HRP940822A2 - Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods - Google Patents

Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods Download PDF

Info

Publication number
HRP940822A2
HRP940822A2 HRP-3065/80A HRP940822A HRP940822A2 HR P940822 A2 HRP940822 A2 HR P940822A2 HR P940822 A HRP940822 A HR P940822A HR P940822 A2 HRP940822 A2 HR P940822A2
Authority
HR
Croatia
Prior art keywords
cells
normal
normal human
antibodies
thymocytes
Prior art date
Application number
HRP-3065/80A
Other languages
Croatian (hr)
Inventor
Patrick Chung-Shi Kung
Gideon Goldstein
Original Assignee
Ortho Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU3065/80A external-priority patent/YU45068B/en
Application filed by Ortho Pharma Corp filed Critical Ortho Pharma Corp
Priority to HRP-3065/80A priority Critical patent/HRP940822B1/en
Publication of HRP940822A2 publication Critical patent/HRP940822A2/en
Publication of HRP940822B1 publication Critical patent/HRP940822B1/en

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

Područje izuma Field of invention

Ovaj izum se odnosi općenito na novu postavu hibridnih stanica i još točnije na postave hibridnih stanica za proizvodnju komplementarno-vežućih monoklonskih antitijela za antigen pronađen na normalnim humanim supresor T stanicama, na tako proizvedena antitijela, . kao i na terapeutske i dijagnostičke postupke i pripravke koji koriste ta antitijela. This invention relates generally to a novel set of hybrid cells and more specifically to sets of hybrid cells for the production of complement-binding monoclonal antibodies to an antigen found on normal human suppressor T cells, to the antibodies thus produced. as well as to therapeutic and diagnostic procedures and preparations that use these antibodies.

Stanje tehnike State of the art

Spajanje stanica mijeloma miša sa stanicama slezene imuniziranih miševa koje su proveli Kohler i Milstein 1975 (Nature 256, 495-497 (1975)) pokazalo je po prvi puta da je moguće dobiti kontinuiranu postavu za dobivanje homogenih (takozvanih "monoklonskih") antitijela. Od ovog početnog rada, mnogo je napora bilo usmjereno na dobivanje različitih hibridnih stanica (nazvanih "hibridomi") i na upotrebu antitijela dobivenih od tih hibridoma za različita znanstvena istraživanja. Pogledaj, na primjer, bilješke u Current Topics in Microbiology and Immunology, Volume 81, "Lymphocyte Hybridomas", F. Melchers, M. Potter, N. Warner, Editors, Springer-Verlag, 1978; C. J. Barnstable, i sur., Cell, 14, 9-20 (May 1978); P. Parham i W. F. Bodmer, Nature 276. 397-399 (November, 1978); Handbook of Experimental Immunology, Third Edition, volume 2, D. M. Wier, Editor, Blackwell, 1978, Chapter 25; te Chemical and Engineering News. January 1, 1979, 15-17. Ovi članci istovremeno ukazuju na uspjehe i teškoće pokušaja dobivanja monoklonskih antitijela iz hibridoma. lako je opća tehnika postupka dobro razumljiva, pojavljuju se mnoge poteškoće i zahtijevaju se varijacije za svaki pojedinačni slučaj. U stvari, ne postoji jamstvo u toku pripreme dobivanja zadanog hibridoma, da će biti dobiven baš željeni hibridom, da će i ako bude dobiven proizvoditi antitijela ili da će tako dobivena antitijela imati željena svojstva. Stupanj uspjeha je velikim dijelom ovisan o tipu upotrijebljenog antigena i o tehnici selekcije upotrijebljenoj za izolaciju željenog hibridoma. The fusion of murine myeloma cells with spleen cells of immunized mice by Kohler and Milstein 1975 (Nature 256, 495-497 (1975)) demonstrated for the first time that it is possible to obtain a continuous set for obtaining homogeneous (so-called "monoclonal") antibodies. Since this initial work, many efforts have been focused on obtaining different hybrid cells (called "hybridomas") and on using the antibodies obtained from these hybridomas for various scientific research. See, for example, the notes in Current Topics in Microbiology and Immunology, Volume 81, "Lymphocyte Hybridomas", F. Melchers, M. Potter, N. Warner, Editors, Springer-Verlag, 1978; C.J. Barnstable, et al., Cell, 14, 9-20 (May 1978); P. Parham and W. F. Bodmer, Nature 276, 397-399 (November, 1978); Handbook of Experimental Immunology, Third Edition, volume 2, D. M. Wier, Editor, Blackwell, 1978, Chapter 25; and Chemical and Engineering News. January 1, 1979, 15-17. These articles simultaneously indicate the successes and difficulties of attempts to obtain monoclonal antibodies from hybridomas. easily the general technique of the procedure is well understood, many difficulties arise and variations are required for each individual case. In fact, there is no guarantee during the preparation of obtaining a given hybridoma, that it will be obtained with the desired hybrid, that even if it is obtained, it will produce antibodies or that the antibodies thus obtained will have the desired properties. The degree of success is largely dependent on the type of antigen used and the selection technique used to isolate the desired hybridoma.

Pokušaj dobivanja monoklonskih antitijela za antigene na površini stanica humanih limfocita je objavljen u svega nekoliko slučajeva. Pogledaj na primjer, Current Topics in Microbiology and Immunology, ibid, 66-69 i 164-169. Antigeni upotrijebljeni u ovim primjerima su iz staničnih postava kultiviranih stanica humane limfoblastoidne leukemije i humane kronične limfocitične leukemije. Mnogi dobiveni hibridomi proizvode antitijela za različite antigene na svim humanim stanicama. Niti jedan od hibridoma ne proizvodi antitijela za ranije definiranu grupu humanih limfocita. U novije vrijeme, navedeni autori ovog izuma i ostali se bave pripremom i testiranjem hibridoma koji proizvode antitijela za određene antigene T-stanica. Pogledaj, na primjer, Reinherz, E. L. i sur., J. :Immunol. 123, 1312-1317 (1979); Reinherz, E. L. i sur. Proc. Natl. Acad. Sci. 76.4061-4065 (1979), te Kung, P.C. i sur., Science, 206,347-349 (1979). Attempts to obtain monoclonal antibodies for antigens on the cell surface of human lymphocytes have been published in only a few cases. See, for example, Current Topics in Microbiology and Immunology, ibid, 66-69 and 164-169. The antigens used in these examples are from cell lines of cultured cells of human lymphoblastoid leukemia and human chronic lymphocytic leukemia. Many resulting hybridomas produce antibodies to different antigens on all human cells. None of the hybridomas produce antibodies to the previously defined group of human lymphocytes. More recently, the inventors of this invention and others have been preparing and testing hybridomas that produce antibodies to specific T-cell antigens. See, for example, Reinherz, E. L. et al., J. :Immunol. 123, 1312-1317 (1979); Reinherz, E.L. et al. Proc. Natl. Acad. Sci. 76, 4061-4065 (1979), and Kung, P.C. et al., Science, 206, 347-349 (1979).

Razumljivo je da postoje dva osnovna razreda limfocita koji se nalaze u imuno sistemu ljudi i životinja. Prvi od njih (stanice dobivene iz timusa ili T stanice) se diferenciraju u timusu iz hematopoetskih stanica. Dok se nalaze unutar timusa, diferencirajuće stanice se nazivaju "timociti". Zrele T stanice izlaze iz timusa i cirkuliraju između tkiva limfe i krvotoka. Ove T stanice tvore veliki dio reciklirajućih malih limfocita. One imaju imunološku specifičnost i direktno su uključene u stanični-posredovane imuno odgovore (poput odbijanja dijeljenja) kao izvršne stanice. Premda T stanice ne, izlučuju humoralna antitijela, one su ponekad neophodne za izlučivanje tih antitijela pomoću druge grupe limfocita, što je objašnjeno u daljnjem tekstu. Neke T stanice igraju regulacijsku ulogu u drugim aspektima imuno sistema. Mehanizam djelovanja ovakvih staničnih kooperacija još nije u potpunosti objašnjen. Druga grupa limfocita (stanice dobivene iz koštane srži ili B stanice) su one stanice koje izlučuju antitijela. One se također razvijaju iz hematopoetskog aparata, ali njihova diferencijacija nije određena timusom. Kod ptica, one se diferenciraju u organu analognom timusu, nazvanom Bursa of Fabricius. U sisavaca, naravno, još nije otkriven ekvivalentni organ i za sada se smatra da se B stanice diferenciraju unutar koštane srži. It is understandable that there are two basic classes of lymphocytes found in the immune system of humans and animals. The first of them (thymus-derived cells or T cells) differentiate in the thymus from hematopoietic cells. While located within the thymus, the differentiating cells are called "thymocytes". Mature T cells leave the thymus and circulate between lymph tissue and the bloodstream. These T cells form a large part of the recycling small lymphocytes. They have immunological specificity and are directly involved in cell-mediated immune responses (such as rejection of division) as executive cells. Although T cells do not secrete humoral antibodies, they are sometimes necessary for the secretion of these antibodies by another group of lymphocytes, which is explained below. Some T cells play a regulatory role in other aspects of the immune system. The mechanism of action of such cellular cooperation has not yet been fully explained. Another group of lymphocytes (cells derived from the bone marrow or B cells) are those cells that secrete antibodies. They also develop from the hematopoietic apparatus, but their differentiation is not determined by the thymus. In birds, they differentiate into an organ analogous to the thymus, called the Bursa of Fabricius. In mammals, of course, no equivalent organ has yet been discovered, and for now it is thought that B cells differentiate within the bone marrow.

Sada postaje jasno da se, T stanice dijele u najmanje nekoliko sub-tipova, nazvanih T stanice “pomagači”, "supresori" i "ubojice", koje imaju ulogu podupiranja reakcije, odnosno ugušivanja reakcije, odnosno ubijanja (lize) stranih stanica. Ovi sub-tipovi su dobro poznati za zatvorene sisteme, ali su tek odnedavno opisani za humane sisteme. Pogledaj na primjer, R. L. Evans, i sur., Journal of Experimental Medicine, Volume 145, 221-232, 1977; te Chees i S.F. Schlossman "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens", u “Contemporay Topics in Immunobiology". O. Stutman, Editor, Plenum Press, 1977, Volume 7, 363-379. Now it becomes clear that T cells are divided into at least several sub-types, called "helper", "suppressor" and "killer" T cells, which have the role of supporting the reaction, that is, suppressing the reaction, that is, killing (lysing) foreign cells. These subtypes are well known for closed systems, but have only recently been described for human systems. See, for example, R.L. Evans, et al., Journal of Experimental Medicine, Volume 145, 221-232, 1977; and Chees and S.F. Schlossman "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens", in "Contemporary Topics in Immunobiology". O. Stutman, Editor, Plenum Press, 1977, Volume 7, 363-379.

Mogućnost identifikacije ili onemogućavanja vrsta i pod-vrsta T stanica je važno za dijagnosticiranje ili liječenje različitih imunoregulatornih poremećaja i stanja. Na primjer, određene leukemije i limfomi imaju različite prognoze ovisno o tome da li su B staničnog ili T stanično podrijetla. Tako, procjena prognoze, bolesti ovisi o mogućnosti razlikovanja ovih dviju vrsta limfocita. Pogledaj, na primjer, A. C. Aisenberg i J. C. Long., The American Journal of Medicine, 58:300 (March, 1975); D. Belpome, i sur., u "Immunologilac Diagnosis of Leukemias and Lymphomas", S. Thierfelder, i sur. eds. Springer, Heidelberg, 1977, 33-45; te D. Belpomme, i sur. British Journal of Haematology, 1978, 38, 85. The ability to identify or disable T cell types and subtypes is important for diagnosing or treating various immunoregulatory disorders and conditions. For example, certain leukemias and lymphomas have different prognoses depending on whether they are of B cell or T cell origin. Thus, the assessment of the prognosis of the disease depends on the ability to differentiate between these two types of lymphocytes. See, for example, A.C. Aisenberg and J.C. Long., The American Journal of Medicine, 58:300 (March, 1975); D. Belpome, et al., in "Immunologist Diagnosis of Leukemias and Lymphomas", S. Thierfelder, et al. eds. Springer, Heidelberg, 1977, 33-45; and D. Belpomme, et al. British Journal of Haematology, 1978, 38, 85.

Određena bolesna stanja (npr. juvenilni reumatoidni artritis, maligna oboljenja, te agamaglobulinemija) su povezana s disbalansom sub-tipova T stanica. Općenito se smatra, da su autoimune bolesti povezane s viškom T stanica "pomagača" ili manjkom određenih T stanica ”supresora”, dok je agamaglobulinemija povezana s viškom određenih T stanica "supresora" ili manjkom T stanica "pomagača". Maligna oboljenja su povezana s viškom T stanica "supresora". Kod određenih leukemija, višak T stanica je proizveden u zaustavljenom stadiju razvoja. Dijagnoza može tako ovisiti o sposobnosti otkrivanja ovog disbalansa ili viška i o određivanju koji je razvojni stadij u višku. Pogledaj, na primjer, J. Kersey, i sur. "Surface Markers Define Human Lymfoid Malignancies with Differing Prognoses" u Haematology and Blood Transfusion, Volume 20, Springer-Verlag, 1977, 17-24, te odgovarajuće zabilješke u njima; te E. L. Reinherz, i sur., J. Clin. Invest., 64, 392-397 (1979). Certain disease states (eg juvenile rheumatoid arthritis, malignant diseases, and agammaglobulinemia) are associated with an imbalance of T cell subtypes. It is generally believed that autoimmune diseases are associated with an excess of "helper" T cells or a deficiency of certain "suppressor" T cells, while agammaglobulinemia is associated with an excess of certain "suppressor" T cells or a deficiency of "helper" T cells. Malignant diseases are associated with an excess of "suppressor" T cells. In certain leukemias, excess T cells are produced at an arrested stage of development. The diagnosis may therefore depend on the ability to detect this imbalance or excess and on determining which developmental stage is in the excess. See, for example, J. Kersey, et al. "Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses" in Hematology and Blood Transfusion, Volume 20, Springer-Verlag, 1977, 17-24, and corresponding notes therein; and E.L. Reinherz, et al., J. Clin. Invest., 64, 392-397 (1979).

