HRP940823A2 - Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody - Google Patents

Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody Download PDF

Info

Publication number
HRP940823A2
HRP940823A2 HRP-3064/80A HRP940823A HRP940823A2 HR P940823 A2 HRP940823 A2 HR P940823A2 HR P940823 A HRP940823 A HR P940823A HR P940823 A2 HRP940823 A2 HR P940823A2
Authority
HR
Croatia
Prior art keywords
cells
antibody
monoclonal antibody
okt9
hybridoma
Prior art date
Application number
HRP-3064/80A
Other languages
Croatian (hr)
Inventor
Patrick Chung-Shu Kung
Gideon Goldstein
Original Assignee
Ortho Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/100,071 external-priority patent/US4364934A/en
Application filed by Ortho Pharma Corp filed Critical Ortho Pharma Corp
Publication of HRP940823A2 publication Critical patent/HRP940823A2/en
Publication of HRP940823B1 publication Critical patent/HRP940823B1/en

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

Područje izuma Field of invention

Ovaj izum odnosi se uglavnom na nove hibridne stanične linije i specifičnije na hibridne stanične linije za proizvodnju monoklonalnog antitijela na antigen koji se nalazi na ranim timocitima (približno 10% normalnih ljudskih timocita), na tako proizvedeno antitijelo, i na terapeutske i dijagnostičke postupke i preparate korištenjem ovog antitijela. This invention relates mainly to new hybrid cell lines and more specifically to hybrid cell lines for the production of a monoclonal antibody to an antigen found on early thymocytes (approximately 10% of normal human thymocytes), to the antibody so produced, and to therapeutic and diagnostic procedures and preparations using this antibody.

Opis ranijih spoznaja Description of previous knowledge

Kondenzacija stanica mišjeg mieloma za stanice slezene iz imuniziranih miševa koju su opisali Kohler and Milstein 1975. /Nature 256, 495-497 (1975)/ demonstrirala je prvi put da je moguće da se dobije kontinuirana stanična linija za stvaranje homogenog (takozvanog "monoklonalnog") antitijela. Poslije ovog početnog rada, uloženo je mnogo napora na proizvodnju raznih hibridnih stanica (takozvanih "hibridoma") i na korištenje antitijela koje stvaraju ovi hibridomi za razna znanstvena istraživanja. Condensation of murine myeloma cells to spleen cells from immunized mice described by Kohler and Milstein in 1975 /Nature 256, 495-497 (1975)/ demonstrated for the first time that it is possible to obtain a continuous cell line for the creation of a homogeneous (so-called "monoclonal" ) antibodies. After this initial work, many efforts were made to produce various hybrid cells (so-called "hybridomas") and to use the antibodies produced by these hybridomas for various scientific research.

Vidi, na primjer, Current Topics in Microbiology and Immunology. Volume 81 - "Lymhocyte Hybridomas", F. Melchers, M. Potter, and N. Warner", Editors, Springer-Verlag, 1978, i reference koje se tu nalaze: C. J. Barnstable, et. al., Cell, 14, 9-20 (svibanj, 1978); P. Parham and W. F. Bodmer, Nature 276, 397-399 (studeni, 1978); Handbook of Experimental Immunology, Third Edition, Volume 2, D. M. Wier, Editor, Blackwoll, 1978, Chapter 25; and Chemical and Engineering News, siječanj 1, 1979, 15-17. Ove reference istovremeno ukazuju na uspjehe i komplikacije u pokušajima da se proizvodi monoklonalno antitijelo iz hibridoma. Mada je koncepcijski opća tehnika dobro shvaćena, postoje mnoge teškoće i potrebne su varijacije u svakom posebnom slučaju. U stvari, nema sigurnosti, prije pokušaja da se naprave dati hibridomi, da će se željeni hibridomi dobiti, da će oni proizvesti antitijelo ako se dobiju, ili da će tako proizvedeno antitijelo imati željenu specifičnost. Na stupanj uspjeha utječe se u pravilu tipom korištenog antigena i izborom tehnike koja se koristi za izoliranje željenog hibridoma. See, for example, Current Topics in Microbiology and Immunology. Volume 81 - "Lymhocyte Hybridomas", F. Melchers, M. Potter, and N. Warner", Editors, Springer-Verlag, 1978, and references therein: C. J. Barnstable, et. al., Cell, 14, 9 -20 (May, 1978); P. Parham and W. F. Bodmer, Nature 276, 397-399 (November, 1978); Handbook of Experimental Immunology, Third Edition, Volume 2, D. M. Wier, Editor, Blackwall, 1978, Chapter 25; and Chemical and Engineering News, January 1, 1979, 15-17. These references indicate both successes and complications in attempts to produce a monoclonal antibody from a hybridoma. Although conceptually the general technique is well understood, there are many difficulties and variations are necessary in each particular case. In fact, there is no certainty, prior to attempting to make a given hybridoma, that the desired hybridomas will be obtained, that they will produce the antibody if obtained, or that the antibody so produced will have the desired specificity. The degree of success is usually affected the type of antigen used and the choice of technique used sti to isolate the desired hybridoma.

Pokušana proizvodnja monoklonalnog antitijela za površinske antigene ljudskih limfocitnih stanica objavljena je samo u nekoliko slučajeva. Vidi, na primjer, Current Topics in Microbiology and Immunology, ibid, 66-69 i 164-169- Korišteni antigeni u ovim objavljenim eksperimentima kultivirali su stanične linije ljudske limfoblastoidne leukemije i ljudske kronične limfocitne leukemije. Izgleda da su svi dobiveni hibridomi proizvodili antitijelo za razne antigene na svim ljudskim stanicama. Nijedan od proizvedenih hibridoma nije proizvodio antitijelo protiv predefinirane klase ljudskih limfocita. Attempted production of monoclonal antibody for surface antigens of human lymphocyte cells has been reported only in a few cases. See, for example, Current Topics in Microbiology and Immunology, ibid, 66-69 and 164-169- The antigens used in these published experiments were cultured human lymphoblastoid leukemia and human chronic lymphocytic leukemia cell lines. It appears that all the resulting hybridomas produced antibody to various antigens on all human cells. None of the hybridomas produced produced an antibody against a predefined class of human lymphocytes.

U novije vrijeme, sadašnji prijavitelji a i drugi bili su autori članaka koji opisuju pravljenje i testiranje hibridoma koji prave antitijelo za izvjesne antigene T-stanica. More recently, the present applicants and others have authored articles describing the construction and testing of hybridomas that make antibody to certain T-cell antigens.

Vidi, na primjer Reinherz, E. L., et al., J. Immunol, 123, 1312-1317 (1979); Reinherz, E. L., et al., Proc. Natl. Acad. Sci., 76, 4061-4065 (1979); i Kung, P.C., et al., Science, 206, 347-349 (1979). See, for example, Reinherz, E. L., et al., J. Immunol, 123, 1312-1317 (1979); Reinherz, E.L., et al., Proc. Natl. Acad. Sci., 76, 4061-4065 (1979); and Kung, P.C., et al., Science, 206, 347-349 (1979).

Treba biti jasno da postoje dvije glavne klase limfocita uključenih u imunološki sustav ljudi i životinja. Prvi od ovih (stanica izvedena iz timusa ili T stanica) diferencira se u timusu iz hemopoietskih stanica peteljke. Dok su unutar timusa, diferencirajuće stanice se zovu "timociti". Zrele T stanice izlaze iz timusa i cirkuliraju između tkiva, limfotoka i krvotoka. Ove T stanice formiraju veliki dio količine recirkulirajućih malih limfocita. One imaju imunološku specifičnost i direktno su uključene u stanicama posredovane imunološke reakcije (kao što je odbacivanje kalema) kao efektorske stanice. Mada T stanice ne luče humoralna antitijela, ponekad su potrebne za izlučivanje ovih antitijela pomoću druge klase limfocita koja je diskutirana niže. Neki tipovi T stanica imaju regulirajuću funkciju u drugim aspektima imunološkog sustava. Mehanizam ovog procesa stanične suradnje još nije potpuno shvaćen. It should be clear that there are two main classes of lymphocytes involved in the immune system of humans and animals. The first of these (thymus-derived cell or T cell) differentiates in the thymus from hematopoietic stem cells. While inside the thymus, the differentiating cells are called "thymocytes". Mature T cells leave the thymus and circulate between tissues, lymph and bloodstream. These T cells form a large part of the amount of recirculating small lymphocytes. They have immunological specificity and are directly involved in cell-mediated immune reactions (such as graft rejection) as effector cells. Although T cells do not secrete humoral antibodies, they are sometimes required to secrete these antibodies by another class of lymphocytes discussed below. Some types of T cells have a regulatory function in other aspects of the immune system. The mechanism of this process of cellular cooperation is not yet fully understood.

Druga klasa limfocita (stanice izvedene iz koštane srži ili B stanice) su one koje luče antitijelo. Također se razvijaju iz peteljke hemopioiteskih stanica, ali njihovo diferenciranje nije određeno timusom. Kod ptica, one se diferenciraju u organu koji je analogan sa timusom i zove se Bursa ili Fabricius. Kod sisavaca, međutim, nije otkriven ekvivalentni organ, pa se misli da se ove stanice diferenciraju unutar koštane srži. Another class of lymphocytes (cells derived from the bone marrow or B cells) are those that secrete an antibody. They also develop from the stalk of hemopoietic cells, but their differentiation is not determined by the thymus. In birds, they differentiate into an organ that is analogous to the thymus and is called the Bursa or Fabricius. In mammals, however, no equivalent organ has been discovered, so these cells are thought to differentiate within the bone marrow.

Sada je shvaćeno da se T stanice dijele u najmanje nekoliko podtipova, koje se zovu "pomagačke", "supresorske" i "uništivačke" T stanice, koje imaju funkciju (bez obzira što promoviraju reakciju, potiskuju reakciju ili uništavaju (raskidaju)) stranih stanica. Ove podklase su dobro shvaćene za mišje sustave, ali su tek nedavno opisane za ljudske sustave. It is now understood that T cells are divided into at least several subtypes, called "helper", "suppressor" and "killer" T cells, which have a function (whether they promote a reaction, suppress a reaction, or destroy (destroy)) foreign cells. . These subclasses are well understood for mouse systems, but have only recently been described for human systems.

Vidi, na primjer, R. L. Evans, et al., Journal of Experimental Medicine, Volume 145, 221-232, 1977; i L. Chess and S. F. Schlossman - "Functional Analysis of Distinct Human T-Cell Subseta Bearing Unique Differentiation Antigens", in Topics in Immunobiology", O. Stitman, Editor, Plenum Press, 1977, Volume 7, 363-379. See, for example, R.L. Evans, et al., Journal of Experimental Medicine, Volume 145, 221-232, 1977; and L. Chess and S. F. Schlossman - "Functional Analysis of Distinct Human T-Cell Subsets Bearing Unique Differentiation Antigens", in Topics in Immunobiology", O. Stitman, Editor, Plenum Press, 1977, Volume 7, 363-379.

Sposobnost za identifikaciju potisnutih (supresorskih) klasa ili podklasa T stanica je važna za dijagnozu ili tretiranje raznih imunoregulatorskih poremećaja ili stanja. The ability to identify suppressed (suppressor) classes or subclasses of T cells is important for the diagnosis or treatment of various immunoregulatory disorders or conditions.

Na primjer, izvjesne leukemije i limfomi imaju različitu prognozu zavisno od toga da li su porijekla B stanica ili T stanica. Tako procjena prognoze bolesti zavisi od razlikovanja između ove dvije klase limfocita. For example, certain leukemias and lymphomas have a different prognosis depending on whether they are of B cell or T cell origin. Thus, the assessment of the prognosis of the disease depends on the distinction between these two classes of lymphocytes.

Vidi, na primjer, A. C. Aisenberg and J. C. Long, The American Journal of Medicine 58:300 (ožujak 1975) D. Belpomme, et al., u "Immunological Diagnosis of Leukemias AND Lymphomas", S. Thierfelder, et al., eds, Springer, Heidelberg, 1977, 33-45; i D. Belpomme, et al., British Journal of Haematology, 1978, 38, 85. See, for example, A. C. Aisenberg and J. C. Long, The American Journal of Medicine 58:300 (March 1975) D. Belpomme, et al., in "Immunological Diagnosis of Leukemias AND Lymphomas", S. Thierfelder, et al., eds. , Springer, Heidelberg, 1977, 33-45; and D. Belpomme, et al., British Journal of Haematology, 1978, 38, 85.

