica u 0.2 ml fosfatno puferirane fiziološke otopine u 14-dnevnim intervalima. Četiri dana nakon treće imunizacije, uklone se slezene i pripremi se jednostanična suspenzija protiskivanjem tkiva kroz čelično sito. Female CAF1 mice (Jackson Laboratories; 6-8 weeks old) are immunized intraperitoneally with 2x107 human leukemic T-ALL cells in 0.2 ml of phosphate-buffered saline at 14-day intervals. Four days after the third immunization, the spleens are removed and a single-cell suspension is prepared by passing the tissue through a steel sieve.

Provede se fuzija stanica postupkom kojeg su razvili Kohler i Milstein. 1x108 splenocita se fuzionira u 0.5 ml fuzijskog medija koji sadrži 35% polietilenglikola (PEG 1000) i 5% dimetilsulfoksida u RPMI 1640 mediju (Gibco,Grand Island, NY) sa 2x107 P3X63Ag8Ul stanica mijeloma dobivenih od Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. Ove stanice mijeloma izlučuju IgG1 k kratke lance. Cell fusion is performed using the procedure developed by Kohler and Milstein. 1x108 splenocytes were fused in 0.5 ml fusion medium containing 35% polyethylene glycol (PEG 1000) and 5% dimethylsulfoxide in RPMI 1640 medium (Gibco, Grand Island, NY) with 2x107 P3X63Ag8Ul myeloma cells obtained from Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. These myeloma cells secrete IgG1 k short chains.

B. Izbor i rast hibridoma B. Selection and growth of hybridomas

Nakon fuzije stanica, stanice se kultiviraju u HAT mediju (hipoksantin, aminopterin i timidin) na 37ºC uz 5% CO2 u vlažnoj atmosferi. Nakon nekoliko tjedana, 40 do 100 µl supernatanta iz kulture, koji sadrži hibridome se doda peleti 106 perifernih limfocita odijeljenih na E rozeta pozitivne (E+) i E rozeta negativne (E-) populacije, koji su pripremljeni iz krvi zdravih davatelja na način kojeg je opisao Mendes (J. Immunol. 111:860, 1973). Detekcija mišjih hibridom antitijela koja se vežu na te stanice je provedena indirektnom imunofluorescencijom. Stanice inkubirane s kulturom supernatanta su obojene s fluorescentnim kozjim-anti-mišjim IgG (G/M FITC) (Meloy Labaratories, Springfield, VA; F/P=2.5) i fluorescentnim antitijelo-prevučenim stanicama i odmah zatim analizirane na Cytofluorografu FC200/4800A (Ortho Instruments, Westwood, MA) na način opisan u Primjeru III. Kulture hibridoma koje sadrže antitijela koja reagiraju specifično s E+ limfocitima (T stanicama) i/ili timocitima su selektirane i klonirane dva puta postupkom ograničavanja razrjeđivanja u prisutnosti stanica hranitelja. Neposredno zatim, klonovi su transferirani intraperitonealnim injiciranjem 1x107 stanica zadanog klona (0.2 ml volumena u CAF1 miševe pomoću 2,6,10,14-tetrametilpentadekana od Aldrich Chemical Company zaštićenog imena Pristine. Maligni ascitesi iz ovih miševa su uporabljeni za karakterizaciju limfocita na način opisan u daljnjem tekstu u Primjeru II. Uporabom standardne tehnike je dokazano da prisutna hibridna antitijela 0KT10 pripadaju IgG1 sub-vrsti. After cell fusion, cells are cultured in HAT medium (hypoxanthine, aminopterin and thymidine) at 37ºC with 5% CO2 in a humidified atmosphere. After several weeks, 40 to 100 µl of culture supernatant containing hybridomas was added to a pellet of 106 peripheral lymphocytes divided into E rosette positive (E+) and E rosette negative (E-) populations, which were prepared from the blood of healthy donors in the manner described described by Mendes (J. Immunol. 111:860, 1973). Detection of murine hybridoma antibodies that bind to these cells was performed by indirect immunofluorescence. Cells incubated with culture supernatant were stained with fluorescent goat-anti-mouse IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/P=2.5) and fluorescent antibody-coated cells and immediately analyzed on a Cytofluorograph FC200/4800A. (Ortho Instruments, Westwood, MA) as described in Example III. Hybridoma cultures containing antibodies that react specifically with E+ lymphocytes (T cells) and/or thymocytes were selected and cloned twice by limiting dilution in the presence of host cells. Immediately thereafter, clones were transferred by intraperitoneal injection of 1x107 cells of the given clone (0.2 ml volume) into CAF1 mice using 2,6,10,14-tetramethylpentadecane from Aldrich Chemical Company trade name Pristine. Malignant ascites from these mice were used for lymphocyte characterization as described hereinafter in Example II Using a standard technique, it was proven that the present hybrid antibodies 0KT10 belong to the IgG1 subtype.

Primjer II Example II

Karakterizacija 0KT10 reaktivnosti Characterization of 0KT10 reactivity

A. Izolacija populacije limfocita A. Isolation of the lymphocyte population

Iz krvi zdravih dobrovoljnih davatelja (15-40 godina starosti) se izoliraju humane periferne krvne mononuklearne stanice pomoću Ficoll-Hypaque density gradient centrifugation (Pharmacia Fine Chemicals, Piscataway, NY) slijedeći opće poznatu tehniku Boyum, Scand. J. Clin. Lab. Invest. 21 (Suppl.97): 77, 1968. Nefrakcionirane mononuklearne stanice se odijele na površinski Ig+ (B) i Ig- (T plus Null) populacije pomoću Sephadex G-200 anti-F (ab’)2 kolone za kromatografiju na već ranije opisan način Chess, i sur., J. Immunol. 113:1113 (1974). T stanice su otkrivene E rozetiranjem Ig- populacije s 5% eritrocita ovaca (microbiological Associates, Bethesda, Nm). Smjesa rozeta se tretira postupkom po Ficoll-Hypaque i otkrivena E+ peleta se tretira s 0.155 M NH4Cl (10 ml po 108 stanica). Tako dobivena populacija T stanica je <2% EAC rozeta pozitivno i >95% E rouzeta pozitivno što je utvrđeno uobičajenim postupcima. Dodatno, ne-rozetirajuća Ig- (Null stanice) populacija se sakupi iz Ficoll međuprostora. Ova posljednja populacija je <5% E+ i <2% sIg+ . Površina Ig+ (B) populacije je dobivena pomoću Sephadex G-200 kolone nakon čega je slijedila eluacija s normalnim humanim gama globulinima na već ranije opisan način. Ta populacija je >95% površinski Ig+ i <5% E+. Human peripheral blood mononuclear cells are isolated from the blood of healthy volunteer donors (15-40 years of age) by Ficoll-Hypaque density gradient centrifugation (Pharmacia Fine Chemicals, Piscataway, NY) following the well-known technique of Boyum, Scand. J. Clin. Lab. Invest. 21 (Suppl.97): 77, 1968. Unfractionated mononuclear cells are separated into surface Ig+ (B) and Ig- (T plus Null) populations using a Sephadex G-200 anti-F (ab')2 column for chromatography on method described by Chess, et al., J. Immunol. 113:1113 (1974). T cells were detected by E rosetting of the Ig- population with 5% sheep erythrocytes (Microbiological Associates, Bethesda, Nm). The rosette mixture is treated with the Ficoll-Hypaque method and the exposed E+ pellet is treated with 0.155 M NH4Cl (10 ml per 108 cells). The population of T cells obtained in this way is <2% EAC rosette positive and >95% E rosette positive as determined by usual procedures. In addition, the non-rosetting Ig- (Null cells) population is collected from the Ficoll interstitial. This last population is <5% E+ and <2% sIg+. The surface of the Ig+ (B) population was obtained using a Sephadex G-200 column followed by elution with normal human gamma globulins in the manner previously described. That population is >95% surface Ig+ and <5% E+.

Normalne stanice koštane srži su dobivene iz posteriornog ilijačnog vrha normalnih humanih davatelja pomoću aspiracije iglom. Normal bone marrow cells were obtained from the posterior iliac crest of normal human donors by needle aspiration.

