HRP20040884A2 - Data storage device - Google Patents

Data storage device

Info

Publication number
HRP20040884A2
HRP20040884A2 HR20040884A HRP20040884A HRP20040884A2 HR P20040884 A2 HRP20040884 A2 HR P20040884A2 HR 20040884 A HR20040884 A HR 20040884A HR P20040884 A HRP20040884 A HR P20040884A HR P20040884 A2 HRP20040884 A2 HR P20040884A2
Authority
HR
Croatia
Prior art keywords
data storage
magnetic
storage device
data
conductor
Prior art date
Application number
HR20040884A
Other languages
Croatian (hr)
Inventor
Paul Cowburn Russell
Original Assignee
Eastgate Investments Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastgate Investments Limited filed Critical Eastgate Investments Limited
Publication of HRP20040884A2 publication Critical patent/HRP20040884A2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0816Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using a rotating or alternating coplanar magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/81Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires

Description

Ovaj se izum odnosi na uređaj za pohranu digitalne informacije kao što su kompjutorske datoteke, digitalni zapis zvuka, digitalni zapis slike i slično. Ovaj se izum naročito odnosi na uređaj za pohranu podataka u kojem podaci mogu biti pisani i čitani neograničen broj puta. This invention relates to a device for storing digital information such as computer files, digital sound recording, digital image recording and the like. This invention particularly relates to a data storage device in which data can be written and read an unlimited number of times.

U zadnjih godina dostupno je mnoštvo uređaja za pohranu podataka koji koriste mnoštvo medija kojima je namjena pohrana digitalnih podataka. Uređaji za pohranu podataka napravljeni su tako da koriste prednost neke od svojih osnovnih operacijskih karakteristika koje uključuju kapacitet, brzinu pristupa, mogućnost pisanja/ponovnog pisanja, mogućnost zadržavanja podataka u vremenu (sa ili bez napajanja), veličinu, robusnost, prenosivost ili sličnu. In recent years, a variety of data storage devices have become available that use a variety of media to store digital data. Data storage devices are designed to take advantage of some of their basic operating characteristics, including capacity, access speed, write/rewritable ability, ability to retain data over time (with or without power), size, robustness, portability, or the like.

Poznati uređaju za pohranu podataka uključuju magnetske trake, tvrde diskove, i optičke diskove za pohranu. Svi oni nude prednosti velikog kapaciteta pohrane i relativno brzog pristupa, te se mogu podesiti za pisanje i ponovni upis podataka. Sve izvedbe zahtijevaju pomične dijelove u obliku elektromehaničkih ili optičkih čitača. Ta činjenice ograničava mogućnost uporabe istih u smislu dalje minijaturizacije i njihova korištenja u okolini s jakim vibracijama. Bez obzira na sve u svakom od navedenih slučaja površinski medij predstavlja ključ pohrane podataka, mehanizam koji se koriste zahtijevaju preciznu kontrolu svojstava kao i bilo koji od nosivih supstrata. Nadalje, takvi uređaju moraju biti sastavljeni uz veliku pažnju. Štoviše, svi zahtijevaju da čitač ima pristup samoj površini uređaja što predstavlja ograničenje na slobodu dizajna pri konstrukciji uređaja. Common data storage devices include magnetic tapes, hard drives, and optical storage drives. All of them offer the advantages of large storage capacity and relatively fast access, and can be configured to write and rewrite data. All versions require moving parts in the form of electromechanical or optical readers. These facts limit the possibility of using them in terms of further miniaturization and their use in an environment with strong vibrations. Regardless of everything in each of the mentioned cases, the surface medium is the key to data storage, the mechanism used requires precise control of the properties as well as any of the supporting substrates. Furthermore, such devices must be assembled with great care. Moreover, they all require the reader to have access to the surface of the device itself, which is a limitation on design freedom in the construction of the device.

Cilj predmetnog izuma je omogućiti alternativni uređaj za pohranu digitalnih podataka koji omogućuje korisnost u alternativnim situacijama, naročito s aspekta minijaturizacije, i/ili kad se uređaj treba inkorporirati u druge uređaje, npr. smart-card, identifikacijske oznake, «zakrpe» ili sl., i/ili kad se ugrađuje u fleksibilne supstrate, i/ili ako se treba koristiti u okolini podložnoj vibracijama, i/ili se očekuje uređaj jednostavan i jeftin za izvedbu. The aim of the present invention is to provide an alternative device for storing digital data that enables usefulness in alternative situations, especially from the aspect of miniaturization, and/or when the device needs to be incorporated into other devices, e.g. smart-card, identification tags, "patches" or the like. .

Naročiti predmet izuma je uređaj koji omogućava pohranu podataka i koji kompaktno i efikasno sprema digitalne podatke te omogućava da podaci u spomenuti uređaj iz izuma mogu biti upisani i iščitani neograničen broj puta. The particular object of the invention is a device that enables data storage and that compactly and efficiently stores digital data and enables that data can be written and read an unlimited number of times in the mentioned device from the invention.

Prema samom izumu uređaj za pohranu digitalnih informacija (kao što su kompjutorske datoteke, digitalni zapis zvuka, digitalni zapis slike i slično) sadrži jedan ili više, a naročito mnoštvo, memorijskih elemenata, gdje svaki memorijski element sadrži ravninske magnetske vodiče sposobne zadržati i propagirati magnetski domenski zid koji nastaje na kontinuiranom putu propagacije, gdje je svaki kontinuirani put opremljen s barem jednom i opcijski s više, a naročito s velikim brojem čvorova gdje se smjer magnetizacije domenskog zida koji propagira duž vodiča a na koji se djeluje odgovarajućim poljem mijenja, a naročito na način da istu obrne. According to the invention itself, a device for storing digital information (such as computer files, digital sound recording, digital image recording and the like) contains one or more, and in particular a plurality of memory elements, where each memory element contains planar magnetic conductors capable of retaining and propagating magnetic a domain wall that forms on a continuous path of propagation, where each continuous path is equipped with at least one and optionally with more, and especially with a large number of nodes, where the direction of magnetization of the domain wall that propagates along the conductor and is acted upon by a corresponding field changes, and especially in a way to reverse it.

Svaki vodič je izveden kao kontinuirani propagacijski put. Zgodno je napraviti vodič sačinjen u obliku zatvorene petlje koja sadrži takav kontinuirani propagacijski put. Takva petlja ima barem jedan, opcijski mnoštvo, a naročito veliki broj inverzijskih čvorova. Podaci mogu prolaziti oko zatvorene petlje na način kako će biti prikazano u nastavku. U varijanti gdje magnetski vodič ne čini u cijelosti zatvorenu petlju inverzijskih čvorova, nego prije linearni lanac inverzijskih čvorova s uređajem za prijenos podataka između dva kraja na način da podaci ipak cirkuliraju na način kao da se radi o zatvorenoj petlji, primjerice da takav uređaj sadrži mogućnost upisa podataka na jednom kraju i čitanja podataka na drugom kraju lanca, i dodatno sklopovlje za elektronički ulaz podataka s kraja na sam početak lanca. Each conductor is designed as a continuous propagation path. It is convenient to make a conductor made in the form of a closed loop containing such a continuous propagation path. Such a loop has at least one, optionally many, and especially a large number of inversion nodes. Data can pass around a closed loop as shown below. In the variant where the magnetic conductor does not form a completely closed loop of inversion nodes, but rather a linear chain of inversion nodes with a data transfer device between the two ends in such a way that the data still circulates as if it were a closed loop, for example that such a device contains the possibility writing data at one end and reading data at the other end of the chain, and additional circuitry for electronic data input from the end to the very beginning of the chain.

Pogodno je da inverzijski čvorovi sadrže svojstva u strukturi i obliku vodiča koja su podešena tako da uzrokuju promjenu u smjeru magnetizacije, a poželjno je da okreću smjer magnetizacije samih domena koje se propagiraju kroz te čvorove kod odgovarajuće primijene polja, kao što je polje koje varira u smjeru, naročito u rotirajućem magnetskom polju. It is convenient for the inversion nodes to contain properties in the structure and shape of the conductor which are adjusted to cause a change in the direction of magnetization, and preferably to reverse the direction of magnetization of the domains themselves propagating through these nodes upon the appropriate application of a field, such as a field varying in direction, especially in a rotating magnetic field.