Izvjesna bolesna stanja (npr., juvenilni reumatoidni artritis, maligne bolesti i agamaglobulinemija) praćena su sa neravnotežom podklasa T stanica. Sugerirano je da su autoimunološke bolesti uglavnom praćene sa viškom "pomagačkih" T stanica ili sa nedostatkom izvjesnih "supresorskih" T stanica, dok je agamaglobulinemija praćena sa viškom izvjesnih "supresorskih" T stanica ili nedostatkom "pomagačkih" T stanica. Maligne bolesti su uglavnom praćene sa viškom "supresorskih" T stanica. Certain disease states (eg, juvenile rheumatoid arthritis, malignancies, and agammaglobulinemia) are associated with an imbalance of T cell subclasses. It has been suggested that autoimmune diseases are mainly accompanied by an excess of "helper" T cells or a deficiency of certain "suppressor" T cells, while agammaglobulinemia is accompanied by an excess of certain "suppressor" T cells or a deficiency of "helper" T cells. Malignant diseases are mostly accompanied by an excess of "suppressor" T cells.

U izvjesnim leukemijama, izvjesne T stanice proizvode se u zarobljenoj fazi razvoja. Dijagnoza tada može zavisiti od sposobnosti da se detektira ova neravnoteža ili višak i da se odredi koja je faza razvoja u višku. Vidi, na primjer, J. Kersey et al., "Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses" u Haematology and Blood Transfusion, Volume 20, Springer-Verlag, 1977, 17-24, i reference koje se tu nalaze; i E.L. Reinherz, et al., J. Clin. Invest., 64, 392-397 (1979). In certain leukemias, certain T cells are produced in an arrested phase of development. Diagnosis may then depend on the ability to detect this imbalance or excess and to determine which stage of development is in excess. See, for example, J. Kersey et al., "Surface Markers Define Human Lymphoid Malignancies with Differing Prognoses" in Hematology and Blood Transfusion, Volume 20, Springer-Verlag, 1977, 17-24, and references therein; and E.L. Reinherz, et al., J. Clin. Invest., 64, 392-397 (1979).

Zadobivena agamaglobulinemija, bolesno stanje u kojem se ne proizvodi imunološki globulin, obuhvaća najmanje dva tipa. U tipu I.nedostatak proizvodnje imunološkog globulina je posljedica viška supresorskih T stanica, dok je u tipu II. posljedica nedostatka pomagačkih T stanica. Kod oba tipa, izgleda da ne postoji defekt ili nedostatak B stanica kod pacijenta, limfocita koji su odgovorni za stvarno lučenje antitijela; međutim, ove B stanice su ili potisnute ili "nisu pomognute" i to dovodi do jako smanjene ili potpuno odsutne proizvodnje imunološkog globulina. Tip zadobivene agamaglobulinemije može se tako odrediti testiranjem viška supresorskih T stanica ili odsustva pomagačkih T stanica. Acquired agammaglobulinemia, a disease state in which immune globulin is not produced, includes at least two types. In type I, the lack of immune globulin production is the result of an excess of suppressor T cells, while in type II. a consequence of the lack of helper T cells. In both types, there appears to be no defect or deficiency in the patient's B cells, the lymphocytes responsible for the actual secretion of antibodies; however, these B cells are either suppressed or "not helped" and this leads to greatly reduced or completely absent immune globulin production. The type of acquired agammaglobulinemia can thus be determined by testing for an excess of suppressor T cells or the absence of helper T cells.

Iz terapeutskog aspekta postoje neke sugestije, mada to nije definitivno dokazano, da davanje antitijela protiv podtipa T stanica u višku može imati terapeutski efekat kod autoimunološke bolesti ili malignih bolesti. Na primjer, rak pomagačkih T stanica (izvjesni kožni limfomi T stanica i izvjesne limfoblastne leukemije (akutne) T stanica) može se tretirati sa antitijelom za antigen pomagačkih Th stanica. Tretiranje autoimunološke bolesti izazvane viškom pomagačkih stanica može se postići na isti način. Tretiranje bolesti (npr., malignih bolesti ili zadobivene agamaglobulinemije tipa I.) zbog viška supresorskih T stanica može se postići davanjem antitijela za antigen supresorskih T stanica. From a therapeutic point of view, there are some suggestions, although this has not been definitively proven, that the administration of antibodies against the T cell subtype in excess can have a therapeutic effect in autoimmune diseases or malignant diseases. For example, helper T cell cancers (certain cutaneous T cell lymphomas and certain lymphoblastic (acute) T cell leukemias) can be treated with an antibody to helper Th cell antigen. Treatment of autoimmune disease caused by an excess of helper cells can be achieved in the same way. Treatment of diseases (eg, malignancies or acquired agammaglobulinemia type I) due to an excess of suppressor T cells can be achieved by administration of antibodies to suppressor T cell antigens.

Navedeno je da su antiserumi protiv cijele klase ljudskih T stanica (takozvani antihumani timocitni globulin ili ATG) terapeutski korisni kod pacijenata na kojima se vrši presađivanje organa. Antisera against an entire class of human T cells (so-called antihuman thymocyte globulin or ATG) have been reported to be therapeutically useful in organ transplant patients.

Pošto stanično posredovana imunološka reakcija (mehanizam pomoću kojeg se transplanti odbacuju) zavisi od T stanica, davanje antitijela za T stanice sprečava ili zadržava proces odbacivanja. Vidi, na primjer, Cosimi, et al., "Randomized Clinical Trial of ATG in Cadaver Renal Aligraft Recipients: Importance of T Cell Monitoring", Surgery 40: 155-163 (1976) i reference koje se tu nalaze. Since the cell-mediated immune response (the mechanism by which transplants are rejected) depends on T cells, administration of antibodies to T cells prevents or delays the rejection process. See, for example, Cosimi, et al., "Randomized Clinical Trial of ATG in Cadaver Renal Aligraft Recipients: Importance of T Cell Monitoring," Surgery 40: 155-163 (1976) and references therein.

Identifikacija i potiskivanje ljudskih T stanica i klasa i potklasa monocita ranije je postignuta korištenjem spontanih autoantitijela ili selektivnih antiseruma za ljudske T stanice dobivenim imunizacijom životinja sa ljudskim T stanicama, krvavljenjem životinja da se dobije serum, i adsorpcijom antiseruma sa (na primjer) autologim ali ne alogenskim B stanicama da se odvoje antitijela sa neželjenim reaktivnostima. Izrada ovih antiseruma je krajnje teška, naročito u fazama adsorpcije i pročišćavanja. Čak i adsorbirani i pročišćeni antiserumi sadrže mnoge nečistoće pored željenog antitijela, iz nekoliko razloga. Prvo, serum sadrži milijune molekula antitijela čak i prije imunizacije T stanica. Drugo, imunizacija izaziva proizvodnju antitijela protiv raznih antigena koja se nalaze u svim injektiranim ljudskim T stanicama. Ne postoji molektivna proizvodnja antitijela protiv pojedinačnog antigena. Treće, titar specifičnog antitijela koje se dobiva takvim postupcima je obično sasvim nizak (inaktivan pri razrjeđenjima većim od 1:100) i odnos specifičnog prema ne specifičnom antitijelu je manji od 1/106. Identification and suppression of human T cells and classes and subclasses of monocytes has previously been achieved using spontaneous autoantibodies or selective antisera for human T cells obtained by immunizing animals with human T cells, bled animals to obtain serum, and adsorption of antisera with (for example) autologous but not allogeneic B cells to separate antibodies with unwanted reactivities. The production of these antisera is extremely difficult, especially in the phases of adsorption and purification. Even adsorbed and purified antisera contain many impurities in addition to the desired antibody, for several reasons. First, serum contains millions of antibody molecules even before T cell immunization. Second, immunization induces the production of antibodies against various antigens found in all injected human T cells. There is no selective production of antibodies against a single antigen. Third, the titer of the specific antibody obtained by such procedures is usually quite low (inactive at dilutions greater than 1:100) and the ratio of specific to non-specific antibody is less than 1/106.

Vidi, na primjer, članak Chess-a i Schiossman-a citiran gore (na stranama 365 i poslije toga) kao i članak iz Chemical and Engineering News citiran gore, u kojima su opisani nedostaci antiseruma iz ranije znanosti i prednosti monoklonalnog antitijela. See, for example, the article by Chess and Schiossman cited above (on pages 365 et seq.) and the Chemical and Engineering News article cited above, which describe the disadvantages of prior art antisera and the advantages of a monoclonal antibody.

Izvod iz izuma Extract from the invention

Sada je pronađen novi hibridom (označen OKT10) koji može da proizvede novo monoklonalno antitijelo protiv antigena koji se nalazi na približno 10% normalnih ljudskih timocita, ali ne na normalnim ljudskim perifernim limfoidnim stanicama (T stanice, B stanice ili nulte stanice) ili stanicama koštane srži. Ovi timociti sa kojima OKT9 reagira zovu se "rani timociti". A new hybridoma (designated OKT10) has now been found that can produce a new monoclonal antibody against an antigen found on approximately 10% of normal human thymocytes, but not on normal human peripheral lymphoid cells (T cells, B cells, or null cells) or bone marrow cells. core. These thymocytes with which OKT9 reacts are called "early thymocytes".

Tako proizvedeno antitijelo je monospecifično za jednu determinantu na približno 10% normalnih ljudskih monocita i u biti ne sadrži drugi antihumani imunološki globulin, nasuprot antiserumima iz ranije znanosti (koji su obavezno kontaminirani sa antitijelom koje reagira sa brojnim ljudskim antigenima) i monoklonalnim antitijelima iz ranije znanosti (koja nisu monospecifična za ljudski timocitni antigen). Štoviše, ovaj hibridom se može kultivirati tako da se proizvodi antitijelo bez potrebe za imunizacijom i ubijanjem životinja, poslije čega slijede mukotrpne faze adsorpcije i pročišćavanja koje su potrebne za dobivanje čak i nečistih antiseruma iz ranije znanosti. The antibody thus produced is monospecific for a single determinant on approximately 10% of normal human monocytes and contains essentially no other antihuman immune globulin, in contrast to prior art antisera (which are necessarily contaminated with antibody that reacts with numerous human antigens) and prior art monoclonal antibodies ( which are not monospecific for human thymocyte antigen). Moreover, this hybridoma can be cultured to produce antibody without the need to immunize and kill the animals, followed by the painstaking steps of adsorption and purification required to obtain even the impure antisera of earlier science.

Prema tome, jedan cilj ovog izuma jest da osigura hibridome koji proizvode antitijelo protiv antigena koji se nalazi na oko 95% normalnih ljudskih timocita. Accordingly, one object of the present invention is to provide hybridomas that produce antibody against an antigen found on about 95% of normal human thymocytes.

Daljnji izum jest da se osiguraju postupci za izradu ovih hibridoma. A further invention is to provide methods for making these hybridomas.

Daljnji cilj izuma jest da se osigura homogeno antitijelo protiv antigena koji se nalazi na oko 10% normalnih ljudskih timocita. A further aim of the invention is to provide a homogeneous antibody against an antigen found on about 10% of normal human thymocytes.

Daljnji cilj jest da se osiguraju postupci za tretiranje ili dijagnozu bolesti ili za identifikaciju T stanica ili timocitnih podklasa korištenjem ovog antitijela. A further object is to provide methods for the treatment or diagnosis of disease or for the identification of T cells or thymocyte subclasses using this antibody.

Drugi ciljevi i prednosti izuma postati jasni na osnovu ispitivanja sadašnjeg opisa. Other objects and advantages of the invention will become apparent upon examination of the present description.

Za zadovoljavanje prethodnih ciljeva i prednosti osiguran je ovim izumom novi hibridom koji proizvodi novo antitijelo na antigen koji se nalazi na približno 10% normalnih ljudskih timocita (ali ne na normalnim ljudskim perifernim limfoidnim stanicama ili stanicama koštane srži), samo antitijelo, i dijagnostički i terapeutski postupci korištenjem antitijela. Hibridomi se rade uglavnom prema postupku koji su dali Milstein and Kohler. To satisfy the foregoing objects and advantages, the present invention provides a novel hybrid that produces a novel antibody to an antigen found on approximately 10% of normal human thymocytes (but not on normal human peripheral lymphoid cells or bone marrow cells), the antibody itself, both diagnostically and therapeutically procedures using antibodies. Hybridomas are made mainly according to the procedure given by Milstein and Kohler.

Poslije imunizacije miševa sa leukemičnim stanicama iz ljudi sa akutnom limfoblastnom leukemijom T-stanica, stanice slezene imuniziranih miševa kondenzirane su sa stanicama iz linije mišjeg mieloma pa se dobiveni hibridomi analiziraju na one koji sa supernatantima sadrže antitijelo koje daje selektivno vezivanje za normalne E rozeta pozitivne ljudske T stanice i/ili timocite. Željeni hibridomi se kasnije kloniraju i karakteriziraju. After immunization of mice with leukemic cells from humans with T-cell acute lymphoblastic leukemia, spleen cells from the immunized mice were condensed with cells from a murine myeloma line, and the resulting hybridomas were analyzed for those with supernatants containing an antibody that selectively binds to normal E rosette-positive human cells. T cells and/or thymocytes. The desired hybridomas are later cloned and characterized.