B. Izolacija timocita B. Isolation of thymocytes

Normalna humana žlijezda timus je dobivena od pacijenata starosti od dva mjeseca do četrnaest godina koji su bili podvrgavani korektivnoj kardijalnoj kirurgiji. Svježe dobivene žlijezde timus su odmah smještene u 5% fetalni teleći serum u mediju 199 (Gibco), fino usitnjene kliještima i škarama, te odmah zatim protisnute kroz čelično sito da bi se dobila jednostanična suspenzija. Stanice se zatim stave na Ficoll-Hypaque i obrade i isperu na već ranije opisan način u odjeljku A. Tako dobiveni timociti su >95% životno sposobni i >90% E rozeta pozitivni. Normal human thymus gland was obtained from patients aged two months to fourteen years who had undergone corrective cardiac surgery. Freshly obtained thymus glands were immediately placed in 5% fetal calf serum in medium 199 (Gibco), finely minced with forceps and scissors, and immediately pressed through a steel sieve to obtain a single-cell suspension. The cells are then plated on Ficoll-Hypaque and processed and washed as previously described in section A. The thymocytes thus obtained are >95% viable and >90% E rosette positive.

C. Stanične linije T podrijetla i stanice T akutne limfoblastične leukemije C. Cell lines of T origin and T cells of acute lymphoblastic leukemia

T stanične linije CEM, HSB-2 i MOLT-4 su dobivene od Dr. H. Lazarus (Sidney Farber Cancer Institute, Boston, MA). Leukemijske stanice su dobivene od 25 pacijenata s dijagnozom T stanične ALL. Ovi pojedinačni tumori su ranije bili određeni kao T staničnog podrijetla pomoću njihovog spontanog rozeta formiranja pomoću eritrocita ovaca (>20% E+), te pomoću reaktivnosti sa T stanicama specifičnog heteroantiseruma anti-HTL (B.K.) i A99 na već ranije opisan način. Populacije tumora su krio-spremljene na -196°C pomoću parne faze tekućeg dušika s 10% DMSO i 20% AB humanog seruma do vremena površinskog određivanja. Sve analizirane populacije tumora su više od 90% uništene što je određeno Wright-Giemsa morfologijom citocentrifugiranih pripravaka. T cell lines CEM, HSB-2 and MOLT-4 were obtained from Dr. H. Lazarus (Sidney Farber Cancer Institute, Boston, MA). Leukemic cells were obtained from 25 patients diagnosed with T cell ALL. These individual tumors were previously determined to be of T cell origin by their spontaneous rosette formation using sheep erythrocytes (>20% E+), and by reactivity with T cell specific heteroantisera anti-HTL (B.K.) and A99 as previously described. Tumor populations were cryopreserved at -196°C using liquid nitrogen vapor phase with 10% DMSO and 20% AB human serum until the time of surface determination. All analyzed tumor populations were more than 90% destroyed as determined by Wright-Giemsa morphology of cytocentrifuged preparations.

Primjer III Example III

Citofluorografske analize i stanično odijeljivanje Cytofluorographic analysis and cell division

Citofluorografske analize monoklonskih antitijela sa svestaničnim populacijama su provedene indirektno imunofluorescencijom s fluoroscein-povezanim kozjim anti-mišjim IgG (G/M FITC) (Meloy Laboratories) korištenjem Cytofluorograf FC200/4800A (Ortho Instruments). Ukratko, 1x106 stanica je tretirano s 0,15 ml OKT5 pri 1:500 razrijeđenju, inkubirano na 4ºC tijekom 30 minuta te dva puta isprano. Stanice su zatim stavljene u reakciju s 0,15 ml razrijeđenja 1:40 G/M FITC na 4ºC tijekom 30 minuta, centrifugirane i 3 puta isprane. Stanice su zatim analizirane na Cytofluorografu te je snimljen intenzitet fluorescencije po stanici na analyzeru. Sličan uzorak reaktivnosti je viđen i pri ražrijeđenju 1:10000 ali daljnje razrjeđivanje uzrokuje gubitak reaktivnosti. Podloga je dobivena supstituiranjem 0,15 ml alikvota 1:500 ascitesa iz CAF1 miša intraperitonealno injiciranog s neproducirajućim hibridnim klonom. Cytofluorographic analyzes of monoclonal antibodies with whole cell populations were performed by indirect immunofluorescence with fluoroscein-conjugated goat anti-mouse IgG (G/M FITC) (Meloy Laboratories) using a Cytofluorograf FC200/4800A (Ortho Instruments). Briefly, 1x106 cells were treated with 0.15 ml OKT5 at a 1:500 dilution, incubated at 4ºC for 30 minutes and washed twice. Cells were then reacted with 0.15 ml of a 1:40 G/M FITC dilution at 4ºC for 30 minutes, centrifuged and washed 3 times. The cells were then analyzed on a Cytofluorograph and the fluorescence intensity per cell was recorded on the analyzer. A similar pattern of reactivity was seen at 1:10000 dilution, but further dilution caused loss of reactivity. The medium was obtained by substituting a 0.15 ml aliquot of 1:500 ascites from a CAF1 mouse intraperitoneally injected with a non-producing hybrid clone.

U eksperimentima koji sadržavaju antitijela i komplementarno posredovanu limfolizu, timociti i periferne T stanice su kultivirane preko noći slijedeći postupak selektivne lize i zatim odmah analizirane na Cytofluorografu. In experiments involving antibodies and complement-mediated lympholysis, thymocytes and peripheral T cells were cultured overnight following a selective lysis procedure and then immediately analyzed on a Cytofluorograph.

Primjer IV Example IV

Liza limfoidnih populacija s monoklonskim antitijelom i komplementom Lysis of lymphoid populations with monoclonal antibody and complement

40x106 perifernih T stanica ili timocita je smješteno u 15 ml plastične tube (Falcon, Oxnard, CA). Stanične pelete su inkubirane s 0,8 cm3 OKT3, OKT4, OKT8 ili normalnim kontrolnim ascitesom razrijeđenim 1:200 u PBS, resuspendirane i inkubirane na 20°C tijekom 60 minuta. Neposredno zatim doda se 0,2 cm3 zečjeg komplementa antitijelu tretiranih populacija, resuspendira se i dalje inkubira na 37°C mućkajući u vodenoj kupelji tijekom 60 minuta. Na kraju tog vremena stanice su spuštene i vidljive stanice su prebrojene pomoću Trypan blue isključivanja. Nakon brojenja stanice su isprane 2 puta u 5% FCS i smještene u medij [RPMI 1640 (Grand Island Biological Company, Grand Island, NY) koji sadrži 20% AB+ humani serum, 1% penicilin-streptomicin, 200 mM L-glutamina, 25 mM Hepes pufera, te 0,5% natrij-bikarbonata] i inkubirane preko noći u vlažnoj atmosferi s 5% CO2 na 37°C. 40x106 peripheral T cells or thymocytes were placed in a 15 ml plastic tube (Falcon, Oxnard, CA). Cell pellets were incubated with 0.8 cm3 OKT3, OKT4, OKT8 or normal control ascites diluted 1:200 in PBS, resuspended and incubated at 20°C for 60 minutes. Immediately afterwards, 0.2 cm3 of rabbit complement was added to the antibody of the treated populations, resuspended and further incubated at 37°C with shaking in a water bath for 60 minutes. At the end of this time cells were pelleted and visible cells were counted using Trypan blue exclusion. After counting, cells were washed 2 times in 5% FCS and placed in medium [RPMI 1640 (Grand Island Biological Company, Grand Island, NY) containing 20% AB+ human serum, 1% penicillin-streptomycin, 200 mM L-glutamine, 25 mM Hepes buffer, and 0.5% sodium bicarbonate] and incubated overnight in a humid atmosphere with 5% CO2 at 37°C.