Prilično je nužno neophodno da smjer vodiča a time i smjer propagacije domenskog zida varira bez oštrih diskontinuiteta na svakoj točki. Prema tome vodič u samom području koji sadrži inverzijski čvor mora imati konfiguracijsko svojstvo kao što je promjena smjera magnetizacije poželjno u cijelosti u suprotnom smjeru od magnetizacijskog smjera domene koja se propagira kroz čvor ali bez bilo koje oštre varijacije u smjeru propagacije. It is quite necessary that the direction of the conductor and thus the direction of propagation of the domain wall varies without sharp discontinuities at each point. Therefore, the conductor in the region containing the inversion node must have a configurational property such as a change in the direction of magnetization, preferably completely in the opposite direction to the direction of magnetization of the domain propagating through the node, but without any sharp variation in the direction of propagation.

U poželjnoj izvedbi izuma, inverzijski čvor je takav da uglavnom obrće u suprotnu stranu smjer magnetizacije. Poželjno, inverzijski čvor sadrži dio u kojem se smjer promjene izvan inicijalnog puta i naknadna promjena smjera na inicijalni put dešavaju u vodiču na način da niti jedno direktno propagiranje nije moguće kroz točku devijacije. Naročito je poželjno da devijacija sadrži 90° devijaciju od inicijalnog puta. Iz naznačenog razloga, devijacija od inicijalnog puta poželjno nastaje graduirano preko udaljenosti uzduž staze vodiča. In a preferred embodiment of the invention, the inversion node is such that it generally reverses the direction of magnetization. Preferably, the inversion node contains a part in which the direction of change outside the initial path and the subsequent change of direction to the initial path occur in the conductor in such a way that no direct propagation is possible through the deviation point. It is particularly desirable that the deviation contains a 90° deviation from the initial path. For the indicated reason, the deviation from the initial path preferably occurs graduated over the distance along the path of the conductor.

Primjerice, inverzijski čvor sadrži cikloidni dio unutar strukture vodljive petlje, naročito usmjeren prema unutra, ili topološki ekvivalent takve strukture. For example, an inversion node contains a cycloidal part within the conducting loop structure, particularly directed inward, or the topological equivalent of such a structure.

Poželjno je da mnoštvo takvih cikloida formiraju petlju. Prema tome uređaj u skladu s izumom poželjno sadrži mnoštvo magnetskih vodiča koji čine zatvorenu petlju gdje svaki od njih sadrži mnoštvo cikloida kojima je namjena da djelotvorno obrću u suprotan smjer magnetizaciju domenskog zida koji prolazi kroz njih i prema tome služe kao inverzijske točke za domenske zidove dok se oni propagiraju kroz vodič koji je predmet izuma odgovarajućim uzbudnim poljem. Preferably, a plurality of such cycloids form a loop. Accordingly, the device in accordance with the invention preferably contains a plurality of magnetic conductors that form a closed loop where each of them contains a plurality of cycloids whose purpose is to effectively reverse the magnetization of the domain wall passing through them and thus serve as inversion points for the domain walls while they are propagated through the guide that is the subject of the invention by a suitable excitation field.

Poželjno je da svaka cikloida ima radijus zakretanja koji je u području tri do deset puta od širine samog vodiča. Poželjno je da takva cikloida daje supstancijalnu promjena, primjerice 180° u okretanju smjera magnetizacije kad domenski zid propagira kroz nju. Preferably, each cycloid has a radius of gyration that is in the range of three to ten times the width of the conductor itself. It is desirable that such a cycloid gives a substantial change, for example 180° in turning the direction of magnetization when the domain wall propagates through it.

U skladu s izumom, magnetski vodiči moraju imati arhitekturu sposobnu za zadržavanje i propagaciju magnetskog zida pod djelovanjem kontrolnog polja. Tipično, magnetski vodič može biti načinjen kao kontinuirana traka magnetskog materijala. Prema tome, petlje u uređaju koji je izveden prema izumu sačinjene se od magnetskih žica, naročito magnetskih žica postavljenih planarno na podesan supstrat. In accordance with the invention, the magnetic conductors must have an architecture capable of retaining and propagating the magnetic wall under the influence of the control field. Typically, the magnetic conductor can be made as a continuous strip of magnetic material. Therefore, the loops in the device according to the invention are made of magnetic wires, especially magnetic wires placed planarly on a suitable substrate.

Uređaj za pohranu podataka prema tome koristi mnoštvo planarnih magnetskih vodiča, naročito magnetskih žica koje su poželjno oblikovane u zatvorene cikloidne petlje. Naročito, izum koristi magnetsku nano-tehnologiju, uređaj sadrži brojne ravninske magnetske nano-žice poželjno formirane u mnoštvo zatvorenih petlji cikloida. The data storage device therefore uses a plurality of planar magnetic conductors, particularly magnetic wires which are preferably formed into closed cycloidal loops. In particular, the invention uses magnetic nano-technology, the device comprises numerous planar magnetic nano-wires preferably formed into a plurality of closed cycloid loops.

Planarne magnetske nano-žice su poželjno manje od 1 μm u širini i načinjene su na bilo kojem pogodnom supstratu. Sama širina je uvjetovana je odnosom između poboljšanog kapaciteta pohrane radi korištenja užih nano-žica i troškova izrade te kompleksnosti iste. Uređaji koji uključuju žice iznad jednog mikrometra čini se da nisu djelatne, a 50 μm se čini kao donji praktični limit za dobar omjer uloženo-dobiveno prema sadašnjem mogućnostima načina formiranja i proizvodnje. Treba naglasiti da to nije tehnički limit i da poboljšavanje tehnika izrade može dati daljnju minijaturizaciju čineći izvedbu praktičnom. Planar magnetic nanowires are preferably less than 1 μm in width and are fabricated on any suitable substrate. The width itself is determined by the relationship between the improved storage capacity due to the use of narrower nano-wires and the manufacturing costs and complexity of the same. Devices involving wires above one micrometer do not seem to be viable, and 50 μm seems to be the lower practical limit for a good investment-gain ratio according to the current possibilities of the method of formation and production. It should be emphasized that this is not a technical limit and that improving manufacturing techniques can provide further miniaturization making the performance practical.

Žice se nanose na supstrat u obliku tankih slojeva magnetskog materijala. Debljina žica optimizira se za optimalne performanse uređaja, i uglavnom je u funkciji širine. Poželjno je da debljina bude oko 1/40-tina širine žice. Debljina žice općenito nije manja od 2 nm a poželjno ne manja od 3 nm. Žice koje se koriste u praksi nisu deblje od 25 nm. The wires are applied to the substrate in the form of thin layers of magnetic material. Wire thickness is optimized for optimal device performance, and is largely a function of width. It is desirable that the thickness be about 1/40th of the width of the wire. The thickness of the wire is generally not less than 2 nm and preferably not less than 3 nm. The wires used in practice are no thicker than 25 nm.

Žice se izrađuju optičkom litografijom, litografijom X-zraka, mikrokontaktnim tiskom, elektronskom litografijom, depozicijom preko maske za zasjenjivanje ili nekim drugim pogodnim postupkom. Žice se mogu napraviti od magnetskog materijala kao što je Permalloy (Ni80Fe20) ili CoFe ili od nekog drugog magnetskog mekanog materijala. Wires are fabricated by optical lithography, X-ray lithography, microcontact printing, electron lithography, shadow mask deposition, or some other convenient process. The wires can be made of a magnetic material such as Permalloy (Ni80Fe20) or CoFe or some other soft magnetic material.