Kao posljedica ovoga, dobiva se hibridom koji proizvodi antitijelo (označeno OKT9) protiv antigena na približno 10% normalnih ljudskih timocita. Ne samo da ovo antitijelo reagira sa oko 10% normalnih ljudskih timocita, već također ne reagira sa normalnim limfoidnim stanicama periferne krvi ili sa stanicama koštane srži. As a consequence of this, a hybridoma is obtained that produces an antibody (designated OKT9) against an antigen on approximately 10% of normal human thymocytes. Not only does this antibody react with about 10% of normal human thymocytes, but it also does not react with normal peripheral blood lymphoid cells or bone marrow cells.

Obzirom na teškoće naznačene u ranijoj znanosti i na objavljene neuspješne pokušaje korištenjem malignih staničnih linija kao antigena, bilo je neočekivano da sadašnji postupak osigurava željeni hibridom. Treba naglasiti da nepredvidiva priroda hibridnog staničnog preparata ne omogućuje ekstrapolaciju sa jednog antigena ili staničnog sustava na drugi. U stvari, sadašnji prijavioci su otkrili da je korištenje maligne stanične linije T stanica ili pročišćenih antigena odvojenih sa površine stanica kao antigena bilo uglavnom neuspješno. Given the difficulties indicated in the prior art and the reported unsuccessful attempts using malignant cell lines as antigens, it was unexpected that the present procedure provides the desired hybridoma. It should be emphasized that the unpredictable nature of the hybrid cell preparation does not allow extrapolation from one antigen or cell system to another. In fact, the present applicants have found that the use of a malignant cell line of T cells or purified antigens separated from the cell surface as antigens has been largely unsuccessful.

I predmetni hibridomi i antitijelo koje se njime proizvodi identificirani su ovdje oznakom "OKT", pri čemu je određeni materijal o kojem se govori očit iz konteksta teksta. Predmetni hibridom deponiran je 21. studenog, 1979, u the American Type Culture Collection, 12301 Porklawn Drive, Rockville, Mary and 20852, i dat mu je ATCC pristupni broj CRL 8021. Izrada i karakterizacija hibridoma i dobivenog antitijela biti će bolje shvaćeno imajući za referencu slijedeći opis i Primjere. Both the subject hybridomas and the antibody produced by them are identified herein by the designation "OKT", the particular material being referred to being apparent from the context of the text. The hybridoma in question was deposited on November 21, 1979, in the American Type Culture Collection, 12301 Porklawn Drive, Rockville, Mary and 20852, and has been given the ATCC accession number CRL 8021. The construction and characterization of the hybridoma and the resulting antibody will be better understood in view of reference following description and Examples.

Podroban opis izuma Detailed description of the invention

Postupak za izradu hibridoma uglavnom obuhvaća slijedeće faze: The procedure for creating a hybridoma mainly includes the following stages:

A. Imunizaciju miševa sa leukemičnim stanicama sa ljudi sa ALL T-stanica. Mada je pronađeno da su ženske CAF1 miševa poželjne, podrazumijeva se da se mogu koristiti drugi tipovi miševa. Raspored imunizacije i koncentracija timocita trebaju biti takvi da se proizvode korisne količine podesno primiranih splenocita. Otkriveno je da su tri imunizacije u četrnaestodnevnim intervalima sa 2 x 107 stanica /miševa/ injekcija u 0.2 ml fosfatne puferirane slane otopine efikasne. A. Immunization of mice with leukemic cells from humans with ALL T-cells. Although female CAF1 mice have been found to be preferred, it is understood that other types of mice may be used. The schedule of immunization and the concentration of thymocytes should be such that useful quantities of suitably primed splenocytes are produced. It was found that three immunizations at fourteen-day intervals with 2 x 107 cells / mice / injections in 0.2 ml of phosphate buffered saline solution are effective.

B. Odvajanje slezene iz imuniziranih miševa i izrada suspenzije u odgovarajućoj podlozi. Dovoljan je oko jedan ml po slezeni. Ove eksperimentalne tehnike su dobro poznate. B. Separation of the spleen from immunized mice and preparation of a suspension in a suitable medium. About one ml per spleen is enough. These experimental techniques are well known.

C. Kondenzaciju suspendiranih stanica slezene sa stanicama mišjeg mieloma iz podesne stanične linije korištenjem podesnog promotora kondenzacije. Poželjan odnos je oko 5 stanica slezene po stanici mieloma. Ukupna zapremnina od oko 0.5 - 1 ml podloge za kondenzaciju odgovarajuća je za oko 108 splenocita. Poznate su mnoge stanične linije mišjeg mieloma, uglavnom od članova akademskih društava raznih depozitnih banaka, kao što je Salk Institute Cell Distribution Center, La Jolla, CA. Korištena stanična linija treba da je poželjno takozvani tip "rezistentan na lijek", tako da nekondenzirane stanice mieloma neće preživjeti u izabranoj podlozi, dok će hibridi preživjeti. Najobičnija klasa jesu stanične linije rezistentne na 8-azaguanin, koje nemaju enzim hipoksantin guanin fosforibozil transferazu i zato neće biti podržane pomoću HAT (hipoksantin, aminopterin i timidin) podloge. Također je uglavnom poželjno da se stanična linija mieloma koristi u obliku takozvanog "ne-sekretirajućeg" tipa, tako da ne proizvodi samo po sebi nikakvo antitijelo, mada se mogu koristiti sekretirajući tipovi. Međutim, u izvjesnim slučajevima, mogu biti poželjne linije sekretirajućeg tipa. Mada je poželjni promotor kondenzacije polietilenglikol koji ima prosječnu molekulsku težinu od oko 1000 do oko 4000 (komercijalno pristupačan kao PEG 1000, itd.), mogu se koristiti drugi promotori kondenzacije poznati u znanosti. C. Condensation of suspended spleen cells with murine myeloma cells from an appropriate cell line using an appropriate condensation promoter. The preferred ratio is about 5 spleen cells per myeloma cell. The total volume of about 0.5 - 1 ml of condensation medium is suitable for about 108 splenocytes. Many murine myeloma cell lines are known, mostly from members of academic societies of various depository banks, such as the Salk Institute Cell Distribution Center, La Jolla, CA. The cell line used should preferably be of the so-called "drug-resistant" type, so that non-condensed myeloma cells will not survive in the chosen medium, while hybrids will. The most common class are cell lines resistant to 8-azaguanine, which lack the enzyme hypoxanthine guanine phosphoribosyl transferase and therefore will not be supported by HAT (hypoxanthine, aminopterin, and thymidine) media. It is also generally preferred that the myeloma cell line be used as a so-called "non-secreting" type, so that it does not produce any antibody by itself, although secreting types may be used. However, in certain cases, secretory-type lines may be preferred. Although the preferred condensation promoter is polyethylene glycol having an average molecular weight of about 1000 to about 4000 (commercially available as PEG 1000, etc.), other condensation promoters known in the art can be used.

D. Razrjeđivanje i kultiviranje u odvojenim kontejnerima, smjese nekondenziranih stanica slezene, nekondenziranih stanica mieloma i kondenziranih stanica u selektivnoj podlozi koja neće podržati nekondenzirane stanice mieloma tokom zadovoljavajućeg perioda tako da se omogućuje smrt nekondenziranih stanica (oko jedan tjedan). Razrjeđivanje može biti ograničavajućeg tipa, u kojem se zapremnina razrjeđivača statistički izračunava tako da se izolira izvjestan broj stanica (npr., 1-4) u svakom posebnom kontejneru (npr., svaka rupica mikrotitarske ploče). Podloga je ona (npr. HAT podloga) koja neće podržati nekondenziranu staničnu liniju rezistentnu na lijek (npr., rezistentnu na 8-azaguanin). D. Diluting and culturing in separate containers, a mixture of uncondensed spleen cells, uncondensed myeloma cells, and condensed cells in a selective medium that will not support uncondensed myeloma cells for a satisfactory period to allow death of the uncondensed cells (about one week). The dilution can be of the limiting type, in which the volume of diluent is statistically calculated to isolate a certain number of cells (eg, 1-4) in each separate container (eg, each well of a microtiter plate). The medium is one (eg, HAT medium) that will not support an unfused drug-resistant (eg, 8-azaguanine-resistant) cell line.

E. Zbog toga stanice mišjeg mieloma iščezavaju. Pošto nekondenzirane stanice slezene nisu maligne, mogu imati samo definitivan broj generacija. Tako će poslije izvjesnog vremenskog perioda (oko jedan tjedan) ove nekondenzirane stanice slezene propuštati da se reproduciraju. S druge strane, kondenzirane stanice nastavljaju da se reproduciraju pošto imaju malignu kvalitetu porijekla mieloma i sposobnost da prožive u selektivnoj podlozi za izvor stanica slezene. E. Because of this, mouse myeloma cells disappear. Since non-condensed spleen cells are not malignant, they can only have a definite number of generations. Thus, after a certain period of time (about one week), these uncondensed spleen cells will fail to reproduce. On the other hand, the condensed cells continue to reproduce because they have the malignant quality of myeloma origin and the ability to survive in the selective medium for the source of spleen cells.

E. Procjenu supernatanta u svakom kontejneru (rupici) koja sadrži hibridome na prisustvo antitijela na E rozeta pozitivne pročišćene ljudske T stanice ili timocite. E. Evaluation of the supernatant in each container (well) containing hybridomas for the presence of antibodies to E rosette positive purified human T cells or thymocytes.

F. Izbor (npr., ograničenim razrjeđivanjem) i kloniranje hibridoma koji proizvode željeno antitijelo. Pošto se jednom izabere i klonira željeni hibridom, dobiveno antitijelo se može proizvesti na jedan od dva načina. Najčistije monoklonalno antitijelo proizvodi se in vitro kultiviranjem željenog hibridoma u prikladnoj podlozi tokom prikladno dugog vremena, poslije čega slijedi izoliranje željenog antitijela iz supernatanta. Pogodna podloga i pogodna dužina vremena kultiviranja su poznati ili se lako određuju. Ova in vitro tehnika proizvodi u biti monospecifično monoklonalno antitijelo, suštinski slobodno od drugog specifičnog antihumanog imunološkog globulina. Postoji mala količina drugog prisutnog imunološkog globulina pošto podloga sadrži ksenogenski serum (npr., serum fetusa teleta). Međutim, ovaj postupak in vitro može da ne proizvode zadovoljavajuću količinu ili koncentraciju antitijela za iste svrhe, pošto je koncentracija monoklonalnog antitijela samo oko 50 μg/ml. Za proizvodnju mnogo veće koncentracije neznatno manje čistog monoklonalnog antitijela, željeni hibridom se može injektirati u miševe, poželjno singenske ili semisingenske miševe. Hibridomi će izazvati formiranje tumora koji proizvode antitijelo poslije pogodnog inkubacionog vremena, što će dovesti do visoke koncentracije željenog antitijela (oko 5-20 mg/ml) u krvotoku i peritonealnom eksudatu (ascitima) miša domaćina. Mada ovi miševi domaćini imaju normalna antitijela u svojoj krvi i ascitima, koncentracija ovih normalnih antitijela je samo oko 5% od koncentracije monoklonalnog antitijela. Štoviše, pošto ova normalna antitijela nisu antihumana po svojoj specifičnosti, dobiveno monoklonalno antitijelo iz požnjevenih ascita ili iz seruma je u biti slobodno od bilo kojeg kontaminirajućeg antihumanog imunološkog globulina. Ovo monoklonalno antitijelo je visokog titra (aktivno pri razrjeđenjima od 1:50,000 ili vili višim) i visokog odnosa specifičnog prema nespecifičnom imunološkom globulinu (oko 1/20). Imunološki globulini proizvedeni inkorporiranjem lakih nizova mieloma su ne-specifični, "besmisleni" peptidi koji samo razrjeđuju monoklonalno antitijelo bez smanjivanja njegove specifičnosti. F. Selection (eg, by limiting dilution) and cloning of hybridomas that produce the desired antibody. Once the desired hybrid has been selected and cloned, the resulting antibody can be produced in one of two ways. The purest monoclonal antibody is produced in vitro by culturing the desired hybridoma in a suitable medium for a suitable length of time, followed by isolation of the desired antibody from the supernatant. A suitable substrate and a suitable length of cultivation time are known or easily determined. This in vitro technique produces an essentially monospecific monoclonal antibody, essentially free of other specific antihuman immune globulin. There is a small amount of other immune globulin present since the medium contains xenogeneic serum (eg, fetal calf serum). However, this in vitro procedure may not produce a sufficient amount or concentration of antibody for the same purposes, since the concentration of the monoclonal antibody is only about 50 μg/ml. To produce a much higher concentration of a slightly less pure monoclonal antibody, the desired hybridoma can be injected into mice, preferably syngeneic or semisyngeneic mice. Hybridomas will cause the formation of tumors that produce the antibody after a suitable incubation time, which will lead to a high concentration of the desired antibody (about 5-20 mg/ml) in the bloodstream and peritoneal exudate (ascites) of the host mouse. Although these host mice have normal antibodies in their blood and ascites, the concentration of these normal antibodies is only about 5% of the concentration of the monoclonal antibody. Moreover, since these normal antibodies are not anti-human in their specificity, the monoclonal antibody obtained from harvested ascites or from serum is essentially free of any contaminating anti-human immune globulin. This monoclonal antibody has a high titer (active at dilutions of 1:50,000 or higher) and a high ratio of specific to non-specific immune globulin (about 1/20). Immune globulins produced by the incorporation of myeloma light sequences are non-specific, "nonsense" peptides that only dilute the monoclonal antibody without reducing its specificity.

