HRP920446A2 - TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE - Google Patents
TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE Download PDFInfo
- Publication number
- HRP920446A2 HRP920446A2 HRP920446AA HRP920446A HRP920446A2 HR P920446 A2 HRP920446 A2 HR P920446A2 HR P920446A A HRP920446A A HR P920446AA HR P920446 A HRP920446 A HR P920446A HR P920446 A2 HRP920446 A2 HR P920446A2
- Authority
- HR
- Croatia
- Prior art keywords
- particles
- coke
- sodium carbonate
- coke particles
- calcined
- Prior art date
Links
- 230000002401 inhibitory effect Effects 0.000 title claims description 4
- 239000002245 particle Substances 0.000 claims abstract description 163
- 239000000571 coke Substances 0.000 claims abstract description 154
- 238000000034 method Methods 0.000 claims abstract description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 49
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 47
- 239000011734 sodium Substances 0.000 claims abstract description 46
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 46
- 239000002006 petroleum coke Substances 0.000 claims abstract description 45
- 239000011593 sulfur Substances 0.000 claims abstract description 43
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 43
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- 239000011591 potassium Substances 0.000 claims abstract description 8
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 131
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 66
- 239000003112 inhibitor Substances 0.000 claims description 52
- 230000008569 process Effects 0.000 claims description 41
- 239000011329 calcined coke Substances 0.000 claims description 40
- 230000008961 swelling Effects 0.000 claims description 34
- 238000001354 calcination Methods 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 150000001339 alkali metal compounds Chemical class 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000007664 blowing Methods 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 11
- 239000000945 filler Substances 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical class 0.000 claims description 3
- 238000010304 firing Methods 0.000 claims description 2
- 230000002579 anti-swelling effect Effects 0.000 claims 2
- 238000004891 communication Methods 0.000 claims 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims 2
- 239000007864 aqueous solution Substances 0.000 claims 1
- 229910000027 potassium carbonate Inorganic materials 0.000 claims 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract description 17
- 239000003513 alkali Substances 0.000 abstract description 14
- 150000001342 alkaline earth metals Chemical class 0.000 abstract description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011777 magnesium Substances 0.000 abstract description 3
- 229910052749 magnesium Inorganic materials 0.000 abstract description 3
- 229910052792 caesium Inorganic materials 0.000 abstract 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 abstract 1
- 235000017550 sodium carbonate Nutrition 0.000 description 46
- 229910002804 graphite Inorganic materials 0.000 description 18
- 239000010439 graphite Substances 0.000 description 18
- 238000012360 testing method Methods 0.000 description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 9
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 8
- 239000003245 coal Substances 0.000 description 7
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 5
- 239000002008 calcined petroleum coke Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000002386 leaching Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- -1 alkaline earth metal salt Chemical class 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Abstract
Opisan je postupak za tretiranje petrolejskog koksa sa visokim sadržajem sumpora u kojem se djelići petrolejskog koksa kontaktiraju sa spojem koji sadrži alkalni ili zemnoalkalni metal izabran iz grupe koja sadrži natrij, kalij, cezij i magnezij, na povišenoj temperaturi koja je iznad one na kojoj spoj alkalnog ili zemnoalkalnog metala počinje da reagirati sa ugljikom, ali je ispod temperature na kojoj djelići koksa počinju da se napuhavaju u odsustvu spoja. Djelići koksa se održavaju na povišenoj temperaturi tokom zadovoljavajućeg vremenskog perioda da se omogući da se reakcija vrši i da se omogući reakcionim proizvodima da penetriraju djeliće i da se formira depozit alkalnog ili zemnoalkalnog metala u čitavoj masi djelića; i tada se tako tretirani djelići koksa hlade.A method for treating high sulfur petroleum coke in which portions of petroleum coke are contacted with a compound containing alkali or alkaline earth metal selected from the group consisting of sodium, potassium, cesium and magnesium at an elevated temperature above that at which the alkali compound or alkaline earth metal begins to react with carbon but is below the temperature at which the coke particles begin to inflate in the absence of the compound. The coke particles are maintained at elevated temperature for a sufficient period of time to allow the reaction to take place and to allow the reaction products to penetrate the particles and to form an alkali or alkaline earth metal deposit over the entire mass of the particles; and then the coke particles treated like this are cooled.
Description
Područje tehnike u koju izum spada The technical field to which the invention belongs
Izum je iz područja tehnologije proizvodnje artikala od ugljena. The invention is from the field of coal article production technology.
Tehnički problem Technical problem
Sadašnji izum odnosi se na artikle od ugljena i grafita, naročito na elektrode električnih peći, i na postupak za proizvodnju takvih elektroda poboljšanog kvaliteta korištenjem kokseva sa visokim sadržajem sumpora. Određenije, Izum se odnosi na postupak za tretiranje kalciniranih petrolejskih kokseva sa inhibitorom napuhavanja prije ubacivanja koksa u ugljenični miks. U važnom aspektu, izum se odnosi na ugljeno punilo ili agregat koji sadrži diskretne djeliće kalciniranog petrolejskog koksa koji ima visoki sadržaj sumpora i koji ima u sebi raspoređeno sredstvo za inhibiranje napuhavanja kroz čitavu masu čestica, pri čemu sredstvo za inhibiranje napuhavanja služi da smanji ili eliminira napuhavanje koksa za vrijeme proizvodnje i korištenje grafita i ugljenih proizvoda. The present invention relates to articles of coal and graphite, particularly to electric furnace electrodes, and to a process for producing such electrodes of improved quality using high sulfur cokes. More specifically, the Invention relates to a process for treating calcined petroleum cokes with a swelling inhibitor before introducing the coke into the carbon mix. In an important aspect, the invention relates to a coal filler or aggregate containing discrete particles of calcined petroleum coke having a high sulfur content and having a swelling inhibitor distributed throughout the mass of particles, wherein the swelling inhibitor serves to reduce or eliminate blowing coke during production and using graphite and coal products.
Stanje tehnike State of the art
Uobičajena praksa u proizvodnji elektroda električnih peći i od ugljena i grafita jest da se koristi kalcinirani petrol koks (tj. sirovi petrol koks koji je zagrijavan na temp. iznad oko 1200ºC) kao punilo ili agregatni materijal i da se ovo punilo ili agregat miješa sa takvim ugljenim vezivnim sredstvom kao što je smola. Smjesa se formira u obliku elektrode, ili lijevanjem ili istiskivanjem, i onda se peče na povišenoj temperaturi koja je zadovoljavajuća za karbonizaciju vezivnog sredstva (npr. oko 800ºC). U onim slučajevima kada je potrebna grafitizirana elektroda, pečena elektroda se dalje zagrijava na temperaturama najmanje oko 2800ºC. A common practice in the manufacture of both coal and graphite electric furnace electrodes is to use calcined petroleum coke (ie raw petroleum coke that has been heated to a temperature above about 1200ºC) as a filler or aggregate material and to mix this filler or aggregate with such with a carbon binder such as resin. The mixture is formed into an electrode shape, either by casting or extrusion, and then fired at an elevated temperature sufficient to carbonize the binder (eg around 800ºC). In those cases where a graphitized electrode is required, the baked electrode is further heated to temperatures of at least around 2800ºC.
Čestice petrolejskog koksa imaju tendenciju da se “napuhavaju”, to jest, da se šire i čak da se raskinu kada se zagrijavaju na temperaturama iznad oko 1500ºC, ako sadrže više od oko 0.2% mas. sumpora. Elektrode koje su napravljene od takvog koksa gube gustoću i čvrstoću i ponekad se raskidaju uzdužno kada se zagrijavaju na ovim visokim temperaturama. Kao što je naznačeno, grafitne elektrode se normalno zagrijavaju na najmanje 2800ºC za vrijeme postupka njihove proizvodnje. Ugljene elektrode, koje nisu grafitizirane za vrijeme proizvoljnog procesa dostižu temperature između oko 2000ºC i 2500ºC za vrijeme njihovog korištenja u pećima za silicijum ili fosfor. Petroleum coke particles tend to "puff", that is, to expand and even break up when heated at temperatures above about 1500ºC, if they contain more than about 0.2% by weight. sulfur. Electrodes made from such coke lose density and strength and sometimes tear longitudinally when heated at these high temperatures. As indicated, graphite electrodes are normally heated to at least 2800ºC during their manufacturing process. Carbon electrodes, which are not graphitized during the arbitrary process, reach temperatures between about 2000ºC and 2500ºC during their use in silicon or phosphorus furnaces.
Napuhavanje je praćeno sa oslobađanjem sumpora iz njegove veze sa ugljikom unutar čestica koksa. Ako pare koje sadrže sumpor ne mogu izići iz čestica ili iz elektrode dovoljno brzo, one stvaraju unutrašnji pritisak koji opet povećava volumen čestica i može izazvati raskidanje elektrode. Blowing is accompanied by the release of sulfur from its bond with carbon within the coke particles. If the sulfur-containing vapors cannot escape from the particles or the electrode quickly enough, they create an internal pressure that again increases the volume of the particles and can cause the electrode to break.
Konvencionalni lijek za napuhavanje bio je da se doda takav inhibitor kao što je oksid željeza ili drugi spoj metala u smjesu koks-smola prije nego što se formiraju elektrode. Pokazano je, na primjer, da oko 2 mas. postotka oksida željeza može biti efikasno za smanjivanje napuhavanja koksa. Neki koksevi koji imaju višu tendenciju da se napuhavaju ili da počnu sa napuhavanjem na nižoj temperaturi, ne mogu se kontrolirati na pravi način sa oksidom željeza. The conventional remedy for swelling was to add such an inhibitor as iron oxide or another metal compound to the coke-resin mixture before the electrodes were formed. It has been shown, for example, that about 2 wt. percentage of iron oxide can be effective in reducing coke swelling. Some cokes that have a higher tendency to swell or start swelling at a lower temperature cannot be properly controlled with iron oxide.
Vršeni su razni pokušaji da se osiguraju drugi poboljšani postupci za prevladavanje gornjih i drugih nedostataka ranije tehnike. Na primjer, u U.S. Pat. No. 2,814,076 od J.W. Gartland-a od 26 studenog 1957., opisan je poboljšani postupak za proizvodnju takvih grafitnih artikala kao što su elektrode za električne peći u kojima se kao inhibitor napuhavanja koristi neki spoj iz I grupe Periodnog sustava, naročito natrijev karbonat. Natrijev karbonat može se dodati na artikal impregnacijom artikla poslije pečenja sa otopinom natrijevog karbonata ili dodavanjem inhibitora napuhavanja direktno u mješavinu koks-smola. Makar je dodavanje natrijevog karbonata na mješavinu koks-smola podesnije nego njegovo dodavanje u pečeni artikl, ovaj postupak proizvodi finiširanu elektrodu slabog kvaliteta, tj. niže gustoće i čvrstoće. Various attempts have been made to provide other improved processes to overcome the above and other disadvantages of the prior art. For example, in the U.S. Pat. But. 2,814,076 from J.W. Gartland dated November 26, 1957, described an improved process for the manufacture of such graphite articles as electrodes for electric furnaces in which a compound of Group I of the Periodic Table, particularly sodium carbonate, is used as a swelling inhibitor. Sodium carbonate can be added to the article by impregnating the article after baking with sodium carbonate solution or by adding a swelling inhibitor directly to the coke-resin mixture. Although adding sodium carbonate to the coke-resin mixture is more convenient than adding it to the baked article, this process produces a finished electrode of poor quality, i.e. of lower density and strength.