Kratak opis crteža Brief description of the drawing

Slika 1 prikazuje sliku fluorescencije dobivenu na Cytofluorografu nakon reakcije normalnih humanih timocita s 0KT10 i ostalim monoklonskim antitijelima pri razrijeđenju 1:500 i G/M FITC. Background fluorescencije je dobiven inkubacijom svake populacije s razrijeđenjem 1:500 ascitesa miša injektiranog s ne-producirajućim klonom. Figure 1 shows a fluorescence image obtained on a Cytofluorograph after the reaction of normal human thymocytes with 0KT10 and other monoclonal antibodies at a dilution of 1:500 and G/M FITC. Background fluorescence was obtained by incubating each population with a 1:500 dilution of mouse ascites injected with the non-producing clone.

Slika 2 prikazuje stadije intratimusne diferencijacije kod ljudi. Figure 2 shows the stages of intrathymic differentiation in humans.

Produkcija hibridoma i produkcija i karakterizacija rezultirajućih monoklonskih antitijela je provođena na način već ranije opisan u primjerima. Premda je velika količina antitijela pripremljena injiciranjem hibridoma intraperitonealno u miševe i sakupljanjem malignih ascitesa, jasno je da hibridomi mogu biti kultivirani in vitro tehnikom dobro poznatom u struci i antitijela mogu biti uklonjena iz supernatanta. The production of hybridomas and the production and characterization of the resulting monoclonal antibodies was carried out in the manner previously described in the examples. Although a large amount of antibody has been prepared by injecting hybridomas intraperitoneally into mice and collecting malignant ascites, it is clear that hybridomas can be cultured in vitro by techniques well known in the art and antibodies can be removed from the supernatant.

Tabela 1 prikazuje reaktivnost OKT6, OKT8, OKT9 i 0KT10 s različitim populacijama humanih limfoidnih stanica. 0KT10 monoklonsko antitijelo je reaktivno s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Null stanica) i s 10-20% stanica koštane srži. Ovaj uzorak reaktivnosti je test pomoću kojeg prikazana antitijela 0KT10 mogu biti otkrivena i razlikovana od ostalih antitijela. Table 1 shows the reactivity of OKT6, OKT8, OKT9 and 0KT10 with different populations of human lymphoid cells. 0KT10 monoclonal antibody is reactive with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and with 10-20% of bone marrow cells. This reactivity pattern is a test by which the displayed 0KT10 antibodies can be detected and distinguished from other antibodies.

Slika 1 prikazuje karakterističnu sliku fluorescencije dobivenu pomoću Cytofluorografa nakon reakcije suspenzije normalnih humanih timocita s razrijeđenjem 1:500 OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 i G/M FITC. Slične slike reaktivnosti su viđene s 12 dodatnih testiranih populacija normalnih humanih timocita. Kao što je vidljivo, značajne razlike postoje za oba postotka reaktivnosti i intenzitetn fluorescencije sa svakim od ovih monoklonskih antitijela. Na primjer, OKT9 reagira s aproksimativno 10% timocita s niskim intenzitetom fluorescencije dok OKT5, OKT6, OKT8 i 0KT10 reagiraju s aproksimativno 70% timocita pri višem intenzitetu fluorescencije. OKT4, koji reagira s 75% timocita je intermedijer između OKT9 i monoklonskih antitijela koja daju sliku većeg intenziteta fluorescencije. Dodatno, slika 1 prikazuje da je aproksimativno 15% timocita otkriveno pomoću OKT3 i indirektne imunofluorescencije. Nije prikazan OKT1, čija je slika reaktivnosti identična OKT3 na timocitima. Slika reaktivnosti sa slike i je još jedan test pomoću kojeg prikazano antitijelo OKT6 može biti otkriveno i razlikovano od ostalih antitijela. Figure 1 shows a characteristic fluorescence image obtained using a Cytofluorograph after the reaction of a suspension of normal human thymocytes with a 1:500 dilution of OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 and G/M FITC. Similar patterns of reactivity were seen with 12 additional tested populations of normal human thymocytes. As can be seen, significant differences exist for both percent reactivity and fluorescence intensity with each of these monoclonal antibodies. For example, OKT9 reacts with approximately 10% of thymocytes at low fluorescence intensity while OKT5, OKT6, OKT8 and 0KT10 react with approximately 70% of thymocytes at higher fluorescence intensity. OKT4, which reacts with 75% of thymocytes, is an intermediate between OKT9 and monoclonal antibodies that give an image of higher fluorescence intensity. Additionally, Figure 1 shows that approximately 15% of thymocytes were detected by OKT3 and indirect immunofluorescence. OKT1, whose reactivity pattern is identical to OKT3 on thymocytes, is not shown. The reactivity image from Figure i is another test by which the OKT6 antibody shown can be detected and distinguished from other antibodies.

Tabela 2 prikazuje distribuciju antigena određenih na različitim monoklonskim antitijelima na humanim perifernim T stanicama i limfocitima što je određeno nizom eksperimenata lize na način opisan u Primjeru IV. Zbog toga što su jedino OKT3, OKT4 i OKT 8 komplementarno vezali monoklonska antitijela, korištena su jedino ta tri. Table 2 shows the distribution of antigens determined by different monoclonal antibodies on human peripheral T cells and lymphocytes as determined by a series of lysis experiments in the manner described in Example IV. Because only OKT3, OKT4 and OKT 8 bound complementary monoclonal antibodies, only those three were used.

Kao što prikazuje tabela 2A, cijela populacija T stanica reagira s OKT3 dok s OKT4, OKT5 i OKT8 reagira 60%, 25%, odnosno 34% stanica. Liza s OKT4 i komplementom smanjuje ukupan broj na 62% i specifično poništava OKT4+ populaciju. Dodatno, postotak OKT5+ i OKT8+ stanica raste i nema učinka na apsolutni broj OKT5+ i OKT8+ T stanica. Ovi eksperimenti ukazuju da postoji razlika između OKT4+ i populacije OKT5+ i OKT8+. Iduća potpora ovom zaključku je dobivena lizom T stanica s OKT8 i komplementon. U tom slučaju postotak OKT4+ T stanica raste, apsolutni broj ostaje isti a OKT5+ i OKT8+ populacije su uklonjene. Nadalje, ovi rezultati pokazuju da je OKT8+ populacija recipročna OKT4+ populaciji i da sadrži potpuni izbor OKT5+ T stanica. As shown in Table 2A, the entire T cell population reacts with OKT3 while 60%, 25%, and 34% of cells react with OKT4, OKT5, and OKT8, respectively. Lysis with OKT4 and complement reduces the total number to 62% and specifically abrogates the OKT4+ population. Additionally, the percentage of OKT5+ and OKT8+ cells increases and there is no effect on the absolute number of OKT5+ and OKT8+ T cells. These experiments indicate that there is a difference between OKT4+ and OKT5+ and OKT8+ populations. Further support for this conclusion was obtained by lysis of T cells with OKT8 and complement. In this case, the percentage of OKT4+ T cells increases, the absolute number remains the same and the OKT5+ and OKT8+ populations are removed. Furthermore, these results indicate that the OKT8+ population is reciprocal to the OKT4+ population and contains a complete selection of OKT5+ T cells.

Slični eksperimenti s populacijama humanih timocita daju različite rezultate. Kao što je prikazano u tabeli 2B, aproksimativno 75% timocita je bilo OKT4+ ili OKT5+. Što više, nakon lize s bilo OKT4 ili OKT8, preostaje svega 25% timocita. Većina preostalih timocita je bilo reaktivno s OKT3, dok je svega manji dio bio reaktivan s OKT6. Ova saznanja pokazuju da veći dio populacije humanih tiocita nosi OKT4, OKT5, OKT6 i OKT8 površinske antigene na istoj stanici. Dodatno, tabela 2 pokazuje da je nakon reakcija s OKT8 ili OKT4 zabilježeno povećanje broja zrelih timocita koji nose OKT3 antigen. Tako je većina OKT3 reaktivnih timocita već podijeljena u OKT4+ ili OKT8+ sub-grupe, dok je veći dio preostalih stanica nakon OKT4 ili OKT8 lize OKT3+. Ako je OKT3+ sub-populacija i OKT4+ i OKT8+ tada liza s jednim od monoklonskih antitijela uklanja OKT3 reaktivne timocite. Similar experiments with human thymocyte populations yield mixed results. As shown in Table 2B, approximately 75% of thymocytes were OKT4+ or OKT5+. Moreover, after lysis with either OKT4 or OKT8, only 25% of thymocytes remain. Most of the remaining thymocytes were reactive with OKT3, while only a small part was reactive with OKT6. These findings indicate that a major part of the human thyocyte population carries OKT4, OKT5, OKT6 and OKT8 surface antigens on the same cell. Additionally, Table 2 shows that after reactions with OKT8 or OKT4, an increase in the number of mature thymocytes bearing the OKT3 antigen was noted. Thus, the majority of OKT3 reactive thymocytes are already divided into OKT4+ or OKT8+ sub-groups, while most of the remaining cells after OKT4 or OKT8 lysis are OKT3+. If OKT3+ is a sub-population of both OKT4+ and OKT8+ then lysis with one of the monoclonal antibodies removes OKT3 reactive thymocytes.