Stečena agamaglobulinemija, bolest u kojoj se ne stvara imuno globulin, sadrži najmanje dva različita tipa. Kod tipa I dolazi do greške u produciranju imuno globulina zbog viška T stanica supresora, dok je tipa II razlog u manjku T stanica pomagača. U oba tipa, nema poremećaja ili manjka pacijentovih B stanica, limfocita koji su odgovorni za izlučivanje antitijela; naravno, ove B stanice su ili suprimirane ili nisu “potpomognute”, što rezultira velikim manjkom ili odsutnošću produkcije imuno globulina. Tip stečene agamagfobulinemije može tako biti određen testiranjem na višak T stanica supresora ili odsutnost T stanica pomagača. Acquired agammaglobulinemia, a disease in which immune globulin is not produced, contains at least two different types. In type I there is an error in the production of immunoglobulins due to an excess of suppressor T cells, while in type II the reason is a lack of helper T cells. In both types, there is no disorder or deficiency of the patient's B cells, the lymphocytes responsible for the secretion of antibodies; of course, these B cells are either suppressed or not "helped", resulting in greatly reduced or absent immunoglobulin production. The type of acquired agammagfobulinemia can thus be determined by testing for an excess of suppressor T cells or the absence of helper T cells.

S terapeutske strane, postoje neke sugestije, koje još nisu dokazane, da primjena antitijela protiv subtipa T stanica koje su u višku može povoljno djelovati na autoimunu bolest ili maligno oboljenje. Na primjer, T stanice pomagači raka (određene kutane T stanice limfoma i određene T stanice limfoblastičnih leukemija) mogu biti tretirane s antitijelima za antigen T stanica pomagača. Liječenje autoimune bolesti uzrokovane viškom stanica pomagača, također može biti provedeno na sličan način. Liječenje bolesti (npr., malignih oboljenja ili stečene agamaglobulinemije tipa 1) zahvaljujući višku T stanica supresora, može biti provedeno primjenom antitijela za antigen T stanica supresora. On the therapeutic side, there are some suggestions, which have not yet been proven, that the use of antibodies against the subtype of T cells that are in excess may have a beneficial effect on autoimmune disease or malignancy. For example, cancer helper T cells (certain cutaneous lymphoma T cells and certain lymphoblastic leukemia T cells) can be treated with antibodies to a helper T cell antigen. Treatment of an autoimmune disease caused by an excess of helper cells can also be carried out in a similar way. Treatment of diseases (eg, malignant diseases or acquired agammaglobulinemia type 1) due to an excess of suppressor T cells can be carried out by the use of antibodies for suppressor T cell antigens.

Antiserum protiv cijelog razreda humanih T stanica (također zvanih antihumani timocit globulin ili ATG) je korisno terapeutski primijenjen kod pacijenata koji transplatacijom primaju organe. Zbog toga što stanično-posredovani imuno odgovor (mehanizam kojim su transplatanti odbačeni) ovisi o T stanicama, promjena antitijela na T stanice sprečava ili usporava taj proces odbacivanja. Pogledaj, na primjer, Cosimi i sur., "Randomized Clinical Trial of ATG in Cadaver Renal Allgraft Recipients: Importance of T Cell Monitoringn, Surgey 40:155-163 (1976) i u tome sadržane zabilješke. Antiserum against an entire class of human T cells (also called antihuman thymocyte globulin or ATG) has been usefully administered therapeutically in organ transplant patients. Because the cell-mediated immune response (the mechanism by which transplants are rejected) depends on T cells, changing antibodies to T cells prevents or slows down this rejection process. See, for example, Cosimi et al., "Randomized Clinical Trial of ATG in Cadaver Renal Allograft Recipients: Importance of T Cell Monitoringn", Surgery 40:155-163 (1976) and the notes contained therein.

Identifikacija i supresija pod-razreda i razreda humanih T stanica je ranije bila izvršavana upotrebom spontanih antitijela ili selektivnih antiseruma za humane T stanice dobivene imunizacijom životinja s humanim T stanicama, uzimanjem krvi tih životinja da bi se dobio serum, te adsdorpcijom antiseruma s (na primjer) autolognim ali ne alogenetskim T stanicama da bi se uklonila antitijela s nepoželjnom reaktivnosti. Priprema ovih antiseruma je izuzetno teška, posebno prilikom adsorpcije i pročišćavanja. Čak i adsorbirani i pročišćeni anrtiserumi sadrže onečišćenja uz željena antitijela, zbog nekoliko razloga. Prvo, serum sadrži milijune molekula antitijela čak i prije imunizacije T stanica. Drugo, imunizacija uzrokuje proizvodnju antitijela protiv različitih antigena na injiciranim humanim T stanicama. Ne postoji selektivna proizvodnja antitijela protiv samo jednog antigena. Treće, titar specfičnih antitijela dobivenih ovim postupcima je obično prilično nizak, (npr., inaktivacija pri razrjeđenju većem od 1:100) te je odnos specfičnih prema nespecfičnim antitijelima manji od 1/106. Identification and suppression of sub-classes and classes of human T cells has previously been accomplished using spontaneous antibodies or selective antisera to human T cells obtained by immunizing animals with human T cells, bled these animals to obtain serum, and adsorptive antisera with (for example ) with autologous but not allogeneic T cells to remove antibodies with undesirable reactivity. The preparation of these antisera is extremely difficult, especially during adsorption and purification. Even adsorbed and purified antisera contain contaminants in addition to the desired antibodies, for several reasons. First, serum contains millions of antibody molecules even before T cell immunization. Second, immunization causes the production of antibodies against various antigens on the injected human T cells. There is no selective production of antibodies against only one antigen. Third, the titer of specific antibodies obtained by these methods is usually quite low, (eg, inactivation at dilutions greater than 1:100) and the ratio of specific to non-specific antibodies is less than 1/106.

Pogledaj, na primjer, ranije navedene bilješke Chess i Schlossman-a ( na stranicama 365 i dalje) i Chemical and Engineering News naveden ranije, u kojima su opisani nedostaci ranijih postupaka s antiserumima i prednosti monoklonskih antitijela. See, for example, the notes by Chess and Schlossman (pages 365 et seq.) cited earlier and Chemical and Engineering News cited earlier, which describe the disadvantages of earlier antisera procedures and the advantages of monoclonal antibodies.

Sažetak izuma Summary of the invention

Pronađen je novi hibridom (označen kao OKT8) koji može proizvoditi nova monoklonska antitijela protiv antigena pronađenog na normalnim humanim supresorskim T stanicama (oko 30% normalnih humanih perifernih T stanica) i na oko 80% normalnih humanih timocita, ali ne na B stanicama ili beznačajnim stanicama i na manje od 2% stanica koštane srži. Kao dodatak, monoklonska antitijela OKT8 vežu komplement. A new hybridoma (designated OKT8) has been found that can produce novel monoclonal antibodies against an antigen found on normal human suppressor T cells (about 30% of normal human peripheral T cells) and on about 80% of normal human thymocytes, but not on B cells or insignificant cells and on less than 2% of bone marrow cells. In addition, OKT8 monoclonal antibodies bind complement.

Tako proizvedeno antitijelo je monospecifično za jedan determinant na aproksimativno 30% normalnih humanih T stanica i gotovo ne sadrži neki drugi anti-humani imuno globulin, što je suprotno antiserumima dobivenim ranijim postupcima (kojima je svojstveno da su onečišćeni antitijelima reaktivnim prema brojnim humanim antigenima) i monoklonskim tijelima dobivenim ranijim postupcima (koja nisu monospecifična za antigen humanih supresor T stanica. Nadalje, taj hibridom se može kultivirati tako da proizvodi antitijela bez . da bude neophodno imunizirati i ubijati životinje, nakon čega je slijedila adsorpcija i pročišćavanje koji su bili neophodni za dobivanje nečistih antiseruma po ranijim postupcima. The antibody thus produced is monospecific for one determinant on approximately 30% of normal human T cells and almost does not contain any other anti-human immunoglobulin, which is contrary to the antisera obtained by earlier procedures (which are characterized by the fact that they are contaminated with antibodies reactive to numerous human antigens) and with monoclonal bodies obtained by earlier procedures (which are not monospecific for the human suppressor T cell antigen. Furthermore, this hybridoma can be cultured to produce antibodies without the need to immunize and kill the animals, followed by the adsorption and purification necessary to obtain impure antisera according to earlier procedures.

U skladu s tim je jedan predmet ovog izuma da osigura hibridome koji proizvode antitijela protiv antigena pronađenih na normalnim T stanicama supresorima. Accordingly, it is one object of the present invention to provide hybridomas that produce antibodies against antigens found on normal suppressor T cells.

Idući zadatak prikazanog izuma je da osigura postupke za pripremu ovih hibridoma. A further task of the present invention is to provide methods for the preparation of these hybridomas.

Idući predmet prikazanog izuma je da osigura homogena antitijela protiv antigena pronađenih na normalnim humanim T stanicama supresorima. A further object of the present invention is to provide homogeneous antibodies against antigens found on normal human suppressor T cells.

Idući predmet prikazanog izuma je da osigura postupke za liječenje ili dijagnosticiranje bolesti ili za identifikaciju sub-razreda T stanica koji sadrži to antitijelo. A further object of the present invention is to provide methods for treating or diagnosing a disease or for identifying a sub-class of T cells that contains that antibody.

Ostali predmeti i prednosti izuma će postati jasni iz ispitivanja prikazane objave. Other objects and advantages of the invention will become apparent from an examination of the present disclosure.

Na zadovoljstvo, ovim izumom je osiguran novi hibridom koji proizvodi novo antitijelo za antigen pronađen na normalnim T stanicama supresorima, zatim antitijelo samo, te dijagnostički i terapeutski postupci koji koriste antitijelo. Hibridom je pripremljen korištenjem postupka Milstein and Kohler-a. Nakon imunizacije miševa s normalnim humanim timocitima, stanice slezene imuniziranih miševa su spojene sa stanicama mijeloma miša i rezultirajući hibridomi su podvrgnuti ispitivanju za one iz supernatanta koji sadrži antitijela koja daju selektivno vezivanje na normalnu rozetu pozitivnih T stanica i/ili timocita. Željeni hibridomi su odmah zatim klonirani i karakterizirani. Kao rezultat, dobiven je hibridom koji proizvodi antitijela (označena kao ORT8) protiv antigena na normalnim humanim T stanicama supresorima (oko 30% normalnih perifernih T stanica). Ne samo da ova antitijela reagiraju s oko 30% normalnih T stanica, već također reagiraju s oko 80% normalnih humanih timocita i s manje od 2% stanica koštane srži i ne reagiraju s B stanicama ili nevažnim stanicama. Happily, this invention provides a novel hybridoma that produces a novel antibody to an antigen found on normal suppressor T cells, then the antibody itself, and diagnostic and therapeutic procedures using the antibody. The hybridoma was prepared using the procedure of Milstein and Kohler. After immunization of mice with normal human thymocytes, spleen cells from the immunized mice were fused with murine myeloma cells and the resulting hybridomas were assayed for those from the supernatant containing antibodies that selectively bind to normal rosette positive T cells and/or thymocytes. The desired hybridomas were immediately cloned and characterized. As a result, it was obtained by a hybrid that produces antibodies (designated as ORT8) against antigens on normal human suppressor T cells (about 30% of normal peripheral T cells). Not only do these antibodies react with about 30% of normal T cells, but they also react with about 80% of normal human thymocytes and less than 2% of bone marrow cells and do not react with B cells or nonessential cells.

Sa stanovišta poteškoća koje su se pokazale u ranijim ispitivanjima i sa stanovišta nedostatka uspjeha upotrebom malignih staničnih postava kao antigena, iznenađujuće je da prikazani postupak daje željeni hibridom. Treba naglasiti da nepredvidljivost pripreme staničnih hibrida ne dozvoljava ekstrapolacije jednog antigena ili staničnog sistema na drugi. U stvari, prijavitelji ovog izuma su otkrili da je upotreba T stanica malignog staničnog postava ili antigena, potpuno neuspješna. In view of the difficulties shown in earlier trials and in view of the lack of success using malignant cell lines as antigens, it is surprising that the procedure presented yields the desired hybridoma. It should be emphasized that the unpredictability of the preparation of cell hybrids does not allow extrapolation of one antigen or cell system to another. In fact, applicants of the present invention have discovered that the use of T cells of a malignant cell line or antigen is completely unsuccessful.

I prikazani hibridom i pomoću njega proizvedena antitijela su ovdje identificarani oznakom "OKT8", tako da to bude jasno u tekstu. Navedeni hibridom je odložen 18. rujna 1979. godine na American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852 i dobio je ATCC broj CRL 8014. Both the displayed hybrid and the antibodies produced using it are identified here with the designation "OKT8", so that this is clear in the text. Said hybrid was deposited on September 18, 1979 at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852 and assigned ATCC number CRL 8014.

Priprema i svojstva hibridoma i rezultirajućih antitijela će biti razumljivije iz bilješki slijedećih opisa i Primjera. The preparation and properties of the hybridomas and the resulting antibodies will be more readily understood from the notes of the following descriptions and Examples.