Drugi problem na koji se nailazi kada se inhibitor napuhavanja doda direktno u miks koks-smola jest da natrijev karbonat reagira sa kiselim pomagalima istiskivanja koja se mogu koristiti u miksu. Na nesreću, ova reakcija često izaziva probleme oko istiskivanja koji vode do slabe strukture elektrode. Another problem encountered when blowing inhibitor is added directly to the coke-resin mix is that the sodium carbonate reacts with the acidic extrusion aids that may be used in the mix. Unfortunately, this reaction often causes extrusion problems that lead to a weak electrode structure.
Drugi prilaz za rješavanje problema napuhavanja koksa u proizvodnji ugljičnih i grafitnih elektroda opisan je u U.S. Pat. No. 3,506,745 koji je objavio L.H. Juel et al 14 travnja 1970. U ovom prilazu, čestice koksa sa visokim sadržajem sumpora tretiraju se prije njihovog ubacivanja u ugljični miks kontaktiranjem čestica koksa sa inhibitorom napuhavanja i zagrijavanjem čestica u suštinski ne-oksidacionoj atmosferi na temperaturama iznad oko 1400ºC, i također iznad one na kojoj koks počinje napuhavati u odsustvu inhibitora napuhavanja i poželjno iznad 2000ºC. Inhibitor napuhavanja može se uvoditi zaprašivanjem prahova inhibitora na granularni petrolejski koks ili se može napraviti vodena suspenzija koja sadrži inhibitor i onda se prska na koks prije zagrijavanja čestica koksa na temperaturama napuhavanja. Čestice koksa tada se hlade na temperaturama oko obične i miješa se sa smolnim vezivnim sredstvom da se formira konvencionalni ugljični miks. Inhibitor napuhavanja kombinira se sa sumporom i isparava kada se koks zagrijava na temperaturama napuhavanja i iznad ovih. Problem sa ovim prilazom je taj što postupak zahtjeva zagrijavanje čestica koksa na temperaturama koje su znatno više od onih koje se obično koriste za vrijeme uobičajenog postupka kalciniranja. Zato se ovo tretiranje može vršiti samo sa postupkom koji je različit od običnih praksi za kalciniranje, koji troši više energije i zahtjeva skuplju opremu. Another approach to solving the problem of coke blowing in the production of carbon and graphite electrodes is described in U.S. Pat. Pat. But. 3,506,745 published by L.H. Juel et al 14 April 1970 In this approach, high sulfur coke particles are treated prior to their introduction into the carbon mix by contacting the coke particles with a swelling inhibitor and heating the particles in a substantially non-oxidizing atmosphere at temperatures above about 1400ºC, and also above at which the coke begins to swell in the absence of a swelling inhibitor and preferably above 2000ºC. The blowing inhibitor can be introduced by dusting inhibitor powders onto the granular petroleum coke, or an aqueous slurry containing the inhibitor can be made and then sprayed onto the coke before heating the coke particles to blowing temperatures. The coke particles are then cooled to ambient temperatures and mixed with a resin binder to form a conventional carbon mix. The blowing inhibitor combines with the sulfur and volatilizes when the coke is heated at and above the blowing temperatures. The problem with this approach is that the process requires heating the coke particles to temperatures significantly higher than those typically used during a conventional calcination process. That's why this treatment can only be done with a process that is different from ordinary practices for calcination, which consumes more energy and requires more expensive equipment.
Opis rješenja tehničkog problema sa primjerima izvođenja i popisom i kratkim opisom slika nacrta Description of the solution to the technical problem with implementation examples and a list and brief description of the drawings
Sadašnji izum usmjeren je na poboljšani postupak za tretiranje petrolejskog koksa sa visokim sadržajem sumpora sa inhibitorom napuhavanja prije ubacivanja koksa u ugljični miks. U najširem smislu, poboljšani postupak obuhvaća kontaktiranje čestica petrolejskog koksa sa visokim sadržajem sumpora sa spojem koji sadrži alkalni ili zemnoalkalni metal koji je izabran iz grupe koja sadrži natrij, kalcij, kalij i magnezij, na povišenoj temperaturi koja je iznad one na kojoj je spoj alkalnog ili zemnoalkalnog metala počinje reagirati sa ugljikom ali je ispod temperature na kojoj se čestice koksa počinju napuhavati u odsustvu spoja; održavanje čestica koksa na povišenoj temperaturi tokom dovoljnog vremenskog perioda da se omogući da se reakcija vrši i da se omogući reakcijskim proizvodima da penetriraju u djeliće i da formiraju depozit, koji sadrži alkalni ili zemnoalkalni metal, u čitavoj masi čestica; i tada hlađenje tako tretiranih četica koksa. The present invention is directed to an improved process for treating high sulfur petroleum coke with a blowing inhibitor prior to feeding the coke into the carbon mix. In its broadest sense, the improved process comprises contacting particles of high sulfur petroleum coke with a compound containing an alkali or alkaline earth metal selected from the group consisting of sodium, calcium, potassium and magnesium, at an elevated temperature above that at which the compound of alkaline or alkaline earth metal begins to react with carbon but is below the temperature at which coke particles begin to swell in the absence of the compound; maintaining the coke particles at an elevated temperature for a sufficient period of time to allow the reaction to take place and to allow the reaction products to penetrate the particles and form a deposit, containing an alkali or alkaline earth metal, throughout the mass of the particles; and then cooling the treated coke brushes.
Postupak iz sadašnjeg izuma se poželjno vrši na povišenoj temperaturi između oko 1200ºC i 1400ºC. Međutim, nađeno je da su tako niske temperature kao 750ºC adekvatne za promociju potrebne reakcije između inhibitora napuhavanja i čestica koksa i mogu se koristiti. The process of the present invention is preferably carried out at an elevated temperature between about 1200ºC and 1400ºC. However, temperatures as low as 750ºC have been found to be adequate to promote the necessary reaction between the swelling inhibitor and the coke particles and can be used.
Inhibitor napuhavanja koji se koristi u postupku iz sadašnjeg izuma može biti sol alkalnog ili zemnoalkalnog metala i poželjno je natrijevog karbonata. Inhibitor se može miješati sa česticema petrolejskog koksa prije ili poslije zagrijavanja za vrijeme uobičajenog postupka kalciniranja, i može se ubaciti sa česticema koksa u obliku suhih, granularnih prahova ili kao otopina koji sadrži inhibitor koji se može prskati na djeliće. Inhibitor se koristi u većim količinama od oko 0.2 tež.% od koksa. The swelling inhibitor used in the process of the present invention may be an alkali or alkaline earth metal salt and preferably sodium carbonate. The inhibitor may be mixed with the petroleum coke particles before or after heating during the normal calcination process, and may be incorporated with the coke particles in the form of dry, granular powders or as a solution containing the inhibitor that can be sprayed into particles. The inhibitor is used in larger amounts of about 0.2 wt.% of the coke.
U poželjnoj realizaciji sadašnjeg izuma poboljšani postupak za tretiranje petrolejskog koksa (njegovih čestica) sa visokim sadržajem sumpora obuhvaća: kalciniranje čestica petrolejskog koksa sa visokim sadržajem sumpora; In a preferred embodiment of the present invention, an improved process for treating petroleum coke (its particles) with a high sulfur content comprises: calcination of petroleum coke particles with a high sulfur content;
dodavanje natrijevog karbonata ukalcinirane djeliće koksa na povišenoj temperaturi iznad oko 1200ºC ali ispod temperature na kojoj će čestice koksa početi se napuhavati u odsustvu natrijevog karbonata; adding sodium carbonate to the calcined fraction of coke at an elevated temperature above about 1200ºC but below the temperature at which the particles of coke will begin to swell in the absence of sodium carbonate;
održavanje kalciniranih čestica koksa i natrijevog karbonata na povišenoj temperaturi tokom zadovoljavajućeg vremenskog perioda da se omogući da natrijev karbonat reagira sa koksom i da se omogući da dobiveni natrij penetrira djeliće i deponira natrij u čitavoj masi čestica; i maintaining the calcined particles of coke and sodium carbonate at an elevated temperature for a sufficient period of time to allow the sodium carbonate to react with the coke and to allow the resulting sodium to penetrate the particles and deposit sodium throughout the mass of particles; and
hlađenje tako tretiranih čestica koksa. cooling of thus treated coke particles.
U drugom aspektu izuma osigurano je ugljeno punilo ili agregat za korištenje u proizvodnji ugljičnih ili grafitnih artikala koji obuhvaća diskretne djeliće petrolejskog koksa koji imaju visoki sadržaj sumpora i koji imaju inhibitor napuhavanja i koji je raspodijeljen u čitavoj masi čestica. Sredstvo za inhibiranje napuhavanja obuhvaća u vodi otopljen spoj alkalnog ili zemnoalkalnog metala koji je izabran iz grupe koja sadrži natrij, kalij, kalcij, i magnezij; prosječna količina metala u česticema je veća od oko 0.15 tež. postotka. In another aspect of the invention there is provided a coal filler or aggregate for use in the manufacture of carbon or graphite articles comprising discrete particles of petroleum coke having a high sulfur content and having a swelling inhibitor and which is distributed throughout the mass of particles. The anti-bloat agent comprises a water-dissolved alkali or alkaline earth metal compound selected from the group consisting of sodium, potassium, calcium, and magnesium; the average amount of metal in the particles is greater than about 0.15 wt. percentage.