Da bi se dalje odredio odnos sub-populacije OKT3 reaktivnih timocita prema ostalim monoklonskim antitijelima kao frakcijama timocita, timociti su tretirani s OKT3 i komplementom te su preostale stanice zatim uspoređene s netretiranom populacijom timocita. Kao što pokazuje tabela 2B, OKT3 i komplement uklanjaju 25% timocita. Nadalje, nije dolazilo do većeg gubitka OKT4, OKT5, OKT6 ili OKT8 reaktivne populacije. Ovi pronalasci ukazuju da je golema većina timocita koji nose OKT6 marker sadržana u OKT3- populaciji. Dodatno, ukazuju da su timociti koji simultano izlučuju antigene određene kao OKT4, OKT5 i OKT8, ograničeni na OKT3- populaciju. Također treba zabilježiti da OKT9 reaktivna populacija timocita nije bila smanjena tretiranjem nefrakcioniranih timocita s OKT3 i komplementom, pokazujući tako da je OKT9+ sub-populacija uglavnom ograničena na OKT3- populaciju timocita. To further determine the relationship of the OKT3-reactive thymocyte subpopulation to other monoclonal antibodies as thymocyte fractions, thymocytes were treated with OKT3 and complement and the remaining cells were then compared to the untreated thymocyte population. As shown in Table 2B, OKT3 and complement remove 25% of thymocytes. Furthermore, there was no major loss of the OKT4, OKT5, OKT6 or OKT8 reactive population. These findings indicate that the vast majority of thymocytes carrying the OKT6 marker are contained in the OKT3- population. Additionally, they indicate that thymocytes that simultaneously secrete antigens designated as OKT4, OKT5 and OKT8 are restricted to the OKT3 population. It should also be noted that the OKT9 reactive thymocyte population was not reduced by treatment of unfractionated thymocytes with OKT3 and complement, thus demonstrating that the OKT9+ sub-population is largely restricted to the OKT3- thymocyte population.

Na osnovu navedenih rezultata, bilo je moguće opisati stadije intratimusnog razvoja humanih timocita. Kao što pokazuje slika 2, gotovo svi timociti nose 0KT10 marker. Dodatno, timociti u ranijem stadiju nose OKT9 marker (Thyl i Thy2). Ovaj stadij određuje manji dio timocita i iznosi oko 10% nefrakcionirane populacije. Nakon toga, humani timociti stječu jedinstveni timocit antigen određen pomoću OKT6 i istovremeno izlučuju OKT4, OKT5 i OKT8 (Thy4). Ova posljednja sub-populacija predstavlja veći dio timocita i iznosi više od 70-80% populacije timusa. Daljnjim sazrijevanjem, timociti gube OKT6 reaktivnost, stječu OKT3 (i OKT1) reaktivnost, te se dijele u OKT4+ i OKT5+'/OKT6+ sub-vrste (Thy7 i Thy8) . Konačno, postaje jasno da kako su timociti izlučeni u periferni T stanični dio, tako gube 0KT10 marker jer je to marker koji nedostaje na gotovo svim perifernim T limfocitima. Moguća tranzicijska stanja između ova tri glavna stadija timusnog razvoja su označena kao Thy3, Thy5 i Thy6 na slici 2. Based on the above results, it was possible to describe the stages of intrathymic development of human thymocytes. As shown in Figure 2, almost all thymocytes carry the 0KT10 marker. Additionally, early-stage thymocytes carry the OKT9 marker (Thyl and Thy2). This stage determines a smaller part of thymocytes and is about 10% of the unfractionated population. Subsequently, human thymocytes acquire a unique thymocyte antigen determined by OKT6 and simultaneously secrete OKT4, OKT5 and OKT8 (Thy4). This last sub-population represents the greater part of thymocytes and is more than 70-80% of the thymus population. With further maturation, thymocytes lose OKT6 reactivity, acquire OKT3 (and OKT1) reactivity, and divide into OKT4+ and OKT5+'/OKT6+ subtypes (Thy7 and Thy8). Finally, it becomes clear that as thymocytes are secreted into the peripheral T cell compartment, they lose the 0KT10 marker because it is a marker that is missing from almost all peripheral T lymphocytes. Possible transition states between these three major stages of thymic development are labeled Thy3, Thy5, and Thy6 in Figure 2.

Zbog toga što se smatra da limfoblastična leukemija T podrijetla dolazi od nezrelih timocita, određen je odnos između stanica tumora pojedinaca s T-ALL i ovih stadija intratimusne diferencijacije. Proučavano je dvadeset pet populacija stanica tumora pojedinaca s T-ALL i tri T stanične linije ranije proučavane s uobičajenim anti-T staničnim reagensima i E rozetiranjem. Kao što prikazuje tabela 3, većina T-ALL leukemijskih stanica je bilo reaktivno bilo sa samim 0KT10 ili s OKT9 i 0KT10, a nisu reagirale s ostalim monoklonskim antitijelima. Tako, pokazalo se da 15/25 proučavanih slučajeva ima antigene ranih timocita (stadij I). Because lymphoblastic leukemia of T origin is thought to arise from immature thymocytes, the relationship between the tumor cells of individuals with T-ALL and these stages of intrathymic differentiation has been determined. Twenty-five tumor cell populations from individuals with T-ALL and three T cell lines previously studied with common anti-T cell reagents and E rosetting were studied. As shown in Table 3, the majority of T-ALL leukemia cells were reactive either with 0KT10 alone or with OKT9 and 0KT10, and did not react with other monoclonal antibodies. Thus, it turned out that 15/25 studied cases have antigens of early thymocytes (stage I).

Suprotno tome, 5/25 slučajeva je bilo reaktivno s OKT6, sugerirajući tako derivaciju zrelije populacije timusa (stadij II). Ova T-ALL grupa je bila sama po sebi heterogena u odnosu na OKT4, OKT8 i OKT9 reaktivnost, kao što to pokazuje tabela 3. Stanice 2/5 pacijenata posjeduju najviše zajedničkih timocit antigena uključujući OKT4, OKT6 i OKT8. Važno je napomenuti da OKT5 nije prisutan niti na jednom od ovih pet tumora stadija II premda je zabilježena reaktivnost OKT8. Ovaj posljednji rezultat jasno ukazuje da OKT5 i OKT8 određuju različite antigene ili različite determinante na istom antigenu. Konačno, 1/25 tumora pacijenata potječe od populacije zrelih timocita (stadij III), što je određeno njegovom reaktivnošću s OKT3. Ovaj tumor je dodatno bio reaktivan s OKT5, OKT8 i 0KT10. Od 25 analiziranih leukemijskih populacija, svega 4 tumora nisu mogla biti jasno kategorizirana. Tri su bila pozitivna s OKT4 i OKT8, ali je nedostajala OKT3 i OKT6 i najvjerojatnije predstavlja tranziciju od Thy4 i Thy7,8. Jedan od 25 slučajeva je bio tranzicija od Thy3 do Thy4 jer je imao OKT8 i 0KT10 reaktivnost. In contrast, 5/25 cases were reactive with OKT6, thus suggesting the derivation of a more mature thymic population (stage II). This T-ALL group was inherently heterogeneous with respect to OKT4, OKT8, and OKT9 reactivity, as shown in Table 3. Cells from 2/5 patients possessed the most common thymocyte antigens including OKT4, OKT6, and OKT8. It is important to note that OKT5 is not present in any of these five stage II tumors, although OKT8 reactivity was noted. This last result clearly indicates that OKT5 and OKT8 target different antigens or different determinants on the same antigen. Finally, 1/25 of patients' tumors originate from the mature thymocyte population (stage III), as determined by its reactivity with OKT3. This tumor was additionally reactive with OKT5, OKT8 and 0KT10. Out of 25 analyzed leukemic populations, only 4 tumors could not be clearly categorized. Three were positive with OKT4 and OKT8, but lacked OKT3 and OKT6 and most likely represent a transition from Thy4 and Thy7,8. One of the 25 cases was a transition from Thy3 to Thy4 because he had OKT8 and 0KT10 reactivity.