Detaljni opis izuma Detailed description of the invention

Postupak pripreme hibridoma općenito sadrži slijedeće korake: The hybridoma preparation process generally includes the following steps:

A. Imunizaciju miševa s normalnim humanim timocitima. lako je pronađeno da je najpovoljnije upotrijebiti ženke CAF1 miševa, razmatra se i upotreba ostalih sojeva. Imunizacijski raspored i koncentracija timocita treba biti takva da proizvodi korisne količine splenocita. Tri četrnaest dnevna intervala sa 2 x 107 stanica/miš/injekcija u 0.2 ml fosfatno puferirane fiziološke otopine se pokazalo vrlo učinkovitim. A. Immunization of mice with normal human thymocytes. it was easily found that it was most advantageous to use female CAF1 mice, the use of other strains was also considered. The immunization schedule and concentration of thymocytes should be such that it produces useful amounts of splenocytes. Three fourteen day intervals with 2 x 107 cells/mouse/injection in 0.2 ml of phosphate buffered saline proved to be very effective.

B. Vađenje slezene iz imuniziranog miša i pravljenje suspenzije slezene u odgovarajućem mediju. Dovoljan je oko jedan mililitar medija po slezeni. Ove eksperimentalne tehnike su dobro poznate. B. Extracting the spleen from the immunized mouse and making a suspension of the spleen in the appropriate medium. About one milliliter of medium per spleen is sufficient. These experimental techniques are well known.

C. Spajanje suspendiranih stanica slezene sa stanicama mijeloma miša iz prikladne stanične postave upotrebom prikladnog promotora fuzije. Povoljan odnos je oko 5 stanica slezene po stanici mijeloma. Ukupni volumen od oko 0.5 - 1.0 ml fuzijskog medija je odgovarajući za oko 108 splenocita. Poznate su i stoje na raspolaganju mnoge stanične postave mijeloma miševa, uglavnom iz različitih depozita poput Salk Institute Cell Distribution Center, La Jolla, CA. Upotrijebljena stanična postava treba po mogućnosti biti takozvanog "na lijekove rezistentnog" tipa, tako da nespojene stanice mijeloma ne prežive u selektivnom mediju, dok će hibridomi preživjeti. Najčešći je razred 8-azagvanidin rezistentna stanična postava, kojoj nedostaje enzim hipoksantin gvanidin fosforibosil transferaza i zbog toga neće biti podržan od HAT (hipoksantin, aminopterin i timidin) medija. Također je općenito povoljno da upotrijebljena stanična postava mijeloma, bude takozvanog “ne-sekrecijskog” tipa, tako da sama ne proizvodi antitijela iako se mogu upotrijebiti i sekrecijski tipovi. U određenim slučajevima, naravno, mogu se preferirati sekrecijske postave mijeloma. Premda je preferirani fuzijski promotor polietilen glikol prosječne molekularne težine od oko 1000 do oko 4000 (komercijalno je raspoloživ kao PEG 1000, itd.), mogu se upotrijebiti i ostali fuzijski promotori poznati u struci. C. Fusion of suspended spleen cells with mouse myeloma cells from an appropriate cell line using an appropriate fusion promoter. A favorable ratio is about 5 spleen cells per myeloma cell. The total volume of about 0.5 - 1.0 ml of fusion medium is suitable for about 108 splenocytes. Many murine myeloma cell lines are known and available, mostly from various repositories such as the Salk Institute Cell Distribution Center, La Jolla, CA. The cell line used should preferably be of the so-called "drug-resistant" type, so that unfused myeloma cells do not survive in the selective medium, while hybridomas will. The most common class is the 8-azaguanidine-resistant cell line, which lacks the enzyme hypoxanthine guanidine phosphoribosyl transferase and therefore will not be supported by HAT (hypoxanthine, aminopterin, and thymidine) media. It is also generally favorable that the myeloma cell line used is of the so-called "non-secretory" type, so that it does not produce antibodies on its own, although secretory types can also be used. In certain cases, of course, secretory myeloma formations may be preferred. Although the preferred fusion promoter is polyethylene glycol having an average molecular weight of about 1000 to about 4000 (commercially available as PEG 1000, etc.), other fusion promoters known in the art may be used.

D. Razrjeđivanje i uzgajanje kulture u odijeljenim spremnicima, smjese nespojenih stanica slezene, nespojenih stanica mijeloma, te spojenih stanica u selektivnom mediju koji neće podržavati nespojene stanice mijeloma tokom vremena dovoljnog da omogući ugibanje nespojenih stanica (oko tjedan dana). Razrjeđivanje može biti limitirajućeg tipa tako da se volumen razrjeđivača statistički proračuna tako da se izolira određeni broj stanica (npr. 1-4) u svakom odijeljenom spremniku (npr. u svakoj posudici mikrotitarske ploče). Medij treba biti onaj (npr. HAT medij) koji ne podržava rezistentne nespojene stanične postave mijeloma (npr. 8-azogvanidin rezistentne). Tako te stanice mijeloma ugibaju. Zbog toga što nespojene stanice slezene nisu maligne, one imaju samo određeni broj generacija. Tako se, nakon određenog vremena (oko jednog tjedna) ove nespojene stanice slezene prestaju reproducirati. Spojene stanice, s druge strane, nastavljaju reprodukciju zbog toga što imaju maligna svojstva ishodnog mijeloma i sposobnost preživljavanja u selektivnom mediju naslijeđenu od stanica slezene. D. Diluting and growing a culture in separate containers of a mixture of unfused spleen cells, unfused myeloma cells, and fused cells in a selective medium that will not support unfused myeloma cells for a time sufficient to allow death of the unfused cells (about a week). The dilution can be of the limiting type so that the volume of the diluent is statistically calculated to isolate a certain number of cells (eg 1-4) in each separate container (eg in each well of the microtiter plate). The medium should be one (eg HAT medium) that does not support resistant non-adherent myeloma cell lines (eg 8-azoguanidine resistant). That's how myeloma cells die. Because unfused spleen cells are not malignant, they only have a certain number of generations. Thus, after a certain time (about one week) these unconnected spleen cells stop reproducing. Adherent cells, on the other hand, continue to reproduce because they have the malignant properties of the primary myeloma and the ability to survive in the selective medium inherited from the spleen cells.

E. Procjenjivanje supernatanta u svakom spremniku (posudici) koji sadrži hibridome na prisutnost antitijela na E rosette pozitivne pročišćene humane T stanice ili timocite. E. Evaluating the supernatant in each container (dish) containing hybridomas for the presence of antibodies to E rosette positive purified human T cells or thymocytes.

F. Selekciju (npr., ograničavanjem razrjeđivanja) i kloniranje hibridoma koji proizvode željeno antitijelo. F. Selection (eg, by limiting dilution) and cloning of hybridomas that produce the desired antibody.

Jednom kada se željeni hibridom izabere i klonira, rezultirajuća antitijela se mogu proizvoditi na jedan ili više načina. Najčišće monoklonsko antitijelo se proizvodi in vitro kultiviranjem željenog hibridoma u prikladnom mediju tokom priklanog vremena trajanja, nakon čega slijedi otkrivanje željenog antitijela iz supernatanta. Prikladni medij i prikladno vrijeme trajanja je poznato ili se može odrediti. Ova in vitro tehnika daje u osnovi monospecifična monoklonska antitijela, u osnovi bez ostali specifičnih antihumanih imuno globulina. Postoji mali broj ostalih imuno globulina koji su prisutni jer medij sadrži xenogenetski serum (npr. fetalni serum). Naravno ovaj in vitro postupak može proizvoditi nedovoljnu količinu ili koncentraciju antitijela za određene potrebe jer je koncentracija monoklonskih antitijela oko 50 μg/ml. Once the desired hybridoma is selected and cloned, the resulting antibodies can be produced in one or more ways. The purest monoclonal antibody is produced in vitro by culturing the desired hybridoma in a suitable medium for a suitable period of time, followed by detection of the desired antibody from the supernatant. A suitable medium and suitable duration is known or can be determined. This in vitro technique gives basically monospecific monoclonal antibodies, basically without other specific antihuman immune globulins. There are a small number of other immune globulins that are present because the medium contains xenogenetic serum (eg fetal serum). Of course, this in vitro procedure can produce an insufficient amount or concentration of antibodies for certain needs, because the concentration of monoclonal antibodies is around 50 μg/ml.

Da bi se proizvela mnogo veća koncentracija malo manje čistih monoklonskih antitijela, željeni hibridom može biti injiciran u miševe, povoljno je u singenetske ili semi-singenetske miševe. Hibridomi će uzrokovati formiranje tumora koji izlučuju antitijela nakon određenog inkubacijskog vremena što će rezultirati visokom koncentracijom željenog antitijela (oko 5-20 mg/ml) u krvotoku i peritonealnom ekskudatu (ascites) domaćina. Premda taj domaćin ima normalna antitijela u svojem krvotoku i ascitesu, koncentracija tih normalnih antitijela je svega oko 5% koncentracije monoklonskih antitijela. Nadalje, zbog toga što ta normalna antitijela nisu antihumana u svojoj specifičnosti, monoklonska antitijela dobivena iz skupljenog ascitesa ili iz seruma su u osnovi oslobođena bilo kojeg kontaminirajućeg antihumanog imuno globulina. Ovo monoklonsko antitijelo je višeg titra (aktivno je pri razrijeđenju 1:50 000 ili više) i odnosa specifičnog prema nespecfičnom imuno globulinu (oko 1/20). Imuno globulini proizvedeni ugradnjom malih lanaca mijeloma su nespecifični, "nonsense" peptidi koji jedino razrjeđuju monoklonska antitijela bez smanjivanja njihove specifičnosti. To produce a much higher concentration of slightly less pure monoclonal antibodies, the desired hybridoma can be injected into mice, preferably syngenetic or semi-syngenetic mice. Hybridomas will cause the formation of tumors that secrete antibodies after a certain incubation time, which will result in a high concentration of the desired antibody (about 5-20 mg/ml) in the bloodstream and peritoneal exudate (ascites) of the host. Although this host has normal antibodies in his bloodstream and ascites, the concentration of these normal antibodies is only about 5% of the concentration of monoclonal antibodies. Furthermore, because these normal antibodies are not antihuman in their specificity, monoclonal antibodies obtained from pooled ascites or from serum are essentially free of any contaminating antihuman immunoglobulin. This monoclonal antibody has a higher titer (it is active at a dilution of 1:50,000 or more) and a ratio of specific to non-specific immunoglobulin (about 1/20). Immunoglobulins produced by incorporation of myeloma small chains are non-specific, "nonsense" peptides that only dilute monoclonal antibodies without reducing their specificity.

Primjer I Examples

Proizvodnja Monoklonskih Antitijela Production of Monoclonal Antibodies

A. Imunizacija i somatska stanična hibridizacija A. Immunization and somatic cell hybridization

Ženke CAF1 miševa (Jackson Laboratories; 6-8 tjedana stare) se imuniziraju intraperitonealno s 2 x 107 humanih timocita u 0.2 ml fosfatno puferirane fiziološke otopine u 14 dnevnim intervalima. Četiri dana nakon treće imunizacije, izvade se slezene te se načini jedinstvena stanična suspenzija protiskivanjem tkiva kroz čelično sito. Female CAF1 mice (Jackson Laboratories; 6-8 weeks old) are immunized intraperitoneally with 2 x 107 human thymocytes in 0.2 ml of phosphate-buffered saline at 14-day intervals. Four days after the third immunization, the spleens are removed and a unique cell suspension is made by pressing the tissue through a steel sieve.

Spajanje stanica se provede prema postupku kojeg su razvili Kohler i Milstein. 1 x 108 slenocita se spoji u 0.5 ml fuzijskog medija koji sadrži u 35% polietilen glikola (PEG 1000) i 5% dimetilsulfoksida u RPMI 1640 mediju (Gibco, Grand Island, NY) s 2 x 107 P3X63Ag87Ul stanica mijeloma dobivenih od Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. Te stanice mijeloma izlučuju IgG1 K malene lance. Cell fusion is performed according to the procedure developed by Kohler and Milstein. 1 x 108 slenocytes were combined in 0.5 ml of fusion medium containing 35% polyethylene glycol (PEG 1000) and 5% dimethylsulfoxide in RPMI 1640 medium (Gibco, Grand Island, NY) with 2 x 107 P3X63Ag87Ul myeloma cells obtained from Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. These myeloma cells secrete IgG1 K small chains.

B. Selekcija i rast Hibridoma B. Selection and growth of Hybridomas

Nakon stanične fuzije, stanice se kultiviraju u HAT mediju (hipoksantin; aminopterin i timidin) na 37°C sa 5° CO2 u vlažnoj atmosferi. Nekoliko tjedana kasnije, 40 do 100 μl supernatanta iz kulture koja sadrži hibridome se doda peleti 106 perifernih limfocita odijeljenih u E rosette pozitivne (E+) i E rosette negativne (E-) populacije, koje su pripremljene iz krvi zdravih ljudi kako je to opisao Mendes (J. Immunol. 111:860, 1973). Detekcija mišjih hibridomskih antitijela koja se vežu na ove stanice je određena indirektno pomoću imunofluorescencije. Stanice inkubirane s kulturom supernatanta su obilježene s . fluorescentnim prevučenim-anti-mišjim IgG (G/M FITC) (Meloy Labaratories, Springfleld, VA; F/p = 2.5) i fluorescentne antitijelo-presvučene stanice se odmah zatim analiziraju na Citofluorografu FC200/4800A (Ortho Instruments, Westwood, MA) kako je to opisano u Primjeru III. Kulture hibridoma koje sadrže antitijela koja specfično reagiraju s E+ limfocitima (T stanice) i/ili timocitima su selektirane i dva puta klonirane uz postupak ograničenog razrjeđivanja u prisutnosti stanica hranitelja. Odmah iza toga, klonovi se prenesu intraperitonealno injiciranjem 1 x 107 stanica zadanog klona (volumena 0.2 ml) u CAF1 miševe pomoću 2,6,10, 14-tetrametilpentadekana od Aldrich Chemical Company pod imenom Pristine. Maligni ascites iz ovih miševa se zatim upotrijebi za karakterizaciju limfocita kako je to opisano u Primjeru II. Za prikazana hibridna antitijela OKT8 je uobičajenim postupkom pokazano da su IgG2a sub-razred. After cell fusion, the cells are cultured in HAT medium (hypoxanthine; aminopterin and thymidine) at 37°C with 5° CO2 in a humidified atmosphere. Several weeks later, 40 to 100 μl of the supernatant from the culture containing the hybridomas is added to a pellet of 106 peripheral lymphocytes separated into E rosette positive (E+) and E rosette negative (E-) populations, which were prepared from the blood of healthy people as described by Mendes (J. Immunol. 111:860, 1973). Detection of murine hybridoma antibodies binding to these cells was determined indirectly by immunofluorescence. Cells incubated with culture supernatant are marked with . fluorescent-coated-anti-mouse IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/p = 2.5) and fluorescent antibody-coated cells were immediately analyzed on an FC200/4800A Cytofluorograph (Ortho Instruments, Westwood, MA) as described in Example III. Cultures of hybridomas containing antibodies that specifically react with E+ lymphocytes (T cells) and/or thymocytes were selected and cloned twice using a limiting dilution procedure in the presence of host cells. Immediately thereafter, the clones were transferred intraperitoneally by injecting 1 x 10 7 cells of the given clone (volume 0.2 ml) into CAF1 mice using 2,6,10,14-tetramethylpentadecane from Aldrich Chemical Company under the name Pristine. Malignant ascites from these mice is then used to characterize lymphocytes as described in Example II. The presented OKT8 hybrid antibodies were shown to be of the IgG2a sub-class by the usual procedure.