Na pridodanim crtežima: On the attached drawings:
Slika 1 je shematski uzdignuti izgled uređaja za kalciniranje koji je modificiran za vršenje postupka iz sadašnjeg izuma; Figure 1 is a schematic elevation view of a calciner modified to carry out the process of the present invention;
Slika 2 je uvećani izgled presjeka modificiranog dijela uređaja koji je prikazan na slici 1; Figure 2 is an enlarged cross-sectional view of the modified part of the device shown in Figure 1;
Slika 3 je izgled presjeka modificiranog uređaja za kalciniranje uzet duž linije 3-3 slike 2; Fig. 3 is a sectional view of a modified calciner taken along line 3-3 of Fig. 2;
Slika 4 je shematski uzdignuti izgled uređaja za kalciniranje prema drugoj realizaciji sadašnjeg izuma; Fig. 4 is a schematic elevational view of a calciner according to another embodiment of the present invention;
Slika 5 je uvećani bočni uzdignuti izgled uređaja koji je prikazan na slici 4; Figure 5 is an enlarged side elevational view of the device shown in Figure 4;
Slika 6 je grafikon koji prikazuje brzine napuhavanja petrolejskog koksa koji je tretiran sa konvencionalnim inhibitorom i istog koksa koji je tretiran prema sadašnjem izumu; Figure 6 is a graph showing the swelling rates of petroleum coke treated with a conventional inhibitor and the same coke treated according to the present invention;
Slike 7, 8 i 9 su grafikoni koji prikazuju napuhavanja nekoliko različitih tipova petrolejskih kokseva prema sadašnjem izumu; Figures 7, 8 and 9 are graphs showing the blowdowns of several different types of petroleum coke according to the present invention;
Slika 10a je mikrofotografija koja je uzeta sa elektronskim mikroskopom sa skeniranjem (SEM) pri uvećanju 200X i prikazuje površinu blizu ruba unutrašnje ravnine koja je napravljena mljevenjem čestica koksa od 1.27 cm koji je tretiran prema sadašnjem izumu; Figure 10a is a photomicrograph taken with a scanning electron microscope (SEM) at 200X magnification and shows a surface near the edge of an inner plane made by grinding 1.27 cm particles of coke treated according to the present invention;
Slika 10b je mikrofotografija iste površine koja je prikazana na slici 10a ali prikazuje mapu elementarnog natrija dobivenu Analizom disperzione energije X-zraka (EDX) također pri uvećavanju 200X. Figure 10b is a photomicrograph of the same surface shown in Figure 10a, but shows a map of elemental sodium obtained by Energy Dispersive X-Ray Analysis (EDX) also at 200X magnification.
Slika 10c je mikrofotografija EDX spektra iste površine koja je prikazana na slikama 10a i 10b; Figure 10c is a photomicrograph of the EDX spectrum of the same surface shown in Figures 10a and 10b;
Slika 11a je mikrofotografija koja je uzeta sa elektronskim mikroskopom sa skaniranjem (SEM) pri uvećavanju 45X i prikazuje drugu površinu, bliže centru iste unutrašnje ravni koja je prikazana na slikama 10a i 10b; Figure 11a is a photomicrograph taken with a scanning electron microscope (SEM) at 45X magnification and shows a second surface, closer to the center of the same inner plane shown in Figures 10a and 10b;
Slika 11b je mikrofotografija iste površine koja je prikazana na slici 11a ali prikazuje mapu elementarnog natrija sa X-zracima dobivenu EDX analizom, također pri uvećavanju 45X. Figure 11b is a photomicrograph of the same surface shown in Figure 11a, but showing an X-ray map of elemental sodium obtained by EDX analysis, also at 45X magnification.
Slika 11c je fotografija EDX spektra iste površine koja je prikazana na slikama 11a i 11b; Figure 11c is a photograph of the EDX spectrum of the same surface shown in Figures 11a and 11b;
Slika 12a je mikrofotografija koja je uzeta sa SEM pri uvećanju 50X i prikazuje treću površinu iste unutrašnje ravni koja je prikazana na slici 10a i 10b; Figure 12a is a photomicrograph taken with SEM at 50X magnification and shows the third surface of the same inner plane shown in Figure 10a and 10b;
Slika 12b je mikrofotografija iste površine koja je prikazana na slici 12a ali prikazuje mapu elementarnog natrija sa X-zracima dobivenu EDX analizom, pri istom 50X uvećavanju; Figure 12b is a photomicrograph of the same surface shown in Figure 12a but showing an X-ray map of elemental sodium obtained by EDX analysis, at the same 50X magnification;
Slika 12c je fotografija EDX spektra iste površine koja je prikazana na slikama 12a i 12b; Figure 12c is a photograph of the EDX spectrum of the same surface shown in Figures 12a and 12b;
Slika 13a je mikrofotografija uzeta sa SEM pri uvećanju 200X i prikazuje četvrtu površinu iste unutrašnje ravni koja je prikazana na slikama 10a i 10b; Figure 13a is a photomicrograph taken with SEM at 200X magnification and shows the fourth surface of the same inner plane shown in Figures 10a and 10b;
Slika 13b je mikrofotografija iste ravni koja je prikazana na slici 13a ali prikazuje mapu elementarnog natrija sa X-zracima dobivenu EDX analizom, pri istom uvećanju 200X; Figure 13b is a photomicrograph of the same plane shown in Figure 13a but showing an X-ray map of elemental sodium obtained by EDX analysis, at the same magnification of 200X;
Slika 13c je fotografija EDX spektra iste površine koja je prikazana na slikama 12a i 12b; Figure 13c is a photograph of the EDX spectrum of the same surface shown in Figures 12a and 12b;
Slika 14a je mikrofotografija uzeta sa SEM pri 15X uvećanju i prikazuje i unutrašnju ravan koja je napravljena mljevenjem tretiranog čestica koksa od 0.635 cm prema sadašnjem izumu i također prikazuje originalnu površinu koja izložena mljevenjem; Figure 14a is a photomicrograph taken with SEM at 15X magnification and shows both an internal plane made by grinding a 0.635 cm treated coke particle according to the present invention and also shows the original surface exposed by grinding;
Slika 14b je mikrofotografija iste površine koja je prikazana na slici 14a ali prikazuje mapu elementarnog natrija sa X-zracima dobivenu EDX analizom, pri istom 15X uvećanju; Figure 14b is a photomicrograph of the same surface shown in Figure 14a but showing an X-ray map of elemental sodium obtained by EDX analysis, at the same 15X magnification;
Slika 14c je fotografija EDX spektra iste površine koja je prikazana na slikama 14a i 14b; Figure 14c is a photograph of the EDX spectrum of the same surface shown in Figures 14a and 14b;
Slika 15a je mikrofotografija uzeta sa SEM pri 15X uvećanju istih površina koje su prikazane na slici 14a ali je uzeta poslije luženja čestica sa vodom; Figure 15a is a photomicrograph taken with SEM at 15X magnification of the same surfaces shown in Figure 14a, but taken after leaching the particles with water;
Slika 15b je mikrofotografija iste površine koje su prikazana na slici 14a ali prikazuje mapu elementarnog natrija sa X-zracima dobivenu EDX analizom, pri istom 15X uvećanju; Figure 15b is a photomicrograph of the same surface shown in Figure 14a, but shows an X-ray map of elemental sodium obtained by EDX analysis, at the same 15X magnification;
Slika 15c je fotografija EDX spektra istih površina koje su prikazane na slikama 15a i 15b; Figure 15c is a photograph of the EDX spectrum of the same surfaces shown in Figures 15a and 15b;
Petrolejski koks se proizvodi pečenjem teških ostataka nafte, kao što je poznato iz ranije tehnike. Sirovi petrolejski koks, tj. petrolejski koks koji nije kalciniran, obično ima sadržaj isparljive supstance između oko 6 i oko 14 postotaka. Isparljiva supstanca se tipično odvaja zagrijavanjem sirovog petrolejskog koksa u nekom kalcinatoru na temperaturama između oko 1200ºC i oko 1400ºC. Povremeno se mogu koristiti tako visoke temperature kalciniranja ako što je 1500ºC. Sadržaj isparljive supstance u koksu poslije kalciniranja je obično manji od oko 1 masenog postotka. Sirovi petrolejski koks se obično smanji na veličinu čestica 10.16 cm ili manje prije kalciniranja. Petroleum coke is produced by burning heavy oil residues, as is known from the prior art. Crude petroleum coke, i.e., petroleum coke that has not been calcined, typically has a volatile matter content of between about 6 and about 14 percent. The volatile substance is typically separated by heating raw petroleum coke in a calciner at temperatures between about 1200ºC and about 1400ºC. Calcining temperatures as high as 1500ºC can occasionally be used. The content of volatile substances in the coke after calcination is usually less than about 1 mass percent. Crude petroleum coke is usually reduced to a particle size of 10.16 cm or less prior to calcination.
Za svrhe sadašnjeg izuma, polazni koksni materijal može biti ili petrolejski koks ili petrolejski koks koji je bio kalciniran konvencionalnim postupcima. U ma kojem slučaju, petrolejski koksevi na koje se izum određeno odnosi su takozvani petrolejski koksevi sa “visokim sadržajem sumpora” koji obično sadrže više od oko 0.7 mas. % sumpora. Ovi petrolejski koksevi sa visokim sadržajem sumpora obično se ne mogu adekvatno kontrolirati postupcima za inhibiranje napuhavanja koji su trenutno poznati u tehnici. Mada ovi koksevi koštaju manje njihovo korištenje u proizvodnji ugljenih ili grafitnih artikala je ili ograničeno ili zahtijeva modificiranu, skuplju procesnu tehnologiju. For the purposes of the present invention, the starting coke material can be either petroleum coke or petroleum coke that has been calcined by conventional processes. In any case, the petroleum cokes to which the invention specifically relates are the so-called "high sulfur" petroleum cokes which usually contain more than about 0.7 wt. % sulfur. These high-sulfur petroleum cokes typically cannot be adequately controlled by blow-inhibiting procedures currently known in the art. Although these cokes cost less, their use in the production of carbon or graphite articles is either limited or requires modified, more expensive process technology.
Sumpor se oslobađa iz kemijske veze sa ugljikom kada se petrolejski koks zagrijava na višim temperaturama od oko 1500ºC, i u mnogim slučajevima na najmanje oko 1600ºC, što je više od običnih temperatura kalciniranja. Ako se ovo oslobađanje sumpora ne ihibira ili se sumpor kemijski ne veže unutar strukture koksa, tada se brzo izlaženje para koje sadrže sumpor stvarati unutrašnji pritisak u česticema koksa koji teži da širi djeliće, ponekad ček sa njihovim raskidanjem ili kidanjem artikala koji su iz njih napravljeni. Ovaj fenomen se naziva napuhavanje. Sulfur is released from its chemical bond with carbon when petroleum coke is heated to temperatures higher than about 1500ºC, and in many cases to at least about 1600ºC, which is higher than ordinary calcination temperatures. If this release of sulfur is not inhibited or the sulfur is not chemically bound within the coke structure, then the rapid escape of sulfur-containing vapors creates an internal pressure in the coke particles that tends to spread the particles, sometimes resulting in their tearing or the tearing of articles made from them. . This phenomenon is called inflation.