Uređaj za pohranu podataka uključuje inverzijske čvorove kako je ranije opisano i koji su podesni za odgovarajuću promjenu smjera naročito pomoću rotirajućeg magnetskog polja na način kako će do detalja biti opisano u daljem tekstu, na način da se inverzijskom čvoru pridruži memorijska funkcija. Izvedba s mnoštvom polja petlji gdje svaka uključuje jedan ili više inverzijskih čvorova dozvoljava uređaju u skladu s izumom da sprema podatke serijski u prsten. The data storage device includes inversion nodes as described earlier and which are suitable for a suitable change of direction especially by means of a rotating magnetic field in a manner that will be described in detail below, in such a way that a memory function is attached to the inversion node. An embodiment with a plurality of loop arrays each including one or more inversion nodes allows a device according to the invention to store data serially in a ring.

Prema izumu, podaci mogu biti upisani i iščitani iz uređaja neograničen broj puta. Za razliku od magnetskih traka ili magnetskih tvrdih diskova izum ne zahtjeva pomične dijelove. Prema tome, može se jednostavno minijaturizirati i koristiti u okolini koja obiluje vibracijama. Princip izuma je vrlo jednostavan, troškovi izrade mogu biti niski. Što je još važnije, nije potrebno napajanje kako bi se podaci sačuvali u memoriji izuma kad isti nije u upotrebi. According to the invention, data can be written and read from the device an unlimited number of times. Unlike magnetic tapes or magnetic hard disks, the invention does not require moving parts. Therefore, it can be easily miniaturized and used in a vibration-rich environment. The principle of the invention is very simple, the production costs can be low. More importantly, no power is required to keep data in the invention's memory when it is not in use.

Izum koristi brojne mnoštvo magnetskih vodiča kao što su planarno postavljene magnetske žice. Planarne žice izvedene su na istom supstratu, ali za razliku od mikroelektroničke memorije, taj suspstrat ne igra nikakvu ulogu u elektroničkoj ili magnetskoj izvedbi uređaja, i namjena mu je isključivo da bude mehanički nosač. Mogu se koristiti standardni silicijski nosači, ali obzirom da supstrat ne treba iskazivati nikakve osobitosti, drugi materijali mogu se također iskoristiti, npr. stakla i plastike. Primjeri uključuju poliamide kao Kapton, polietilen teteftalate ili materijale Mylar-tipa, acetate, polimetilmetakrilate ili druge. Plastični suspstrati posjeduju prednosti jeftine izvedbe i jednostvne izrade a istovremeno pružaju potencijal za mehaničku fleksibilnost koja izum čini pogodnim za ugradnju u plastične karte kao što je smart-card ili odjeću. The invention utilizes a plurality of magnetic conductors such as planar magnetic wires. The planar wires are made on the same substrate, but unlike the microelectronic memory, this substrate does not play any role in the electronic or magnetic performance of the device, and its purpose is solely to be a mechanical support. Standard silicon supports can be used, but since the substrate does not need to show any particularities, other materials can also be used, eg glass and plastic. Examples include polyamides such as Kapton, polyethylene terephthalate or Mylar-type materials, acetates, polymethylmethacrylates or others. Plastic substrates possess the advantages of cheap performance and simple fabrication, while at the same time providing the potential for mechanical flexibility that makes the invention suitable for incorporation into plastic cards such as smart-cards or clothing.

Obzirom da nije nužna mehanička dostupnost same površine izuma, kao što je to primjerice nužno kod kompakt diskova, magnetskih traka i tvrdih-diskova, veliki broj supstrata može se naslagati jedan na drugi kako bi se dobila trodimenzionalna memorijska kocka. Considering that the mechanical accessibility of the surface of the invention itself is not necessary, as it is, for example, necessary with compact disks, magnetic tapes and hard disks, a large number of substrates can be stacked on top of each other in order to obtain a three-dimensional memory cube.

Gustoća pohrane podataka prema samom izumu je prosječna, veća nego kod magnetskih traka ali manja od magnetskih tvrdih diskova. Brzina čitanja i upisivanje podataka može biti vrlo velika ako je to zahtijevano, pa čak i veća nego kod tvrdih diskova. Podaci se prema izumu spremaju serijski u prsten, tako da je pristupno vrijeme danom bloku podataka relativno sporo, radi čega sam izum ima ograničenje pri primjeni kao direktna zamjena za osnovni tvrdi disk računala. The data storage density according to the invention itself is average, higher than magnetic tapes but lower than magnetic hard disks. The speed of reading and writing data can be very high if required, and even higher than with hard disks. According to the invention, data is stored serially in a ring, so that the access time to a given block of data is relatively slow, which is why the invention itself has a limitation when applied as a direct replacement for the basic hard disk of a computer.

Međunarodna prijava patenta PCT/GB01/05072 primjenjuje i razvija iste principe prema članku Cowburna i Wellanda na koji referenciramo i gdje taj članak opisuje kako digitalni logički krugovi mogu biti napravljeni od lanaca točaka od magnetskog materijala nanometarske skale, ili pak planarnih magnetskih žica veličine nanometarske skale. Naročito je opisana konstrukcija NE-vrata koja su prikazana na crtežu 1 predmetne prijave patenta. International patent application PCT/GB01/05072 applies and develops the same principles as the referenced Cowburn and Welland article, which describes how digital logic circuits can be made from chains of nanometer-scale magnetic material dots, or nanometer-scale planar magnetic wires. . The construction of the NE door, which is shown in drawing 1 of the subject patent application, is particularly described.

Na crtežu 1 strelice prikazuju smjer magnetizacije u tankoj traci magnetskog materijala koji čine vrata. Centralna struktura vrata okreće magnetizaciju koja dolazi s lijeva. In drawing 1, the arrows show the direction of magnetization in the thin strip of magnetic material that forms the gate. The central gate structure reverses the magnetization coming from the left.

Pri korištenju spomenutih vrata ona se stavljaju u magnetsko polje čiji vektor rotira u ravnini uređaja u vremenu. Dok uređaj prema izumu nije limitiran nijednim načinom izvođenja, za opaziti je da radi oblika magnetske anizotropije magnetizacija žica je općenito takva da leži duž osi same žice. To znači da postoje dva moguća smjera magnetizacije pa prema tome postoji prirodna binarna reprezentacija. Promjena smjeru magnetizacije je posredovana magnetskim domenskim zidom koji se giba duž žice pogonjen primijenjivim poljem. Činjenica da primijenjeno polje rotira znači da domenski zidovi mogu biti nošeni oko kutova. When using the aforementioned gates, they are placed in a magnetic field whose vector rotates in the plane of the device in time. While the device according to the invention is not limited by any method of execution, it is noticeable that due to the form of magnetic anisotropy, the magnetization of the wires is generally such that it lies along the axis of the wire itself. This means that there are two possible directions of magnetization, so there is a natural binary representation. The change in magnetization direction is mediated by a magnetic domain wall that moves along the wire driven by the applied field. The fact that the applied field rotates means that domain walls can be carried around corners.

Prema izumu NE-vrata slična onim opisanim izvađaju se pogodnim postupcima. Idealno za predmetnu svrhu je da oblik vrata bude malo modificiran od onog prikazanog na crtežu 1 kako bi se dobio cikloidni oblik. Izlaz iz vrata se spaja nazad na ulaz korištenjem pogodnih magnetskih vodiča kao što su planarne magnetske žice kako bi se formirale zatvorene petlje. Polje takvih petlji formiraju uređaj prema izumu i prema poželjnom načinu izvedbe on se sastoji od planarnih magnetskih nano-žica koje čine veliku zatvorenu petlju serijski spojenih cikloida kako bi se dobio lanac magnetskih NE-vrata. Izlaz zadnjih NE vrata svakog lanca vodi se nazad na ulaz prvih NE vrata planarno postavljenom magnetskom žicom na način da isti čine zatvorenu petlju za podatke koji uokolo cirkuliraju. According to the invention, NE-gates similar to those described are extracted by suitable procedures. Ideally for the purpose in question, the shape of the door is slightly modified from that shown in drawing 1 to obtain a cycloidal shape. The output of the gate is coupled back to the input using suitable magnetic conductors such as planar magnetic wires to form closed loops. The field of such loops is formed by the device according to the invention and according to the preferred embodiment it consists of planar magnetic nano-wires which form a large closed loop of serially connected cycloids to obtain a chain of magnetic NE-gates. The output of the last NE gate of each chain is led back to the input of the first NE gate by a planar magnetic wire in such a way that they form a closed loop for the data circulating around.