Primjer II Example II

Karakterizacija OKT8 reaktivnosti Characterization of OKT8 reactivity

A. Izolacija populacije limfocita A. Isolation of the lymphocyte population

Humane mononuklearne stanice iz periferne krvi su izolirane iz zdravih dobrovoljnih davatelja (15-40 godina) pomoću Ficoll-Hypac gradiranog centrifugiranja (Farmacia Fine Chemicals, Piscataway, NJ) pomoću tehnike Boyum, Scand. J. Clin. Lab. Invest. 21 (Suppl. 97): 77, 1968. Nefrakcionirane mononuklearne stanice su odijeljene na površinske Ig+ (B) i Ig- (T plus Null) populacije pomoću Sephadex G-200 anti-F (ab')2 kromatografije na koloni kako su to već ranije opisali Chess i suradnici, J. Immunol. 113:1113 (1974). T stanice se otkriju pomoću E rossetinga Ig- populacije s 5% eritrocita ovce (mikrobiol. Associates, Bethesda, MD). Smjesa se položi preko Ficoll-Hypaque i otkrivene E+ pelete se tretiraju s 0.155M NH4Cl (10 ml po stanici). Tako dobivena populacija T stanica je <2% EAC rosette pozitivna i >95% E rosette negativna što je određeno standardnim postupcima. Dodatno, sakupljeno je non-rosetting Ig- (Null stanice) iz Ficoll-ijeve unutrašnje strane. Ova posljednja populacija je bila <5% E+ i <2% slg+. Površina Ig+ (B) populacije je dobivena iz Sephadex G-200 kolone uz eluaciju s normalnim humanim gamma globulinom kako je to već ranije opisano. Ova populacija je >95% površinski Ig+ i <5% E+. Human peripheral blood mononuclear cells were isolated from healthy volunteer donors (15-40 years) by Ficoll-Hypac graded centrifugation (Farmacia Fine Chemicals, Piscataway, NJ) using the technique of Boyum, Scand. J. Clin. Lab. Invest. 21 (Suppl. 97): 77, 1968. Unfractionated mononuclear cells were separated into surface Ig+ (B) and Ig- (T plus Null) populations by Sephadex G-200 anti-F (ab')2 column chromatography as previously described by Chess et al., J. Immunol. 113:1113 (1974). T cells are detected by E rossetting of the Ig- population with 5% sheep erythrocytes (Microbiol. Associates, Bethesda, MD). The mixture is spread over Ficoll-Hypaque and the exposed E+ pellets are treated with 0.155M NH 4 Cl (10 ml per cell). The resulting population of T cells is <2% EAC rosette positive and >95% E rosette negative as determined by standard procedures. Additionally, non-rosetting Ig- (Null cells) were collected from the inside of Ficoll. This latter population was <5% E+ and <2% slg+. The surface of the Ig+ (B) population was obtained from a Sephadex G-200 column eluting with normal human gamma globulin as previously described. This population is >95% surface Ig+ and <5% E+.

Normalne humane stanice koštane srži su dobivene iz posteriornih ilijačnih vrhova normalnih humanih dobrovoljnih davatelja aspiracijom pomoću igle. Normal human bone marrow cells were obtained from the posterior iliac crests of normal human volunteer donors by needle aspiration.

B. Izolacija Timocita B. Isolation of thymocytes

Normalna humana žlijezda timus je dobivena iz pacijenta starosti od dva mjeseca do 14 godina koji se podvrgava korektivnoj kardijalnoj operaciji. Svježe dobiveni dijelovi žlijezde timusa se odmah smjeste u 5%-tni fetalni teleći serum u mediju 199 (Gibco), fino se usitne kliještima i škarama te se odmah pripremi stanična suspenzija pritiskanjem kroz čelično sito. Stanice se zatim polože na Ficoll-Hypaque, zavrte se i isperu kako je to opisano u dijelu A. Tako dobiveni timociti su bili >95% životni i >90% E rosette pozitivni. A normal human thymus gland was obtained from a patient aged two months to 14 years undergoing corrective cardiac surgery. The freshly obtained parts of the thymus gland are immediately placed in 5% fetal calf serum in medium 199 (Gibco), finely chopped with forceps and scissors, and a cell suspension is immediately prepared by pressing through a steel sieve. Cells are then plated on Ficoll-Hypaque, spun and washed as described in part A. The resulting thymocytes were >95% viable and >90% E rosette positive.

C. Stanične linije T podrijetla i T stanice akutne limfoblastične leukemije C. Cell lines of T origin and T cells of acute lymphoblastic leukemia

T stanične linije CEM, HSB-2 i MOLT-4 su dobivene od Dr. H. Lazarus (Sidney Farber Cancer Institute, Boston, MA). Leukemične stanice su dobivene od 25 pacijenata s dijagnozom T stanični ALL. Ti pojedinačni tumori su prije toga određeni kao T staničnog podrijetla prema njihovom spontanom rosette formiranju s eritrocitima ovce (>20% E+) i prema reaktivnosti s T staničnim specifičnim heteroantiserumom anti-HTL (B.K.) te A99, na ranije opisan način. Tumorska populacija je krio-konzervirana na -196°C s tekućim dušikom uz 10% DMSO i 20% AB humanog seruma do površinskih karakterizacija. Sve populacije tumora koje su analizirane su više od 90% zamrznute po Wright-Giemsa morfologiji citocentrifugalnih preparata. T cell lines CEM, HSB-2 and MOLT-4 were obtained from Dr. H. Lazarus (Sidney Farber Cancer Institute, Boston, MA). Leukemic cells were obtained from 25 patients diagnosed with T cell ALL. These individual tumors were previously determined to be of T cell origin by their spontaneous rosette formation with sheep erythrocytes (>20% E+) and by reactivity with the T cell specific heteroantiserum anti-HTL (B.K.) and A99, as previously described. The tumor population was cryopreserved at -196°C with liquid nitrogen with 10% DMSO and 20% AB human serum until surface characterization. All tumor populations that were analyzed were more than 90% frozen by Wright-Giemsa morphology of cytocentrifugal preparations.

Primjer III Example III

Citofluorografska analiza i stanično odijeljivanje Cytofluorographic analysis and cell division

Citofluorografska analiza monoklonskih antitijela sa cijelom staničnom populacijom je provedena imunofluorescencijom s fluoroscein-povezanim antimišjim IgG (G/M FITC) (Meloy Labaratories) korištenjem Cytofluorografa FC200/4800A (Ortho Instruments). Ukratko, 1 x 106 stanica se tretira s 0.15 ml OKT5 uz razrijeđenje 1:500, inkubira se na 4°C tokom 30 minuta i dva puta ispere. Stanice se zatim stave u reakciju s 0.15 ml razrijeđenja 1:40 G/M FITC na 4°C tokom 30 minuta, centrifugiraju se i isperu tri puta. Stanice se zatim analiziraju na Citofluorografu i snimi se intenzitet fluorescencije po stanici. Cytofluorographic analysis of monoclonal antibodies with whole cell populations was performed by immunofluorescence with fluoroscein-conjugated anti-mouse IgG (G/M FITC) (Meloy Laboratories) using a Cytofluorograph FC200/4800A (Ortho Instruments). Briefly, 1 x 106 cells are treated with 0.15 ml of OKT5 at a dilution of 1:500, incubated at 4°C for 30 minutes and washed twice. The cells are then reacted with 0.15 ml of a 1:40 G/M FITC dilution at 4°C for 30 minutes, centrifuged and washed three times. The cells are then analyzed on a Cytofluorograph and the fluorescence intensity per cell is recorded.

Slični uzorak reaktivnosti je vidljiv i pri razrijeđenju 1:10 000, ali daljnje razrjeđivanje uzrokuje gubitak reaktivnosti. Podloga je dobivena zamjenom 0.15 ml alikvota 1:500 ascitesa iz CAF1 miša intraperitonealno injiciranog s ne-producirajućim hibridnim klonom. A similar reactivity pattern is seen at 1:10,000 dilution, but further dilution causes loss of reactivity. The medium was obtained by replacing a 0.15 ml aliquot of 1:500 ascites from a CAF1 mouse intraperitoneally injected with a non-producing hybrid clone.

U ispitivanjima koja sadržavaju antitijela i komplementarno posredovanu limfolizu, timociti i periferne T stanice su kultivirane preko noći slijedeći selektivnu lizu i zatim neposredno nakon toga analizu na Citofluorografu. In assays involving antibody and complement-mediated lympholysis, thymocytes and peripheral T cells were cultured overnight followed by selective lysis and then directly analyzed on the Cytofluorograph.

Primjer IV Example IV

Liza limfoidne populacije s monoklonskim antitijelima i komplementom Lymphoid population lysis with monoclonal antibodies and complement

40 x 106 perifernih T stanica ili timocita se smjesti u 15 ml plastične cijevi (Falcon, Oxnard, CA). Stanične pelete se inkubiraju s 0.8 cc OKT3, OKT4, OKT8 ili S normalnim ascitesom razrijeđenim 1:200 u PBS-u, resuspendiraju se i inkubiraju na 20°C tokom 60 minuta. Neposredno nakon toga, doda se 0.2 cc svježeg komplementa zeca u populaciju tretiranu antitijelima, resuspendira se i dalje inkubira na 37°C u vodenoj kupelji uz mućkanje tokom 60 minuta. Na kraju tog vremena, stanice se spuste i vidljive stanice se prebroje pomoću Tryptan plavila. Nakon brojenja, stanice se isperu još dva puta u 5% FCS i smjeste se u konačni medij [RPMI 1640 (Grand Island Biological Company, Grand Island, NY koji sadrži 20% AB+ humanog seruma, 1 % penicilin-streptomicina, 200mM L-glutamina, 25mM HEPES pufera i 0.5% natrijevog bikarbonata] te se inkubira preko noći u vlažnoj atmosferi s 5% CO2 na 37°C. 40 x 10 6 peripheral T cells or thymocytes are placed in a 15 ml plastic tube (Falcon, Oxnard, CA). Cell pellets are incubated with 0.8 cc OKT3, OKT4, OKT8 or S normal ascites diluted 1:200 in PBS, resuspended and incubated at 20°C for 60 minutes. Immediately afterwards, 0.2 cc of fresh rabbit complement was added to the antibody-treated population, resuspended and further incubated at 37°C in a water bath with shaking for 60 minutes. At the end of this time, cells are pelleted and visible cells are counted using Tryptan blue. After counting, cells are washed two more times in 5% FCS and placed in final medium [RPMI 1640 (Grand Island Biological Company, Grand Island, NY containing 20% AB+ human serum, 1% penicillin-streptomycin, 200mM L-glutamine , 25mM HEPES buffer and 0.5% sodium bicarbonate] and incubated overnight in a humid atmosphere with 5% CO2 at 37°C.

Kratki opis crteža Brief description of the drawing

Slika 1 prikazuje uzorak fluorescencije dobiven pomoću Cytofluorografa nakon reakcije normalnih humanih timocita s OKT6 i ostalim monoklonskim antitijelima pri razrijeđenju 1:500 i G/M FITC. Podloga fluorescencije je dobivena inkubacijom svake populacije s razrijeđenjem 1:500 ascitesa dobivenog iz miša injiciranog s ne-producirajućim klonom. Figure 1 shows the fluorescence pattern obtained with the Cytofluorograph after the reaction of normal human thymocytes with OKT6 and other monoclonal antibodies at a dilution of 1:500 and G/M FITC. A fluorescence background was obtained by incubating each population with a 1:500 dilution of ascites obtained from a mouse injected with a non-producing clone.

Slika 2 prikazuje stadije diferencijacije u timusu kod ljudi. Figure 2 shows the stages of differentiation in the human thymus.

Produkcija hibridoma i produkcija i karakterizacija rezultirajućih monoklonskih antitijela je provođena na način opisan u Primjerima. lako je velika količina prikazanih antitijela pripremljena injiciranjem prikazanih hibridoma intraperitonealno u miševe i sakupljanjem malignih ascitesa, jasno je da hibridomi mogu biti kultivirani in vitro dobro poznatim postupcima u stuci i da antitijela mogu biti uklonjena iz supernatanta. Production of hybridomas and production and characterization of the resulting monoclonal antibodies was carried out as described in the Examples. easily a large amount of the shown antibodies is prepared by injecting the shown hybridomas intraperitoneally into mice and collecting malignant ascites, it is clear that the hybridomas can be cultured in vitro by well-known procedures in the art and that the antibodies can be removed from the supernatant.