Prema sadašnjem izumu nađeno je da se napuhivanje formiranog ugljičnog ili grafitnog artikla može značajno smanjiti ili eliminirati tretiranjem čestica petrolejskog koksa sa nekim spojem alkalnog ili zemnoalkalnog metala, kao što su natrij ili kalcij karbonat na temperaturama koje su znatno iznad temperatura na kojima se koks počinje napuhavati, prije uvođenja čestica koksa u ugljični miks. Iz literture, “Efectt of Sodium Carbonate upon Gasification of Carbon and Production of Producer Gas” od D. A. Foks-a et al, Industrial and Engineering Chemistry, Vol. 23, No. 3, ožujak 1931, poznato je da se spoj alkala (npr. natrijev karbonat) može efikasno reducirati sa ugljikom u reaktoru na visokoj temperaturi tako da se proizvode pare alkalnog metala i ugljični monoksid. Prema izumu je neočekivano nađeno da ako se pusti da spoj alkalnog ili zemnoalkalnog metala bude u kontaktu sa česticema petrolejskog koksa tokom dovoljno dugog vremenskog perioda, npr. oko 1 minutu ili više, uz održavanje temperature iznad one na kojoj se ova redukciona reakcija javlja, npr. oko 750ºC u slučaju natrijevog karbonata tada će tako proizvedeni alkalni ili zemnoalkalni metal penetrirati i formirati će depozit koji sadrži alkalni ili zemnoalkalni metal u čitavoj masi čestica koksa a ne samo u njegovim porama. Nađeno je u laboratoriji da je vrijeme zadržavanja od 30 sekundi efikasno za potiskivanje napuhavanja. U pogonskim proizvodnim testovima vrijeme zadržavanja na reakcionoj temperaturi bilo je duže od jednog minuta. According to the present invention it has been found that swelling of the formed carbon or graphite article can be significantly reduced or eliminated by treating the petroleum coke particles with some alkali or alkaline earth metal compound, such as sodium or calcium carbonate at temperatures well above the temperatures at which the coke begins to swell , before the introduction of coke particles into the carbon mix. From the literature, “Efectt of Sodium Carbonate upon Gasification of Carbon and Production of Producer Gas” by D. A. Fox et al, Industrial and Engineering Chemistry, Vol. 23, No. 3, March 1931, it is known that an alkali compound (eg, sodium carbonate) can be effectively reduced with carbon in a reactor at high temperature so that alkali metal vapors and carbon monoxide are produced. According to the invention it has unexpectedly been found that if an alkali or alkaline earth metal compound is allowed to be in contact with petroleum coke particles for a sufficiently long period of time, eg about 1 minute or more, while maintaining a temperature above that at which this reduction reaction occurs, eg .about 750ºC in the case of sodium carbonate then the alkali or alkaline earth metal thus produced will penetrate and form a deposit containing the alkali or alkaline earth metal in the entire mass of coke particles and not only in its pores. A dwell time of 30 seconds has been found to be effective in suppressing bloat in the laboratory. In the operational production tests, the residence time at the reaction temperature was longer than one minute.
Poznato je već neko vrijeme da natrijev karbonat, kada se koristi kao inhibitor na konvencionalan način, dodavanjem u miks koks-smola, primorava proizvod da ima nižu gustoću i nižu čvrstoću u usporedbi sa istim proizvodom koji je napravljen sa konvencionalnim inhibitorom napuhavanjem, tj. sa oksidom željeza. Mi smo našli da natrijev karbonat kada se koristi kao inhibitor napuhavanja u skladu sa ovim izumom nije izazvao gubljenje niti gustoće niti čvrstoće u proizvodu i davao je jednak proizvod sa onim koji se proizvodi korištenjem oksida željeza kao inhibitora napuhavanja. It has been known for some time that sodium carbonate, when used as an inhibitor in the conventional way, when added to the coke-resin mix, forces the product to have a lower density and lower strength compared to the same product made with a conventional blowing inhibitor, i.e. with iron oxide. We have found that sodium carbonate when used as a swell inhibitor in accordance with the present invention caused no loss of either density or strength in the product and gave a product equal to that produced using iron oxide as a swell inhibitor.
Pošto se sredstvo za inhibiranje deponira unutar čestica koksa, ono nema kontakt sa smolom za vrijeme prerade ugljenog miksa i ne ometa nikakvo pomagalo istiskivanja kao što su masne kiseline. Since the inhibiting agent is deposited within the coke particles, it does not come into contact with the resin during processing of the coal mix and does not interfere with any extrusion aids such as fatty acids.
Mada se spojevi alkalnog ili zemnoalakalnog metala mogu staviti u kontakt sa česticema petrolejskog koksa ili prije ili poslije zagrijavanja čestica koksa na potrebnim temperaturama za sprovođenje reakcije ,, , jako je podesno da se inhibitorski spoj doda na djeliće koksa u obliku suhog granuliranog praha pošto su čestice koksa zagrijani na temperaturama kalciniranja između oko 1200ºC i oko 1400ºC. U stvarnoj praksi, suhi granulirani prah inhibitorskog spoja dodaje se na kalcinirane djeliće koksa na kraju za pražnjenje kalcinatora. Također je moguće da se inhibitorski spoj doda na sirovi koks u obliku suhog praha ili da se koks prska sa otopinom koja sadrži inhibitor prije kalciniranja. Although alkali or alkaline earth metal compounds can be placed in contact with petroleum coke particles either before or after heating the coke particles at the necessary temperatures to carry out the reaction,, it is very convenient to add the inhibitor compound to the coke particles in the form of a dry granular powder since the particles are coke heated to calcination temperatures between about 1200ºC and about 1400ºC. In actual practice, a dry granular powder of the inhibitor compound is added to the calcined coke fractions at the discharge end of the calciner. It is also possible for the inhibitor compound to be added to raw coke in the form of a dry powder or for the coke to be sprayed with a solution containing the inhibitor before calcination.
Spoj alkalnog ili zemnoalkalnog metala npr. natrijev karbonat, miješa se sa česticema petrolejskog koksa u većim količinama od oko 0.2 masena postotka. Poželjno se inhibitor koristi u količinama koje variraju od oko 0.5 do oko 2.5 masena postotka od koksa. A compound of alkaline or alkaline earth metal, for example sodium carbonate, is mixed with petroleum coke particles in larger quantities of about 0.2 mass percent. Preferably, the inhibitor is used in amounts varying from about 0.5 to about 2.5 weight percent of the coke.
Na slikama 1-3 crteža, prikazan je tipičan aparat rotacionog tipa koji je modificiran radi sprovođenja poboljšanog postupka iz sadašnjeg izuma. Kao što je prikazano aparat za kalciniranje uključuje izduženu cilindričnu, rotacionu peću 10 za kalciniranje koja ima ulazni kraj 12 i izlazni kraj 14. Ulazni kraj 12 peće za kalciniranje 10 montiran je za rotaciju unutar stacionarne komore 16 za ulazak koksa koji ima vertikalni odvod ili dimnjak 18 za izlaženje izlaznih plinova iz unutrašnjosti kalcinatora. Izlazni kraj 14 peće 10 za kalciniranje je na sličan način montiran za rotaciju unutar stacionarne komore 20 za pražnjenje koksa koja uključuje konvencionalni boks za klinker 22 koji je postavljen vertikalno ispod komore 20. Figures 1-3 of the drawings show a typical rotary type apparatus that has been modified to carry out the improved process of the present invention. As shown, the calciner includes an elongated cylindrical rotary calciner 10 having an inlet end 12 and an outlet end 14. The inlet end 12 of the calciner 10 is mounted for rotation within a stationary coke inlet chamber 16 having a vertical drain or stack. 18 for exhaust gases from inside the calciner. The outlet end 14 of the calciner 10 is similarly mounted for rotation within a stationary coke discharge chamber 20 which includes a conventional clinker box 22 positioned vertically below the chamber 20.
Čestice sirovog petrolejskog koksa 24 dovode se u aparat za kalciniranje pomoču horizontalnog konvejera 26 i šaržiraju se niz šut za koks 28 u ulazni kraj 12 rotacione peći 10 za kalciniranje. Kao što je prikazano na crtežu, peć 10 je nagnuta pod malim kutem duž uzdužne ose od njenog ulaznog kraja 12 na niže prema njenom izlaznom kraju 14. Tako, kada čestice koksa 24 ulaze u peć 10, forsiraju se na osnovi gravitacije tako da se lagano pomiču dužinom peći 10 kada ona rotira sve dok ne dostignu izlazni kraj 14 odakle se prazne u komoru 20. Particles of raw petroleum coke 24 are fed into the calciner by means of a horizontal conveyor 26 and are charged down the coke slag 28 into the inlet end 12 of the rotary kiln 10 for calcination. As shown in the drawing, the furnace 10 is inclined at a small angle along the longitudinal axis from its inlet end 12 downwards toward its outlet end 14. Thus, when the coke particles 24 enter the furnace 10, they are forced by gravity so that they are slightly they move along the length of the furnace 10 when it rotates until they reach the exit end 14 from where they are emptied into the chamber 20.
Neko gorivo, kao što je prirodni plin, izgara na vrućem kraju peće i plin od sagorijevanja prolazi kroz peću 10 u suprotnom smislu u odnosu na protok čestica koksa 24. Vrući plinovi sagorijevanja zagrijavaju djeliče koksa 24 i primoravaju isparljive sastojke koji se tu nalaze da isparavaju i sagorijevaju. Some fuel, such as natural gas, is burned at the hot end of the furnace and the combustion gas passes through the furnace 10 in the opposite direction to the flow of the coke particles 24. The hot combustion gases heat the coke particles 24 and force the volatiles contained therein to evaporate. and burn.
Vruće čestice kalciniranog koksa 24 padaju iz komore 20 u boks za klinker 22 odakle teku preko vatrostalnog bloka 30 (slika 2). Blok 30 nalazi se na dnu pravokutnog izlaznog otvora 32 koji se nalazi u stacionarnoj glavi 34 hladnjaka 36. The hot particles of calcined coke 24 fall from the chamber 20 into the clinker box 22, from where they flow over the refractory block 30 (Figure 2). The block 30 is located at the bottom of the rectangular outlet opening 32 located in the stationary head 34 of the cooler 36.
Izduženi, cilindrični, rotacioni hladnjak 36 postavljen je ispod komore za pražnjenje 20. Hladnjak 36 ima ulazni kraj 38 koji je montiran za rotaciju okolo stacionarne glave 34 boksa za klinker 22. Izlazni kraj 40 hladnjaka 36 montiran je za rotaciju unutar stacionarne komore za odvod koksa 42. An elongated, cylindrical, rotary cooler 36 is positioned below the discharge chamber 20. The cooler 36 has an inlet end 38 which is mounted for rotation about the stationary head 34 of the clinker box 22. The outlet end 40 of the cooler 36 is mounted for rotation within the stationary coke discharge chamber. 42.