Cikloide služe kao inverzijski čvorovi za propagaciju domenskih zidova dok se oni propagiraju kroz nano-žice pod djelovanjem pogodnog rotacionog polja na način naznačen prije i opisan u detalje u daljem tekstu. Invertirani izlaz nastaje nakon vremenskog kašnjenja jednakog jednoj polovici perioda rotacije primijenjenog polja, što čini svaki inverzijski čvor kao jednobitnu memorijsku ćeliju ili flip-flop. Prema tome petlje cikloida imaju istu memorijsku funkciju kao i serijski kružni shift-registar i mogu služiti kao uređaj za pohranu podataka prema ovom izumu. The cycloids serve as inversion nodes for the propagation of the domain walls as they propagate through the nanowires under the action of a suitable rotating field in the manner indicated before and described in detail below. The inverted output is generated after a time delay equal to one half of the rotation period of the applied field, which makes each inversion node as a one-bit memory cell or flip-flop. Therefore, cycloid loops have the same memory function as a serial circular shift register and can serve as a data storage device according to the present invention.

Prema daljem aspektu izuma, uređaj za pohranu podataka sadrži jedan ili više elemenata kako je gore opisano i dalje sadrži pogon za magnetsko polje kako bi se dobilo kontrolirano vremenski-promjenjivo magnetsko polje. Pogon magnetskog polja izveden je na način da se primjenjuje istovremeno na sve cikloide u danoj petlji i može biti primijenjeno istovremeno na sve petlje u sustavu. To daje razlikovno obilježje danom sustavu u samom djelovanju. Magnetsko polje se primjenjuje na cijelu petlju istodobno tako da svi podaci napreduju zajedno, umjesto samo lokalno pod djelovanjem glave za pisanje kao što je slučaj s konvencionalnim magnetskim uređajima za pohranu podataka. According to a further aspect of the invention, the data storage device comprises one or more elements as described above and further comprises a magnetic field drive to provide a controlled time-varying magnetic field. The magnetic field drive is designed in such a way that it is applied simultaneously to all cycloids in a given loop and can be applied simultaneously to all loops in the system. This gives a distinctive feature to the given system in its operation. The magnetic field is applied to the entire loop simultaneously so that all data advances together, rather than only locally under the action of the write head as is the case with conventional magnetic data storage devices.

Bilo koje pogodno polje može se koristiti. Poželjno je da pogon magnetskog polja daje kontrolirano magnetsko polje koje se sastoji od dva ortogonalna polja koja djeluju u prije određenoj sekvenci, poželjno naizmjence, i još poželjnije na način da čine impulsno polje u smjeru kazaljke na satu ili u suprotnom smjeru. Upotrebom takvog sustava podaci mogu biti spremani u uređaj(e) za pohranu podataka prema prvom aspektu predmetnog izuma. Any suitable field can be used. Preferably, the magnetic field drive provides a controlled magnetic field consisting of two orthogonal fields acting in a predetermined sequence, preferably alternately, and more preferably in such a way as to form a pulsed field in a clockwise or counterclockwise direction. Using such a system, data can be stored in the data storage device(s) according to the first aspect of the present invention.

Sustav nadalje može sadržavati odgovarajući električki i/ili ulaz podataka i/ili izlaz podataka koji omogućava da pohranjeni podaci mogu biti korišteni dalje u memoriji ili u uređajima za manipulaciju podacima. The system can further contain a suitable electrical and/or data input and/or data output that enables the stored data to be used further in the memory or in devices for data manipulation.

Primjer djelovanje magnetske pohrane podataka prema principima ovog izuma bit će dalje opisano primjerima koji referenciraju na crteže 2 do 8. An exemplary operation of magnetic data storage according to the principles of the present invention will be further described by examples referring to drawings 2 through 8.

Reference su napravljene na crteže 1 do 8 i nadopunjuju te crteže te služe kao ilustracija, a prikazuju: References are made to drawings 1 through 8 and supplement those drawings and serve as illustrations, showing:

Crtež 1 je shematski prikaz ranijeg stanja tehnike magnetskih NE-vrata (vidjeti opis ranije); Drawing 1 is a schematic representation of the prior art of magnetic NE-gates (see description earlier);

Crtež 2 prikazuje magnetska NE vrata modificirana kako bi se koristila kao uređaj za pohranu podataka u skladu s predmetnim izumom; Figure 2 shows a magnetic NE gate modified for use as a data storage device in accordance with the present invention;

Crtež 3 je shematski prikaz strukture NE vrata preuzet sa crteža 2 (dio A) i djelovanje tih vrata na domenski zid koji ulazi u točki P pod djelovanjem rotacionog magnetskog polja H; Drawing 3 is a schematic representation of the structure of the NE gate taken from drawing 2 (part A) and the action of that gate on the domain wall that enters at point P under the action of the rotating magnetic field H;

Crtež 4 prikazuje tri magnetska NE vrata spojena u prsten kako bi se dobio 5-bitni serijski shift-registar u djelu A, i dio B prikazuje kako jednostavna (trag I) i kompleksna (trag II) sekvenca bitova može biti natjerana da cirkulira kroz prsten pod djelovanjem rotacijskog magnetskog polja (zvjezdica u dijelu A prikazuje točku u petlji gdje je izvedeno mjerenje prikazanu u dijelu B); Figure 4 shows three magnetic NE gates connected in a ring to produce a 5-bit serial shift register in part A, and part B shows how a simple (trace I) and complex (trace II) sequence of bits can be made to cycle through the ring under the action of a rotating magnetic field (the asterisk in part A shows the point in the loop where the measurement shown in part B was performed);

Crtež 5 prikazuje jedanaest magnetskih NE vrata spojenih u prsten kako bi se dobila 13-bitna serijska memorija u djelu A, i dio B prikazuje kako jednostavna 13 bitna sekvenca podataka cirkulira kroz prsten pod djelovanjem rotacijskog magnetskog polja (zvjezdica u dijelu A prikazuje točku u petlji gdje je izvedeno mjerenje prikazanu u dijelu B); Figure 5 shows eleven magnetic NE gates connected in a ring to form a 13-bit serial memory in part A, and part B shows how a simple 13-bit sequence of data circulates through the ring under the action of a rotating magnetic field (the asterisk in part A shows a point in the loop where the measurement shown in part B was performed);

Crtež 6 daje shematski prikaz mehanizma za upisa podataka i čitanje prema ovom izumu. Figure 6 provides a schematic view of the data write and read mechanism according to the present invention.

Crtež 7 predstavlja shematski prikaz brojnih magnetskih petlji na istom supstratu, adresiranih individualno elektroničkim multiplekserima i demultiplekserima. Drawing 7 is a schematic representation of numerous magnetic loops on the same substrate, individually addressed by electronic multiplexers and demultiplexers.

Crtež 8 predstavlja shematski prikaz naslagivanja brojnih supstrata od kojih svaki nosi brojne petlje podataka kako bi se dobila trodimenzionalna memorijska kocka. Figure 8 is a schematic representation of the stacking of a number of substrates each carrying a number of data loops to form a three-dimensional memory cube.