Tabela 1 prikazuje reaktivnost OKT6, OKT8, OKT9 i 0KT10 sa različitim humanim limfoidnim staničnim populacijama. OKT8 monoklonsko antitijelo je reaktivno s aproksimativno 30% normalnih humanih T stanica, s aproksimativno 80% normalnih humanih timocita, s manje od 2% stanica koštane srži i nije reaktivno s B stanicama i nevažnim stanicama. Ovaj uzorak reaktivnosti je jedan test pomoću kojega OKT8 antitijelo može biti otkriveno i razlikovano od ostalih antitijela. Table 1 shows the reactivity of OKT6, OKT8, OKT9 and 0KT10 with different human lymphoid cell populations. The OKT8 monoclonal antibody is reactive with approximately 30% of normal human T cells, with approximately 80% of normal human thymocytes, with less than 2% of bone marrow cells, and is not reactive with B cells and non-essential cells. This reactivity pattern is one test by which the OKT8 antibody can be detected and distinguished from other antibodies.

Slika 1 prikazuje tipičnu sliku fluorescencije dobivenu na Cytofluorografu nakon reakcije suspenzije normalnih humanih timocita s razrijeđenjem 1:500 OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 i G/M FITC. Slične slike reaktivnosti su vidljive s 12 dodatnih. normalnih humanih populacija timocita koje su testirane. Kao što je prikazano, postoje značajne razlike i u postotku reaktivnosti i intenzitetu fluorescencije za svako od tih monoklonskih antitijela. Na primjer, OKT9 reagira s aproksimativno 10% timocita s manjim intenzitetom fluorescencije dok OKT5, OKT6, OKT8 i 0KT10 reagiraju s aproksimativno 70% timocita s višim intenzitetom fluorescencije. OKT4 koji reagira s 75% timocita je intermedijer između OKT9 i monoklonskih antitijela koja daju sliku jačeg intenziteta fluorescencije. Dodatno, Slika 1 prikazuje da je aproksimativno 15% timocita moguće otkriti s OKT3 indirektnom imunofluorescencijom. Nije prikazan OKT1 čija slika reaktivnosti je gotovo jednaka OKT3 na timocitima. Slika reaktivnosti sa Slike 1 je još jedan test pomoću kojeg se prikazana antitijela OKT8 mogu otkriti i razlikovati od ostalih antitijela. Figure 1 shows a typical fluorescence image obtained on a Cytofluorograph after the reaction of a suspension of normal human thymocytes with a 1:500 dilution of OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, 0KT10 and G/M FITC. Similar reactivity patterns are seen with 12 additional. of normal human thymocyte populations that were tested. As shown, there are significant differences in both percent reactivity and fluorescence intensity for each of these monoclonal antibodies. For example, OKT9 reacts with approximately 10% of thymocytes with lower fluorescence intensity while OKT5, OKT6, OKT8 and 0KT10 react with approximately 70% of thymocytes with higher fluorescence intensity. OKT4, which reacts with 75% of thymocytes, is an intermediate between OKT9 and monoclonal antibodies that give an image of stronger fluorescence intensity. Additionally, Figure 1 shows that approximately 15% of thymocytes are detectable with OKT3 indirect immunofluorescence. OKT1, whose pattern of reactivity is almost identical to OKT3 on thymocytes, is not shown. The reactivity image of Figure 1 is another test by which the shown OKT8 antibodies can be detected and distinguished from other antibodies.

Tabela 2 prikazuje raspodjelu antigena određenu pomoću različitih monoklonskih antitijela na humanim perifernim T stanicama i limfocitima što je određeno nizom eksperimentalnih liza opisanih u Primjeru IV. Zbog toga što su jedino OKT3, OKT4 i OKT8 komplementarno vezali monoklonska antitijela, ta tri su i korištena. Table 2 shows the distribution of antigens determined using different monoclonal antibodies on human peripheral T cells and lymphocytes as determined by a series of experimental lyses described in Example IV. Because only OKT3, OKT4 and OKT8 bound complementary monoclonal antibodies, those three were used.

Kao što pokazuje Tabela 2A, cijela stanična T populacija reagira s OKT3 dok OKT4, OKT5 i OKT8 reagiraju sa 60%, 25% i 34% T stanica. Liza sa OKT4 i komplementom, smanjuje ukupni broj od 62% i specifično briše OKT4+ populaciju. Dodatno, postotak OKT5+ i OKT8+ stanica raste i nema učinka na apsolutni broj OKT5+ i OKT8+ stanica. Ovi eksperimenti upućuju da je OKT4+ različit od OKT5+ i OKT8+ populacija. Iduća potpora toj tvrdnji je dobivena lizom T stanica s OKT8 komplementom. As shown in Table 2A, the entire T cell population reacts with OKT3 while OKT4, OKT5 and OKT8 react with 60%, 25% and 34% of T cells. Lysis with OKT4 and complement reduces the total number by 62% and specifically deletes the OKT4+ population. Additionally, the percentage of OKT5+ and OKT8+ cells increases and there is no effect on the absolute number of OKT5+ and OKT8+ cells. These experiments suggest that OKT4+ is distinct from OKT5+ and OKT8+ populations. Further support for this claim was obtained by lysis of T cells with OKT8 complement.

U tom slučaju, postotak OKT4+ T stanica raste, apsolutni broj ostaje isti, te su OKT8+ i OKT5+ populacije uklonjene. Nadalje, ovi rezultati ukazuju da je OKT8+ populacija recipročna OKT4+ populaciji i da sadržava potpuni OKT5+ stanični izbor. In this case, the percentage of OKT4+ T cells increases, the absolute number remains the same, and the OKT8+ and OKT5+ populations are removed. Furthermore, these results indicate that the OKT8+ population is reciprocal to the OKT4+ population and contains a complete OKT5+ cell selection.

Slična ispitivanja sa populacijom humanih timocita daje različite rezultate. Kao što to prikazuje Tabela 2B, aproksimativno 75% timocita je bilo OKT4+ ili OKT8+. Nadalje, nakon lize s ili OKT4 ili OKT8, preostaje svega 25% timocita. Većina preostalih timocita je bilo reaktivno s OKT3, dok je samo manjina bila reaktivna s OKT6. Ovi pronalasci pokazuju da većina populacije humanih timocita nosi OKT4, OKT5, OKT6 i OKT8 površinske antigene na istoj stanici. Dodatno, Tabela 2 pokazuje da je nakon tretiranja s OKT8 ili OKT4 zabilježeno povećanje zrelih timocita koji nose OKT3 antigen. Tako, većina OKT3 reaktivnih timocita je već podijeljena u OKT4+ ili OKT8+ sub-grupe, dok je većina preostalih stanica nakon OKT4 ili OKT8 lize OKT3+. U slučaju da su OKT3+ sub-populacije i OKT4+ i OKT8+, tada liza s monoklonskim antitijelima treba ukloniti reaktivne timocite. Similar tests with a population of human thymocytes give different results. As shown in Table 2B, approximately 75% of thymocytes were OKT4+ or OKT8+. Furthermore, after lysis with either OKT4 or OKT8, only 25% of thymocytes remain. Most of the remaining thymocytes were reactive with OKT3, while only a minority was reactive with OKT6. These findings indicate that the majority of the human thymocyte population carries OKT4, OKT5, OKT6, and OKT8 surface antigens on the same cell. Additionally, Table 2 shows that after treatment with OKT8 or OKT4, an increase in mature thymocytes bearing the OKT3 antigen was recorded. Thus, most OKT3-reactive thymocytes are already divided into OKT4+ or OKT8+ sub-groups, while most remaining cells after OKT4 or OKT8 lysis are OKT3+. In case the OKT3+ subpopulations are both OKT4+ and OKT8+, then lysis with monoclonal antibodies should remove reactive thymocytes.

Da bi se nadalje odredio odnos OKT3 sub-populacije reaktivnih timocita prema ostalim monoklonskim antitijelima određene frakcije timocita, timociti su tretirani s OKT3 i komplementom te su preostale stanice zatim uspoređivane s netretiranom populacijom timocita. Kao što to prikazuje Tabela 2B, OKT3 i komplement uklanjaju 25% timocita. Nadalje, nema većeg gubitka OKT4, OKT5, OKT6 ili OKT8 reaktivne populacije. Ova otkrića sugeriraju da je velika većina timocita koja nosi OKT6 marker sadržana u OKT3- populaciji. Dodatno, sugerira se da su timociti koji simultano izlučuju antigene označene kao OKT4, OKT5 i OKT8, ograničeni na OKT3- populaciju. Treba također napomenuti da OKT9 reaktivna populacija timocita nije bila umanjena nakon tretiranja s OKT3 i komplementim nefrakcioniranih timocita, pokazujući tako da je OKT9+ sub-populacija uglavnom ograničena na OKT3- populaciju timocita. To further determine the relationship of the OKT3 sub-population of reactive thymocytes to other monoclonal antibodies of a certain thymocyte fraction, thymocytes were treated with OKT3 and complement and the remaining cells were then compared with the untreated thymocyte population. As shown in Table 2B, OKT3 and complement remove 25% of thymocytes. Furthermore, there is no major loss of the OKT4, OKT5, OKT6 or OKT8 reactive population. These findings suggest that the vast majority of thymocytes carrying the OKT6 marker are contained in the OKT3- population. Additionally, thymocytes that simultaneously secrete antigens labeled OKT4, OKT5, and OKT8 are suggested to be restricted to the OKT3 population. It should also be noted that the OKT9 reactive population of thymocytes was not reduced after treatment with OKT3 and complement of unfractionated thymocytes, thus showing that the OKT9+ sub-population is largely restricted to the OKT3- population of thymocytes.

Na osnovu ovih rezultata, moguće je opisati stadije razvoja humanih timocita u timusu. Kao što to pokazuje Slika 2, gotovo svi timociti nose OKT10 marker. Dodatno, timociti stječu u ranom stadiju razvoja OKT9 marker (Thy1 i Thy2). Ovaj stadij određuje manjinu timocita i iznosi oko 10% nefrakcionirane populacije. Neposredno zatim, humani timociti stječu jedinstveni timocit antigen koji je označen kao OKT6 i koji izlučuje OKT4, OKT5 i OKT8 (thy 4). Ova posljednja sub-populacija predstavlja većinu timocita i iznosi oko 70-80% populacije timocita. Daljnjim sazrijevanjem, timociti gube OKT6 reaktivnost, stječu OKT3 (te OKT1 ) reaktivnost te se dijele u OKT4+ i OKT5+/OKT8+ subgrupe (Thy7 i Thy 8). Na kraju, pokazuje se da kako se timociti izlučuju u periferni T stanični dio, gube OKT10 marker jer taj antigen nedostaje u gotovo svim perifernim T limfocitima. Moguća međustanja između ovih glavnih stanja razvoja timocita, označena su kao Thy3, Thy5 i Thy6 na Slici 2. Based on these results, it is possible to describe the stages of development of human thymocytes in the thymus. As shown in Figure 2, almost all thymocytes carry the OKT10 marker. Additionally, thymocytes acquire the OKT9 marker (Thy1 and Thy2) at an early stage of development. This stage determines the minority of thymocytes and amounts to about 10% of the unfractionated population. Immediately thereafter, human thymocytes acquire a unique thymocyte antigen designated as OKT6 and secreted by OKT4, OKT5, and OKT8 (thy 4). This last sub-population represents the majority of thymocytes and is about 70-80% of the thymocyte population. With further maturation, thymocytes lose OKT6 reactivity, acquire OKT3 (and OKT1) reactivity, and divide into OKT4+ and OKT5+/OKT8+ subgroups (Thy7 and Thy 8). Finally, it is shown that as thymocytes are secreted into the peripheral T cell compartment, they lose the OKT10 marker because this antigen is missing from almost all peripheral T lymphocytes. Possible intermediate states between these main states of thymocyte development are labeled Thy3, Thy5 and Thy6 in Figure 2.

Zbog toga što se smatra da akutna limfoblastčna leukemija T podrijetla potječe od nezrelih timocita, određen je odnos između stanica tumora pojedinaca s T-ALL i ovih opisanih stanja diferencijacije unutar timusa. Proučavano je dvadeset pet populacija tumorskih stanica iz pojedinaca s TALL i tri T stanične linije ranije proučavane s uobičajenim anti-T staničnim reagensima i E rosetiranjem. Kao što to prikazuje Tabela 3, većina T-ALL leukemijskih stanica je bilo reaktivno s ili samo OKT10 ili s OKT9 i OKT10 i nije reagiralo s ostalim monokonskim antitijelima. Tako, 15/25 proučavanih slučajeva pokazuje posjedovanje ranih timocitnih antigena (Stadij I). Because acute lymphoblastic leukemia of T origin is thought to originate from immature thymocytes, the relationship between tumor cells from individuals with T-ALL and these described differentiation states within the thymus has been determined. Twenty-five tumor cell populations from individuals with TALL and three T cell lines previously studied with common anti-T cell reagents and E rosetting were studied. As shown in Table 3, the majority of T-ALL leukemia cells were reactive with either OKT10 alone or with OKT9 and OKT10 and did not react with other monoclonal antibodies. Thus, 15/25 studied cases show possession of early thymocyte antigens (Stage I).