Primjer I. Examples.

Proizvodnja monoklonalnih antitijela Production of monoclonal antibodies

A. Imunizacija i hibridizacija somatskih stanica A. Immunization and hybridization of somatic cells

Ženke CAF1 miševa (Jackson Laboratories; 6-8 tjedana stare) imunizirane su intraperitonealno sa 2 x 107 ljudskih leukemičnih T-ALL stanica (pacijent J. F.) u 0.2 ml fosfatne puferirane slane otopine u 14-dnevnim intervalima. Četiri dana poslije treće imunizacije, slezene su odvojene sa miševa i napravljena je jedna stanična suspenzija prešanjem tkiva kroz mrežu od nerđajućeg čelika. Kondenzacija stanica vršena je prema postupku koji su razvili Kohler and Milstein. Female CAF1 mice (Jackson Laboratories; 6-8 weeks old) were immunized intraperitoneally with 2 x 107 human leukemic T-ALL cells (patient J.F.) in 0.2 ml phosphate buffered saline at 14-day intervals. Four days after the third immunization, the spleens were separated from the mice and a single cell suspension was made by pressing the tissue through a stainless steel mesh. Cell condensation was performed according to the procedure developed by Kohler and Milstein.

1 x 108 splenocita kondenzirano je u 0.5 ml podloge za kondenzaciju koja sadrži 35% polietilenglikola (PEG 1000) i 5% dimetilsulfoksida u RPMI 1640 podlozi (Gibco, Grand Island, NY) sa 2 x 107 P3x63Ag8U1 mieloma stanica koje je dao Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. Ove stanice mieloma izlučuju IgG1 lake nizove. 1 x 108 splenocytes were condensed in 0.5 ml condensation medium containing 35% polyethylene glycol (PEG 1000) and 5% dimethylsulfoxide in RPMI 1640 medium (Gibco, Grand Island, NY) with 2 x 107 P3x63Ag8U1 myeloma cells provided by Dr. M. Scharff, Albert Einstein College of Medicine, Bronx, NY. These myeloma cells secrete IgG1 light strings.

B. Izbor i rast hibridoma B. Selection and growth of hybridomas

Poslije kondenzacije stanica, stanice su kultivirane u HAT podlozi (hipoksantin, aminopterin i timidin) na 37°C sa 5% CO2 u vlažnoj atmosferi. Nekoliko tjedana kasnije, 40 do 100 1 supernatanta iz kultura koje sadrže hibridome doda se na granulu od 106 perifernih limfocita koja je odvojena u E rozeta pozitivne (E+) i E rozeta negativne (E-) populacije, i koja je pripremljena iz krvi zdravih ljudskih davaoca kao što je opisano u Mendes (J. Immunol. 111:860, 1973). Detekcija antitijela mišjih hibridoma koja se vezuju za ove stanice određena je indirektnom imunofluor3escencijom. After cell condensation, the cells were cultured in HAT medium (hypoxanthine, aminopterin and thymidine) at 37°C with 5% CO2 in a humid atmosphere. Several weeks later, 40 to 100 1 of the supernatants from the hybridoma-containing cultures are added to a pellet of 10 6 peripheral lymphocytes that have been separated into E rosette positive (E+) and E rosette negative (E-) populations, and which have been prepared from the blood of healthy human subjects. donor as described in Mendes (J. Immunol. 111:860, 1973). Detection of murine hybridoma antibodies that bind to these cells was determined by indirect immunofluorescence.

Stanice inkubirane sa supernatantima tkiva obojene su sa gluoroscentnim koza-anti-miš IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/p = 2.5) i stanice prevučene fluorescentnim antitijelom kasnije su analizirane na Cytofluorograf-u FC200/4800A (Ortho Instruments, Westwood, MA) kao što je opisano u Primjeru III. Izabrane su kulture hibridoma koje sadrže antitijela koja reagiraju specifično sa E+ limfocitima (T stanice) i/ili timocitima izabrane su i klonirane dva puta postupcima ograničenog razrjeđivanja u prisustvu stanica za hranjenje. Kasnije su klonovi prenijeti intraperitonoalno injektiranjem 1 x 107 stanica datog klonova (zapremnine 0.2 ml) u CAF1 miševima primiranim sa 2, 6, 10, 14-tetrametilpentadekanom, koji prodaje Aldrich Chemical Company pod imenom Pristine. Maligni asciti iz svih miševa koriste se tada za karakterizaciju limfocita kao što je opisano niže u Primjeru II. Demonstrirano je standardnim tehnikama da predmetno hibridno antitijelo OKT9 pripada IgG1 podklasi. Cells incubated with tissue supernatants were stained with fluorescent goat anti-mouse IgG (G/M FITC) (Meloy Laboratories, Springfield, VA; F/p = 2.5) and cells coated with fluorescent antibody were later analyzed on a Cytofluorograph FC200/4800A. (Ortho Instruments, Westwood, MA) as described in Example III. Hybridoma cultures containing antibodies that react specifically with E+ lymphocytes (T cells) and/or thymocytes were selected and cloned twice by limiting dilution procedures in the presence of feeder cells. Later, clones were transferred intraperitoneally by injecting 1 x 10 7 cells of a given clone (volume 0.2 ml) into CAF1 mice primed with 2, 6, 10, 14-tetramethylpentadecane, sold by Aldrich Chemical Company under the name Pristine. Malignant ascites from all mice are then used to characterize lymphocytes as described below in Example II. It was demonstrated by standard techniques that the subject hybrid antibody OKT9 belongs to the IgG1 subclass.

Primjer II. Example II.

Karakterizacija okt9 reaktivnosti Characterization of Oct9 reactivity

A. Izoliranje populacija limfocita A. Isolation of lymphocyte populations

Mononuklearne stanice ljudske periferne krvi izolirane su iz zdravih ljudskih dobrovoljaca (doba 15-40) pomoću gradientnog centrifugiranja na Ficoll-Kypaqua gustoću (Pharmacia Fino cheaicals, Piscataway, NJ) prema tehnici iz Bayum, Scend. J. Clin. Lab. Invest. 21 (Suppl. 97):77. 1968. Nafrakcionirane mononuklearne stanice se odvoje u površinske Ig+ (8) i Ig- (T plus nulte) populacije pomoću kromatografije na koloni Sephadex G-200 anti-F(ab`)2 kao što je ranije opisano u Chess, et al., J. lmmunol. 113:1113 (1974.). T stanice se regeneriraju E rozetiranjem Ig- populacije sa 5% ovčjih eritrocita (Microbiological Associatos. Bathasda, MD). Rozetirana smjesa se rasloji preko Ficoll. Hypaque i regenerirana E+ poslata se tretira sa 0.155M NH4Cl (10 ml na 108 stanice). Tako dobivena populacija T stanica bila je <2% EAG rozeta pozitivna i >95% E rozeta pozitivna kao što je određeno standardnim postupcima. Dalje ne-rozetirajuća Ig- populacija obrana je sa Ficoll međupovršina. Ova posljednja populacija bila je .<5% E+ i ≤2% sIg+. Površinska Ig+ populacija dobivena je sa Sephadex G-200 kolone poslije eluiranja sa normalnim ljudima gama globulinom kao što je opisano ranije. Ova populacija bila je >95% površinski Ig+ i <5% E+. Normalne stanice ljudske koštane srži dobivene su iz posteriorne iliačne grbe normalnih ljudskih dobrovoljaca izvlačenjem sa iglom. Human peripheral blood mononuclear cells were isolated from healthy human volunteers (age 15-40) using Ficoll-Kypaqua density gradient centrifugation (Pharmacia Fino chemicals, Piscataway, NJ) according to the technique of Bayum, Scend. J. Clin. Lab. Invest. 21 (Suppl. 97):77. 1968. Fractionated mononuclear cells are separated into surface Ig+ (8) and Ig- (T plus null) populations by Sephadex G-200 anti-F(ab`)2 column chromatography as previously described in Chess, et al., J. Immunol. 113:1113 (1974). T cells are regenerated by E rosetting the Ig- population with 5% sheep erythrocytes (Microbiological Associatos. Bathasda, MD). The rosette mixture was layered over Ficoll. Hypaque and regenerated E+ sent treated with 0.155M NH4Cl (10 ml per 108 cells). The resulting T cell population was <2% EAG rosette positive and >95% E rosette positive as determined by standard procedures. Further, the non-rosetting Ig- population was separated from the Ficoll interface. This latter population was .<5% E+ and ≤2% sIg+. The surface Ig+ population was obtained from a Sephadex G-200 column after elution with normal human gamma globulin as described earlier. This population was >95% surface Ig+ and <5% E+. Normal human bone marrow cells were obtained from the posterior iliac crest of normal human volunteers by needle aspiration.

B. Izoliranje timocita B. Isolation of thymocytes

Normalna ljudska timusna žlijezda dobivena je iz pacijenata starih dva mjeseca do 14 godina koji su podvrgnuti korektivnoj srčanoj operaciji. Svježe dobiveni dijelovi timusne žlijezde se trenutno stave u 5% serume fetusa teleta u podlozi 199 (Giboo), fino se usitne sa pincetom i škarama i kasnije se formuliraju u jednostanične suspenzije prešanjem kroz žičanu mrežu. Stanice se dalje rasloje preko Ficoll-Hypaque i spinuju i isperu kao što je ranije opisano u odjeljku A gore. Tako dobiveni timociti bili su >95% životno sposobni i ≥90% rozeta pozitivni. Normal human thymus gland was obtained from patients aged two months to 14 years who underwent corrective heart surgery. Freshly obtained thymus gland sections are immediately placed in 5% fetal calf serum in medium 199 (Giboo), finely minced with forceps and scissors, and later formulated into single-cell suspensions by pressing through a wire mesh. Cells are further layered over Ficoll-Hypaque and spun down and washed as previously described in section A above. Thus obtained thymocytes were >95% viable and ≥90% rosette positive.

C. Stanične linije T linija i T stanice akutne limfoblastne leukemije C. Cell lines T lines and T cells of acute lymphoblastic leukemia

T stanične linije GEM, HSB-2, i MOLT-4 osigurao je Dr. H. Lazaruo (Sidnay Farber Cencor Instituto, Boston, MA). Leukemične stanice dobivene su sa 25 pacijenata sa dijagnozom ALL T stanica. Ovi pojedinačni tumori su prethodno određeni da pripadaju T staničnoj liniji njihovom sposobnošću da spontano formiraju rozete sa ovčjim eritrocitima (>20% E+), i reaktivnošću sa specifičnim antiserumima anti-HTL na T stanice (B.K) i A99, kao što je ranije opisano. Tumorne populacije su krivodržavane na -196°C sa tekućim dušikom u parnoj fazi sa 10% OMSD i 20% AB ljudskog seruma do trenutka površinske karakterizacije. Sve analizirane tumorne populacije bila su više od 90% bolesti pomoću Wright-Giemsa morfologija citocentri-fugiranih preparata. T cell lines GEM, HSB-2, and MOLT-4 were provided by Dr. H. Lazaruo (Sidnay Farber Cencor Institute, Boston, MA). Leukemic cells were obtained from 25 patients diagnosed with ALL T cells. These individual tumors were previously determined to belong to the T cell lineage by their ability to spontaneously form rosettes with sheep erythrocytes (>20% E+), and reactivity with specific anti-HTL antisera to T cells (B.K) and A99, as described earlier. Tumor populations were cryopreserved at -196°C with liquid nitrogen in the vapor phase with 10% OMSD and 20% AB human serum until the time of surface characterization. All analyzed tumor populations were more than 90% disease using Wright-Giemsa morphology of cytocentri-fused preparations.