Crtež 2 prikazuje NE-vrata slična onima na crtežu 1, ali posebno podešena i optimizirana prema predmetnom izuma da ima oblik cikloide. Vrata se mogu izvesti fokusiranim ionskim snopom zadirući u 5 nm tanki Permalloy (Ni80Fe20) film na silicijskom supstratu. Samo svjetliji trag predstavlja magnetski materijal; drugi kontrast proizlazi iz višekoračnog procesa zadiranja koji je korišten za vrijeme izvedbe spomenutih vrata. Crtež 2a prikazuje vrata gdje je izlaz spojen na ulaz primjenom planarne magnetske žice kako bi se dobila zatvorena petlja. Crtež 2b prikazuje jedna vrata (povećana) koja su cikloidnog oblika. Magnetooptička mjerenja napravljena na točkama I i II u odgovoru na primijenjeno rotacijsko magnetsko polje dana su na crtežu 2c. Postoji kašnjenje od pola ciklusa između ulazne (trag I) promjene stanja i izlazne (trag II) promjene stanja koja je jednaka polovici perioda primijenjenog rotirajućeg magnetskog polja, što korespondira s memorijskom funkcijom. Drawing 2 shows a NE-gate similar to that of drawing 1, but specially adjusted and optimized according to the subject invention to have a cycloidal shape. The gate can be performed by a focused ion beam penetrating a 5 nm thin Permalloy (Ni80Fe20) film on a silicon substrate. Only the lighter trace represents magnetic material; the other contrast comes from the multi-step encroachment process that was used during the execution of the aforementioned door. Figure 2a shows a gate where the output is connected to the input using a planar magnetic wire to form a closed loop. Drawing 2b shows one gate (enlarged) which is cycloidal in shape. Magneto-optical measurements made at points I and II in response to an applied rotating magnetic field are given in Figure 2c. There is a half-cycle delay between the input (trace I) change of state and the output (trace II) change of state equal to half the period of the applied rotating magnetic field, which corresponds to a memory function.

Crtež 3 daje objašnjenje inverzijskog djelovanja cikloide i razlog za opaženo kašnjenje. Figure 3 provides an explanation of the inversion action of the cycloid and the reason for the observed delay.

Pod djelovanjem malog magnetskog polja magnetizacija uzduž podmikronski debelih feromagnetskih žica želi se poravnati s dužom osi same žice radi jeke magnetske anizotropije proizašle iz oblika. Kad se dvije nasuprotno usmjerene magnetizacije susretnu unutar žice nastaje preraspodjela usmjerenja sukcesivnih magnetskih momenata koja nije s prekidom već nastaje graduirano preko udaljenosti kako nastaje domenski zid. Under the action of a small magnetic field, the magnetization along submicron-thick ferromagnetic wires tends to align with the longer axis of the wire itself due to strong magnetic anisotropy resulting from the shape. When two oppositely directed magnetizations meet inside the wire, a redistribution of the direction of the successive magnetic moments occurs, which is not interrupted but occurs graduated over the distance as a domain wall is formed.

Poznato je da se domenski zidovi mogu propagirati duž ravnih sub-mikronskih magnetskih žica primjenom magnetskog polja koje je paralelno samoj žici. Kako je korišteno u predmetnom izumu, magnetsko polje je primijenjeno s vektorom polja koji rotira u vremenu u ravnini uzorka i koje se koristi da propagira domenske zidove duž magnetskih žica koji također mijenjaju smjer i okreću na uglovima. Rotacija u smjeru kazaljke na satu ili obrnuto od kazaljke na satu definira kiralnost magnetskog polja. Domenski zidovi mogu propagirati uokolo kutova magnetskih žica uz uvjet da polje i kut imaju istu kiralnost. No, kiralnost samog kuta ovisi o smjeru propagiranja domenskog zida na način da uz rotirajuće magnetsko polje dane kiralnosti, domenski zid može biti sposoban prijeći kroz dani kut u jednom smjeru. To zadovoljava važni zahtjev nad bilo kojim logičkim sistemom da posjeduje definirani tok signala. Dva stabilna usmjerenja magnetizacije u sub-mikronskim magnetskim žicama daju prirodnu reprezentaciju dva Booleova logička stanja i to zajedno u primjeni s rotirajućim magnetskim poljem predstavlja osnovu za svaku logičku jedinicu memorijskog uređaja. It is known that domain walls can be propagated along flat sub-micron magnetic wires by applying a magnetic field parallel to the wire itself. As used in the present invention, a magnetic field is applied with a time-rotating field vector in the plane of the sample and used to propagate domain walls along magnetic wires that also change direction and rotate at angles. Clockwise or counterclockwise rotation defines the chirality of the magnetic field. Domain walls can propagate around the corners of magnetic wires provided that the field and the corner have the same chirality. However, the chirality of the angle itself depends on the direction of propagation of the domain wall in such a way that with a rotating magnetic field of a given chirality, the domain wall may be able to pass through the given angle in one direction. This satisfies the important requirement for any logic system to have a defined signal flow. The two stable directions of magnetization in sub-micron magnetic wires provide a natural representation of two Boolean logic states and this, together with the application of a rotating magnetic field, constitutes the basis for any logic unit of a memory device.

Cikloide prikazane crtežom 3 vrše invertorsku funkciju i prikazuju funkcionalnost NE-vrata kad se primijeni pogodno magnetsko polje. Pretpostavimo da magnetsko polje rotira u smjeru obrnutom od kazaljke na satu. Domenski zid dolazi na točku «P» (crtež 3B) samog spoja i nastavlja se gibati oko prvog kuta (crtež 3C) do završetka «Q» obzirom da primijenjeno polje rotira iz horizontalnog u okomit smjer. Magnetizacija između točaka «P» i «Q» je kontinuirana (crtež 3D). Nakon toga vektor magnetskog polja nastavlja rotirati prema suprotnom horizontalnom smjeru, domenski zid propagira oko drugog kuta spoja (crtež 3E), te na taj način izlazi na kraju «R» i uspostavlja kontinuiranu magnetizaciju između «Q» i «R». Magnetizacija žice neposredno nakon spoja će biti okrenuta u usporedbi s onom ispred spoja. Takav spoj će prema tome omogućiti željenu NE-funkciju s kašnjenjem od pola ciklusa primijenjenog polja. Ta operacija je analogna okretanju auta sa tri točke zaokretanja. The cycloids shown in figure 3 perform an inverter function and show the functionality of a NO-gate when a suitable magnetic field is applied. Assume that the magnetic field rotates in a counter-clockwise direction. The domain wall comes to the point «P» (drawing 3B) of the joint itself and continues to move around the first corner (drawing 3C) until the end «Q», since the applied field rotates from the horizontal to the vertical direction. The magnetization between points «P» and «Q» is continuous (drawing 3D). After that, the magnetic field vector continues to rotate in the opposite horizontal direction, the domain wall propagates around the second corner of the junction (drawing 3E), thus exiting at the end of «R» and establishing a continuous magnetization between «Q» and «R». The magnetization of the wire immediately after the junction will be reversed compared to that before the junction. Such a connection will therefore enable the desired NO-function with a delay of half a cycle of the applied field. This operation is analogous to turning a car with three pivot points.

Vidimo da imamo pola-ciklusa kašnjenje između nadolazećeg zida na ulazu i onog koji izlazi iz izlaza. Prema ovom izumi, identificiramo to sinkrono kašnjenje kao pridruženu memorijsku funkciju koja se može iskoristiti spajanjem većeg broja magnetskih NE-vrata zajedno u seriju i spajajući izlaz takvog lanca nazad na ulaz. We can see that we have a half-cycle delay between the incoming wall at the entrance and the one coming out of the exit. According to the present invention, we identify this synchronous delay as an associated memory function that can be exploited by connecting a number of magnetic NO-gates together in series and connecting the output of such a chain back to the input.

Crtež 4 prikazuje reduciranu verziju izuma u kojoj su tri NE vrata spojena u lanac i izlaz iz lanca se nazad vodi na ulaz planarnom magnetskom žicom. Programiramo dva skupa različitih sekvenci bitova u uređaj kroz specifičnu primjenu magnetskog polja i tad pokrenemo ciklus podataka unutar petlje uključivši rotirajuće magnetsko polje. Figure 4 shows a reduced version of the invention in which three NE gates are connected in a chain and the output of the chain is fed back to the input by a planar magnetic wire. We program two sets of different bit sequences into the device through a specific application of a magnetic field and then initiate a data cycle within the loop by turning on the rotating magnetic field.