Suprotno tome, 5/25 slučajeva je bilo reaktivno s OKT6, sugerirajući derivaciju iz zrelije populacije timusa (Stadij II). Ova T-ALL grupa je po sebi heterogena s obzirom na OKT4, OKT8 i OKT9 reaktivnost kao što je to prikazano na Tabeli 3. Stanice iz 2/5 pacijenata imaju najviše zajedničkih timocitnih antigena uključujući OKT4, OKT6 i OKT8. Značajno je zabilježiti da OKT5 nije prisutan na samo ovih 5 Stadija II tumora, već je primijećen i kroz reaktivnost OKT8. Ovaj posljednji rezultat jasno pokazuje da OKT5 i OKT8 određuju različite antigene ili različite determinante na istom antigenu. Konačno, 1/25 tumora pacijenata dolazi iz populacije zrelih timocita (Stadij III) što je pokazano reaktivnošću s OKT3. Ovi pojedinačni slučajevi tumora, dodatno, su bili reaktivni s OKT5, OKT8 i OKT10. Od 25 analiziranih leukemijskih populacija, svega četiri tumora nije moglo biti jasno kategorizirano. Oni su bili pozitivni s OKT4 i OKT8, ali nisu bili pozitivni s OKT3 i OKT6 te je većina predstavljala prijelaz iz Thy4 i Thy7,8. Jedan od 25 slučajeva je predstavljao prijelaz iz Thy3 u Thy4 jer je imao OKT8 i OKT10 reaktivnost. In contrast, 5/25 cases were reactive with OKT6, suggesting derivation from a more mature thymic population (Stage II). This T-ALL group is inherently heterogeneous with respect to OKT4, OKT8 and OKT9 reactivity as shown in Table 3. Cells from 2/5 patients have the most common thymocyte antigens including OKT4, OKT6 and OKT8. It is significant to note that OKT5 is not only present in these 5 Stage II tumors, but was also observed through OKT8 reactivity. This last result clearly shows that OKT5 and OKT8 target different antigens or different determinants on the same antigen. Finally, 1/25 of patients' tumors originate from the mature thymocyte population (Stage III) as demonstrated by reactivity with OKT3. These individual tumor cases were additionally reactive with OKT5, OKT8, and OKT10. Out of 25 leukemic populations analyzed, only four tumors could not be clearly categorized. They were positive with OKT4 and OKT8, but not positive with OKT3 and OKT6, and the majority represented transition from Thy4 and Thy7,8. One of the 25 cases represented a transition from Thy3 to Thy4 because it had OKT8 and OKT10 reactivity.

T stanične postave dobivene iz T-ALL populacije tumora također predstavljaju stanice iz specifičnih stadija diferencijacije u timusu. Kao što to prikazuje Tabela 4, HSB je bio reaktivan isključivo s OKT9 I OKT10 i tako je podređivao populaciju tumora dobivenu iz Stadija 1. Suprotno tome, CEM je bio reaktivan s OKT4, OKT6, OKT8, OKT9 i OKT10 i pokazao se da potječe iz Stadija II timocita. Konačno, MOLT-4 izgleda da predstavlja leukemijsku transformaciju na stadiju između HSB-2 i CEM jer izlučuje OKT6, OKT8, OKT9 i OKT10. T cell lines derived from the T-ALL tumor population also represent cells from specific stages of differentiation in the thymus. As shown in Table 4, HSB was reactive exclusively with OKT9 and OKT10 and thus subsumed the tumor population obtained from Stage 1. In contrast, CEM was reactive with OKT4, OKT6, OKT8, OKT9 and OKT10 and was shown to originate from Stage II thymocytes. Finally, MOLT-4 appears to represent leukemic transformation at a stage between HSB-2 and CEM because it secretes OKT6, OKT8, OKT9, and OKT10.

Zbog toga što pacijenti s posljednjim stadijima (npr. Stadijem II) T stanične limfoblastične leukemije pokazuju duže vrijeme preživljavanja bolesti od onih sa Stadijem I ALL, upotreba OKT8 antitijela dozvoljava donošenje zaključka koji se odnosi na prognozu za zadanog pacijenta sa T-staničnim ALL. Tabela 5 prikazuje odnos između nivoa perifernih T stanica i izbora T stanica na različitim stadijima bolesti. Because patients with late-stage (eg, Stage II) T-cell lymphoblastic leukemia show longer disease survival than those with Stage I ALL, the use of the OKT8 antibody allows inference regarding prognosis for a given patient with T-cell ALL. Table 5 shows the relationship between peripheral T cell levels and T cell selection at different stages of the disease.

Ovi odnosi se mogu upotrijebiti u dijagnostičke svrhe (npr. za određivanje akutne infekcijske mononukleoze) analizom uzorka krvi pojedinca za kojeg se sumnja da boluje od nekih od navedenih stadija da bi se odredili nivoi T stanica i T staničnih izbora. Ovi odnosi se također mogu upotrijebiti u terapeutske svrhe tamo gdje je uzrok bolesnog stanja povećani nivo T staničnog izbora (npr. Tip 1 agamaglobulinemija). Za terapeutsku upotrebu, primjena odgovarajućeg monoklonskog antitijela pacijentu s povećanim T staničnim izborom će smanjiti ili ukloniti višak. These ratios can be used for diagnostic purposes (eg, to determine acute infectious mononucleosis) by analyzing a blood sample of an individual suspected of having some of the above stages to determine T cell levels and T cell selection. These relationships can also be used for therapeutic purposes where the cause of the disease state is an increased level of T cell selection (eg Type 1 agammaglobulinemia). For therapeutic use, administration of the appropriate monoclonal antibody to a patient with increased T cell selection will reduce or eliminate the excess.

Odnosi prikazani u Tabelama 2-5 su idući način na koji OKT8 antitijela mogu biti otkrivena i razlikovana od ostalih antitijela. The relationships shown in Tables 2-5 are another way in which OKT8 antibodies can be detected and distinguished from other antibodies.

Ostala monoklonska antitijela koja produciraju hibridome pripremljena od autora ovog izuma (označena kao OKTl, OKT3, OKT4 te OKT5) su opisana i zaštićena u . slijedećim U.S. patentnim prijavama: Sn 22,132, prijavljena 20.03.1979; SN 33,639 prijavljena 26.04.1979; SN 33,669 prijavljena 26.04.1979; SN 76,642 prijavljena 18.09.1979; te SN 82,515 prijavljena 09.10.1979. I ostala monoklonska antitijela koja produciraju hibridome i koja su pripremili isti autori (označena kao OKT6, OKT9 i OKT10) su opisana i zaštićena u U.S. patentnim prijavama prijavljenim pod nazivima: Other hybridoma-producing monoclonal antibodies prepared by the authors of this invention (designated as OKT1, OKT3, OKT4 and OKT5) are described and protected in . following the U.S. patent applications: Sn 22,132, filed on March 20, 1979; SN 33,639 reported on April 26, 1979; SN 33,669 reported on April 26, 1979; SN 76,642 reported on September 18, 1979; and SN 82,515 registered on October 9, 1979. Other hybridoma-producing monoclonal antibodies prepared by the same authors (designated OKT6, OKT9, and OKT10) have also been described and patented in U.S. Pat. patent applications registered under the names:

Hibridna stanična postava za proizvodnju monoklonskih antitijala na humani timocit antigen, antitijela i postupci; Hybrid cell setup for the production of monoclonal antibodies to human thymocyte antigen, antibodies and methods;

Hibridna stanična postava za proizvodnju monoklonskih antitijela na humani rani timocit antigen, antitijela i postupci; Hybrid cell setup for production of monoclonal antibodies to human early thymocyte antigen, antibodies and methods;

Hibridna stanična postava za proizvodnju monoklonskih antitijela na humani protimocit antigen, antitijela i postupci. Hybrid cell setup for the production of monoclonal antibodies to human antimyocyte antigen, antibodies and methods.

Ove prijave su i ovdje sadržane putem bilježaka. These applications are also contained here through notes.

Prema prikazanom izumu osiguran je hibridom sposoban za produkciju antitijela protiv antigena pronađenog u normalnim humanim T stanicama supresorima, postupak za produkciju tih hibridoma, monoklonska antitijela protiv antigena pronađenog u normalnim humanim T stanicama supresorima, postupci za produkciju antitijela te postupci i pripravci za liječenje ili dijagnosticiranje bolesti ili za identifikaciju T stanica ili sub-razreda timocita koji koriste ta antitijela. According to the presented invention, there is provided a hybrid capable of producing an antibody against an antigen found in normal human suppressor T cells, a process for the production of these hybridomas, a monoclonal antibody against an antigen found in a normal human suppressor T cell, methods for producing antibodies, and methods and preparations for treatment or diagnosis disease or to identify T cells or thymocyte subclasses that use these antibodies.

TABELA 1 TABLE 1

Reaktivnost monoklonskih antitijela na humanu limfoidnu populaciju Reactivity of monoclonal antibodies to human lymphoid population

[image] [image]

*Brojevi u zagradama predstavljaju broj testiranih uzoraka; % vrijednosti. *Numbers in parentheses represent the number of tested samples; % value.

TABELA 2 TABLE 2

razlike u raspodjeli antigena određene pomoću monoklonskih antitijela na humanim perifernim T differences in antigen distribution determined using monoclonal antibodies on human peripheral T

stanicama i timocitima cells and thymocytes

[image] [image]

* Netretirane populacije i populacije tretirane samo s komplementom nisu se mogle razlikovati na re-analizi. * Untreated populations and populations treated only with complement could not be distinguished on re-analysis.

Ne-specifične lize je bilo manje od <5% u svim slučajevima. Rezultati predstavljaju srednju vrijednost od 6 pokusa. Non-specific lysis was less than <5% in all cases. Results represent the mean of 6 experiments.

C1† = komplement C1† = complement

TABELA 3 TABLE 3

Značajke stanične površine kod akutne linfoblastične leukemije T-podrijetla Cell surface features in acute lymphoblastic leukemia of T-origin

[image] [image]

*Dodatna četiri tumora se nisu mogla lako kategorizirati u Stadije I-III. Pogledaj tekst za detalje njihove karakterizacije. *An additional four tumors could not be easily categorized into Stages I-III. See text for details of their characterization.

† Oznaka se odnosi na Sliku 2. † Notation refers to Figure 2.

++ Pozitivna (+) reaktivnost je određena kao >30% specifične fluorescencije iznad podloge dok je negativna reaktivnost (-) neraspoznatljiva od podloge suspenzije tumorskih stanica. ++ Positive (+) reactivity is defined as >30% specific fluorescence above the medium, while negative reactivity (-) is unrecognizable from the tumor cell suspension medium.

TABELA 4 TABLE 4

Reaktivnost s monoklonskim antitijelima Reactivity with monoclonal antibodies

[image] [image]

* Kriterij za - i + reaktivnost je isti kao u Tabeli 3. * The criterion for - and + reactivity is the same as in Table 3.

TABELA 5 TABLE 5

Nivoi perifernih T stanica kod bolesnih stanja Peripheral T cell levels in disease states

[image] [image]

N = unutar vremenskih granica N = within time limits

O = odsutnost O = absence

+ = iznad normale + = above normal

++ = znatno iznad normale ++ = significantly above normal

- = ispod normale - = below normal

-- = znatno ispod normale -- = significantly below normal

*ovi nivoi se vraćaju na normalu oko tjedan dana prije nestajanja kliničkih simptoma *these levels return to normal about a week before clinical symptoms disappear

Brojevi u zagradama označavaju broj ispitivanih pacijenata. The numbers in parentheses indicate the number of examined patients.

Premda je opisan samo jedan hibridom koji producira jedno monoklonsko antitijelo protiv humanog timocit antigena, podrazumijeva se da prikazani izum obuhvaća sva monoklonska antitijela koja pokazuju značajke opisane u ovom tekstu. Određeno je da prikazano antitijelo OKT8 pripada subklasi IgG2a, koja je jedna od četiri subklase IgG. Ove subklase imuno globulina se razlikuju od ostalih u tako zvanim "fiksnim" dijelovima, premda će antitijelo za specfičan antigen imati tako zvani "varijabilni" dio koji je funkcionalno jednak bez obzira na to kojoj subklasi imuao globulina pripada. To znači da monoklonsko antitijelo koje pokazuje ovdje opisane značajke može biti subklasa IgG1, IgG2a, IgG2b ili IgG3 ili klasa IgM, IgA ili ostalih poznatih Ig klasa. Razlike između ovih klasa ili subklasa neće utjecati na selektivnost reakcijskog uzorka antitijela, ali može utjecati na daljnje reakcije antitijela s ostalim materijalima, poput (na primjer) komplementa ili anti-mišjih antitijela. lako je navedeno antitijelo specifično IgG2a, važno je shvatiti da su antitijela koja imaju shemu reaktivnosti navedenu u ovom tekstu, uključena u predmet ovog izuma bez obzira na klasu ili subklasu imuno globulina kojoj pripadaju. Although only one hybridoma has been described that produces a monoclonal antibody against human thymocyte antigen, it is understood that the present invention encompasses all monoclonal antibodies that exhibit the features described herein. The OKT8 antibody shown was determined to belong to the IgG2a subclass, which is one of the four IgG subclasses. These immunoglobulin subclasses differ from others in so-called "fixed" parts, although an antibody for a specific antigen will have a so-called "variable" part that is functionally the same regardless of which immunoglobulin subclass it belongs to. This means that a monoclonal antibody that exhibits the features described here can be of the IgG1, IgG2a, IgG2b, or IgG3 subclass or of the IgM, IgA, or other known Ig classes. Differences between these classes or subclasses will not affect the selectivity of the reaction pattern of the antibody, but may affect further reactions of the antibody with other materials, such as (for example) complement or anti-mouse antibodies. easily the specified antibody is IgG2a specific, it is important to understand that antibodies having the reactivity scheme specified in this text are included in the subject of this invention regardless of the class or subclass of immunoglobulin to which they belong.