Izduženi, cilindrični hladnjak 36 je također nagnut na niže pod neznatni kutem od njegovog ulaznog kraja 28 prema njegovom izlaznom kraju 40. Kao što je prikazano na slici 2, vrući čestice kalciniranog koksa 24 sakupljaju se u tijelu na dnu boksa za klinker 22 i za vatrostalnog bloka 30 i eventualno se prelijevaju preko ivice bloka 30 i padaju u ulazni kraj 38 rotacionog hladnjaka 36. Čestice koksa se tada primoravaju na osnovi gravitacije i rotacije hladnjaka da se kreću sporo na dolje duž hladnjaka 36 dok ne dostignu izlazni kraj 40 iz kojeg čestice ulaze i sakupljaju se u dovodnoj komori za koks 42. The elongated, cylindrical cooler 36 is also inclined downwardly at a slight angle from its inlet end 28 toward its outlet end 40. As shown in Figure 2, hot particles of calcined coke 24 collect in a body at the bottom of the clinker box 22 and for the refractory block 30 and eventually spill over the edge of the block 30 and fall into the inlet end 38 of the rotary cooler 36. The coke particles are then forced by gravity and rotation of the cooler to move slowly downward along the cooler 36 until they reach the outlet end 40 from which the particles enter and are collected in the coke feed chamber 42.
Iako neki kalcinatori mogu koristiti indirektno hlađenje, npr. kroz čelični omotač hladnjaka 36, skoro svi kalcinatori gase vrući, kalcinirani koks direktno prskanjem sa vodom. Ovo direktno prskanje smanjuje temperaturu vrućih čestica koksa neposredno pošto oni napuste boks za klinker 22. Tipično je, u cilju postizanja ove svrhe, osiguranja serija mlaznica točno ispod izlaznog otvora 32 boksa za klinker 22. Although some calciners may use indirect cooling, eg through a steel jacket cooler 36, almost all calciners quench the hot, calcined coke directly by spraying it with water. This direct spraying reduces the temperature of the hot coke particles immediately after they leave the clinker box 22. It is typical, in order to achieve this purpose, to provide a series of nozzles directly below the outlet opening 32 of the clinker box 22.
Kao što je prikazano na slici 2, konvencionalni aparat za kalciniranje može se modificirati za sprovođenje postupka iz sadašnjeg izuma ubacivanjem vruće zone 44 unutar ulaznog kraja 38 hladnjaka 36. Vruća zona formira se prema sadašnjem izumu lociranjem kružnoga vatrostalnog prstena 46 na predodređenoj razdaljini nizvodno od izlaza boksa za klinker 32 i pomjeranjem mlznica 56 za prskanje vodom za gašenje nizvodno od vatrostalnog prstena 46. Kao što je prikazano, prsten 46 je montiran naspram vatrostalne obloge 45 koja je postavljena blizu unutrašnjih cilindričnih bočnih zidova hladnjaka 36. Vatrostalni prsten za zadržavanje 46 povećava dubinu sloja koksa u vrućoj zoni 44 pa tako povećava i vrijeme zadržavanja koksa. Temperatura čestica koksa 24 kada oni ulaze u vruću zonu 44 se donekle smanjuju pomoću procesne reakcije ali ostaje iznad 1100ºC. As shown in Figure 2, a conventional calciner can be modified to carry out the process of the present invention by inserting a hot zone 44 within the inlet end 38 of the cooler 36. The hot zone is formed according to the present invention by locating a circular refractory ring 46 at a predetermined distance downstream from the outlet. clinker box 32 and by moving the quench water spray nozzles 56 downstream of the refractory ring 46. As shown, the ring 46 is mounted against a refractory lining 45 which is placed near the inner cylindrical side walls of the cooler 36. The refractory retaining ring 46 increases the depth of the coke layer in the hot zone 44, thus increasing the coke retention time. The temperature of the coke particles 24 when they enter the hot zone 44 is somewhat reduced by the process reaction but remains above 1100ºC.
Suh, granuliran prah 48 natrijevog karbonata šaržira se u vruću zonu 44 kroz lijevak 50. Lijevak 50 ima izduženu, cijevnu peteljku 52 koja se proteže kroz bočni zid 34 boksa za klinker 22 i deponira prah na vrh sloja vrućih čestica kalciniranog koksa 24 na dnu vruće zone 44. Kao što je najbolje prikazano na slici 3, prah se miješa sa česticema koksa 24 kotrljajućim djelovanjem koje se javlja unutar rotacionog hladnjaka 36. Sprašeni kalcijev karbonat topi se prilikom kontakta sa vrućim česticema koksa 24 i reagira sa koksom prema slijedećoj endotermnoj reakciji: A dry, granular sodium carbonate powder 48 is charged into the hot zone 44 through a hopper 50. The hopper 50 has an elongated, tubular stem 52 that extends through the side wall 34 of the clinker box 22 and deposits the powder on top of a bed of hot calcined coke particles 24 at the bottom of the hot zone 44. As best shown in Figure 3, the powder is mixed with the coke particles 24 by the rolling action that occurs inside the rotary cooler 36. The powdered calcium carbonate melts upon contact with the hot coke particles 24 and reacts with the coke according to the following endothermic reaction:
Na2CO3(l) + 2C(s) =2Na(g) + 3CO(g) Na2CO3(l) + 2C(s) = 2Na(g) + 3CO(g)
H = 415.4 kJ/mol ----------- na 1330ºC H = 415.4 kJ/mol ----------- at 1330ºC
(l), (s) i (g) odnose se na fizičko stanje reaktanata i znače tečno kruto, odnosno plinovito. Elementarni natrij koji nastaje u gornjoj reakciji penetrira djeliće koksa i raspoređuje se kroz masu čestica koksa tako da se stvara modificirani koks koji sadrži sumpor i natrij. (l), (s) and (g) refer to the physical state of the reactants and mean liquid solid or gaseous. The elemental sodium produced in the above reaction penetrates the coke particles and is distributed through the mass of coke particles so that modified coke containing sulfur and sodium is created.
Poslije tretiranja sa prahovima natrijevog karbonata u vrućoj zoni 44 tokom zadovoljavajućeg perioda vremena vrući čestice kalciniranog koksa 24 se eventualno prelijevaju preko vatrostalnog prstena 46 u odjeljak za hlađenje 53 hladnjaka 36. After treatment with sodium carbonate powders in the hot zone 44 for a satisfactory period of time, the hot particles of calcined coke 24 eventually flow over the refractory ring 46 into the cooling compartment 53 of the cooler 36.
U ovoj modificiranoj verziji hladnjaka 36, cijev 54 koja odvodi vodu za gašenje prema seriji mlaznica 56 na njegovom vanjskom kraju, montira se na uobičajen način unutar donjeg dijela bočnog zida 34 boksa za klinker 22 ali je u ovom slučaju cijev 54 duža tako da se proteže potpuno kroz vruću zonu 44 i u odjeljak za hlađenje 53. Tako se voda prska iz mlaznica 56 direktno na vruće djeliće koksa kada one napuštaju vruću zonu 44 za gašenje čestica i tako se značajno smanjuje njihova temperatura. In this modified version of the cooler 36, the pipe 54 which carries the extinguishing water towards the series of nozzles 56 at its outer end is mounted in the usual way inside the lower part of the side wall 34 of the clinker box 22 but in this case the pipe 54 is longer so that it extends completely through the hot zone 44 and into the cooling compartment 53. Thus, water is sprayed from the nozzles 56 directly onto the hot coke particles as they leave the hot particle quenching zone 44, thereby significantly reducing their temperature.
Gašeni ili ohlađeni čestice tretiranog kalciniranog koksa se tada prazne iz komore 42 a pokretni konvejer 58 koji prenosi djeliće koksa prema površini za skladištenje. Para koja se proizvodi u hladnjaku iz vode za gašenje odvaja se iz hladnjaka zajedno sa nešto zraka pomoću ventilatora 62 i puše se u atmosferu. Smjesa para/zrak prolazi kroz kolektor prašine 60, gdje se hvata prah koksa tako da se sprečava zagrijavanje zraka. Quenched or cooled particles of the treated calcined coke are then discharged from the chamber 42 and the moving conveyor 58 conveys the particles of coke towards the storage surface. The steam produced in the cooler from the extinguishing water is separated from the cooler together with some air by the fan 62 and blown into the atmosphere. The steam/air mixture passes through the dust collector 60, where the coke dust is captured so as to prevent air heating.
Slike 4 i 5 prikazuju aparat za kalciniranje koji je konstruiran specifično za korištenje u tretiranju petrolejskog koksa prema sadašnjem izumu. Ovaj aparat za kalciniranje opremljen je sa komorom za zadržavanja koja obuhvaća poseban reaktorski dio 68. Ova reaktorska posuda nalazi se nizvodno od kalcinatora i uzvodno od hladnjaka i može biti konstruiran za dugo vrijeme zadržavanja. Čestice kalciniranog koksa šaržiraju se iz komore za pražnjenje 20 prema reaktorskoj posudi 68 gdje se tretiraju sa suhim granuliranih prahovima spoja alkalnog ili zemnoalkalnog metala, npr. natrijevog karbonata, koji se istovremeno šaržira kroz ulaz 70. Poslije tretiranja, čestice vrućeg koksa izlaze van kroz izlaz 72 u reaktorsku posudu 68 i ulaze u ulazni kraj 38 rotacionog hladnjaka. Figures 4 and 5 show a calciner designed specifically for use in treating petroleum coke according to the present invention. This calciner is equipped with a holding chamber comprising a separate reactor section 68. This reactor vessel is located downstream of the calciner and upstream of the cooler and may be designed for long retention times. Particles of calcined coke are charged from the discharge chamber 20 towards the reactor vessel 68, where they are treated with dry granular powders of an alkali or alkaline earth metal compound, for example, sodium carbonate, which is simultaneously charged through the inlet 70. After treatment, the hot coke particles exit through the outlet 72 into the reactor vessel 68 and enter the inlet end 38 of the rotary cooler.
Iz prethodnog se vidi da se postupak iz sadašnjeg izuma može prakticirati ili u postoječim kapacitetima korištenjem konvencionalnog uređaja za kalciniranje ili u novom pogonu koji koristi aparat za kalciniranje osiguran sa posebnim reaktorom prema sadašnjem izumu. It can be seen from the above that the process of the present invention can be practiced either in existing capacities using a conventional calciner or in a new facility using a calciner provided with a special reactor according to the present invention.
Važna prednost koja se postiže dodavanjem inhibitora, npr. natrijevog karbonata na djeliće kalciniranog petrolejskog koksa u posebnoj je reakcijskoj posudi koja se nalazi na kraju za pražnjenje peće za kalciniranje jest da plin ne teče kroz ovu posudu, i zato praktično ne postoje mogućnosti da inhibitor bude odvojen i oslobođen u atmosferu. An important advantage achieved by adding an inhibitor, eg sodium carbonate to the particles of calcined petroleum coke in a special reaction vessel located at the discharge end of the calcining furnace is that the gas does not flow through this vessel, and therefore there is practically no possibility of the inhibitor being separated and released into the atmosphere.