Trag I na crtežu 4b prikazuje jednostavnu sekvencu bitova koja cirkulira oko lanca: uzorak se ponavlja svakih 5 ciklusa rotirajućeg polja. Trag II na crežu 4b prikazuje kompleksniju sekvencu koja cirkulira oko petlje, s periodom 5 ciklusa rotirajućeg polja. Uređaj se ponaša kao da je 5-bitni serijski shift-registar. Podatkovna sekvenca čini jedan korak s desna po svakom ciklusu rotirajućeg polja. Ti podaci su dobiveni korištenjem rotirajućeg polja u smjeru suprotnom od kazaljke na satu tako da podaci kruže uokolo magnetskog prstena u smjeru obrnutom od kazaljke na satu. Trace I in Figure 4b shows a simple sequence of bits circulating around the chain: the pattern is repeated every 5 cycles of the rotating field. Trace II on line 4b shows a more complex sequence circulating around the loop, with a period of 5 cycles of the rotating field. The device behaves as if it were a 5-bit serial shift register. The data sequence makes one step from the right for each cycle of the rotating field. This data is obtained by using a counter-clockwise rotating field so that the data circulates around the magnetic ring in a counter-clockwise direction.

Crtež 5 prikazuje pokus prema izumu s upotrebom 11 NE-vrata. Crtež 5b prikazuje jednostavnu sekvencu bitova koja cirkulira oko petlje s periodom ponavljanja od 13 ciklusa rotirajućeg polja. Figure 5 shows an experiment according to the invention using 11 NE-gates. Figure 5b shows a simple bit sequence circulating around a loop with a repetition period of 13 cycles of the rotating field.

Podaci se upisuju u svaku petlju s litografski izvedenom žicom koja nosi struju i prolazi iznad vrha mreže od planarnih magnetskih žica. Podaci se iščitavaju iz svake petlje korištenjem magnetskog tunel-spoja pripojenog na jedan dio petlje ili mjerenjem električnog otpora domenskog zida prisutnog na nekom od kutova žica ili mjerenjem električnog otpora domenskog zida prisutnog u jednim od NE-vrata. Data is written into each loop with a lithographically derived current-carrying wire passing over the top of a grid of planar magnetic wires. Data is read from each loop using a magnetic tunnel junction attached to one part of the loop or by measuring the electrical resistance of a domain wall present at one of the wire corners or by measuring the electrical resistance of a domain wall present in one of the NE gates.

Crtež 6 prikazuje primjere takvih ulazno/izlaznih postupaka. Podaci su upisani u petlju uz pomoć struje koju provode litografske žice (61) koje prolaze iznad ili ispod prstena. Podaci cirkuliraju oko petlje u smjeru strelice A. Podaci se iščitavaju iz petlje ili primjenom magnetskog tunel-spoja između dva električna kontakta (62) na jednoj točki same petlje (gornja slika) ili primjenom dva električna kontakta (63) kako bi se mjerio otpor nekog od domenskih zidova malog dijela prstena (donja slika). Figure 6 shows examples of such input/output procedures. The data is written into the loop with the help of the current carried by the lithographic wires (61) that pass above or below the ring. The data circulates around the loop in the direction of arrow A. The data is read from the loop either by applying a magnetic tunnel junction between two electrical contacts (62) at one point of the loop itself (top image) or by applying two electrical contacts (63) to measure the resistance of a from the domain walls of a small part of the ring (bottom image).

U varijanti ovog izuma (nije prikazan na crtežima) magnetski vodiči po sebi ne formiraju zatvorenu petlju inverzijskih čvorova nego prije linearne lance inverzijskih čvorova s uređajima za čitanje na jednom kraju i uređajima za upis na drugom kraju. U tom slučaju neophodno je da vanjski kontrolni sklopovi vraćaju podatke nazad elektronički s izlaza lanca na ulaz tako da su podaci i dalje u mogućnosti cirkulirati uokolo kao i u zatvorenoj petlji. In a variant of this invention (not shown in the drawings) the magnetic conductors themselves do not form a closed loop of inversion nodes but rather a linear chain of inversion nodes with read devices at one end and write devices at the other end. In this case, it is necessary for the external control circuits to return the data back electronically from the output of the chain to the input so that the data is still able to circulate around as in a closed loop.

Podatkovne petlje leže u magnetskom polju čije vektor rotira u ravnini s frekvencijom u području 1Hz-200MHz. Iznos polja može biti konstantan dok polje rotira formirajući cirkularni lokus za magnetski vektror polja, ili može varirati pa činiti eliptični lokus za magnetski vektor polja. To se može postići na maloj površini uređaja postavljajući elektromagnetske tanke vodove ispod samih petlji te kroz njih kasnije puštati izmjeničnu struju kroz te vodove. U uređajima s većom površinom supstrat koji nosi petlje postavlja se u kvadropolni elektromagnet. The data loops lie in a magnetic field whose vector rotates in the plane with the frequency in the range 1Hz-200MHz. The amount of field can be constant as the field rotates forming a circular locus for the magnetic field vector, or it can vary to form an elliptical locus for the magnetic field vector. This can be achieved on a small area of the device by placing electromagnetic thin lines under the loops themselves and later passing alternating current through these lines. In devices with a larger area, the substrate carrying the loops is placed in a quadrupole electromagnet.

Iznos polja mora biti dovoljno velik da omogući da se domenski zidovi mogu pogurati cijelim putem kroz svaka NE vrata, ali ne toliko velik da vrši nukleaciju novih domenskih zidova nezavisno od mehanizma za podatkovni ulaz. The amount of field must be large enough to allow domain walls to be pushed all the way through each NE gate, but not so large as to nucleate new domain walls independently of the data entry mechanism.

Polje potrebno da se pogura domenski zid kroz svaka NE vrate može se podešavati variranjem debljine petlje, širine petlje i magnetskim materijalom koji se koristi za izradu petlje. Polje mora biti dovoljno jako da uređaj ne pati od brisanja uzrokovanim raspršenim magnetskim poljima iz okoline. Izum može biti oklopljen upotrebom MuMetal - materijala ako raspršena vanjska polja predstavljaju problem. U optimiziranom uređaju primjenjuju se polja od 50-200 Oe. The field required to push the domain wall through each NE gate can be tuned by varying the thickness of the loop, the width of the loop, and the magnetic material used to make the loop. The field must be strong enough so that the device does not suffer from erasure caused by scattered magnetic fields from the environment. The invention can be shielded using MuMetal - material if scattered external fields are a problem. In the optimized device, fields of 50-200 Oe are applied.

Izum može sadržavati veliki broj podatkovnih petlji na jednom supstratu sa elektroničkim multiplekserima i demultiplekserima koji se koriste za adresiranje određene petlje, kako je to prikazano crtežom 7. Brojne petlje su prikazane između pogona za upisivanje podataka i multipleksera (71) i demultipleksera za čitanje podataka i pojačala (72). The invention may include a large number of data loops on a single substrate with electronic multiplexers and demultiplexers used to address a particular loop, as shown in Figure 7. A number of loops are shown between the data write drive and the multiplexer (71) and the data read demultiplexer and amplifiers (72).

Optimalna ravnoteža između broja petlji i broja NE vrata u svakoj petlji mora se odrediti prema danoj primjeni. Mali broj petlji s velikim brojem NE vrata jako je lako i jeftino integrirati u jedan paket ali će biti skloniji pogreškama cijelog uređaja ako samo jedna NE vrata imaju pogrešku kod izrade. Takva kombinacija pak zahtjeva veliko vrijeme pristupa i potrebno je čekati velik broj ciklusa takta kako bi se prosječno pristupilo nekom podatkovnom bloku dok isti pristigne na poziciju za čitanje. Velik broj petlji koji sadrži mali broj NE vrata bit će otpornije na pogreške individualnih NE vrata (petlja koja sadrži vrata s pogreškom može se izvaditi iz sklopa bez signifikantnog gubitka mogućnosti pohrane) a dobit će se i velika brzina pristupa uz upotrebu većeg broja točaka za upis i iščitavanje (što dodatno poskupljuje uređaj) i sve to skupa bit će kompliciranije za integriranje većeg broja petlji u jedan integrirani krug. Svi crteži u ovom dokumentu prikazuju petlje od 8 vrata. To je čisto figurativno – praktično svaka petlja sadrži mnogo tisuća vrata. The optimal balance between the number of loops and the number of NE gates in each loop must be determined according to the given application. A small number of loops with a large number of NE gates is very easy and cheap to integrate into one package, but it will be more prone to errors of the whole device if only one NE gate has a manufacturing error. Such a combination requires a large access time and it is necessary to wait for a large number of clock cycles in order to access a data block on average until it arrives at the reading position. A large number of loops containing a small number of NE gates will be more resistant to the errors of individual NE gates (a loop containing a gate with an error can be removed from the circuit without significant loss of storage capacity) and a high access speed will be obtained using a larger number of write points. and reading (which makes the device more expensive) and all of that together will be more complicated for integrating a larger number of loops into one integrated circuit. All drawings in this document show 8-gate loops. This is purely figurative - practically every loop contains many thousands of gates.