Nadalje, unutar dosega ovog izuma su uključeni postupci pripreme monoklonskih antitijela opisani već ranije, koji uključuju tehniku hibridoma što je opisano ovdje. Premda je ovdje prikazan svega jedan primjer hibridoma, podrazumijeva se da će stručnjaci iz struke moći slijedeći u ovom izumu opisane postupke imunizacije, fuzije i selekcije moći dobiti ostale hibridome sposobne za produkciju antitijela koja će imati značajke reaktivnosti opisane u ovom tekstu. Premda je hibridom produciran iz poznate stanične postave mišjeg mijeloma i stanica slezene iz poznatih vrsta miševa, ne može biti dalje identificiran osim po značajkama antitijela koja producira hibridom,te se smatra da hibridomi koji produciraju antitijela imaju značajke reaktivnosti ranije opisane i da su i one uključene unutar dosega ovog izuma, kao i postupci za dobivanje tih antitijela pomoću hibridoma. Furthermore, included within the scope of this invention are the methods of preparation of monoclonal antibodies described previously, which include the hybridoma technique described herein. Although only one example of a hybridoma is shown here, it is understood that those skilled in the art will be able to obtain other hybridomas capable of producing antibodies that will have the reactivity characteristics described in this text by following the immunization, fusion and selection procedures described in this invention. Although the hybridoma was produced from a known murine myeloma cell line and spleen cells from known species of mice, it cannot be further identified except by the antibody-producing features of the hybridoma, and the antibody-producing hybridomas are believed to have the reactivity features previously described and included. within the scope of this invention, as well as methods for obtaining these antibodies using hybridomas.

Idući aspekti izuma su postupci liječenja ili dijagnosticiranja bolesti u kojima imaju udio monoklonska antitijela OKT8 ili bilo koja druga monoklonska antitijela koja pokazuju ovdje navedeni uzorak reaktivnosti. Prikazano antitijelo se može upotrijebiti za otkrivanje i proučavanje diferencijacije unutar timusa kako je to prikazano na Slici 2. Nadalje, prikazana antitijela se mogu koristiti za dijagnosticiranje bolesnih stanja kako to prikazuje Tabela 5. Ovi postupci se mogu koristiti upotrebom OKT8 antitijela samih ili u kombinaciji s ostalim antitijelima (npr., OKT3-OKT10). Sheme reaktivnosti s antitijelima i T stanicama i izborom T stanica će omogućiti točnije otkrivanje određenih bolesnih stanja (npr. akutne infiekcijske mononukleoze) nego li je to bilo moguće upotrebom ranije poznatih postupaka. Further aspects of the invention are methods of treating or diagnosing diseases involving OKT8 monoclonal antibodies or any other monoclonal antibodies exhibiting the pattern of reactivity set forth herein. The disclosed antibody can be used to detect and study differentiation within the thymus as shown in Figure 2. Furthermore, the disclosed antibodies can be used to diagnose disease states as shown in Table 5. These methods can be used using OKT8 antibodies alone or in combination with other antibodies (eg, OKT3-OKT10). Antibody and T cell reactivity schemes and T cell selection will enable more accurate detection of certain disease states (eg, acute infectious mononucleosis) than was possible using previously known methods.

Liječenje bolesnih stanja (npr. akutne infekcijske mononukleoze ili malignih oboljenja poput Stadija II ALL) koja se manifestiraju viškom OKT8+ stanica može biti praćeno primjenom terapeutski učinkovitih doza OKT8 antitijela pacijentu. Selektivnom reakcijom s OKT8+ antigenom, učinkovita količina OKT8 antitijela će smanjiti višak OKT8+ stanica, ublažavajući tako učinke viška. Unutar dosega prikazanog izuma su također i dijagnostički i terapeutski pripravci koji sadrže učinkovite količine OKT8 antitijela u smjesi s dijagnostički ili farmaceutski prihvatljivim podlogama. Treatment of disease states (e.g. acute infectious mononucleosis or malignant diseases such as Stage II ALL) manifested by an excess of OKT8+ cells can be followed by administration of therapeutically effective doses of OKT8 antibodies to the patient. By selectively reacting with OKT8+ antigen, an effective amount of OKT8 antibody will reduce excess OKT8+ cells, thus mitigating the effects of the excess. Within the scope of the presented invention are also diagnostic and therapeutic preparations containing effective amounts of OKT8 antibodies in admixture with diagnostically or pharmaceutically acceptable media.

Claims (17)