Primjer III. Example III.

Citofluorografska analiza i odvajanje stanica Cytofluorographic analysis and cell separation

Citofluorografska analiza monoklonalnih antitijela sa svim staničnim populacijama vršena je indirektnom imunofluorescencijom sa fluoroscein-konjugiranim koza anti-miš IgG (G/M FITC) (Maloy Laboratorios) korištenjem Cytofluorograf-a FC200/4000A (Ortho Instrumenta). Ukratko, 1 x 106 stanica tretira se sa 0.15 ml OKT5 pri 1:500 razrjeđenju, inkubira se na 4°C 30 minuta i ispere se dva puta. Stanice tada reagiraju sa 0.15 ml 1:40 razrjeđenja G/M FITC na 4°C tokom 38 minuta, centrifugiraju se i isperu se tri puta. Stanice se tada analiziraju na Citofluorografu, i zabilježi se intenzitet fluoroscencija po stanici na analizatoru visine pulsa. Slična shema reaktivnosti vidi se pri razrjeđenju 1:10.000, ali je dalje razrjeđivanje izazvalo gubljenje reaktivnosti. Osnovno bojenje postiže se zamjenom alikvota od 15 ml 1:500 ascita iz CAF1 miševa koji su intraperitonealno injektirani sa ne-proizvodnim hibridnim klonom. Cytofluorographic analysis of monoclonal antibodies with all cell populations was performed by indirect immunofluorescence with fluoroscein-conjugated goat anti-mouse IgG (G/M FITC) (Maloy Laboratorios) using a Cytofluorograf FC200/4000A (Ortho Instrumenta). Briefly, 1 x 106 cells are treated with 0.15 ml OKT5 at a 1:500 dilution, incubated at 4°C for 30 minutes and washed twice. The cells are then reacted with 0.15 ml of a 1:40 dilution of G/M FITC at 4°C for 38 minutes, centrifuged and washed three times. The cells are then analyzed on the Cytofluorograph, and the fluorescence intensity per cell is recorded on the pulse height analyzer. A similar pattern of reactivity was seen at 1:10,000 dilution, but further dilution caused loss of reactivity. Baseline staining is achieved by substituting a 15 ml aliquot of 1:500 ascites from CAF1 mice injected intraperitoneally with a non-producing hybrid clone.

U eksperimentima koji uključuju antitijelo i komplementno posredovanu limfolizu, timociti i periferne T stanice kultvirani su preko noći poslije selektivnog raskiranja i tada su kasnije analizirani na Citofluorografu. In experiments involving antibody and complement-mediated lympholysis, thymocytes and peripheral T cells were cultured overnight after selective disruption and then later analyzed on a Cytofluorograph.

Primjer IV. Example IV.

Raskidanje limfoidnih populacija sa monoklonalnim antitijelom i komplementom Disruption of lymphoid populations with monoclonal antibody and complement

Četrdeset x 106 perifernih T stanica ili timocita stavi se u plastičnu epruvetu od 15 ml (Falcon, Oxnard, CA). Stanična građa se inkubiraju sa OKT3, OKT4, OKT5 ili sa normalnim kontrolnim ascitima razrjeđenim 1:200 u PBS, resuspendiraju se i inkubiraju na 20°C tokom 30 minuta. Kasnije se doda 0.2 svježeg komplementa kunića na populacije tretirane antitijelom, resuspendira se, i vrši se dalja inkubacija na 37°C u vodi koja se mućka tokom 60 minuta. Na kraju ovog perioda, stanice se spinuju i životno sposobna stanica se označi brojevima pomoću isključivanja Trypan plavog. Poslije odbrojavanja, stanice se isperu još dva puta u 5% FCS i stave se u finalne podloge, (RPMI 1640 Grand Island Biological Company, Grand Island, NY) koje sadrže 20% AB+ ljudskog seruma, 1% penicilin - streptomicina, 200 mM L-glotamina, 25 mM HEPES pufera i 0.5% natrij-bikarbonata i inkubira se preko noći u vlažnoj atmosferi sa 5% CO2 na 37°C. Forty x 10 6 peripheral T cells or thymocytes are placed in a 15 ml plastic tube (Falcon, Oxnard, CA). Cell materials are incubated with OKT3, OKT4, OKT5 or with normal control ascites diluted 1:200 in PBS, resuspended and incubated at 20°C for 30 minutes. Later, 0.2 of fresh rabbit complement is added to the antibody-treated populations, resuspended, and further incubation is performed at 37°C in shaking water for 60 minutes. At the end of this period, cells are spun down and viable cells are numbered using Trypan blue exclusion. After counting, the cells are washed two more times in 5% FCS and plated in final media (RPMI 1640 Grand Island Biological Company, Grand Island, NY) containing 20% AB+ human serum, 1% penicillin-streptomycin, 200 mM L -glutamine, 25 mM HEPES buffer and 0.5% sodium bicarbonate and incubated overnight in a humid atmosphere with 5% CO2 at 37°C.

Kratak opis crteža Brief description of the drawing

Slika 1 prikazuje Shemu fluorascencije koja je dobivena na Cytofluorografu poslije reakcije normalnih ljudskih timocita sa OKT9 i drugim monoklonalnim antitijelima pri 1:500 razrjeđenju i G/M FITC. Osnovno fluorscentno bojanje postignuto je inkubacijom ovakve populacije sa 1:500 razrjeđenjem ascitnog fluida iz miša koji je injektiran sa na-proizvodnim klonovima. Figure 1 shows the scheme of fluorescence obtained on a Cytofluorograph after the reaction of normal human thymocytes with OKT9 and other monoclonal antibodies at 1:500 dilution and G/M FITC. Basic fluorescent staining was achieved by incubating this population with a 1:500 dilution of ascitic fluid from a mouse injected with na-production clones.

Slika 2 prikazuje faze intratimusne diferencijacije kod ljudi. Proizvodnja hibridoma i proizvodnja i karakterizacija dobivenog monoklonalnog antitijela provedeni su kao što je opisano u gornjim Primjerima. Mada su velike količine predmetnog antitijela napravljene injektiranjem predmetnog hibridoma intraperitonealno u miševe i žetvom malignih asoita, jasno je da se predviđa da se hibridom može kultivirati in vitro tehnikama koje su dobro poznate u znanosti i onda se antitijelo odvaja iz supernatanta. Figure 2 shows the stages of intrathymic differentiation in humans. Hybridoma production and the production and characterization of the resulting monoclonal antibody were carried out as described in the Examples above. Although large quantities of the subject antibody have been made by injecting the subject hybridoma intraperitoneally into mice and harvesting the malignant ascites, it is clearly contemplated that the hybridoma may be cultured in vitro by techniques well known in the art and the antibody then separated from the supernatant.

Tablica 1 prikazuje reaktivnost OKTE, OKT8, OKT9 i OKT10 sa raznim ljudskim limfoidnim staničnim populacijama. OKT9 monoklonalno antitijelo reagira sa približno 10% normalnih ljudskih timocita, a ne sa drugim testiranim limfoidnim stanicama. Table 1 shows the reactivity of OKTE, OKT8, OKT9 and OKT10 with various human lymphoid cell populations. The OKT9 monoclonal antibody reacts with approximately 10% of normal human thymocytes and not with other lymphoid cells tested.

Ova shema reaktivnosti je jedan test pomoću kojeg se predmetno antitijelo OKT9 može detektirati i razlikovati od drugih antitijela. This reactivity scheme is one test by which the subject OKT9 antibody can be detected and distinguished from other antibodies.

Slika 1 prikazuje reprezentativnu shemu reaktivnosti dobivenu na Cytofluorograf-u poslije reakcije normalnih ljudskih timocitnih suspenzija sa 1:500 razrjeđenjem OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, OKT10 i G/M FITC. Vide se slične sheme reaktivnosti sa 12 dopunski testiranih normalnih ljudskih timocitnih populacija. Kao što je prikazano, postoje značajne razlike i u pogledu postotka reaktivnosti i intenziteta fluoroscencije sa svakim od ovih monoklonalnih antitijela. Figure 1 shows a representative scheme of reactivity obtained on Cytofluorograf after reaction of normal human thymocyte suspensions with 1:500 dilution of OKT3, OKT4, OKT5, OKT6, OKT8, OKT9, OKT10 and G/M FITC. Similar patterns of reactivity are seen with 12 additional tested normal human thymocyte populations. As shown, there are significant differences in both percent reactivity and fluorescence intensity with each of these monoclonal antibodies.

Na primjer, OKT9 reagira sa približno 10% timocita sa niskim intenzitetom fluoroscencija dok OKT5, OKT8 i OKT10 reagiraju sa približno 70% timocita sa višim intenzitetom fluorescencija. OKT4 koji reagira sa 75% timocita je po sredini između OKT9 i monoklonalnih antitijela koja daju shemu sa većim intenzitetom fluorescencije. Dalje, Slika 1 prikazuje da je približno 15% timocita detektirano sa OKT3 indirektnom imunofluorescencijom. Nije prikazan OKT1, čija je shema reaktivnosti praktično identična sa OKT3 na timocitima. Shema reaktivnosti na Slici 1 je drugi test pomoću kojeg se predmetno antitijelo OKT9 može detektirati i razlikovati od drugih antitijela. For example, OKT9 reacts with approximately 10% of thymocytes with low fluorescence intensity while OKT5, OKT8 and OKT10 react with approximately 70% of thymocytes with higher fluorescence intensity. OKT4, which reacts with 75% of thymocytes, is midway between OKT9 and monoclonal antibodies that give a pattern with higher fluorescence intensity. Further, Figure 1 shows that approximately 15% of thymocytes were detected with OKT3 by indirect immunofluorescence. OKT1, whose reactivity scheme is practically identical to OKT3 on thymocytes, is not shown. The reactivity scheme in Figure 1 is another test by which the subject OKT9 antibody can be detected and distinguished from other antibodies.

Tablica 2 prikazuje distribuciju antigeno definiranih raznim monoklonalnim antitijelima na ljudskim perifernim T stanicama i limfocitima, kao što je odrađeno serijom eksperimenata raskidanja opisanih u Primjeru IV. Pošto su samo OKT3, OKT4 i OKT8 bila monoklonalna antitijela fiksirana sa komplementom, korištena su ova tri. Table 2 shows the distribution of antigens defined by various monoclonal antibodies on human peripheral T cells and lymphocytes, as determined by a series of pull-down experiments described in Example IV. Since only OKT3, OKT4 and OKT8 were complement-fixed monoclonal antibodies, these three were used.

Kao što je prikazano u Tablici 2A, cjela T stanična populacija reagira sa OKT3 dok OKT4, OKT5 i OKT8 reagira sa 50%, 25% i 34% T stanica. Raskidanja sa DKT4 i komplementom smanjilo je ukupan broj za 62% i specifično je izostala OKT4+ populacija. Dalje, postotak OKT5+ i OKT8+ stanica se je povećao i nije bilo efekta na apsolutan broj OKT5+ i OKT8+ stanica. Ovi eksperimenti su sugerirali da se OKT4+ razlikuje od OKT5+ i OKT8+ populacija. Daljnji dokaz za ovakav zaključak dobiven je raskidanjem T stanica sa OKT8 i komplementom. U ovom slučaju, postotak OKT4+ stanica se je povećao, dok je apsolutni broj ostao isti, a OKT8+ i OKT5+ populacije su eliminirane. Štoviše, rezultati su pokazali da je OKT8+ populacija bila recipročna sa OKT4+ populacijom i sadržala je cijeli podset OKT5+ T stanica. As shown in Table 2A, the entire T cell population reacts with OKT3 while OKT4, OKT5 and OKT8 react with 50%, 25% and 34% of T cells. Breakdowns with DKT4 and complement reduced the total number by 62% and the OKT4+ population was specifically absent. Furthermore, the percentage of OKT5+ and OKT8+ cells increased and there was no effect on the absolute number of OKT5+ and OKT8+ cells. These experiments suggested that OKT4+ is distinct from OKT5+ and OKT8+ populations. Further evidence for this conclusion was obtained by disrupting T cells with OKT8 and complement. In this case, the percentage of OKT4+ cells increased, while the absolute number remained the same, and the OKT8+ and OKT5+ populations were eliminated. Moreover, the results showed that the OKT8+ population was reciprocal to the OKT4+ population and contained the entire subset of OKT5+ T cells.