T stanične linije dobivene iz T-ALL populacije tumora također predstavljaju stanice specifičnog stadija intratimusne diferencijacije. Kao što prikazuje tabela 4, HSB je bio reaktivan isključivo s OKT9 i 0KT10 i stoga treba biti određen kao populacija tumora dobivena iz stadija I. Suprotno tome, CEM je bio reaktivan s OKT4, OKT6, OKT8, OKT9 i 0KT10 te stoga proizlazi da potječe iz stadija II timocita. Konačno , MOLT-4 čini se da predstavlja leukemijsku transformaciju u stadiju između HSB-2 i CEM jer izlučuje OKT6, OKT8, OKT9 i 0KT10. T cell lines derived from the T-ALL tumor population also represent cells of a specific stage of intrathymic differentiation. As shown in Table 4, HSB was reactive exclusively with OKT9 and 0KT10 and should therefore be designated as a tumor population derived from stage I. In contrast, CEM was reactive with OKT4, OKT6, OKT8, OKT9 and 0KT10 and therefore derived from from stage II thymocytes. Finally, MOLT-4 appears to represent leukemic transformation at a stage between HSB-2 and CEM because it secretes OKT6, OKT8, OKT9 and 0KT10.

Stoga što su svi proučavani pacijenti s T staničnom akutnom limfoblastičnom leukemijom pokazali prisutnost 0KT10+ stanica, uporaba 0KT10 antitijela omogućava dijagnozu T-stanične ALL. Pacijenti s Null staničnom ALL također pokazuju 0KT10+ stanice. Since all studied patients with T-cell acute lymphoblastic leukemia showed the presence of 0KT10+ cells, the use of 0KT10 antibody enables the diagnosis of T-cell ALL. Patients with Null cell ALL also show 0KT10+ cells.

Odnos prikazan u tabelama 2-4 je daljnji način na koji 0KT10 antitijela mogu biti otkrivena i razlikovana od ostalih antitijela. The relationship shown in Tables 2-4 is a further way in which 0KT10 antibodies can be detected and distinguished from other antibodies.

Ostali hibridomi koji produciraju monoklonska antitijela, a koje su pripremili prikazani prijavitelji (označeni kao OKTl, OKT3, OKT4 i OKT5) su opisani i zaštićeni u slijedećim U.S. patentnim prijavama: SN 22,132 uložene 20.3.1979; SN 33,639 uložene 26.4.1979; SN 33,669 uložene 26.4.1979; SN 76,642 uložene 18.9.1979; i SN 82,515 uložene 9.10.1979. I ostali hibridomi koji produciraju monoklonska antitijela pripremljeni od prikazanih prijavitelja (označeni kao OKT6, OKT8 i OKT9) su također zaštićeni U.S. patentnim prijavama uloženim nepoznatog datuma a slijedećih naziva: Other monoclonal antibody-producing hybridomas prepared by the present applicants (designated as OKT1, OKT3, OKT4 and OKT5) are described and protected in the following U.S. Pat. patent applications: SN 22,132 filed on March 20, 1979; SN 33,639 filed on April 26, 1979; SN 33,669 filed on April 26, 1979; SN 76,642 filed on September 18, 1979; and SN 82,515 filed on October 9, 1979. Other monoclonal antibody-producing hybridomas prepared by the applicants shown (designated as OKT6, OKT8 and OKT9) are also protected by U.S. Pat. patent applications filed on an unknown date with the following names:

Hybrid Cell Line For Producing Complement-Fixing Monoclonal Antibody to Human Suppressor T Cells, Antibody and Methods (Hibridna stanična linija za produkciju komplement-fiksirajućeg monoklonskog antitijela na humanim supresorskim T stanicama, antitijelo i postupci); Hybrid Cell Line For Producing Complement-Fixing Monoclonal Antibody to Human Suppressor T Cells, Antibody and Methods

Hybrid Cell Line For Producing Monoclonal Antibody to Human Early Thymocyte Antigen, Antibody and Methods (Hibridna stanična linija za produkciju monoklonskog antitijela za humani antigen ranog timocita, antitijelo i postupci); i Hybrid Cell Line For Producing Monoclonal Antibody to Human Early Thymocyte Antigen, Antibody and Methods (Hybrid Cell Line for Producing Monoclonal Antibody to Human Early Thymocyte Antigen, Antibody and Methods); and

Hybrid Cell Line For Producing Monoclonal Antibody to Human Thymocyte Antigen, Antibody and Methods (Hibridna stanična linija za produkciju monoklonskog antitijela za humani antigen timocita, antitijelo i postupci). Hybrid Cell Line For Producing Monoclonal Antibody to Human Thymocyte Antigen, Antibody and Methods.

Ove prijave su u navedenom tekstu sadržane zabilješkama. These applications are included in the above text with notes.

Prema prikazanom izumu osiguran je hibridom koji može producirati antitijelo za antigen pronađen na aproksimativno 95% normalnih humanih timocita, postupak dobivanja navedenog hibridoma, monoklonsko antitijelo za antigen pronađen na aproksimativno 95% normalnih humanih timocita, postupci dobivanja antitijela i postupci i pripravci za liječenje ili dijagnosticiranje bolesti ili za identifikaciju T stanica ili sub-vrste timocita uporabom navedenog antitijela. According to the presented invention, a hybrid is provided that can produce an antibody for an antigen found on approximately 95% of normal human thymocytes, a process for obtaining said hybridoma, a monoclonal antibody for an antigen found on approximately 95% of normal human thymocytes, methods for obtaining antibodies and methods and preparations for treatment or diagnosis diseases or for identification of T cells or sub-types of thymocytes using said antibody.

TABELA 1 TABLE 1

REAKTIVNOST MONOKLONSKIH ANTITIJETLA NA HUMANOJ LIMFOIDNOJ POPULACIJI REACTIVITY OF MONOCLONAL ANTIBODIES ON HUMAN LYMPHOID POPULATION

[image] [image]

*Brojevi u zagradama predstavljaju broj tretiranih uzoraka; *Numbers in parentheses represent the number of treated samples;

vrijednosti su u %. values are in %.

TABELA 2 TABLE 2

RAZLIKE U RASPODJELI ANTIGENA ODREĐEIH MONOKLONSKIM ANTITIJELOM DIFFERENCES IN THE DISTRIBUTION OF ANTIGENS DETERMINED BY MONOCLONAL ANTIBODIES

NA HUMANIM PERIFERNIM T STANICAMA I TIMOCITIMA ON HUMAN PERIPHERAL T CELLS AND THYMOCYTES

[image] [image]

* Netretirane populacije i populacije tretirane sa samim komplementom su bile neprepoznatljive u re-analizi. Nespecifična liza je bila < 5 % u svim slučajevima. Rezultati su srednje vrijednosti 6 eksperimenata. * Untreated populations and populations treated with complement alone were unrecognizable in re-analysis. Non-specific lysis was < 5 % in all cases. The results are the mean values of 6 experiments.

↑ C’ = komplement ↑ C' = complement

TABELA 3 TABLE 3

KARAKTERIZACIJA POVRŠINE STANICA KOD AKUTNE CHARACTERIZATION OF CELL SURFACES IN ACUTE

LIMFOBLASTIČNE LEUKEMIJE T PODRIJETLA LYMPHOBLASTIC LEUKEMIA OF T ORIGIN

[image] [image]

* Preostala 4 tumora nisu mogla biti lako kategorizirana u stadije I-III. Pogledaj tekst za njihovu detaljnu kategorizaciju. * The remaining 4 tumors could not be easily categorized into stages I-III. See the text for their detailed categorization.