Naročito svojstvo izuma je da nije ograničen na dvodimenzionalnu ravninu za postavljanje podatkovnih petlji. Za razliku od kompakt diskova, magnetskih traka i magnetskih tvrdih diskova nije potreban mehanički kontakt sa površinom iz izuma. Substrati mogu biti postavljeni jedan drugom na vrh kako bi se dobila trodimenzionalna podatkovna kocka kako je prikazano na crtežu 8. To za rezultat ima prednost koja dozvoljava mnogo veće postizanje gustoće zapisa. Ako je poželjno, svi supstrati u kocki mogu dijeliti isto primijenjeno rotirajuće magnetsko polje čineći tako slojeve sinkroniziranim jedne s drugim što reducira kompleksnost samog uređaja. A particular feature of the invention is that it is not limited to a two-dimensional plane for placing data loops. Unlike compact disks, magnetic tapes and magnetic hard disks, mechanical contact with the surface of the invention is not required. The substrates can be stacked on top of each other to form a three-dimensional data cube as shown in Figure 8. This has the advantage of allowing much higher recording densities to be achieved. If desired, all substrates in the cube can share the same applied rotating magnetic field, thus making the layers synchronized with each other, which reduces the complexity of the device itself.

Uređaj može biti konfiguriran kao ulaz/izlaz jednog serijskog niza podataka, ili ako je poželjno niza riječi koje se sastoje od više bitova koji se pohranjuju upotrebom nekoliko petlji ili slojeva u paraleli. The device can be configured as an input/output of a single serial data string, or if desired a string of words consisting of multiple bits stored using several loops or layers in parallel.

Iz razloga sporog pristupa, izum nije pogodan kao zamjena za primarni tvrdi disk samog kompjutora. No, izum može naći primjenu u nekim od slijedećih situacija: For reasons of slow access, the invention is not suitable as a replacement for the primary hard disk of the computer itself. However, the invention can find application in some of the following situations:

Privremena pohrana digitalnog zapisa muzike za digitalne audio reproduktore kao što su MP3 reproduktori. Takva primjena zahtijeva jeftinu, otpornu, i s mogućnošću ponovnog-upisa digitalne informacije koja se uobičajeno reproducira serijski. Upotrebom 200 nm širokih planarnih vrata NE-vrata zauzimaju površinu od oko 1μm2. 1cm2 jednog sloja pokriven s lancima za podatke može spremiti 12 Mb serijskih podataka što je dovoljno za 12 minuta muzike CD kvalitete. Naslagivanjem slojeva moguće je dobiti nekoliko sati audio zapisa CD kvalitete po vrlo niskoj cijeni. Temporary storage of digital music recordings for digital audio players such as MP3 players. Such an application requires inexpensive, resilient, and rewritable digital information that is typically reproduced serially. By using a 200 nm wide planar gate, the NE-gate occupies an area of about 1μm2. 1cm2 of one layer covered with data chains can store 12 Mb of serial data, which is enough for 12 minutes of CD-quality music. By layering it is possible to get several hours of CD-quality audio at a very low price.

Privremena pohrana digitalnih fotografija u digitalnim kamerama. Ta funkcija je izvedena danas s FLASH elektroničkom memorijom koja je skupa i koja ima ograničen broj mogućih ciklusa ponovnog upisa. Temporary storage of digital photos in digital cameras. This function is implemented today with FLASH electronic memory, which is expensive and has a limited number of possible rewrite cycles.

Pouzdana of-line pohrana za mobilne telefone, osobne organizatore, palm top kompjutore i SMART kartice. Reliable off-line storage for mobile phones, personal organizers, palm top computers and SMART cards.

Claims (13)

1. Uređaj za pohranu podataka koji su digitalnog oblika u formi da se mogu čitati, naznačen time, da sadrži jedan ili više memorijskih elemenata, gdje svaki od elemenata sadrži planarni magnetski vodič koji je sposoban zadržati i propagirati magnetski domenski zid načinjen na kontinuiranoj propagacijskoj stazi, gdje svaka kontinuirana staza posjeduje barem jedan inverzijski čvor gdje se smjer magnetizacije domenskog zida koji se propagira duž tog vodiča mijenja pod djelovanjem odgovarajućeg primijenjenog magnetskog polja, a svaki inverzijski čvor sadrži dio u kojem se smjer otklanja od onog u početnom dijelu puta i nastavno smjer se mijenja prema onome u početnom dijelu na način da takav vodič ne dozvoljava direktni propagacijski put kroz devijacijsko područje istog vodiča.1. A device for storing data that is in digital form in a form that can be read, characterized by the fact that it contains one or more memory elements, where each of the elements contains a planar magnetic conductor that is capable of retaining and propagating a magnetic domain wall formed on a continuous propagation path , where each continuous path has at least one inversion node where the direction of magnetization of the domain wall propagating along that conductor changes under the action of the corresponding applied magnetic field, and each inversion node contains a part where the direction deviates from that in the initial part of the path and a continuous direction is changed according to that in the initial part in such a way that such a conductor does not allow a direct propagation path through the deviation area of the same conductor. 2. Uređaj za pohranu podataka prema zahtjevu 1, naznačen time, da svaka kontinuirana staza ima barem jedan inverzijski čvor gdje se smjer magnetizacije domenskog zida koji se propagira kroz vodič obrće pod djelovanjem pogodnog vanjskog polja.2. Data storage device according to claim 1, characterized in that each continuous track has at least one inversion node where the direction of magnetization of the domain wall propagating through the conductor is reversed under the action of a suitable external field. 3. Uređaj za pohranu podataka prema zahtjevu 1 ili zahtjevu 2, naznačen time, da svaka kontinuirana staza sadrži veliko mnoštvo inverzijskih čvorova.3. Data storage device according to claim 1 or claim 2, characterized in that each continuous track contains a large number of inversion nodes. 4. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da je vodič načinjen u obliku zatvorene petlje kako bi sadržavao kontinuiranu propagacijsku stazu.4. A data storage device according to any one of the preceding claims, characterized in that the conductor is made in the form of a closed loop to contain a continuous propagation path. 5. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da vodič nije načinjen u obliku zatvorene petlje nego kao lanac inverzijskih čvorova s sredstvima koji omogućavaju transfer podataka između ta dva kraja lanca tako da podaci i dalje mogu cirkulirati ukrug kao da su u zatvorenoj petlji, a spomenuti uređaji sadrže uređaje koji omogućavaju upis podataka na jednom kraju lanca i uređaj za čitanje podataka na drugom kraju lanca i dodatno sklopovlje koje vraća podatke elektronički s izlaza samog lanaca na ulaz istog lanca.5. A data storage device according to any of the previous requirements, characterized in that the conductor is not made in the form of a closed loop but as a chain of inversion nodes with means that enable the transfer of data between the two ends of the chain so that the data can still circulate around as if they are in a closed loop, and the mentioned devices contain devices that enable data entry at one end of the chain and a device for reading data at the other end of the chain and additional circuitry that returns data electronically from the output of the chain itself to the input of the same chain. 6. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da devijacijski dio čini 90° devijaciju od inicijalnog puta samog vodiča.6. Data storage device in accordance with any of the previous requirements, characterized in that the deviation part makes a 90° deviation from the initial path of the conductor itself. 7. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da devijacija nastaje graduirano preko udaljenosti samog puta vodiča.7. A data storage device according to any of the preceding requirements, characterized in that the deviation occurs graduated over the distance of the conductor path itself. 8. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da inverzijski čvor sadrži dio izveden u obliku cikloide unutar strukture vodljive petlje ili topološki ekvivalent takve strukture.8. A data storage device in accordance with any of the preceding claims, characterized in that the inversion node contains a part made in the form of a cycloid within the conductive loop structure or a topological equivalent of such a structure. 9. Uređaj za pohranu podataka u skladu s zahtjevom 8, naznačen time, da je mnoštvo takvih cikloidnih dijelova sadržano u jednoj petlji.9. A data storage device according to claim 8, characterized in that a plurality of such cycloid parts are contained in one loop. 10. Uređaj za pohranu podataka u skladu s zahtjevom 9, naznačen time, da sadrži mnoštvo magnetskih vodiča formiranih u zatvorene petlje gdje svaka sadrži mnoštvo cikloida koje služe za okretanje smjera magnetizacije domenskog zida koji prolazi kroz njih.10. A data storage device according to claim 9, characterized in that it contains a plurality of magnetic conductors formed into closed loops where each contains a plurality of cycloids that serve to turn the direction of magnetization of the domain wall passing through them. 11. Uređaj za pohranu podataka u skladu s jednim od zahtjeva 8-10, naznačen time, da svaka cikloida ima radijus zakretanja koji je u opsegu tri do deset puta veći od širine samog vodiča.11. Data storage device according to one of claims 8-10, characterized in that each cycloid has a turning radius that is three to ten times larger than the width of the conductor itself. 12. Uređaj za pohranu podataka u skladu s bilo kojim od prethodnim zahtjeva, naznačen time, da magnetski vodič sadrži općenito planarnu magnetsku žicu na pogodnom supstratu.12. A data storage device according to any of the preceding claims, characterized in that the magnetic conductor comprises a generally planar magnetic wire on a suitable substrate. 13. Uređaj za pohranu podataka u skladu s zahtjevom 12, naznačen time, da magnetska žica sadrži magnetske nano-žice čija je debljina od 2 nm do 25 nm i širina između 50 nm i 1 μm.13. Data storage device according to claim 12, characterized in that the magnetic wire contains magnetic nano-wires whose thickness is from 2 nm to 25 nm and width between 50 nm and 1 μm.
HR20040884A 2002-03-27 2004-09-24 Data storage device HRP20040884A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0207160A GB0207160D0 (en) 2002-03-27 2002-03-27 Data storage device
PCT/GB2003/001266 WO2003083874A1 (en) 2002-03-27 2003-03-25 Data storage device