Slični eksperimenti sa ljudskim timocitnim populacijama dali su različite rezultate. Kao što je prikazano u Tablici 2B, približno 75% timocita bili su OKT4+ ili OKT8+. Štoviše, poslije raskidanja ili sa OKT4 ili OKT8, ostalo je samo 25% timocita. Glavni dio rezidualnih timocita bio je reaktivan sa OKT3, dok je samo manji dio reagirao sa OKT8. Ovi nalazi demonstriraju da glavna populacija ljudskih timocita nosi OKT4, OKT5, OKT5 i OKT8 površinske antigene na istoj stanici. Dalje, Tablica 2 demonstrira da poslije tretiranja sa OKT8 ili OKT4, postoji značajno povećanje zrelih timocita koji nose OKT3 antigen. Tako je glavni dio OKT3 reaktivnih timocita već segrogiran u OKT4+ ili OKT8+ testova pošto je glavna količina rezidualnih stanica poslije OKT4 i OKT8 raskidanja bila OKT3+. Ako je OKT3+ subpopulacija bila i OKT4+ i OKT8, tada raskidanje sa bilo kojim monoklonalnim antitijelom treba da odvoji OKT3 reaktivne timocite. Similar experiments with human thymocyte populations yielded mixed results. As shown in Table 2B, approximately 75% of thymocytes were OKT4+ or OKT8+. Moreover, after knocking out either OKT4 or OKT8, only 25% of thymocytes remained. The main part of the residual thymocytes was reactive with OKT3, while only a smaller part reacted with OKT8. These findings demonstrate that a major population of human thymocytes carries OKT4, OKT5, OKT5, and OKT8 surface antigens on the same cell. Further, Table 2 demonstrates that after treatment with OKT8 or OKT4, there is a significant increase in mature thymocytes bearing the OKT3 antigen. Thus, the main part of OKT3 reactive thymocytes was already segregated in OKT4+ or OKT8+ tests, since the main amount of residual cells after OKT4 and OKT8 disruption was OKT3+. If the OKT3+ subpopulation was both OKT4+ and OKT8, then stripping with either monoclonal antibody should separate OKT3 reactive thymocytes.

Da se dalje odredi odnos OKT3 reaktivnih timocitnin subpopulacija prema drugom monoklonalnom antitijelu koje je definirano timocitnim frakcijama, timociti su tretirani sa OKT3 i komplamentom i razidualno stanice su tada uspoređene sa netretiranim timocitnim populacijama. Kao što je prikazano u Tablici 2B, OKT3 i komplement su odvojili 25% timocita. Štoviše, poslije raskidanja nije bio veliki gubitak OKT4, OKT5, OKT6 ili OKT8 reaktivnih populacija. Ovi nalazi sugeriraju da se veliki višak timocita koji nose OKT8 makar nalaze u OKT3- populaciji. Dalje, oni dalje sugeriraju da su timociti koji istovremeno izražavaju antigene definirane sa OKT4, OKT5 i OKT6 na sličan način ograničeni na OKT3- populaciju. Treba također da se naglasi da OKT9 reaktivna populacija timocita nije bila smanjena poslije tretiranja sa OKT3 i komplementom nefrakcioniranih timocita, što ukazuje da je OKT9+ subpopulacija uglavnom ograničena na OKT3- timocitnu populaciju. To further determine the relationship of OKT3-reactive thymocyte subpopulations to another monoclonal antibody that defined thymocyte fractions, thymocytes were treated with OKT3 and complement and residual cells were then compared to untreated thymocyte populations. As shown in Table 2B, OKT3 and complement separated 25% of thymocytes. Moreover, there was no major loss of OKT4, OKT5, OKT6, or OKT8 reactive populations after termination. These findings suggest that a large excess of OKT8-bearing thymocytes is at least in the OKT3- population. Furthermore, they further suggest that thymocytes co-expressing antigens defined by OKT4, OKT5 and OKT6 are similarly restricted to the OKT3 population. It should also be emphasized that the OKT9 reactive thymocyte population was not reduced after treatment with OKT3 and a complement of unfractionated thymocytes, indicating that the OKT9+ subpopulation is mostly limited to the OKT3- thymocyte population.

Na bazi ovih rezultata moguće je da se opišu faze intretimusnog razvoja ljudskih timocita. Kao što je prikazano na Slici 2, praktično svi timociti nose OKT10 marker. Dalje, timociti imaju u jednoj ranoj fazi OKT9 marker (odnosno Thy1 i Thy 2). Ova faza definira manji broj timocita i objašnjava približno 10% nefrekcionirane populacije. Kasnije, ljudski timociti zadobivaju jedinstveni timocitni antigen definiran sa OKT6 i konkurentno izražavaju OKT4, OKT5 i OKT8 (Thy 4). Ova posljednja subpopulacija predstavlja glavni dio timocita i objašnjava do 70-80% timusne populacije. Sa daljnjim sazrijevanjem, timociti gube OKT6 reaktivnost, dobivaju OKT3 (i OKT1) reaktivnost, i djele se u OKT4+ i OKT5, OKT8+ subsetove (Thy 7 i Thy 8). Na kraju, izgleda da kako timocit odlazi u odjeljak sa perifernim T stanicama, on gubi OKT10 marker pošto ovaj antigen nedostaje na praktično svim perifernim T limfocitima. Moguće tranzitne faze između ove tri glavne faze razvoja u timusu označene su Thy 3, Thy 5 i Thy 6 na Slici 2. Based on these results, it is possible to describe the stages of intrathymic development of human thymocytes. As shown in Figure 2, virtually all thymocytes carry the OKT10 marker. Furthermore, thymocytes have an OKT9 marker (that is, Thy1 and Thy 2) at an early stage. This phase defines a smaller number of thymocytes and accounts for approximately 10% of the unfractionated population. Later, human thymocytes acquire a unique thymocyte antigen defined by OKT6 and competitively express OKT4, OKT5 and OKT8 (Thy 4). This last subpopulation represents the main part of thymocytes and explains up to 70-80% of the thymic population. With further maturation, thymocytes lose OKT6 reactivity, acquire OKT3 (and OKT1) reactivity, and divide into OKT4+ and OKT5, OKT8+ subsets (Thy 7 and Thy 8). Finally, it appears that as the thymocyte enters the peripheral T cell compartment, it loses the OKT10 marker since this antigen is missing from virtually all peripheral T lymphocytes. Possible transit phases between these three main phases of development in the thymus are labeled Thy 3, Thy 5, and Thy 6 in Figure 2.

Pošto se misli da je akutna limboblantna leukemija T linije izvedena iz nezrelih timocita, određen je odnos između tumornih stanica pojedinaca sa T-ALL i ovih predloženih faza intratimusne diferencijacije. Because T-lineage acute limboblastic leukemia is thought to be derived from immature thymocytes, the relationship between the tumor cells of individuals with T-ALL and these proposed stages of intrathymic differentiation was determined.

Ispitane su 25 populacije stanica tumora sa pojedinaca sa T-ALL i tri T stanične linije koje su prethodno proučavane sa konvencionalnim anti-7 staničnim reagensima i E rozetiranjem, kao što je prikazano u Tablici 3, glavni dio T-ALL leukemičnih stanica reagirao je ili samo sa OKT10 ili sa OKT9 i OKT10, a nije reagirao sa drugim monoklonalnim antitijelima. Tako 15/25 proučavanih slučajeva izgleda da posjeduje rana timocitna antigena (Faza I.). 25 tumor cell populations from individuals with T-ALL and three T cell lines previously studied with conventional anti-7 cell reagents and E rosetting were examined, as shown in Table 3, the major part of T-ALL leukemic cells reacted or only with OKT10 or with OKT9 and OKT10, and did not react with other monoclonal antibodies. Thus, 15/25 of the studied cases seem to have early thymocyte antigens (Phase I.).

Nasuprot, 5/25 slučajeva reagiralo je sa OKT8, što sugerira izvođenje iz zrelije timusne populacije (Faza II.). Ova T-ALL grupa bila je sama po sebi heterogena u odnosu na OKT4, OKT8 i OKT9 reaktivnost kao što je prikazano u Tablici 3. Stanice iz 2/5 pacijenata posjeduju najveći dio timocitnih antigena uključujući OKT4, OKT6 i OKT8. Vrijedno je spomenuti da OKT5 nije prisutan na bilo kojem od ovih 5 tumora Faze II čak i kada je zapažena OKT8 reaktivnost. Ovaj posljednji rezultat sugerira da OKT5 i OKT8 definiraju različite antigene ili različite determinante na istom antigenu. Konačno, tumori 1/25 pacijenta došli su iz zrele timocitne populacije (Faza III.) kao što je definirano reaktivnošću sa OKT3. Pored toga, tumor ovog pojedinca reagirao je sa OKT5, OKT8 i OKT10. Od 25 analiziranih leukomičnih populacija, samo četiri tumora nisu mogli jasno da se kategoriziraju. Tri su bili pozitivni sa OKT4 i OKT3, ali su nedostajali OKT3 i OKT6 i najvjerojatnije su predstavljali prijelaze od Thy4 i Thy7. Jedan od 25 slučajeva izgleda da je bio prijelaz od Thy3 prema Thy4 pošto je posjedovao OKT3 i OKT10 reaktivnost. In contrast, 5/25 cases reacted with OKT8, suggesting derivation from a more mature thymic population (Phase II). This T-ALL group was inherently heterogeneous with respect to OKT4, OKT8, and OKT9 reactivity as shown in Table 3. Cells from 2/5 patients possessed a majority of thymocyte antigens including OKT4, OKT6, and OKT8. It is worth mentioning that OKT5 was not present in any of these 5 Stage II tumors even when OKT8 reactivity was observed. This last result suggests that OKT5 and OKT8 define different antigens or different determinants on the same antigen. Finally, the tumors of 1/25 patients came from a mature thymocyte population (Phase III) as defined by reactivity with OKT3. In addition, this individual's tumor reacted with OKT5, OKT8 and OKT10. Of the 25 leukemic populations analyzed, only four tumors could not be clearly categorized. Three were positive with OKT4 and OKT3, but lacked OKT3 and OKT6 and most likely represented transitions from Thy4 and Thy7. One of the 25 cases appeared to be a transition from Thy3 to Thy4 as it possessed OKT3 and OKT10 reactivity.

T stanične linije izvedene iz T-ALL tumornih populacija također su predstavljale stanice iz specifičnog stanja intratimusne diferencijacije. Kao što je prikazano u Tablici 4. HSB je reagirao samo sa OKT9 i OKT10 pa će zato definirati tumornu populaciju izvedenu iz Faza I. Nasuprot, CEM je reagirao sa OKT4, OKT6, OKT8, OKT9 i OKT10 i izgleda da je izveden iz timocita Faza II. Konačno, MOLT-4 izgleda da predstavlja leukomičnu transformaciju u fazi između HSB-2 i CEM pošto izražava OKT5, OKT8, OKT9 i OKT10. T cell lines derived from T-ALL tumor populations also represented cells from a specific state of intrathymic differentiation. As shown in Table 4, HSB reacted only with OKT9 and OKT10 and will therefore define a Phase I-derived tumor population. In contrast, CEM reacted with OKT4, OKT6, OKT8, OKT9 and OKT10 and appears to be derived from Phase I thymocytes. II. Finally, MOLT-4 appears to represent leukemic transformation at a stage between HSB-2 and CEM as it expresses OKT5, OKT8, OKT9 and OKT10.

Pošto je pokazano da pacijenti sa kasnijim fazama (npr., Faza II) akutne limboblastne leukemije imaju duže življenje bez bolesti od onih sa Fazom I. ALL, korištenje OKT9 antitijela omogućuje zaključke u pogledu prognoze datog pacijenta sa ALL T-stanica. Since patients with later stages (eg, Stage II) of acute lymphoblastic leukemia have been shown to have longer disease-free survival than those with Stage I ALL, the use of the OKT9 antibody allows conclusions regarding the prognosis of a given patient with T-cell ALL.

Odnosi prikazani u Tablicama 2-4 su daljnji način pomoću kojeg se OKT9 antitijelo može detektirati i razlikovati od drugih antitijela. The relationships shown in Tables 2-4 are a further means by which the OKT9 antibody can be detected and distinguished from other antibodies.