1. Komplementarno-vežuće monoklonsko antitijelo iz razreda IgG, producirano pomoću hibridoma dobivenog fuzijom stanica postave mijeloma miša i stanica slezene iz miševa ranije imuniziranih s humanim timocitima, naznačen time, da antitijela: a) reagiraju s T stanicama supresorima (aproksimativno ih ima oko 30% među normalnim humanim T stanicama), ali ne s manje od 2% normalnih humanih stanica koštane srži i ne reagiraju s B stanicama i Nuli stanicama; b) pokazuju uzorak reaktivnosti prema normalnim humanim timocitima prikazan na Slici 1, reagirajući s oko 80% normalnih humanih timocita; c) pokazuju uzorak reaktivnosti prema perifernim T stanicama i timocitima prikazan u Tabeli 2; d) pokazuju uzorak reaktivnosti s T stanicama ALL stanja prikazan u Tabeli 3; e) reagiraju s CEM i MOLT-4 staničnim postavama, ali ne s HSB-2 staničnom postavom; te f) određuju T staničnu populaciju (OKT8+) koja je manja od normalnog nivoa kod primarne bilijarne ciroze i multiple skleroze, ali se ne pojavljuje ili je manja od normale u stanjima hiper IgE, viša je od normalnih nivoa kod akutne reakcije na cjepivo, znatno je iznad normale kod akutne infekcijske mononukleoze, potpuno je nema kod mijastenije gravis te je na normalnim nivoima u svim stadijima Hodgkinsonove bolesti i psorijaze.1. Complementary-binding monoclonal antibody of the IgG class, produced by means of a hybridoma obtained by the fusion of mouse myeloma cells and spleen cells from mice previously immunized with human thymocytes, indicated that the antibodies: a) react with suppressor T cells (approximately 30% of normal human T cells), but not less than 2% of normal human bone marrow cells and do not react with B cells and Null cells; b) show the pattern of reactivity towards normal human thymocytes shown in Figure 1, reacting with about 80% of normal human thymocytes; c) show the pattern of reactivity towards peripheral T cells and thymocytes shown in Table 2; d) show the pattern of reactivity with T cells of the ALL condition shown in Table 3; e) they react with CEM and MOLT-4 cell lines, but not with HSB-2 cell lines; you f) determine the T cell population (OKT8+) which is lower than normal levels in primary biliary cirrhosis and multiple sclerosis, but does not appear or is lower than normal in hyper IgE states, is higher than normal levels in acute vaccine reactions, is significantly it is above normal in acute infectious mononucleosis, is completely absent in myasthenia gravis and is at normal levels in all stages of Hodgkinson's disease and psoriasis. 2. Monoklonsko antitijelo, naznačeno time, da je producirano pomoću hibridoma koji ima značajke ATCC 8014.2. A monoclonal antibody, characterized in that it is produced by a hybridoma having the characteristics of ATCC 8014. 3. IgG komplementarno-vežući hibridom koji producira monoklonska antitijela i koji je formiran spajanjem stanica slezene miša ranije imuniziranog s humanim timocitima i stanica mijeloma miša, naznačen time, da antitijela: a) reagiraju s T stanicama supresorima (aproksimativno ih ima oko 30% među normalnim humanim T stanicama), ali ne s manje od 2% normalnih humanih stanica koštane srži i ne reagiraju s B stanicama i Nuli stanicama; b) pokazuju uzorak reaktivnosti prema normalnim humanim timocitima prikazan na Slici 1, reagirajući s oko 80% normalnih humanih timocita; c) pokazuju uzorak reaktivnosti prema perifernim T stanicama i timocitima prikazan u Tabeli 2; d) pokazuju uzorak reaktivnosti s T stanicama ALL stanja prikazan u Tabeli 3; e) reagiraju s CEM i MOLT-4 staničnim postavama, ali ne s HSB-2 staničnom postavom; te f) određuju T staničnu populaciju (OKT8+) koja je manja od normalnog nivoa kod primarne bilijarne ciroze i multiple skleroze, ali se ne pojavljuje ili je manja od normale u stanjima hiper IgE, viša je od normalnih nivoa kod akutne reakcije na cjepivo, znatno je iznad normale kod akutne infekcijske mononukleoze, potpuno je nema kod mijastenije gravis te je na normalnim nivoima u svim stadijima Hodgkinsonove bolesti i psorijaze.3. IgG complement-binding hybridoma that produces monoclonal antibodies and which was formed by fusing mouse spleen cells previously immunized with human thymocytes and mouse myeloma cells, characterized in that the antibodies: a) react with suppressor T cells (approximately 30% of normal human T cells), but not less than 2% of normal human bone marrow cells and do not react with B cells and Null cells; b) show the pattern of reactivity towards normal human thymocytes shown in Figure 1, reacting with about 80% of normal human thymocytes; c) show the pattern of reactivity towards peripheral T cells and thymocytes shown in Table 2; d) show the pattern of reactivity with T cells of the ALL condition shown in Table 3; e) they react with CEM and MOLT-4 cell lines, but not with HSB-2 cell lines; you f) determine the T cell population (OKT8+) which is lower than normal levels in primary biliary cirrhosis and multiple sclerosis, but does not appear or is lower than normal in hyper IgE states, is higher than normal levels in acute vaccine reactions, is significantly it is above normal in acute infectious mononucleosis, is completely absent in myasthenia gravis and is at normal levels in all stages of Hodgkinson's disease and psoriasis. 4. Hibridom, naznačen time, da ima identifikacijske značajke ATCC 8014.4. A hybridoma, characterized in that it has the identifying features of ATCC 8014. 5. Postupak pripreme komplementarno-vežućeg IgG monoklonskog antitijela koje: a) reagira s T stanicama supresorima (aproksimativno ih ima oko 30% među normalnim humanim T stanicama), ali ne s manje od 2% normalnih humanih stanica koštane srži i ne reagira s B stanicama i Nuli stanicama; b) pokazuje uzorak reaktivnosti prema normalnim humanim timocitima prikazan na Slici 1, reagirajući s oko 80% normalnih humanih timocita; c) pokazuje uzorak reaktivnosti prema perifernim T stanicama i timocitima prikazan u Tabeli 2; d) pokazuje uzorak reaktivnosti s T stanicama ALL stanja prikazan u Tabeli 3; e) reagira s CEM i MOLT-4 staničnim postavama, ali ne s HSB-2 staničnom postavom; te f) određuje T staničnu populaciju (OKT8+) koja je manja od normalnog nivoa kod primarne bilijarne ciroze i multiple skleroze, ali se ne pojavljuje ili je manja od normale u stanjima hiper IgE, viša je od normalnih nivoa kod akutne reakcije na cjepivo, znatno je iznad normale kod akutne infekcijske mononukleoze, potpuno je nema kod mijastenije gravis te je na normalnim nivoima u svim stadijima Hodgkinsonove bolesti i psorijaze, naznačen time, da sadrži korake: i) imunizacije miševa s humanim timocitima; ii) uklanjanja slezena iz spomenutih miševa i pravljenje suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene sa stanicama mijeloma u prisutnosti promotora spajanja; iv) razrijeđivanje i kultiviranje spojenih stanica u odijeljenim posudicama u mediju koji neće podržavati nespojene stanice mijeloma; v) evaluaciju supernatanta u svakoj posudici koja sadrži hibridom na prisutnost željenog antitijela; vi) selekciju i kloniranje hibridoma koji produciraju željeno antitijelo; te vii) otkrivanje antitijela iz supernatanta iznad spomenutih klonova.5. Preparation procedure of complement-binding IgG monoclonal antibody which: a) reacts with suppressor T cells (approximately 30% of normal human T cells), but not less than 2% of normal human bone marrow cells and does not react with B cells and Null cells; b) shows the pattern of reactivity towards normal human thymocytes shown in Figure 1, reacting with about 80% of normal human thymocytes; c) shows the pattern of reactivity towards peripheral T cells and thymocytes shown in Table 2; d) shows the pattern of reactivity with T cells of the ALL condition shown in Table 3; e) reacts with CEM and MOLT-4 cell lines, but not with HSB-2 cell lines; you f) determines the T cell population (OKT8+) which is lower than the normal level in primary biliary cirrhosis and multiple sclerosis, but does not appear or is lower than normal in hyper IgE states, is higher than normal levels in acute vaccine reactions, is significantly above normal in acute infectious mononucleosis, it is completely absent in myasthenia gravis and is at normal levels in all stages of Hodgkinson's disease and psoriasis, indicated by the fact that it contains steps: i) immunization of mice with human thymocytes; ii) removing spleens from said mice and making a suspension of spleen cells; iii) fusing said spleen cells with myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the confluent cells in separate dishes in a medium that will not support non-confluent myeloma cells; v) evaluation of the supernatant in each vial containing the hybridoma for the presence of the desired antibody; vi) selection and cloning of hybridomas that produce the desired antibody; you vii) detection of antibodies from the supernatant above the mentioned clones. 6. Postupak pripreme komplementarno-vežućeg IgG monoklonskog antitijela koje: a) reagira s T stanicama supresorima (aproksimativno ih ima oko 30% među normalnim humanim T stanicama), ali ne s manje od 2% normalnih humanih stanica koštane srži i ne reagira s B stanicama i Nuli stanicama; b) pokazuje uzorak reaktivnosti prema normalnim humanim timocitima prikazan na Slici 1, reagirajući s oko 80% normalnih humanih timocita; c) pokazuje uzorak reaktivnosti prema perifernim T stanicama i timocitima prikazan u Tabeli 2; d) pokazuje uzorak reaktivnosti s T stanicama ALL stanja prikazan u Tabeli 3; e) reagira s CEM i MOLT-4 staničnim postavama, ali ne s HSB-2 staničnom postavom; te f) određuje T staničnu populaciju (OKT8+) koja je manja od normalnog nivoa kod primarne bilijarne ciroze i multiple skleroze, ali se ne pojavljuje ili je manja od normale u stanjima hiper IgE, viša je od normalnih nivoa kod akutne reakcije na cjepivo, znatno je iznad normale kod akutne infekcijske mononukleoze, potpuno je nema kod mijastenije gravis te je na normalnim nivoima u svim stadijima Hodgkinsonove bolesti i psorijaze, naznačen time, da sadrži korake: i) imunizacije miševa s humanim timocitima; ii) uklanjanja slezena iz spomenutih miševa i pravljenje suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene sa stanicama mijeloma u prisutnosti promotora spajanja; iv) razrijeđivanje i kultiviranje spojenih stanica u odijeljenim posudicama u mediju koji neće podržavati nespojene stanice mijeloma; v) evaluaciju supernatanta u svakoj posudici koja sadrži hibridom na prisutnost željenog antitijela; vi) selekciju i kloniranje hibridoma koji produciraju željeno antitijelo; vii) otkrivanje antitijela iz supernatanta iznad spomenutih klonova; viii) prenošenje spomenutih klonova intraperitonealno u miševe; te ix) sakupljanje malignog ascitesa ili seruma spomenutih miševa.6. Preparation procedure of complement-binding IgG monoclonal antibody which: a) reacts with suppressor T cells (approximately 30% of normal human T cells), but not less than 2% of normal human bone marrow cells and does not react with B cells and Null cells; b) shows the pattern of reactivity towards normal human thymocytes shown in Figure 1, reacting with about 80% of normal human thymocytes; c) shows the pattern of reactivity towards peripheral T cells and thymocytes shown in Table 2; d) shows the pattern of reactivity with T cells of the ALL condition shown in Table 3; e) reacts with CEM and MOLT-4 cell lines, but not with HSB-2 cell lines; you f) determines the T cell population (OKT8+) which is lower than the normal level in primary biliary cirrhosis and multiple sclerosis, but does not appear or is lower than normal in hyper IgE states, is higher than normal levels in acute vaccine reactions, is significantly above normal in acute infectious mononucleosis, it is completely absent in myasthenia gravis and is at normal levels in all stages of Hodgkinson's disease and psoriasis, indicated by the fact that it contains steps: i) immunization of mice with human thymocytes; ii) removing spleens from said mice and making a suspension of spleen cells; iii) fusing said spleen cells with myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the confluent cells in separate dishes in a medium that will not support non-confluent myeloma cells; v) evaluation of the supernatant in each vial containing the hybridoma for the presence of the desired antibody; vi) selection and cloning of hybridomas that produce the desired antibody; vii) detection of antibodies from the supernatant above said clones; viii) transferring said clones intraperitoneally into mice; and ix) collection of malignant ascites or serum of the mentioned mice. 7. Postupak otkrivanja manjka ili viška OKT8+ stanica u pojedincima, naznačen time, da sadrži reakciju pripravka T stanica iz spomenutih pojedinaca sa dijagnostički učinkovitom količinom antitijela prema Zahtjevu 13 te mjerenje postotka ukupne periferne T populacije koja reagira sa spomenutim antitijelom.7. A method for detecting a lack or excess of OKT8+ cells in individuals, indicated by the fact that it contains the reaction of a preparation of T cells from said individuals with a diagnostically effective amount of antibody according to Claim 13 and measuring the percentage of the total peripheral T population that reacts with said antibody. 8. Postupak prema Zahtjevu 13, naznačen time, da postoji višak T stanica ALL.8. The method according to Claim 13, characterized in that there is an excess of T cells ALL. 9. Postupak tretiranja viška OKT8+ stanica u pojedincu, naznačen time, da obuhvaća primjenu pojedincu količine antitijela prema Zahtjevu 13, koja će biti učinkovita u smanjivanju broja OKT8+ stanica.9. The method of treating an excess of OKT8+ cells in an individual, characterized in that it includes the application to the individual of an amount of antibody according to Claim 13, which will be effective in reducing the number of OKT8+ cells. 10. Dijagnostički pripravak prema izumu za otkrivanje viška ili manjka OKT8+ stanica, naznačen time, da sadrži u smjesi sa dijagnostički prihvatljivom podlogom, količinu antitijela prema Zahtjevu 13 koja će biti učinkovita u otkrivanju OKT8+ stanica u višku ili manjku.10. Diagnostic preparation according to the invention for detecting an excess or deficiency of OKT8+ cells, characterized in that it contains, in a mixture with a diagnostically acceptable substrate, an amount of antibody according to Claim 13 that will be effective in detecting an excess or deficiency of OKT8+ cells. 11. Terapeutski pripravak prema izumu, naznačen time, da sadrži u smjesi sa farmaceutski prihvatljivom podlogom, količinu antitijela prema Zahtjevu 13 učinkovitu da smanji količinu OKT8+ stanica u pojedincu koji ima višak spomenutih OKT8+ stanica.11. Therapeutic preparation according to the invention, characterized in that it contains, in admixture with a pharmaceutically acceptable carrier, an amount of antibody according to Claim 13 effective to reduce the amount of OKT8+ cells in an individual who has an excess of said OKT8+ cells. 12. Postupak otkrivanja akutne infektivne mononukleoze u pojedincima, naznačen time, da obuhvaća reakciju pripravka T stanica iz spomenutih pojedinaca s dijagnostički učinkovitom količinom najmanje jednog monoklonskog antitijela izabranog između grupe koja se sastoji od OKT3, OKT4, OKT6 i OKT8 te mjerenje postotka ukupne periferne populacije T limfocita koja reagira sa svakom od spomenutih antitijela.12. A method for detecting acute infectious mononucleosis in individuals, indicated by the fact that it comprises the reaction of a preparation of T cells from said individuals with a diagnostically effective amount of at least one monoclonal antibody selected from the group consisting of OKT3, OKT4, OKT6 and OKT8 and measuring the percentage of the total peripheral population T lymphocytes that react with each of the mentioned antibodies. 13. Monoklonsko antitijelo miša, naznačeno time, da reagira sa svim normalnim humanim T stanicama supresorima, ali s manje od 2% normalnih humanih stanica koštane srži i ne reagira s perifernim B stanicama ili Nuli stanicama.13. A mouse monoclonal antibody, characterized in that it reacts with all normal human suppressor T cells, but less than 2% of normal human bone marrow cells and does not react with peripheral B cells or Null cells. 14. Postupak pripreme monoklonskih antitijela koja reagiraju sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama, naznačen time, da sadrži kultiviranje hibridoma ATCC CRL 8014 u prikladnom mediju i otkrivanje antitijela iz supernatanta iznad hibridoma.14. A process for the preparation of monoclonal antibodies that react with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and do not react with normal human peripheral B cells or Null cells, indicated by the fact that it contains hybridoma cultivation ATCC CRL 8014 in a suitable medium and detection of antibodies from the supernatant above the hybridoma. 15. Postupak pripreme monoklonskih antitijela koja reagiraju sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama, naznačen time, da sadrži injiciranje u miša hibridoma ATCC CRL 8014 i otkrivanje antitijela iz malignih ascitesa ili seruma spomenutog miša.15. A process for the preparation of monoclonal antibodies that react with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and do not react with normal human peripheral B cells or Null cells, characterized in that it contains the injection into the mouse of hybridoma ATCC CRL 8014 and detection of antibodies from malignant ascites or serum of the mentioned mouse. 16. Postupak pripreme monoklonskih antitijela koja reagiraju sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama, naznačen time, da sadrži korake: i) imunizacije miševa s humanim timocitima; ii) uklanjanja slezena iz spomenutih miševa i pravljenje suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene sa stanicama mijeloma u prisutnosti promotora spajanja; iv) razrijeđivanje i kultiviranje spojenih stanica u odijeljenim posudicama u mediju koji neće podržavati nespojene stanice mijeloma; v) evaluaciju supernatanta u svakoj posudici koja sadrži hibridom na prisutnost antitijela prema E rosette pozitivnim pročišćenim T stanicama ili humanim timocitima; vi) selekciju i kloniranje hibridoma koji produciraju antitijelo koje reagira sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama; te vii) otkrivanje antitijela iz supernatanta iznad spomenutih klonova.16. A process for the preparation of monoclonal antibodies that react with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and do not react with normal human peripheral B cells or Null cells, characterized in that it contains the steps: i) immunization of mice with human thymocytes; ii) removing spleens from said mice and making a suspension of spleen cells; iii) fusing said spleen cells with myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the confluent cells in separate dishes in a medium that will not support non-confluent myeloma cells; v) evaluation of the supernatant in each dish containing the hybridoma for the presence of antibodies against E rosette positive purified T cells or human thymocytes; vi) selection and cloning of hybridomas that produce an antibody that reacts with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and does not react with normal human peripheral B cells or Null cells; and vii) detection of antibodies from the supernatant above the mentioned clones. 17. Postupak pripreme monoklonskih antitijela koja reagiraju sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama, naznačen time, da sadrži korake: i) imunizacije miševa s humanim timocitima; ii) uklanjanja slezena iz spomenutih miševa i pravljenje suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene sa stanicama mijeloma u prisutnosti promotora spajanja; iv) razrijeđivanje i kultiviranje spojenih stanica u odijeljenim posudicama u mediju koji neće podržavati nespojene stanice mijeloma; v) evaluaciju supernatanta u svakoj posudici koja sadrži hibridom na prisutnost antitijela prema E rosette pozitivnim pročišćenim T stanicama ili humanim timocitima; vi) selekciju i kloniranje hibridoma koji produciraju antitijelo koje reagira sa gotovo svim normalnim humanim T stanicama supresorim, ali s manje od 2% normalnih stanica koštane srži i ne reagiraju s normalnim humanim perifernim B stanicama ili Nuli stanicama; vii) prenošenje spomenutih klonova intraperitonealno u miševe; te viii) sakupljanja malignih ascitesa ili seruma koji sadrže željeno antitijelo iz spomenutih miševa.17. A process for the preparation of monoclonal antibodies that react with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and do not react with normal human peripheral B cells or Null cells, characterized in that it contains the steps: i) immunization of mice with human thymocytes; ii) removing spleens from said mice and making a suspension of spleen cells; iii) fusing said spleen cells with myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the confluent cells in separate dishes in a medium that will not support non-confluent myeloma cells; v) evaluation of the supernatant in each dish containing the hybridoma for the presence of antibodies against E rosette positive purified T cells or human thymocytes; vi) selection and cloning of hybridomas that produce an antibody that reacts with almost all normal human suppressor T cells, but with less than 2% of normal bone marrow cells and does not react with normal human peripheral B cells or Null cells; vii) transferring said clones intraperitoneally into mice; you viii) collection of malignant ascites or serum containing the desired antibody from said mice.
HRP-3065/80A 1980-12-03 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human supressor t cells, antibody and methods HRP940822B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP-3065/80A HRP940822B1 (en) 1980-12-03 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human supressor t cells, antibody and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
YU3065/80A YU45068B (en) 1979-12-04 1980-12-03 Process for obtaining a monoclonal antibody which is fixing a complement
HRP-3065/80A HRP940822B1 (en) 1980-12-03 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human supressor t cells, antibody and methods

Publications (2)

Publication Number Publication Date
HRP940822A2 true HRP940822A2 (en) 1997-06-30
HRP940822B1 HRP940822B1 (en) 2000-04-30

Family

ID=26317072

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-3065/80A HRP940822B1 (en) 1980-12-03 1994-10-26 Hybrid cell line for producing complement-fixing monoclonal antibody to human supressor t cells, antibody and methods

Country Status (1)

Country Link
HR (1) HRP940822B1 (en)

Also Published As

Publication number Publication date
HRP940822B1 (en) 2000-04-30

Similar Documents

Publication Publication Date Title
EP0018795B2 (en) Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
EP0030815B1 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses, and pharmaceutical compositions comprising this antibody
US4515893A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human T cells
US4657760A (en) Methods and compositions using monoclonal antibody to human T cells
EP0033578B1 (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods
US4658019A (en) Complement-fixing monoclonal antibody to human T cells
EP0030450B1 (en) Hybrid cell line for producing complement-fixing, monoclonal antibody to human suppressor t cells, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4364936A (en) Monoclonal antibody to a human monocyte antigen and methods of preparing same
EP0025722B2 (en) Monoclonal antibody to human cytotoxic and suppressor T cells, and method of preparing it
EP0030814B1 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4654210A (en) Methods and compositions using complement fixing monoclonal antibody to human T cells
NZ195645A (en) Hybridoma for producing monoclonal antibody to human thymocytes;antibody;therapeutic compositions and diagnostic methods
US4709015A (en) Monoclonal antibody to human suppressor T cells
US4624925A (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigens, antibody, and methods
US4614720A (en) Hybrid cell line for producing monoclonal antibody to a human T cell antigen, antibody, and methods
US4798806A (en) Compositions and methods using a monoclonal antibody to a human T cell antigen
US4637983A (en) Hybrid cell line for producing monoclonal antibody to human cytotoxic and suppressor T cells, antibody, and methods
US4743681A (en) Hybrid cell line for producing monoclonal antibody to a human T cell antigen, antibody, and methods
US4725543A (en) Hybrid cell line for producing complement-fixing monoclonal antibody to human suppressor T cells, antibody and methods
HRP940822A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods
US4912045A (en) Hybrid cell line for producing monoclonal antibody to a human monocyte, antigen, antibody and methods
US4806349A (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
US4806629A (en) Monoclonal antibody to a human thymocyte antigen
US4828995A (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody, and methods
US4959458A (en) Hybrid cell line for producing monoclonal antibody to a human monocyte antigen, antibody, and methods

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19991203

Year of fee payment: 20

B1PR Patent granted
PB20 Patent expired after termination of 20 years

Effective date: 20001203