Publications (1)

Publication Number Publication Date
HRP20040884A2 true HRP20040884A2 (en) 2005-02-28

Family

ID=9933766

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20040884A HRP20040884A2 (en) 2002-03-27 2004-09-24 Data storage device

Country Status (20)

Country Link
EP (1) EP1514276A1 (en)
JP (1) JP4463564B2 (en)
CN (1) CN100452243C (en)
CU (1) CU23099A3 (en)
EA (1) EA006289B1 (en)
GB (1) GB0207160D0 (en)
HK (1) HK1070982A1 (en)
HR (1) HRP20040884A2 (en)
IS (1) IS7506A (en)
MA (1) MA27296A1 (en)
MX (1) MXPA04009307A (en)
MY (1) MY135448A (en)
NO (1) NO20043958L (en)
NZ (1) NZ535781A (en)
OA (1) OA12989A (en)
PL (1) PL373815A1 (en)
TW (1) TWI310938B (en)
WO (1) WO2003083874A1 (en)
YU (1) YU91604A (en)
ZA (1) ZA200407730B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2008107998A (en) 2005-08-03 2009-09-10 Инджениа Текнолоджи Лимитед (Gb) ACCESS TO MEMORY
KR100819142B1 (en) * 2005-09-29 2008-04-07 재단법인서울대학교산학협력재단 Method of generating strong spin waves and spin devices for ultra-high speed information processing using spin waves
WO2009037910A1 (en) * 2007-09-19 2009-03-26 Nec Corporation Magnetic random access memory, its writing method, and magnetoresistive effect element
JP5327543B2 (en) * 2007-09-20 2013-10-30 日本電気株式会社 Magnetic random access memory
WO2009122990A1 (en) * 2008-04-02 2009-10-08 日本電気株式会社 Magnetoresistive effect element and magnetic random access memory
DE112012000271B4 (en) 2011-02-16 2022-01-05 International Business Machines Corporation Ferromagnetic unit that ensures high domain wall velocities
JP5653379B2 (en) 2012-03-23 2015-01-14 株式会社東芝 Magnetic storage element, magnetic memory, and magnetic storage device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774179A (en) * 1971-07-22 1973-11-20 J Wiegand Ferromagnetic storage medium
US3811120A (en) * 1973-04-05 1974-05-14 Bell Telephone Labor Inc Magnetic domain propagation arrangement having channels defined by straight line boundaries
GB9925213D0 (en) * 1999-10-25 1999-12-22 Univ Cambridge Tech Magnetic logic elements
DE10033486A1 (en) * 2000-07-10 2002-01-24 Infineon Technologies Ag Integrated memory (MRAM), whose memory cells contain magnetoresistive memory effect
GB0019506D0 (en) * 2000-08-08 2000-09-27 Univ Cambridge Tech Magnetic element with switchable domain structure

Also Published As

Publication number Publication date
TW200306536A (en) 2003-11-16
OA12989A (en) 2006-10-13
NO20043958L (en) 2004-12-27
JP4463564B2 (en) 2010-05-19
CN1656568A (en) 2005-08-17
NZ535781A (en) 2005-05-27
YU91604A (en) 2006-05-25
TWI310938B (en) 2009-06-11
MY135448A (en) 2008-04-30
MXPA04009307A (en) 2005-07-05
HK1070982A1 (en) 2005-06-30
EA006289B1 (en) 2005-10-27
GB0207160D0 (en) 2002-05-08
IS7506A (en) 2004-10-15
WO2003083874A8 (en) 2005-02-17
CN100452243C (en) 2009-01-14
EA200401263A1 (en) 2005-04-28
JP2006504210A (en) 2006-02-02
PL373815A1 (en) 2005-09-19
CU23099A3 (en) 2005-12-20
ZA200407730B (en) 2005-08-31
EP1514276A1 (en) 2005-03-16
WO2003083874A1 (en) 2003-10-09
MA27296A1 (en) 2005-05-02

Similar Documents

Publication Publication Date Title
US7554835B2 (en) Memory access
US7502244B2 (en) Data storage device
CN101145597B (en) Memory device using magnetic domain wall moving
KR20090011013A (en) Data storage device and method
US8233305B2 (en) Magnetic structures, information storage devices including magnetic structures, methods of manufacturing and methods of operating the same
HRP20040884A2 (en) Data storage device
KR100912436B1 (en) Data storage device
JP2006504210A5 (en)
US20100085659A1 (en) Information storage devices using magnetic domain wall motion
CN1689118A (en) Read-only magnetic memory device MROM
EP0032157B1 (en) Magnetic bubble domain exchanging circuit
GB2436490A (en) Multiple layer magnetic logic memory device
GB2430318A (en) Multiple layer magnetic logic memory device
JPS598906B2 (en) magnetic bubble storage device
JPS5911983B2 (en) Bubble domain generator
Vasil'eva et al. Magnetic random access memory devices
JPS6113314B2 (en)
Miyamoto et al. Formation, Shift and Magneto-optical Detection of Magnetic Domain Queue in Magnetic Nanowire Memory
Fuller et al. System and fabrication techniques for a solid-state random-access mass memory
Cowburn Magnetic nanowires for domain wall logic and ultrahigh density data storage
Turner Current Trends in Mass Storage for Digital Computers

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20050321

Year of fee payment: 3

ARAI Request for the grant of a patent on the basis of the submitted results of a substantive examination of a patent application
OBST Application withdrawn