Izvršen je veći broj laboratorijskih eksperimenata da se odredi količina natrijevog karbonata koja je potrebna u sadašnjem postupku za efikasno potiskivanje napuhavanja i također minimalno vrijeme zadržavanja u slučaju četiri različita petrolejska koksa koji imaju različit sadržaj sumpora. U ovim eksperimentima, jedan kilogram čestica kalciniranog koksa stavi se u grafitni kontejner sa otvorenim vrhom i umetne se u peć tipa mufle koja je predgrijana na oko 1200ºC. Kada temperatura koksa (mjerena bimetalnom) dostigne 1200ºC, vrata peći se otvore i predodređena količina natrijevog karbonata npr. 0.4 %, 0.8 %, 1.2 %, 1.6 %, itd., ukapa se na površinu koksa korištenjem duge grafitne alatke. Uzorak koksa se tada kratko vrijeme urašlji. U predodređeno vrijeme grafitni kontejner se izvadi iz peći i koks se gasi prskanjem vode na njega i rašlji se u isto vrijeme. Vrijeme koje je potrebno za smanjivanje temperature koksa na između 300ºC i 500ºC varira od oko 30 sekundi do oko 90 sekundi. A number of laboratory experiments were carried out to determine the amount of sodium carbonate required in the present process for effective blow suppression and also the minimum residence time in the case of four different petroleum cokes having different sulfur content. In these experiments, one kilogram of calcined coke particles are placed in an open-top graphite container and inserted into a muffle furnace preheated to about 1200ºC. When the coke temperature (measured by bimetallic) reaches 1200ºC, the furnace door is opened and a predetermined amount of sodium carbonate eg 0.4%, 0.8%, 1.2%, 1.6%, etc., is dripped onto the coke surface using a long graphite tool. The coke sample is then soaked for a short time. At the appointed time, the graphite container is removed from the furnace and the coke is extinguished by spraying water on it and is split at the same time. The time required to reduce the coke temperature to between 300ºC and 500ºC varies from about 30 seconds to about 90 seconds.
Navedeno vrijeme reakcije eksperimenata odbrojavano je od momenta ukapavanja inhibitora na koks pa do momenta kada se započne gašenjem vodom. Gašeni koks se pusti da se hladi na običnu temperaturu bez daljeg prskanja vodom. Ohlađeni uzorci koksa se tada testiraju na napuhavanje, tj. na ireverzibilno širenje koje se javlja u koksevima koji sadrže sumpor kada se zagrijavaju na između oko 1600ºC i 2200ºC. The specified reaction time of the experiments was counted from the moment of dropping the inhibitor onto the coke until the moment when quenching with water is started. The slaked coke is allowed to cool to room temperature without further spraying with water. The cooled coke samples are then tested for swelling, ie the irreversible expansion that occurs in sulfur-containing cokes when heated to between about 1600ºC and 2200ºC.
Napuhavanje se mjeri na uzorku koji je pripravljen iz koksa i stavljen u sklop dilatometra (uređaja za mjerenja širenja) koji je napravljen iz grafita niske za ekspanzije. Sklop, koji sadrži uzorak, stavi se u cijevnu peć i zagrijava se pri 450ºC jedan sat do 2400ºC. Pošto temperatura dostigne 1000ºC, diferencijalna ekspanzija uzorka iznad one koju ima grafitni kontajner bilježi se u 15-minutnim intervalima. The swelling is measured on a sample prepared from coke and placed in a dilatometer assembly (a device for measuring expansion) which is made of low-expansion graphite. The assembly, containing the sample, is placed in a tube furnace and heated at 450ºC for one hour to 2400ºC. After the temperature reaches 1000ºC, the differential expansion of the sample above that of the graphite container is recorded at 15-minute intervals.
Nekoliko različitih vrijednosti mogu se izvesti iz ovog mjerenja, tj. (1) ukupna ekspanzija u temperaturnom intervalu; (2) brzina napuhavanja po jedinici vremena kao funkcija temperature (3) temperatura na kojoj brzina napuhavanja dostiže maksimum. Several different values can be derived from this measurement, ie (1) total expansion over the temperature interval; (2) inflation rate per unit time as a function of temperature (3) temperature at which the inflation rate reaches a maximum.
Slike 6 do 9 prikazuju odnose između najviše brzine napuhavanja i količine korištenog inhibitora, jedinica brzine napuhavanja u tim slikama je 10-4 m/m na 15 minuta pri brzini zagrijavanja 450ºC na sat. Temperatura na kojoj brzina napuhavanja ovih određenih kokseva dostiže svoju najvišu vrijednost bila je oko 1750ºC. Figures 6 to 9 show the relationships between the highest swelling rate and the amount of inhibitor used, the swelling rate unit in these figures is 10-4 m/m per 15 minutes at a heating rate of 450ºC per hour. The temperature at which the swelling rate of these particular cokes reaches its highest value was about 1750ºC.
Slika 6 je grafikon koji prikazuje odnos između maksimalne brzine napuhavanja kao što je određen u gornjem eksperimentu i količine korištenog inhibitora. Krivulja A prikazuje ovaj odnos u slučaju šiljčanog koksa, koksa D1, koji sadrži 1.05 mas. % sumpora i korištenjem različitih količina natrijevog karbonata kao inhibitora. Brzina napuhavanja od oko 10 je željena granica za preradu koksa u grafitne elektrode pomoću modernih postupaka grafitizacije. Vidi se iz krivulje A da se dopustiva brzina napuhavanja postiže sa samo jednim masenim postotkom natrijevog karbonata inhibitora. Figure 6 is a graph showing the relationship between the maximum inflation rate as determined in the above experiment and the amount of inhibitor used. Curve A shows this relationship in the case of spiked coke, coke D1, which contains 1.05 wt. % sulfur and using different amounts of sodium carbonate as an inhibitor. A swelling rate of about 10 is the desired limit for processing coke into graphite electrodes using modern graphitization processes. It can be seen from curve A that the allowable inflation rate is achieved with only one mass percentage of sodium carbonate inhibitor.
Radi uspoređivanja isti eksperiment koji je opisan gore, ponovljen je sa istim šiljčanim koksom koji ima isti sadržaj sumpora ali korištenjem konvencionalnog inhibitora, oksida željeza. Krivulja B na slici 6 prikazuje rezultate ovog eksperimenta. Vidi se da je potiskivanje napuhavanja u slučaju konvencionalnog inhibitora daleko slabije od onoga koje se postiže sa istim koksom koji je tretiran sa natrijevim karbonatom prema sadašnjem izumu. Oksid željeza, čak i kada se koristi u dva puta većoj koncentraciji od konvencionalne (4 masena % umjesto 2 masena %) nije proizvodio uporedivo smanjivanje napuhavanja ovog određenog koksa. Isti tip eksperimentalnog testa je izvršen na petrolejskom koksu normalnog kvaliteta, koksu E1, koji sadrži 1.3 mas. % sumpora. U ovom testu, koks se tretira prema postupku iz sadašnjeg izuma, korištenjem natrijevog karbonata kao inhibitora i vremena zadržavanja od oko jedne minute. Rezultati ovog testa prikazani su krivuljom na slici 7. Vidi se da se adekvatno smanjivanje brzine napuhavanja postiže kada se koristi samo oko 0.6 mas.% natrijevog karbonata inhibitora. For comparison, the same experiment described above was repeated with the same spiked coke having the same sulfur content but using the conventional inhibitor, iron oxide. Curve B in Figure 6 shows the results of this experiment. It can be seen that the suppression of swelling in the case of the conventional inhibitor is far less than that obtained with the same coke treated with sodium carbonate according to the present invention. Iron oxide, even when used at twice the conventional concentration (4 mass % instead of 2 mass %) did not produce a comparable reduction in the swelling of this particular coke. The same type of experimental test was performed on petroleum coke of normal quality, coke E1, which contains 1.3 wt. % sulfur. In this test, the coke is treated according to the process of the present invention, using sodium carbonate as an inhibitor and a residence time of about one minute. The results of this test are shown by the curve in Figure 7. It can be seen that an adequate reduction in the inflation rate is achieved when only about 0.6 wt.% sodium carbonate inhibitor is used.
Sličan eksperimentalni test sproveden je na drugom kalciniranom petrolejskom šiljčanom koksu, koksu F1, koji sadrži oko 1.3 mas.% sumpora korištenjem natrijevog karbonata kao inhibitora i vremena zadržavanja od oko jedne minute. Rezultati ovog testa prikazani su krivuljom na slici 8. vidi se da je ovaj određeni koks zahtijevao oko 1.3 mas.% natrijevog karbonata inhibitora, da se napuhavanje potisne ispod dopustivog nivoa. A similar experimental test was conducted on another calcined petroleum spiked coke, coke F1, containing about 1.3 wt.% sulfur using sodium carbonate as an inhibitor and a residence time of about one minute. The results of this test are shown by the curve in Figure 8. it can be seen that this particular coke required about 1.3 wt.% sodium carbonate inhibitor, to suppress the swelling below the permissible level.
Drugi eksperimentalni test je izvršen na drugom šiljčanom koksu koksu G1, koji sadrži 1.1 mas.% sumpora opet korištenjem natrijevog karbonata kao inhibitora i vremena zadržavanja od oko jedne minute. Rezultati ovog testa prikazani su krivuljom na slici 9. Vidi se da je u ovom slučaju bilo potrebno oko 1.2 mas.% natrijevog karbonata kao inhibitora u cilju potiskivanja napuhavanja ispod dopuštene granice napuhavanja. Isti tip koksa, koks G1, zahtijevao je oko 1.6 mas.% natrijevog karbonata kao inhibitora, kada je njegov sadržaj sumpora povećan na oko 1.25 mas.% sumpora. The second experimental test was performed on another spiked coke coke G1, which contains 1.1 wt.% sulfur again using sodium carbonate as an inhibitor and a residence time of about one minute. The results of this test are shown by the curve in Figure 9. It can be seen that in this case about 1.2 wt.% of sodium carbonate was needed as an inhibitor in order to suppress the swelling below the permissible swelling limit. The same type of coke, coke G1, required about 1.6 wt.% sodium carbonate as an inhibitor, when its sulfur content was increased to about 1.25 wt.% sulfur.