++ Pozitivna (+) reaktivnost je određena kao > 30% specifične reaktivnosti iznad kontrole dok je negativna (-) reaktivnost neprepoznatljiva od podloge suspenzije stanica tumora. ++ Positive (+) reactivity is defined as > 30% specific reactivity above the control, while negative (-) reactivity is unrecognizable from the tumor cell suspension medium.

TABELA 4 TABLE 4

REAKTIVNOST S MONOKLONSKIM ANTITIJELIMA REACTIVITY WITH MONOCLONAL ANTIBODIES

[image] [image]

* Kriterij za - i + reaktivnost je bio isti kao u Tabeli 3. * The criterion for - and + reactivity was the same as in Table 3.

Premda je opisan samo jedan hibridom koji producira jedno monoklonsko antitijelo protiv humanog timocit antigena podrazumjeva se da prikazani izum obuhvaća sva monoklonska antitijela koja pokazuju navedena svojstva. Određeno je da prikazano antitijelo 0KT10 pripada subvrsti IgG1 koja je jedna od četiri subvrsta IgG. Ove subvrste imunoglobulina G se razlikuju jedna od druge u takozvanim "fiksiranim" područjima premda će antitijelo na specifični antigen imati takozvano "promjenjivo" područje koje je funkcionalno identično bez obzira na subvrstu imunoglobulina G. To znači, monoklonsko antitijelo koje pokazuje navedena svojstva može biti subvrste IgG1, IgG2a, IgG2b ili IgG3 ili vrste IgM, IgA ili neke druge poznate Ig vrste. Razlike između ovih vrsta i subvrsta neće imati učinka na selektivnost reakcijskog uzorka antitijela, ali će imati učinka na daljnje reakcije antitijela s ostalim materijalima, poput (na primjer) komplementa ili anti-mišjih antitijela. Premda je prikazano antitijelo specifično IgG1, podrazumjeva se da su antitijela koja imaju prikazani uzorak reaktivnosti uključena unutar dosega prikazanog izuma bez obzira na pripadajuću vrstu ili podvrstu imunoglobulina. Although only one hybridoma that produces one monoclonal antibody against human thymocyte antigen is described, it is understood that the presented invention encompasses all monoclonal antibodies that exhibit the above properties. The shown antibody 0KT10 was determined to belong to the IgG1 subtype, which is one of the four IgG subtypes. These subtypes of immunoglobulin G differ from each other in the so-called "fixed" regions, although an antibody to a specific antigen will have a so-called "variable" region that is functionally identical regardless of the subtype of immunoglobulin G. That is, a monoclonal antibody that shows the above properties can be of the subtype IgG1, IgG2a, IgG2b or IgG3 or IgM, IgA or other known Ig types. Differences between these species and subspecies will have no effect on the selectivity of the reaction pattern of the antibody, but will have an effect on further reactions of the antibody with other materials, such as (for example) complement or anti-mouse antibodies. Although an IgG1-specific antibody is shown, it is understood that antibodies having the shown reactivity pattern are included within the scope of the presented invention regardless of the associated type or subtype of immunoglobulin.

Nadalje, unutar prikazanog izuma su i postupci pripreme monoklonskih antitijela opisani u ranijem tekstu a koji koriste opisanu tehniku hibridoma. Premda je u tekstu prikazan svega jedan primjer hibridoma, podrazumijeva se da će stručnjaci iz struke moći slijediti postupke imunizacije, fuzije i selekcije koji su opisani u tekstu i tako dobiti ostale hibridome koji su sposobni producirati antitijela koja imaju svojstva reaktivnosti opisana u ovom tekstu. Stoga što pojedinačni hibridom dobiven iz poznate stanične linije mijeloma miša i stanica slezene poznatih vrsta miševa ne može biti dalje identificiran osim pomoću hibridoma produciranog antitijela, podrazumijeva se da su svi hibridomi koji produciraju antitijelo koje ima ranije opisana svojstva reaktivnosti uključeni u prikazani izum kao i postupci dobivanja tih antitijela korištenjem hibridoma. Furthermore, within the presented invention are also the procedures for the preparation of monoclonal antibodies described in the earlier text, which use the described hybridoma technique. Although only one example of a hybridoma is presented in the text, it is understood that experts in the field will be able to follow the immunization, fusion and selection procedures described in the text and thus obtain other hybridomas capable of producing antibodies that have the reactivity properties described in this text. Since an individual hybridoma obtained from a known murine myeloma cell line and spleen cells of known species of mice cannot be further identified except by the hybridoma produced antibody, it is understood that all hybridomas that produce an antibody having the previously described reactivity properties are included in the present invention as well as the methods obtaining these antibodies using hybridoma.

Idući aspekti izuma su postupci liječenja ili dijagnosticiranja oboljenja korištenjem monoklonskog antitijela 0KT10 ili ostalih monoklonskih antitijela koja pokazuju uzorak reaktivnosti opisan u ovom tekstu. Prikazano antitijelo se može koristiti za otkrivanje i proučavanje intratimusne diferencijacije kako je to prikazano na slici 2. Nadalje, prikazano antitijelo se može koristiti za dijagnozu bolesnog stanja koje uključuje manjak ili višak 0RT10+ stanica. Ove tehnike se mogu koristiti upotrebom 0KT10 antitijela samog ili u kombinaciji s ostalim antitijelima (na primjer OKT3 do 0KT10). Uzorci reaktivnosti s izborom antitijela T stanica i izborom T stanica će omogućiti točnije otkrivanje određenih bolesnih stanja nego li je to moguće upotrebom dosadašnjih dijagnostičkih postupaka. Further aspects of the invention are methods of treating or diagnosing diseases using monoclonal antibody 0KT10 or other monoclonal antibodies that exhibit the reactivity pattern described herein. The disclosed antibody can be used to detect and study intrathymic differentiation as shown in Figure 2. Furthermore, the disclosed antibody can be used to diagnose a disease state involving a deficiency or excess of 0RT10+ cells. These techniques can be used using the 0KT10 antibody alone or in combination with other antibodies (eg OKT3 to 0KT10). Patterns of reactivity with T cell antibody selection and T cell selection will enable more accurate detection of certain disease states than is possible using current diagnostic procedures.

Liječenje bolesnih stanja (na primjer, malignih oboljenja poput Null stanične ALL ili T-ALL) koja se manifestiraju viškom 0KT10+ stanica može biti provedeno. primjenom terapeutski učinkovite količine 0KT10 antitijela pacijentu. Selektivnom reakcijom s 0KT10+ antigenom, učinkovita količina 0KT10 antitijela će smanjiti višak 0KT10+ stanica ublažavajući tako učinke viška. Dijagnostički i terapeutski pripravci koji sadrže učinkovite količine 0KT10 antitijela u smjesi s dijagnostički ili farmaceutski prihvatljivim podlogama su također uključeni u prikazani izum. Treatment of disease states (for example, malignancies such as Null cell ALL or T-ALL) manifested by an excess of 0KT10+ cells can be performed. by administering a therapeutically effective amount of 0KT10 antibody to the patient. By selectively reacting with 0KT10+ antigen, an effective amount of 0KT10 antibody will reduce the excess of 0KT10+ cells thereby mitigating the effects of the excess. Diagnostic and therapeutic compositions containing effective amounts of 0KT10 antibodies in admixture with diagnostically or pharmaceutically acceptable carriers are also included in the present invention.