Drugi hibridomi koji proizvode monoklonalno antitijelo koja su napravili sadašnji prijavioci (označeni OKT1, OKT3, OKT4 i OKT5) opisani su i zaštićeni u slijedećim U.S. patentnim prijavama: SN 22,132, podnijeta 20. ožujka, 1979, SN 33,639, podnijeta 28. travnja, 1979, SN 33,668, podnijeta 26. travnja 1979, SN 76.642, podnijeta 14. rujna, 1979, i SN 82.515, podnijete 9. listopada, 1979. Other monoclonal antibody-producing hybridomas made by the present applicants (designated OKT1, OKT3, OKT4 and OKT5) are described and protected in the following U.S. Pat. patent applications: SN 22,132, filed March 20, 1979, SN 33,639, filed April 28, 1979, SN 33,668, filed April 26, 1979, SN 76,642, filed September 14, 1979, and SN 82,515, filed October 9 , 1979

Daljnji drugi hibridomi koji proizvode monoklonalno antitijelo koje su napravili sadašnji prijavitelji (označeni OKT6, OKT8 i OKT10) opisani su i zaštićeni u U.S. patentnim prijavama koje su podnijete istog datuma kao i sadašnja prijava i imaju naslove: Further other monoclonal antibody-producing hybridomas made by the present applicants (designated OKT6, OKT8 and OKT10) are described and patented in U.S. Pat. patent applications that were filed on the same date as the present application and have the titles:

Hybrid Cell Line For Producing Complement-Fixing Monoclonal Antibody to Human Suppressor T Cella, Antibody, and Methods, Hybrid Cell Lina For Producing Monoclonal Antibody to Human Thymocyta Antigen, Antibody, and Methods, and Hybrid Cell Lina For Producing Monoclonal Antibody to a Human Protnymocyte Antigen, Antibody, and Mathods. Hybrid Cell Line For Producing Complement-Fixing Monoclonal Antibody to Human Suppressor T Cell, Antibody, and Methods, Hybrid Cell Lina For Producing Monoclonal Antibody to Human Thymocyta Antigen, Antibody, and Methods, and Hybrid Cell Lina For Producing Monoclonal Antibody to a Human Protnymocyte Antigen, Antibody, and Mathods.

Ove prijave unijete su ovdje kao reference. These applications are incorporated herein by reference.

Prema sadašnjem izumu osiguran je hibridom koji može da proizvodi antitijelo protiv antigena koji se nalazi na približno 10% normalnih ljudskih timocita, postupak za proizvodnju ovog hibridoma, monoklonalno antitijelo protiv antigena koji se nalazi na približno 10% normalnih ljudskih timocita, postupci za proizvodnju antitijela, i postupci i preparati za tretiranje ili dijagnozu bolesti ili identifikaciju T stanica ili timocitnih potklasa korištenjem ovog antitijela. According to the present invention, there is provided a hybridoma capable of producing an antibody against an antigen found on approximately 10% of normal human thymocytes, a process for the production of this hybridoma, a monoclonal antibody against an antigen found on approximately 10% of normal human thymocytes, methods for the production of antibodies, and methods and preparations for treating or diagnosing disease or identifying T cells or thymocyte subclasses using this antibody.

Tablica 1. Table 1.

Reaktivnost monoklonalnih antitijela na ljudske limfoidne populacije Reactivity of monoclonal antibodies to human lymphoid populations

[image] [image]

Brojevi u zagradama predstavljaju broj testiranih uzoraka, % vrijednosti su prosjeci. Numbers in parentheses represent the number of tested samples, % values are averages.

Tablica 2. Table 2.

Razlike u distribuciji antigena definiranih monoklonalnim antitijelom na ljudskim perifernim T stanicama i timocitima Differences in the distribution of monoclonal antibody-defined antigens on human peripheral T cells and thymocytes

[image] [image]

* Netretirane populacije i populacije tretirane samo sa komplementom nisu mogla da se razlikuju re-analizom. Nespecifično raskidanje bilo je 5% o svim slučajevima. Rezultati su prikazani 6 eksperimenata ;C` = komplement ;Tablica 3. ;Stanične površinske karakteristike akutne limfoblastne leukemije T-linije ;[image] ;* Posljednja četiri tumora ne mogu se lako kategorizirati u Fazu I-III – Vidi tekst za detalje njihove karakterizacije. * Untreated populations and populations treated only with complement could not be distinguished by re-analysis. Non-specific termination was 5% of all cases. Results are shown of 6 experiments ;C` = complement ;Table 3. ;Cell surface characteristics of T-lineage acute lymphoblastic leukemia ;[image] ;* The last four tumors cannot be easily categorized into Stage I-III - See text for details of their characterization .

+ Thy oznaka odnosi se na Sliku 2 + Thy symbol refers to Figure 2

≠ Pozitivna (+) reaktivnost definirana je kao 30% specifična fluorescencija iznad osnovne kontrole, a ≠ Positive (+) reactivity is defined as 30% specific fluorescence above the baseline control, a

negativna (-) reaktivnost ne može se razlikovati od osnovnog bojanja na suspenzijama stanica tumora. negative (-) reactivity is indistinguishable from baseline staining on tumor cell suspensions.

Tablica 4. Table 4.

Reaktivnost sa monoklonalnim antitijelima Reactivity with monoclonal antibodies

[image] [image]

Kriteriji za - i + reaktivnost bili su isti kao u Tablici 3. The criteria for - and + reactivity were the same as in Table 3.

Mada je opisan samo jedan hibridom koji proizvodi jedno monoklonalno antitijelo protiv ljudskog monocitnog antigena, podrazumijeva se da sadašnji izum uključuje sve monoklonalna antitijela koja pokazuju ovdje opisane karakteristike. Određeno je da predmetno antitijelo OKT9 pripada podklasi IgG1, koja je jedna od četiri potklase mišjeg IgG. Ove potklase imunološkog globulina G razlikuju se jedna od druge po takozvanim "fiksiranim" regijama, mada će antitijelo na specifični antigen imati takozvani "promjenjivu" regiju koja je funkcionalno identičan bez obzira kojoj klasi imunološkog globulina G pripada. Although only one hybridoma has been described that produces a monoclonal antibody against a human monocyte antigen, it is understood that the present invention includes all monoclonal antibodies that exhibit the characteristics described herein. The antibody in question, OKT9, was determined to belong to the IgG1 subclass, which is one of the four subclasses of mouse IgG. These subclasses of immunoglobulin G differ from each other by so-called "fixed" regions, although an antibody to a specific antigen will have a so-called "variable" region that is functionally identical regardless of which class of immunoglobulin G it belongs to.

To jest, monoklonalno antitijelo koje pokazuje ovdje opisana karakteristika može biti potklase IgG1, IgG2a, IgG2b ili IgG3, ili klasa IgM, IgA ili drugih poznatih Ig klasa. Razlika između ovih klasa ili potklase neće utjecati na selektivnost reakcione sheme antitijela, ali mogu utjecati na daljnju reakciju antitijela sa drugim materijalima, kao što su, na primjer, komplement ili anti-miš antitijela. Mada je predmetno antitijelo specifično IgG1, predviđa se da su antitijela koja imaju ovdje opisanu shemu reaktivnosti uključena u predmetni izum bez obzira kojoj klasi ili potklasi pripadaju. That is, a monoclonal antibody exhibiting the characteristic described herein may be of the IgG1, IgG2a, IgG2b, or IgG3 subclasses, or of the IgM, IgA, or other known Ig classes. The difference between these classes or subclasses will not affect the selectivity of the reaction scheme of the antibody, but may affect the further reaction of the antibody with other materials, such as, for example, complement or anti-mouse antibodies. Although the subject antibody is IgG1 specific, it is contemplated that antibodies having the reactivity pattern described herein are included in the subject invention regardless of which class or subclass they belong to.

Dalje su u sadašnji izum uključeni postupci za pravljenje monoklonalnih antitijela koji su ovdje upisani korištenjem ovdje opisanih tehnika sa hibridomima. Mada je ovdje dat samo jedan primjer hibrida podrazumijeva se da će stručnjak moći pratiti postupke imunizacije, kondenzacije i selekcija koji su ovdje osigurani i da dobije druge hibridome koji mogu proizvoditi antitijela koja imaju ovdje opisane karakteristike reaktivnosti. Further included in the present invention are methods for making the monoclonal antibodies described herein using the hybridoma techniques described herein. Although only one example of a hybrid is given here, it is understood that one skilled in the art will be able to follow the immunization, condensation and selection procedures provided herein to obtain other hybridomas capable of producing antibodies having the reactivity characteristics described herein.

Pošto se pojedinačni hibridomi proizvedeni iz poznate stanične linije mišjeg mieloma i stanica slezene iz poznate vrste miševa ne mogu dalje identificirati osim po antitijelu koje proizvodi hibridom, podrazumijeva se da su svi hibridomi koji proizvode antitijelo koje ima karakteristike reaktivnosti koje su ovdje opisana uključeni u sadašnji izum, kao i postupci za izradu ovog antitijela korištenjem hibridoma. Since individual hybridomas produced from a known murine myeloma cell line and spleen cells from a known strain of mouse cannot be further identified except by the antibody produced by the hybridoma, it is understood that all hybridomas producing an antibody having the reactivity characteristics described herein are included in the present invention , as well as procedures for making this antibody using hybridomas.

Daljnji aspekti izuma su postupci za tretiranje ili dijagnozu bolesti korištenjem monoklonalnog antitijela OKT9 ili bilo kojeg drugog monoklonalnog antitijela koje pokazuje ovdje osiguranu shemu reaktivnosti. Predmetno antitijelo se može koristiti za detekciju i proučavanje intratimusne diferencijacije kao što je sumirano na Slici 2. Abnormalnosti u diferencijaciji Faze I. biti će naznačene odstupanjem od oko 10% OKT9+ timocita. Further aspects of the invention are methods for treating or diagnosing a disease using the OKT9 monoclonal antibody or any other monoclonal antibody exhibiting the reactivity pattern provided herein. The subject antibody can be used to detect and study intrathymic differentiation as summarized in Figure 2. Abnormalities in Phase I differentiation will be indicated by a deviation of about 10% OKT9+ thymocytes.

Štoviše, predmetno antitijelo se može koristiti za dijagnozu bolesnih stanja koja uključuju defekt ili višak OKT9+ stanica. Ove tehnike se mogu koristiti korištenjem samo OKT9 antitijela ili u kombinaciji sa drugim antitijelima (n.pr., OKT3 - OKR10). Shema reaktivnosti sa panelom antitijela na T stanice i podsetove T stanka omogućiti će preciznu detekciju izvjesnih bolesnih stanja nego što je to moguće korištenjem ranijih dijagnostičkih postupaka. Moreover, the subject antibody can be used to diagnose disease states involving a defect or excess of OKT9+ cells. These techniques can be used using OKT9 antibodies alone or in combination with other antibodies (eg, OKT3 - OKR10). A reactivity scheme with a panel of antibodies to T cells and subsets of the T pause will enable precise detection of certain disease states than is possible using earlier diagnostic procedures.

Tretiranje bolesnih stanja (npr., maligniteta kao što su izvjesni slučajevi ALL Faze I. ili II.) koja se manifestiraju viškom OKT9+ stanica može se postići davanjem terapeutski efikasne količine OKT9 antitijela pojedincu kojem je takvo tretiranje potrebno. Treatment of disease states (eg, malignancies such as certain cases of Stage I or II ALL) manifested by an excess of OKT9+ cells can be achieved by administering a therapeutically effective amount of OKT9 antibody to an individual in need of such treatment.

Selektivnom reakcijom sa OKT9+ antigenom, efikasna količina OKT9 antitijela smanjiti će višak OKT9+ stanica, čime se ublažavaju efekti viška. Dijagnostički i terapeutski preparati koji obuhvaćaju efikasne količine OKT9 antitijela u smjesi sa dijagnostički ili farmaceutski prihvatljivim nosačima, također su uključeni unutar sadašnjeg izuma. By selectively reacting with the OKT9+ antigen, an effective amount of OKT9 antibody will reduce the excess of OKT9+ cells, thus mitigating the effects of the excess. Diagnostic and therapeutic preparations comprising effective amounts of OKT9 antibody in admixture with diagnostically or pharmaceutically acceptable carriers are also included within the present invention.