Također je izvršen veći broj velikih eksperimentalnih proba korištenjem modificiranog uređaja za kalciniranje kao što je suštinski prikazan na slikama 1-3, u kojima je nekoliko stotina tona tri različita normalna i šiljčana koksa, koji sadrže oko jedan maseni postotak ili više sumpora, kalcinirano i tretirano postupkom iz sadašnjeg izuma. U ovim probama, približno jedan maseni % praha natrijevog karbonata veličine manje od 800 mikrometara dodan je na kalcinirani koks u vrućoj zoni koja je konstruirana unutar ulaznog kraja bubnja za hlađenje, dok je na temperaturama između 1200ºC i 1300ºC i tokom perioda od najmanje jedne minute. Kalciniran i tretiran koks se tada ohladi i uzorci se sakupe i podvrgnu istom tipu testiranja kao što je opisano gore tako da se odredi brzina napuhavanja. Nađeno je da je napuhavanje ovih određenih kokseva bilo značajno smanjeno za brzu uzdužnu grafitizaciju. Također je neočekivano nađeno da je sadašnji postupak suštinski smanjio količinu kemikalija, npr. klorida, sulfata, itd., koje se normalno oslobađaju u atmosferu u izlaznom plinu hladnjaka za vrijeme kalciniranja. Dalje, pošto postupak također eliminira kiselost izlaznog plina, potencijal za koroziju opreme je suštinski smanjen. A number of large-scale experimental trials have also been carried out using a modified calciner substantially as shown in Figures 1-3, in which several hundred tonnes of three different normal and spiked cokes, containing about one mass percent or more of sulfur, were calcined and treated by the method of the present invention. In these tests, approximately one mass % of sodium carbonate powder less than 800 micrometers in size was added to calcined coke in a hot zone constructed within the inlet end of the cooling drum, while at temperatures between 1200ºC and 1300ºC and over a period of at least one minute. The calcined and treated coke is then cooled and samples are collected and subjected to the same type of testing as described above to determine the swelling rate. The swelling of these particular cokes was found to be significantly reduced for rapid longitudinal graphitization. It was also unexpectedly found that the present process substantially reduced the amount of chemicals, eg, chlorides, sulfates, etc., which are normally released into the atmosphere in the off-gas of the cooler during calcination. Further, since the process also eliminates the acidity of the exit gas, the potential for equipment corrosion is substantially reduced.
Napravljene su grafitne elektrode za električnu peć koje imaju promjer 50.8 cm i dužinu 243.84 cm korištenjem jednog od šiljčanih kokseva, koji ima visok sadržaj sumpora, koji je kalciniran i tretiran u gore opisanim eksperimentalnim probama kalcinirani i tretirani koks korišten je kao agregat ili punilo i miješan je sa smolnim vezivnim sredstvom i uobičajenim sredstvima za pomaganje istiskivanja, tako da se formira ugljični miks. Miks se tada istisne, peče se na oko 800ºC i tada se grafitira na temperaturama oko 3000ºC. Nije bilo problema oko prerade za vrijeme istiskivanja i pečenja i nije bilo dokaza da ima problema sa napuhavanjem. Elektrode su kasnije testirane eksperimentalno u čeličnoj peći sa električnim lukom i imale se performanse koje su usporedive sa elektrodama koje su bile napravljene iz skupljih šiljčanih kokseva, premijum kvaliteta sa niskim napuhavanjem. Graphite electrodes for an electric furnace having a diameter of 50.8 cm and a length of 243.84 cm were made using one of the spiked cokes, which has a high sulfur content, which was calcined and treated in the experimental tests described above, the calcined and treated coke was used as an aggregate or filler and mixed is with a resin binder and the usual extrusion aids, so that a carbon mix is formed. The mix is then squeezed out, baked at around 800ºC and then graphitized at temperatures around 3000ºC. There were no processing problems during extrusion and firing and there was no evidence of inflation problems. The electrodes were later tested experimentally in a steel arc furnace and had performance comparable to electrodes made from more expensive spiked cokes, a premium grade with low swelling.
Čestice koksa standardnog kvaliteta, koksa E1, koji sadrže u prosjeku 1.28 postotaka sumpora, tretirane su prema ovom izumu sa različitim količinama natrijevog karbonata koje variraju od 0.25 % do 1 postotka. Tretirani su čestice tada testirani, korištenjem rutinskih analitičkih postupaka, na sadržaj sumpora, natrija i pepela, i testirani su na napuhavanje. Rezultati su sakupljeni u tablici 1. Podaci pokazuju (1) da je dodavanje 0.55 % natrijevog karbonata smanjilo napuhavanje koksa na prihvatljivi nivo, dok 0.25 % nije; (2) da je sadržaj natrija u koksu bio proporcionalan sa dodanom količinom natrijevog karbonata za vrijeme tretiranja, unutar eksperimentalne greške, i (3) da je sadržaj od 0.18 %, što odgovara količini 0.55 % dodanog Na2CO3, smanjio napuhavanje ovog određenog koksa na prihvatljiv nivo, dok 0.12 % natrija u koksu nije bilo dovoljno. Particles of coke of standard quality, coke E1, containing an average of 1.28 percent sulfur, were treated according to this invention with different amounts of sodium carbonate varying from 0.25% to 1 percent. The treated particles were then tested, using routine analytical procedures, for sulfur, sodium and ash content, and were tested for swelling. The results are summarized in Table 1. The data show (1) that the addition of 0.55% sodium carbonate reduced coke swelling to an acceptable level, while 0.25% did not; (2) that the sodium content of the coke was proportional to the amount of sodium carbonate added during treatment, within experimental error, and (3) that a content of 0.18%, corresponding to the amount of 0.55% added Na2CO3, reduced the swelling of this particular coke to an acceptable level level, while 0.12% sodium in coke was not enough.
Tablica 1 Table 1
Uzorak %Dodanog Brzin %Pepela %Na u Sample %Added Rate %Ash %On u
No. Na2CO3 napuhavanje u koksu koksu But. Na2CO3 blowing in coke coke
Kontrola 0 62.0 Control 0 62.0
1 1 0 1.88 0.36 1 1 0 1.88 0.36
2 0.85 2.3 1.22 0.26 2 0.85 2.3 1.22 0.26
3 0.7 8.7 1.0 0.24 3 0.7 8.7 1.0 0.24
4 0.55 11.3 0.76 0.28 4 0.55 11.3 0.76 0.28
5 0.26 41.0 0.68 0.12 5 0.26 41.0 0.68 0.12
Penetriranje natrija u tijelo djeliće tretiranih prema ovom izumu ispitano je sa mikroskopom sa elektronskim skaniranjem korištenjem metode za energetsku disperziju X-zraka (SEM-EDX). Čestice su montirani u epoksi smoli i mljeveni su do srednjeg nivoa da se izloži unutrašnja ravan i također da zaostane prirodna porozna površina. Sodium penetration into the body of particles treated according to this invention was examined with a scanning electron microscope using the energy dispersive X-ray (SEM-EDX) method. The particles are mounted in epoxy resin and ground to a medium level to expose the inner plane and also to leave a natural porous surface.
Na slikama 10a - 13a zaključeno, prikazana je serija mikrofotografija uzetih pri raznim uvećanjima (tj. 200x, 45x, 50x, odnosno 200x), i prikazuje SEM slike tri površine unutrašnje ravni koje su proizvedene mljevenjem čestica koksa od 0.635 cm. Površina koja je prikazana na slici 10a je blizu centra ravni i površina koja je prikazana na slici 12a je u centru mljevene ravni. Četvrta ravnina koja je prikazana na slici 13a je također blizu centra ravni, slično sa površinom koja je prikazana na slici 11a. Figures 10a - 13a in conclusion show a series of photomicrographs taken at various magnifications (i.e. 200x, 45x, 50x, and 200x), and show SEM images of three internal plane surfaces produced by grinding 0.635 cm coke particles. The surface shown in Figure 10a is near the center of the plane and the surface shown in Figure 12a is in the center of the ground plane. The fourth plane shown in Figure 13a is also near the center of the plane, similar to the surface shown in Figure 11a.
Položaj i raspodjela natrija u unutrašnjoj ravnini prikazani su na mikrofotografijama na slikama 10b - 13b zaključno. Mikrofotografije su proizvedene na istim uvećanjem koja su naznačena gore, pomoću EDX analize za natrij korištenjem mikroskopa sa elektronskim skaniranjem. The position and distribution of sodium in the inner plane are shown in microphotographs in Figures 10b - 13b inclusive. Photomicrographs were produced at the same magnification as indicated above by EDX analysis for sodium using a scanning electron microscope.
Vidi se iz prilično jednoobrazne raspodjele svijetlih točaka po čitavim mikrofotografijama, pri čemu svaka predstavlja različitu površinu u istoj unutrašnjoj ravni čestica koksa, da natrij ustvari penetrira duboko unutar svakog čestica koji je tretiran prema postupku iz sadašnjeg izuma i da je raspodjela natrija u čitavoj masi svakog pojedinačnog čestica koksa suštinski jednoobrazna. Koncentracija natrija može varirati od jednog čestica do drugog, ali unutar pojedinačnog čestica koncentracija je suštinski jednoobrazna. Treba biti jesno da natrij koji je proizveden reakcijom između natrijevog karbonata i koksa formira poslije difuzije u masu čestica koksa, spoj koji nije rastvoran u vodi i nije reaktivan sa vodom, i da je natrij prisutan kao spoj koji sadrži natrij., a ne kao elementarni natrij. Točan sastav spoja koji sadrži natrij nije u ovom momentu jasno shvaćen. It can be seen from the fairly uniform distribution of bright spots throughout the photomicrographs, each representing a different surface in the same internal plane of the coke particles, that sodium actually penetrates deep within each particle treated according to the process of the present invention and that the distribution of sodium throughout the mass of each of individual coke particles essentially uniform. The concentration of sodium can vary from one particle to another, but within an individual particle the concentration is essentially uniform. It should be clear that the sodium produced by the reaction between sodium carbonate and coke forms, after diffusion into the mass of coke particles, a compound that is not dissolved in water and is not reactive with water, and that sodium is present as a compound containing sodium, and not as elemental sodium. The exact composition of the sodium-containing compound is not clearly understood at this time.
Serija grafikona energetskih spektara uzetih na osnovnim unutrašnjim površinama svake zone čestica koksa, ispitivanih u ovim testovima, prikazan je na slikama 10c - 13d zaključno. Vidi se sa grafikona da intenzitet dva pika dominira u energetskom spektru i da se ovi pikovi nalaze u ista dva položaja koji odgovaraju natriju i sumporu, Tako da se potvrđuje prisustvo ova dva elementa u djeliću kosa. Dalje, pošto se maksimum za natrij javlja u svakom grafikonu koji predstavlja različitu zonu čestica, može se zaključiti da je natrij stvarno deponiran suštinski jednoobrazno kroz čitavu masu tijela čestica koksa tretirani prema sadašnjem izumu. A series of graphs of energy spectra taken on the basic internal surfaces of each zone of coke particles examined in these tests is shown in Figures 10c - 13d inclusive. It can be seen from the graph that the intensity of two peaks dominates the energy spectrum and that these peaks are located in the same two positions that correspond to sodium and sulfur, thus confirming the presence of these two elements in a fraction of hair. Further, since a maximum for sodium occurs in each graph representing a different particle zone, it can be inferred that sodium is actually deposited substantially uniformly throughout the body mass of coke particles treated according to the present invention.