Claims (16)

1. Monoklonsko antitijelo vrste IgG producirano pomoću hibridoma formiranog fuzijom stanica iz linije mijeloma miša i stanica slezene miša ranije imuniziranog s humanim leukemijskim T-ALL stanicama, naznačeno time, da: a) reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; b) prikazuje uzorak reaktivnosti s normalnim humanim timocitima prikazan na slici 1; c) prikazuje uzorak reaktivnosti s perifernim T stanicama i timocitima prikazan u tabeli 2; d) reagira s antigenom na leukemijskim T-ALL stanicama; e) reagira s HSB-2, CEM i MOLT-4 staničnim linijama.1. Monoclonal antibody of the IgG type produced using a hybridoma formed by the fusion of cells from a mouse myeloma line and spleen cells of a mouse previously immunized with human leukemic T-ALL cells, indicated that: a) reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E- peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells; b) shows the pattern of reactivity with normal human thymocytes shown in Figure 1; c) shows the pattern of reactivity with peripheral T cells and thymocytes shown in Table 2; d) reacts with antigen on leukemic T-ALL cells; e) reacts with HSB-2, CEM and MOLT-4 cell lines. 2. Monoklonsko antitijelo, naznačeno time, da je producirano iz hibridoma identifikacijskih svojstava ATCC 8022.2. Monoclonal antibody, indicated by the fact that it was produced from a hybridoma with the identification characteristics of ATCC 8022. 3. IgG monoklonsko-antitijelo-producirajući hibridom formiran fuzijom stanica slezene miša ranije imuniziranog s humanim leukemijskim T-ALL stanicama i stanica linije mijeloma miša, naznačen time, da navedeno antitijelo: a) reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; b) prikazuje uzorak reaktivnosti s normalnim humanim timocitima prikazan na slici 1; c) prikazuje uzorak reaktivnosti s perifernim T stanicama i timocitima prikazan u tabeli 2; d) prikazuje uzorak reaktivnost s T stanicama ALL stanja prikazan u tabeli 3; e) reagira s HSB-2, CEM i MOLT-4 staničnim linijama.3. IgG monoclonal-antibody-producing hybrid formed by fusion of spleen cells of a mouse previously immunized with human leukemic T-ALL cells and cells of a mouse myeloma line, indicated that said antibody: a) reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E- peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells; b) shows the pattern of reactivity with normal human thymocytes shown in Figure 1; c) shows the pattern of reactivity with peripheral T cells and thymocytes shown in Table 2; d) shows the pattern of reactivity with T cells of ALL state shown in table 3; e) reacts with HSB-2, CEM and MOLT-4 cell lines. 4. Hibridom, naznačen time, da ima identifikacijska svojstva ATCC 8022.4. A hybridoma, characterized in that it has the identifying characteristics of ATCC 8022. 5. Postupak pripreme monoklonskog antitijela koje a) reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; b) prikazuje uzorak reaktivnosti s normalnim humanim timocitima prikazan na slici 1; c) prikazuje uzorak reaktivnosti s perifernim T stanicama i timocitima prikazan u tabeli 2; d) prikazuje uzorak reaktivnost s T stanicama ALL stanja prikazan u tabeli 3; e) reagira s HSB-2, CEM i MOLT-4 staničnim linijama, naznačen time, da sadrži korake: i) imunizacije miša s humanim leukemijskim T-ALL stanicama; ii) uklanjanja slezena iz spomenutih miševa i pripreme suspenzije stanica slezene; ili) fuzije spomenutih stanica slezene sa stanicama mijeloma miša u prisutnosti fuzijskog promotora; iv) razrijedivanja i kultiviranja fuzioniranih stanica u odijeljenim posudama u mediju koji neće podržavati nefuzionirane stanice mijeloma; v) evaluacije supernatanta u svakoj posudici koja sadrži hibridom na prisutnost željenog antitijela; vi) selekcije i kloniranja hibridoma koji produciraju željeno antitijelo; te vii) otkrivanja antitijela iz supernatanta iznad spomenutih klonova.5. The procedure for preparing a monoclonal antibody which a) reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E- peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells; b) shows the pattern of reactivity with normal human thymocytes shown in Figure 1; c) shows the pattern of reactivity with peripheral T cells and thymocytes shown in Table 2; d) shows the pattern of reactivity with T cells of ALL state shown in table 3; e) reacts with HSB-2, CEM and MOLT-4 cell lines, indicated by the fact that it contains steps: i) immunization of mice with human leukemic T-ALL cells; ii) removal of spleens from said mice and preparation of suspension of spleen cells; or) fusion of said spleen cells with mouse myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate dishes in a medium that will not support unfused myeloma cells; v) evaluation of the supernatant in each vessel containing the hybridoma for the presence of the desired antibody; vi) selection and cloning of hybridomas that produce the desired antibody; you vii) detection of antibodies from the supernatant above the mentioned clones. 6. Postupak pripreme monoklonskog antitijela koje a) reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; b) prikazuje uzorak reaktivnosti s normalnim humanim timocitima prikazan na slici 1; c) prikazuje uzorak reaktivnosti s perifernim T stanicama i timocitima prikazan u tabeli 2; d) prikazuje uzorak reaktivnost s T stanicama ALL stanja prikazan u tabeli 3; e) reagira s HSB-2, CEM i MOLT-4 staničnim linijama, naznačen time, da sadrži korake: i) intimizacije miša s humanim leukemijskim T-ALL stanicama; ii) uklanjanja slezena iz spomenutih miševa i pripreme suspenzije stanica slezene; iii) fuzije spomenutih stanica slezene sa stanicama mijeloma miša u prisutnosti fuzijskog promotora; iv) razrijedivanja i kultiviranja fuzioniranih stanica u odijeljenim posudama u mediju koji neće podržavati nefuzionirane stanice mijeloma; v) evaluacije supernatanta u svakoj posudici koja sadrži hibridom na prisutnost željenog antitijela; vi) selekcije i kloniranja hibridoma koji produciraju željeno antitijelo; vii) otkrivanja antitijela iz supernatanta iznad spomenutih klonova; viii)prenošenja spomenutih klonova intraperitonealno u miševe; te ix) sakupljanja malignih ascitesa ili seruma iz spomenutih miševa.6. Procedure for preparing a monoclonal antibody which a) reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E- peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells; b) shows the pattern of reactivity with normal human thymocytes shown in Figure 1; c) shows the pattern of reactivity with peripheral T cells and thymocytes shown in Table 2; d) shows the pattern of reactivity with T cells of ALL state shown in table 3; e) reacts with HSB-2, CEM and MOLT-4 cell lines, indicated by the fact that it contains steps: i) mouse intimacies with human leukemic T-ALL cells; ii) removal of spleens from said mice and preparation of suspension of spleen cells; iii) fusion of said spleen cells with mouse myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate dishes in a medium that will not support unfused myeloma cells; v) evaluation of the supernatant in each vessel containing the hybridoma for the presence of the desired antibody; vi) selection and cloning of hybridomas that produce the desired antibody; vii) detection of antibodies from the supernatant above the mentioned clones; viii) transferring said clones intraperitoneally into mice; you ix) collection of malignant ascites or serum from the mentioned mice. 7. Postupak otkrivanja nedostatka ili viška OKT10+ stanica kod pojedinca, naznačen time, da sadrži reakciju pripravka T stanica ili timocita iz spomenutog pojedinca s dijagnostički učinkovitom količinom antitijela prema zahtjevu 12, te mjerenje postotka ukupne populacije perifernih T stanica i timocita koji reagiraju sa spomenutim antitijelom.7. A method for detecting a lack or excess of OKT10+ cells in an individual, indicated by the fact that it contains the reaction of a preparation of T cells or thymocytes from the said individual with a diagnostically effective amount of antibody according to claim 12, and measuring the percentage of the total population of peripheral T cells and thymocytes that react with the said antibody . 8. Postupak prema zahtjevu 7, naznačen time, da je višak T stanica ALL ili Nuli stanica ALL.8. The method according to claim 7, characterized in that the excess of T cells is ALL or Null cells ALL. 9. Postupak liječenja viška OKT10+ stanica kod pojedinca, naznačen time, da obuhvaća prim j enu, spomenutom pojedincu, učinkovitu količinu antitijela prema zahtjevu 12 tako da smanji količinu OKT10+ stanica.9. A method of treating excess OKT10+ cells in an individual, indicated by the fact that it comprises applying to said individual, an effective amount of antibody according to claim 12 so as to reduce the amount of OKT10+ cells. 10. Dijagnostički pripravak prema izumu koji služi za otkrivanje viška ili manjka OKT10+ stanica, naznačen time, da sadrži u smjesi s dijagnostički prihvatljivom podlogom količinu antitijela prema zahtjevu 12 učinkovitu u otkrivanju viška ili manjka OKT10+ stanica.10. A diagnostic preparation according to the invention that serves to detect an excess or deficiency of OKT10+ cells, characterized in that it contains, in a mixture with a diagnostically acceptable substrate, an amount of antibody according to claim 12 effective in detecting an excess or deficiency of OKT10+ cells. 11. Terapeutski pripravak prema izumu, naznačen time, da sadrži u smjesi s farmeceutski prihvatljivom podlogom količinu antitijela prema zahtjevu 12 učinkovitu u smanjivanju količine OKT10+ stanica kod pojedinca koji ima višak navedenih OKT10+ stanica.11. Therapeutic preparation according to the invention, characterized in that it contains, in a mixture with a pharmaceutically acceptable base, an amount of antibody according to claim 12 effective in reducing the amount of OKT10+ cells in an individual who has an excess of said OKT10+ cells. 12. Mišje monoklonsko antitijelo, naznačeno time, da reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži.12. A murine monoclonal antibody, indicated to react with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells. 13. Postupak pripreme monoklonskog antitijela koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži, naznačen time, da obuhvaća kultiviranje hibridoma ATCC CRL 8022 u prikladnom mediju i otkrivanje antitijela iz supernatanta iznad spomenutog hibridoma.13. Method of preparing a monoclonal antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells, indicated by to comprise culturing hybridoma ATCC CRL 8022 in a suitable medium and detecting antibodies from the supernatant above said hybridoma. 14. Postupak pripreme monoklonskog antitijela koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži, naznačen time, da obuhvaća injjiciranje hibridoma ATCC CRL 8022 u miša i ponovno otkrivanje antitijela iz malignog ascitesa ili seruma spomenutog miša.14. Method of preparing a monoclonal antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells, indicated by to comprise injecting hybridoma ATCC CRL 8022 into a mouse and re-detecting the antibody from the malignant ascites or serum of said mouse. 15. Postupak pripreme monoklonskog antitijela koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E- perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži, naznačen time, da obuhvaća korake: i) imunizacije miša s humanim leukemijskim T-ALL stanicama; ii) uklanjanja slezena iz spomenutih miševa i pripreme suspenzije stanica slezene; iii) fuzije spomenutih stanica slezene sa stanicama mijeloma miša u prisutnosti fuzijskog promotora; iv) razrijedivanja i kultiviranja fuzioniranih stanica u odijeljenim posudama u mediju koji neće podržavati nefuzionirane stanice mijeloma; v) evaluacije supernatanta u svakoj posudici koja sadrži hibridom na prisutnost antitijela prema E rozeta pozitivnim pročišćenim T stanicama ili humanim timocitima; vi) selekcije i kloniranja hibridoma koji produciraju željeno antitijelo koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E" perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; te vii) otkrivanja antitijela iz supernatanta iznad spomenutih klonova.15. Method of preparing a monoclonal antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E-peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells, indicated by to include the steps: i) immunization of mice with human leukemic T-ALL cells; ii) removal of spleens from said mice and preparation of suspension of spleen cells; iii) fusion of said spleen cells with mouse myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate dishes in a medium that will not support unfused myeloma cells; v) evaluation of the supernatant in each vessel containing the hybridoma for the presence of antibodies against E rosette positive purified T cells or human thymocytes; vi) selection and cloning of hybridomas that produce the desired antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E" peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells you vii) detection of antibodies from the supernatant above the mentioned clones. 16. Postupak pripreme monoklonskog antitijela koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E" perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži, naznačen time, da obuhvaća korake: i) imunizacije miša s humanim leukemijskim T-ALL stanicama; ii) uklanjanja slezena iz spomenutih miševa i pripreme suspenzije stanica slezene; iii) fuzije spomenutih stanica slezene sa stanicama mijeloma miša u prisutnosti fuzijskog promotora; iv) razrijedivanja i kultiviranja fuzioniranih stanica u odijeljenim posudama u mediju koji neće podržavati nefuzionirane stanice mijeloma; v) evaluacije supernatanta u svakoj posudici koja sadrži hibridom na prisutnost antitijela prema E rozeta pozitivnim pročišćenim T stanicama ili humanim timocitima; vi) selekcije i kloniranja hibridoma koji produciraju antitijelo koje reagira s aproksimativno 95% normalnih humanih timocita, 5% normalnih humanih perifernih T stanica, 10% E~ perifernih mononuklearnih stanica (B stanica i Nuli stanica) i s 10 do 20% stanica koštane srži; vii) prenošenja spomenutih klonova intraperitonealno u miša; te viii) sakupljanja malignih ascitesa ili seruma iz spomenutih miševa, a spomenuti asitesi ili serum sadrže željeno antitijelo.16. A method of preparing a monoclonal antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E" peripheral mononuclear cells (B cells and Nuli cells) and with 10 to 20% of bone marrow cells, indicated by to include the steps: i) immunization of mice with human leukemic T-ALL cells; ii) removal of spleens from said mice and preparation of suspension of spleen cells; iii) fusion of said spleen cells with mouse myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate dishes in a medium that will not support unfused myeloma cells; v) evaluation of the supernatant in each vessel containing the hybridoma for the presence of antibodies against E rosette positive purified T cells or human thymocytes; vi) selection and cloning of hybridomas that produce an antibody that reacts with approximately 95% of normal human thymocytes, 5% of normal human peripheral T cells, 10% of E~ peripheral mononuclear cells (B cells and Null cells) and with 10 to 20% of bone marrow cells; vii) transferring said clones intraperitoneally into a mouse; you viii) collection of malignant ascites or serum from said mice, and said ascites or serum contain the desired antibody.
HRP-3067/80A 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods HRP940824B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/100,072 US4364935A (en) 1979-12-04 1979-12-04 Monoclonal antibody to a human prothymocyte antigen and methods of preparing same
YU3067/80A YU45078B (en) 1979-12-04 1980-12-03 Process for obtaining a monoclonal antibody