Claims (20)

1. Mišje monoklonsko antitijelo, naznačeno time, da (i) reagira s približno 10% normalnih humanih timocita; (ii) ne reagira s nijednom od normalnih humanih perifernih stanica iz skupine koju čine T stanice i nula stanice; i (iii) ne reagira sa stanicama koštane moždine.1. A mouse monoclonal antibody, characterized in that (i) reacts with approximately 10% of normal human thymocytes; (ii) does not react with any of the normal human peripheral cells from the group consisting of T cells and null cells; and (iii) does not react with bone marrow cells. 2. Monoklonsko antitijelo prema zahtjevu 1, naznačeno time, da spada u razgred IgG.2. Monoclonal antibody according to claim 1, characterized in that it belongs to the IgG class. 3. Monoklonsko antitijelo prema zahtjevu 1 ili 2, naznačeno time, da pokazuje oblik reaktivnosti prema normalnim humanim timocitima prikazan na slici 1.3. Monoclonal antibody according to claim 1 or 2, characterized in that it shows the form of reactivity towards normal human thymocytes shown in Figure 1. 4. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 3, naznačeno time, da pokazuje oblik reaktivnosti prema perifernim T stanicama i timocitima prikazan u tablici 2.4. Monoclonal antibody according to any one of claims 1 to 3, characterized in that it shows the form of reactivity against peripheral T cells and thymocytes shown in table 2. 5. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 4, naznačeno time, da pokazuje oblik reaktivnosti prema T stanicama stupnja ALL prikazan u tablici 3.5. Monoclonal antibody according to any one of claims 1 to 4, characterized in that it shows the form of reactivity against T cells of grade ALL shown in table 3. 6. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 5, naznačeno time, da definira T stanični antigen koji se nakon mitogene stimulacije pojavljuje na 30 do 50% perifernih T stanica.6. Monoclonal antibody according to any one of claims 1 to 5, characterized in that it defines a T cell antigen that appears on 30 to 50% of peripheral T cells after mitogenic stimulation. 7. Monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 6, naznačeno time, da je proizvedeno pomoću hibridoma nastalog fuzijom stanica iz linije mišjeg mijeloma i stanica slezene iz miša prethodno imuniziranog s humanim leukemijskim T-ALL stanicama.7. Monoclonal antibody according to any one of claims 1 to 6, characterized in that it is produced by means of a hybridoma created by the fusion of cells from a murine myeloma line and spleen cells from a mouse previously immunized with human leukemic T-ALL cells. 8. Monoklonsko antitijelo, naznačeno time, da je proizvedeno iz hibridoma ATCC CRL 8021 (OKT9).8. Monoclonal antibody, characterized in that it is produced from hybridoma ATCC CRL 8021 (OKT9). 9. Hibridom, naznačen time, da proizvodi monoklonsko antitijelo prema bilo kojem od zahtjeva 1 do 7, dobiven fuzijom stanica slezene iz miša prethodno imuniziranog s humanim leukemijskim T-ALL stanicama i stanica iz mišje mijelomske linije.9. A hybridoma, characterized in that it produces a monoclonal antibody according to any one of claims 1 to 7, obtained by fusion of spleen cells from a mouse pre-immunized with human leukemic T-ALL cells and cells from a murine myeloma line. 10. Hibridom, naznačen time, da je to ATCC CRL 8021 (OKT9).10. Hybridoma, indicated that it is ATCC CRL 8021 (OKT9). 11. Metoda za proizvodnju monoklonskog antitijela prema bilo kojem od zahtjeva 1 do 7, naznačena time, da obuhvaća slijedeće stupnjeve: i) imunizaciju miša s humanim leukemijskim T-ALL stanicama; ii) vađenje slezene iz spomenutog miša i izradu suspenzije stanica slezene; iii) spajanje spomenutih stanica slezene s mišjim mijelomskim stanicama u prisutnosti promotora fuzije; iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem od zahtjeva 1 do 7; vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; i vii) skupljanje antitijela iz supernatanta iznad spomenutih klonova.11. The method for producing a monoclonal antibody according to any one of claims 1 to 7, characterized in that it includes the following steps: i) immunization of mice with human leukemic T-ALL cells; ii) extracting the spleen from said mouse and making a suspension of spleen cells; iii) fusing said spleen cells with murine myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; vi) selecting and cloning hybridomas that produce the desired antibody; and vii) collection of antibodies from the supernatant above the mentioned clones. 12. Metoda za proizvodnju monoklonskog antitijela prema bilo kojem od zahtjeva 1 do 7, naznačena time, da obuhvaća slijedeće stupnjeve: i) imunizaciju miša s humanim leukemijskim T-ALL stanicama; ii) vađenje slezene iz spomenutog miša i izradu suspenzije stanica slezene; iii) spajanje stanica slezene s mišjim mijelomskim stanicama u prisutnosti promotora fuzije; iv) razrjeđivanje i uzgajanje fuzioniranih stanica u odvojenim jamicama u mediju koji ne podržava nefuzionirane stanice mijeloma; v) ocjenjivanje supernatanta u svakoj jamici koja sadrži hibridom u pogledu prisutnosti antitijela koje ima svojstva navedena u bilo kojem od zahtjeva 1 do 7; vi) odabir i kloniranje hibridoma koji proizvode željeno antitijelo; vii) prijenos spomenutih klonova intraperitonealno u miša; i viii) skupljanje malignog ascita ili seruma iz spomenutog miša.12. The method for producing a monoclonal antibody according to any one of claims 1 to 7, characterized in that it includes the following steps: i) immunization of mice with human leukemic T-ALL cells; ii) extracting the spleen from said mouse and making a suspension of spleen cells; iii) fusing spleen cells with murine myeloma cells in the presence of a fusion promoter; iv) diluting and culturing the fused cells in separate wells in a medium that does not support unfused myeloma cells; v) evaluating the supernatant in each well containing the hybridoma for the presence of an antibody having the properties set forth in any of claims 1 to 7; vi) selecting and cloning hybridomas that produce the desired antibody; vii) transfer of said clones intraperitoneally into mice; and viii) collection of malignant ascites or serum from said mouse. 13. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje uzgoj hibridoma ATCC CRL 8021 u prikladnom mediju i skupljanje antitijela iz supernatanta iznad spomenutog hibridoma.13. A method for the production of a monoclonal antibody, characterized in that it includes growing the hybridoma ATCC CRL 8021 in a suitable medium and collecting the antibody from the supernatant above said hybridoma. 14. Metoda za proizvodnju monoklonskog antitijela, naznačena time, da uključuje ubrizgavanje hibridoma ATCC CRL 8021 u miša i dobivanje antitijela iz malignog ascita ili seruma iz spomenutog miša.14. A method for producing a monoclonal antibody, characterized in that it includes injecting hybridoma ATCC CRL 8021 into a mouse and obtaining the antibody from malignant ascites or serum from said mouse. 15. Dijagnostički sastav tvari za detekciju viška ili nedostatka OKT9+ stanica, naznačen time, da u mješavini s dijagnostički prihvatljivim nosačem sadrži količinu antitijela prema bilo kojem od zahtjeva 1 do 8 učinkovitu za detekciju suviška ili nedostatka OKT9+ stanica.15. A diagnostic composition of substances for the detection of an excess or lack of OKT9+ cells, characterized in that, in a mixture with a diagnostically acceptable carrier, it contains an amount of antibody according to any of claims 1 to 8 effective for detecting an excess or lack of OKT9+ cells. 16. Terapeutski sastav tvari, naznačen time, da u mješavini s farmaceutski prihvatljivim nosačem sadrži količinu antitijela prema bilo kojem od zahtjeva 1 do 8 učinkovitu za smanjenje količine OKT9+ stanica u osobi koja ima višak spomenutih OKT9+ stanica.16. Therapeutic composition of matter, characterized in that, in a mixture with a pharmaceutically acceptable carrier, it contains an amount of antibody according to any one of claims 1 to 8 effective for reducing the amount of OKT9+ cells in a person who has an excess of said OKT9+ cells. 17. Metoda detekcije nedostatka ili viška OKT9+ stanica, naznačena time, da uključuje reakciju sastava T stanica ili timocitnog sastava, dobivenog iz osobe, s dijagnostički učinkovitom količinom antitijela prema bilo kojem od zahtjeva 1 do 8, ili sa sastavom prema zahtjevu 15, i mjerenje postotka sastava T stanica ili timocitnog sastava koji reagira s antitijelom.17. A method of detecting a lack or excess of OKT9+ cells, indicated by the fact that it includes the reaction of a composition of T cells or a thymocyte composition, obtained from a person, with a diagnostically effective amount of antibodies according to any one of claims 1 to 8, or with a composition according to claim 15, and measurement the percentage of T cell composition or thymocyte composition that reacts with the antibody. 18. Metoda prema zahtjevu 17, naznačena time, da se radi o višku T ALL stanica.18. The method according to claim 17, characterized in that it is an excess of T ALL cells. 19. Monoklonsko antitijelo prema bilo kojem zahtjevu od 1 do 8, ili sastav prema zahtjevu 16, naznačeno time, da se upotrebljava za liječenje osobe koja ima višak OKT9+ stanica.19. The monoclonal antibody according to any one of claims 1 to 8, or the composition according to claim 16, characterized in that it is used to treat a person who has an excess of OKT9+ cells. 20. Metoda za proizvodnju sastava prema zahtjevu 15 ili zahtjevu 16, naznačena time, da obuhvaća miješanje dijagnostički ili terapeutski učinkovite količine antitijela prema bilo kojem od zahtjeva 1 do 8 s dijagnostički ili terapeutski prihvatljivim nosačem.20. A method for producing a composition according to claim 15 or claim 16, characterized in that it comprises mixing a diagnostically or therapeutically effective amount of antibody according to any of claims 1 to 8 with a diagnostically or therapeutically acceptable carrier.
HR940823A 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody HRP940823B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/100,071 US4364934A (en) 1979-12-04 1979-12-04 Monoclonal antibody to a human early thymocyte antigen and methods for preparing same
YU3064/80A YU45077B (en) 1979-12-04 1980-12-03 Process for obtaining a monoclonal antibody

Publications (2)

Publication Number Publication Date
HRP940823A2 true HRP940823A2 (en) 1997-06-30
HRP940823B1 HRP940823B1 (en) 2000-06-30

Family

ID=26796781

Family Applications (1)

Application Number Title Priority Date Filing Date
HR940823A HRP940823B1 (en) 1979-12-04 1994-10-26 Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody

Country Status (2)

Country Link
HR (1) HRP940823B1 (en)
SI (1) SI8013064A8 (en)

Also Published As

Publication number Publication date
SI8013064A8 (en) 1997-10-31
HRP940823B1 (en) 2000-06-30

Similar Documents

Publication Publication Date Title
EP0018795B1 (en) Monoclonal-antibody-producing hybrid cell line, antibody and method of preparing it, therapeutic composition containing it and its diagnostic and therapeutic uses
EP0018794B1 (en) Monoclonal antibody to human helper t cells, method of preparing it, hybrid cell line producing it, its diagnostic and therapeutic uses and diagnostic and therapeutic compositions comprising it
EP0030815B1 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses, and pharmaceutical compositions comprising this antibody
US4657760A (en) Methods and compositions using monoclonal antibody to human T cells
EP0033578B1 (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods
EP0017381B1 (en) Monoclonal antibody to human t cells, method for preparing it, hybrid cell line producing it, therapeutic composition comprising it and diagnostic method using it
EP0030450A2 (en) Hybrid cell line for producing complement-fixing, monoclonal antibody to human suppressor T cells, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
EP0025722B1 (en) Monoclonal antibody to human cytotoxic and suppressor t cells, and method of preparing it
EP0030814B1 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigen, antibody, method of preparation of this antibody, diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
IE50672B1 (en) Hybrid cell line for producing monoclonal antibody to human thymocyte antigen,antibody,method of preparation of this antibody,diagnostic and therapeutic uses and pharmaceutical compositions comprising this antibody
US4658020A (en) Monoclonal antibody to human helper T cells
US4515895A (en) Hybrid cell line for producing monoclonal antibody to human helper T cells
US4652447A (en) Methods and compositions using monoclonal antibody to human helper T cells
US4624925A (en) Hybrid cell line for producing monoclonal antibody to a human early thymocyte antigens, antibody, and methods
US4614720A (en) Hybrid cell line for producing monoclonal antibody to a human T cell antigen, antibody, and methods
US4743681A (en) Hybrid cell line for producing monoclonal antibody to a human T cell antigen, antibody, and methods
US4680383A (en) Monoclonal antibody to human T cells
US4806349A (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
HRP940823A2 (en) Hybrid cell line for producing monoclonal antibody to a human early thymocite antigen, antibody and method of preparation of this antibody
CA1183468A (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods
HRP940824A2 (en) Hybrid cell line for producing monoclonal antibody to a human prothymocyte antigen, antibody, and methods
HRP940790A2 (en) Hybrid cell line for producing monoclonal antibody to a human thymocyte antigen, antibody and method of preparation thereof
HRP940822A2 (en) Hybrid cell line for producing complement-fixing monoclonal antibody to a human supressor t cells, antibody and methods
HRP940808A2 (en) Hybrid cell line for producing monoclonal antibody to helper t cells, antibody and method of preparation thereof
HRP940830A2 (en) Hybrid cell line for producing monoclonal antibody to a human t cell antigen, antibody, and methods

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 19991203

Year of fee payment: 20

B1PR Patent granted
PB20 Patent expired after termination of 20 years

Effective date: 20001203