Dalje proučavanje penetriranja natrija i njegove rastvorljivosti poslije reakcije sa koksom izvršeno je sa česticema koksa F1, dimenzija 0.3048 cm sa 0.635 cm, koji su tretirani sa 20% natrijevog karbonata na oko 1200ºC prema sadašnjem izumu. Jedan od ovih tretiranih čestica montiran je i mljeven da se izliže i unutrašnja ravan i originalna porozna površina. Djelić je ispitivan istim SEM-EDX postupcima kao djelić koji je prikazan na slikama 10a - 13a. Poslije ispitivanja, djelić je lužen sa vodom da se odvoje ma kakvi spojevi koji su rastvoreni u vodi i tada je ponovno ispitan korištenjem istih tehnika. Slike 14a, 14b, i 14c prikazuju ispitivanja prije luženja, dok slike 15a, 15b i 15c prikazuju ispitivanja poslije luženja. Slika 14b demonstrira da je natrij bio raspoređen suštinski jednoobrazno na osnovnoj unutrašnjoj ravni i također suštinski jednoobrazno, ali pri mnogo višoj koncentraciji, na izloženoj originalnoj površini porozne zapremine. Slika 15b pokazuje da poslije luženja, penetriranje i raspodjela natrija na unutrašnjoj ravni ostaju suštinski nepromijenjeni, ali se koncentracija natrija na originalnoj poroznoj površini smanjuje na približno isti nivo kao na unutrašnjoj ravni, a njegova raspodjela je suštinski jednoobrazna. Further study of sodium penetration and its solubility after reaction with coke was performed with coke particles F1, dimensions 0.3048 cm by 0.635 cm, which were treated with 20% sodium carbonate at about 1200ºC according to the present invention. One of these treated particles was mounted and milled to wear out both the inner plane and the original porous surface. The fragment was examined with the same SEM-EDX procedures as the fragment shown in Figures 10a - 13a. After testing, the piece was leached with water to remove any compounds that were dissolved in the water and then tested again using the same techniques. Figures 14a, 14b, and 14c show tests before leaching, while Figures 15a, 15b, and 15c show tests after leaching. Figure 14b demonstrates that the sodium was distributed essentially uniformly on the basal interior plane and also essentially uniformly, but at a much higher concentration, on the exposed original surface of the porous volume. Figure 15b shows that after leaching, the penetration and distribution of sodium on the inner plane remain essentially unchanged, but the concentration of sodium on the original porous surface decreases to approximately the same level as on the inner plane, and its distribution is essentially uniform.
Vjeruje se da je rastopljen natrij zapažen u gornjem proučavanju, proizvod interakcije između natrija i koksa, dok je u vodi otopljen natrij koji je nađen samo na originalnoj površini, ali ne i unutar tijela čestica, neizreagirani natrijev karbonat. The dissolved sodium observed in the above study is believed to be a product of the interaction between sodium and coke, while the sodium dissolved in water found only on the original surface but not within the particle body is unreacted sodium carbonate.
Analize vodenog ekstrakta pomoću standardnih analitičkih postupaka potvrdile su prisustvo natrijevog karbonata. Prisustvo nezreagiranog narijevog krbonata na površini tretiranih čestica ukazuje da se, pod istim reakcijskim uvjetima reakcija između natrijevog karbonata i koksa nije vršena do završetka. Tako sadašnji izum osigurava poboljšani postupak za tretiranje kalciniranog petrolejskog koksa u cilju smanjivanja ili eliminiranja napuhavanja u kojem se čestice koksa zagrijavaju u prisustvu spoja alkalnog ili zemnoalkalnog spoja, poželjno natrijevog karbonata, na temperaturi iznad oko 750ºC i poželjno između oko 1200ºC i 1400ºC. Inhibitor treba održavati u kontaktu sa česticema koksa tokom zadovoljavajuće dugog vremenskog perioda, npr. jednu minutu ili više tako da se omogući inhibitoru da reagira sa ugljikom i da se omogući reakcionim proizvodima da prodru duboko u masu čestica koksa. Mada je moguće da se inhibitor doda direktno u sirovi koks prije zagrijavanja ili kalciniranja, poželjno je da se inhibitor doda odmah pošto su čestice koksa ispražnjeni iz kalcinatora. Ovako se izbjegavaju mogući problemi oko zagađivanja okoline i također se postiže prednost smanjivanja kiselosti izlaznog plina, kao što je objašnjeno gore. Analyzes of the aqueous extract using standard analytical procedures confirmed the presence of sodium carbonate. The presence of unreacted sodium carbonate on the surface of the treated particles indicates that, under the same reaction conditions, the reaction between sodium carbonate and coke was not completed. Thus, the present invention provides an improved process for treating calcined petroleum coke in order to reduce or eliminate swelling in which the coke particles are heated in the presence of an alkaline or alkaline earth compound, preferably sodium carbonate, at a temperature above about 750ºC and preferably between about 1200ºC and 1400ºC. The inhibitor should be kept in contact with the coke particles for a sufficiently long period of time, eg one minute or more, to allow the inhibitor to react with the carbon and to allow the reaction products to penetrate deep into the mass of coke particles. Although it is possible to add the inhibitor directly to the raw coke before heating or calcining, it is preferable to add the inhibitor immediately after the coke particles are discharged from the calciner. This avoids possible environmental pollution problems and also achieves the advantage of reducing the acidity of the exit gas, as explained above.
Sadašnji izum dalje osigurava postupak za proizvodnju ugljičnih i grafitnih elektroda, kao što su elektrode za električnu peć, u kojima je tretirani koks ubačen sa konvencionalnim smolnim vezivnim sredstvom tako da se formira ugljični miks koji se tada oblikuje i istiskuje, peče se radi karbonizacije vezivnog sredstva i, ako se želi, grafitizira se. Glavna prednost koju nudi ovaj poboljšani postupak jest da proizvođač ugljičnih i grfitnih artikala može sada koristiti jeftinije petrolejske koksove sa visokim sadržajem sumpora, a da se ipak proizvedu elektrode visokog kvaliteta. The present invention further provides a process for producing carbon and graphite electrodes, such as electric furnace electrodes, in which treated coke is mixed with a conventional resin binder to form a carbon mix which is then shaped and extruded, baked to carbonize the binder and, if desired, it is graffitied. The main advantage offered by this improved process is that the manufacturer of carbon and graphite articles can now use cheaper high sulfur petroleum cokes and still produce high quality electrodes.
Najbolji način za upotrebu izuma u privredi koji je poznat Prijaviocu The best way to use the invention in the economy known to the Applicant
Najbolje je da se izum koristi za pravljenje elektroda za električne peći korištenjem čestica koksa, koji sadrži visok sadržaj sumpora, tretiranog kao što je detaljno opisano u opisnom dijelu ove prijave. Na taj način postižu se vrlo značajne uštede pošto se za pravljenje elektroda koristi jeftiniji koks a proizvedene elektrode su istog kvaliteta kao i one koje su proizvedene iz petrolejskog koksa premijum kvalitete, prema postupcima iz ranijeg stanja tehnike. The invention is best used to make electrodes for electric furnaces using coke particles, which contain a high sulfur content, treated as detailed in the descriptive part of this application. In this way, very significant savings are achieved, since cheaper coke is used to make the electrodes, and the produced electrodes are of the same quality as those produced from premium quality petroleum coke, according to the procedures from the earlier state of the art.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP920446AA HRP920446A2 (en) | 1992-09-23 | 1992-09-23 | TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HRP920446AA HRP920446A2 (en) | 1992-09-23 | 1992-09-23 | TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE |
Publications (1)
Publication Number | Publication Date |
---|---|
HRP920446A2 true HRP920446A2 (en) | 1994-04-30 |
Family
ID=59076257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HRP920446AA HRP920446A2 (en) | 1992-09-23 | 1992-09-23 | TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE |
Country Status (1)
Country | Link |
---|---|
HR (1) | HRP920446A2 (en) |
-
1992
- 1992-09-23 HR HRP920446AA patent/HRP920446A2/en not_active Application Discontinuation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3000621C2 (en) | Process for the production of hardened pellets from a finely divided material containing iron oxides | |
US4875979A (en) | Treatment of petroleum cokes to inhibit coke puffing | |
US5118287A (en) | Treatment of petroleum cokes to inhibit coke puffing | |
EP0410050A2 (en) | Treatment of petroleum cokes to inhibit coke puffing | |
Sohn et al. | The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites | |
US5110359A (en) | Treatment of petroleum cokes to inhibit coke puffing | |
HRP920446A2 (en) | TREATMENT OF PETROL COCKS FOR INHIBITING COX INFLUENCE | |
Liu et al. | Reduction mechanisms of pyrite cinder-carbon composite pellets | |
KR101182644B1 (en) | Asbestos decomposing agent and process for decomposition of asbestos | |
US20020178864A1 (en) | Surface-coated reduced iron, method for making the same, and method for melting the same | |
RU2081152C1 (en) | Method and installation for treating oil coke with high sulfur content | |
KR930011930B1 (en) | Treatment of petroleum cokes to inhibit coke puffing | |
BG60565B1 (en) | Method for the treatment of oil coke for the prevention of its cracking | |
SK452489A3 (en) | Process for treating high sulphur petroleum coke particles, carbonaceous filler used in carbonaceous electrode production, and apparatus for said process | |
JPH075890B2 (en) | Treatment method of petroleum coke to suppress coke puffing | |
CA1270405A (en) | Waste destruction | |
KR102227828B1 (en) | Coke and manufacturing method thereof | |
DE1951567B2 (en) | MANHOLE FURNITURE MELTING AND METHOD OF OPERATING THE SAME | |
PL163084B1 (en) | Method of and apparatus for treating particles of patroleum coke of high sulfur content | |
CN1029129C (en) | Treatment of petroleum cokes to inhibit coke puffing | |
DE69102253T2 (en) | Device for the treatment of petroleum coke with a swelling inhibitor in a rotary hearth furnace. | |
US4409022A (en) | Method of producing low-sulfur, reduced, iron ore pellets | |
DE1101465B (en) | Process for the dry reduction of iron oxide to sponge iron or granular masses without melting or sintering the charge | |
NO302024B1 (en) | Carbon filler for use at the forefront. of carbon electrodes, ed. for the treatment of hay sulfur petroleum coke particles, et al. foremost. of carbon articles from hay sulfur-petroleum coke and an apparatus for processing crude petroleum coke | |
US4609538A (en) | Scrap heating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A1OB | Publication of a patent application | ||
AIPI | Request for the grant of a patent on the basis of a substantive examination of a patent application | ||
ODBC | Application rejected |