Publications (2)

Publication Number Publication Date
HRP940824A2 true HRP940824A2 (en) 1997-06-30
HRP940824B1 HRP940824B1 (en) 1999-12-31

Family

ID=26796783

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-3067/80A HRP940824B1 (en) 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods

Country Status (2)

Country Link
HR (1) HRP940824B1 (en)
SI (1) SI8013067A8 (en)

Also Published As

Publication number Publication date
SI8013067A8 (en) 1997-10-31
HRP940824B1 (en) 1999-12-31

Similar Documents

Publication Publication Date Title
EP0030815B1 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses, and pharmaceutical compositions comprising this antibody
EP0018795B2 (en) Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
US4515893A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
US4658019A (en) Complement-fixing monoclonal antibody to human T cells
EP0030450B1 (en) Hybrid cell line for producing complement-fixing, monoclonal antibody to human suppressor t cells, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
JPH0159871B2 (en)
JPH0223156B2 (en)
EP0030814B1 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4654210A (en) Methods and compositions using complement fixing monoclonal antibody to human T cells
JPH0160230B2 (en)
US4709015A (en) Monoclonal antibody to human suppressor T cells
US4624925A (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigens, antibody, and methods
US4614720A (en) Hybrid cell line for producing monoclonal antibody to a human T cell antigen, antibody, and methods
US4806349A (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
US4691010A (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, and methods
US4725543A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human suppressor T cells, antibody and methods
HRP940824A2 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
US4784951A (en) Hybrid cell line for producing monoclonal antibody to antigen on human thymocytes
US4806629A (en) Monoclonal antibody to a human thymocyte antigen
US4828995A (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody, and methods
CA1183468A (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods
HRP940822A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods
HRP940823A2 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody
HRP940809A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human t cells, antibody and methods
HRP940790A2 (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19991203

Year of fee payment: 20

B1PR Patent granted
PB20 Patent expired after termination of 20 years

Effective date: 20001203