HK1200972A1 - Improved optical device fabrication - Google Patents

Improved optical device fabrication

Info

Publication number
HK1200972A1
HK1200972A1 HK15101183.8A HK15101183A HK1200972A1 HK 1200972 A1 HK1200972 A1 HK 1200972A1 HK 15101183 A HK15101183 A HK 15101183A HK 1200972 A1 HK1200972 A1 HK 1200972A1
Authority
HK
Hong Kong
Prior art keywords
optical device
device fabrication
improved optical
improved
fabrication
Prior art date
Application number
HK15101183.8A
Other languages
English (en)
Chinese (zh)
Inventor
Yashraj Bhatnagar
Robert T Rozbicki
Rao Mulpuri
Original Assignee
View Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by View Inc filed Critical View Inc
Publication of HK1200972A1 publication Critical patent/HK1200972A1/xx

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/02Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a matt or rough surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Inorganic Chemistry (AREA)
HK15101183.8A 2011-09-30 2015-02-04 Improved optical device fabrication HK1200972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161541999P 2011-09-30 2011-09-30
PCT/US2012/057606 WO2013049379A1 (en) 2011-09-30 2012-09-27 Improved optical device fabrication

Publications (1)

Publication Number Publication Date
HK1200972A1 true HK1200972A1 (en) 2015-08-14

Family

ID=47996403

Family Applications (1)

Application Number Title Priority Date Filing Date
HK15101183.8A HK1200972A1 (en) 2011-09-30 2015-02-04 Improved optical device fabrication

Country Status (5)

Country Link
US (4) US10126622B2 (xx)
EP (2) EP2761629B1 (xx)
CN (1) CN103930954B (xx)
HK (1) HK1200972A1 (xx)
WO (1) WO2013049379A1 (xx)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10261381B2 (en) 2009-03-31 2019-04-16 View, Inc. Fabrication of low defectivity electrochromic devices
US10156762B2 (en) 2009-03-31 2018-12-18 View, Inc. Counter electrode for electrochromic devices
US9664974B2 (en) 2009-03-31 2017-05-30 View, Inc. Fabrication of low defectivity electrochromic devices
US8582193B2 (en) 2010-04-30 2013-11-12 View, Inc. Electrochromic devices
US9759975B2 (en) 2010-04-30 2017-09-12 View, Inc. Electrochromic devices
US8164818B2 (en) 2010-11-08 2012-04-24 Soladigm, Inc. Electrochromic window fabrication methods
EP2761629B1 (en) 2011-09-30 2018-11-07 View, Inc. Improved optical device fabrication
US11048137B2 (en) 2011-12-12 2021-06-29 View, Inc. Thin-film devices and fabrication
US10739658B2 (en) 2011-12-12 2020-08-11 View, Inc. Electrochromic laminates
US10606142B2 (en) 2011-12-12 2020-03-31 View, Inc. Thin-film devices and fabrication
CA2914763C (en) 2013-06-12 2023-08-29 View, Inc. Pretreatment of transparent conductive oxide (tco) thin films for improved electrical contact
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
EP3189373B1 (en) 2014-09-05 2019-11-06 View, Inc. Electrochromic stack with particular counter electrode and method for fabricating such stack
EP4220291A3 (en) 2014-11-26 2023-10-04 View, Inc. Counter electrode for electrochromic devices
CN107111199B (zh) * 2014-11-26 2022-03-04 唯景公司 用于电致变色装置的对电极
KR102488802B1 (ko) 2014-12-19 2023-01-13 뷰, 인크. 부스 바 하에 있는 전기변색 디바이스에서의 결함들을 완화시키는 방법
EP3391135B1 (de) 2015-12-16 2022-05-11 Saint-Gobain Glass France Elektrisch schaltbare verglasung umfassend flächenelektroden mit anisotroper leitfähigkeit
WO2017218705A1 (en) 2016-06-17 2017-12-21 View, Inc. Mitigating defects in an electrochromic device under a bus bar
CN112746240A (zh) * 2019-10-30 2021-05-04 传奇视界有限公司 电致变色玻璃制备方法
CN113437176A (zh) * 2021-01-30 2021-09-24 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) 一种异质结电池制备方法
US20240003840A1 (en) * 2022-06-29 2024-01-04 Sage Electrochromics, Inc. Resistivity Control of Coated Glass Units for Uniformity Improvement

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080471A (en) 1990-04-06 1992-01-14 Eic Laboratories, Inc. Electrochromic material and electro-optical device using same
US5900275A (en) 1992-07-15 1999-05-04 Donnelly Corporation Method for reducing haze in tin oxide transparent conductive coatings
US5729379A (en) * 1994-10-26 1998-03-17 Donnelly Corporation Electrochromic devices
US5938810A (en) * 1996-10-23 1999-08-17 Donnelly Corporation Apparatus for tempering and bending glass
US5972787A (en) * 1998-08-18 1999-10-26 International Business Machines Corp. CMP process using indicator areas to determine endpoint
JP2001133816A (ja) 1999-11-02 2001-05-18 Murakami Corp 散乱反射光低減導電膜の形成方法
US6171646B1 (en) 1999-12-09 2001-01-09 Engineered Glass Products, Llc Method for making an abrasion and scratch resistant coated glass article
US7097541B2 (en) * 2002-01-22 2006-08-29 Cabot Microelectronics Corporation CMP method for noble metals
FR2840078B1 (fr) 2002-05-22 2004-08-13 Saint Gobain Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
US8169684B2 (en) * 2002-09-30 2012-05-01 Gentex Corporation Vehicular rearview mirror elements and assemblies incorporating these elements
DE10327897B4 (de) * 2003-06-20 2010-04-01 Applied Materials Gmbh & Co. Kg Verfahren zur Herstellung glatter Indium-Zinn-Oxidschichten auf Substraten, sowie Substratbeschichtung aus Indium-Zinn-Oxid und organische Leuchtdiode
JP4324684B2 (ja) * 2003-09-19 2009-09-02 日本ミクロコーティング株式会社 平坦な表面の透明導電性フィルムの製造方法
US7083495B2 (en) * 2003-11-26 2006-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Advanced process control approach for Cu interconnect wiring sheet resistance control
EP2254390B1 (en) * 2004-03-26 2012-07-04 Panasonic Corporation Organic light emitting element
US7256924B2 (en) * 2005-01-28 2007-08-14 Gentex Corporation Multi-cell electrochromic devices
KR101333866B1 (ko) 2006-02-14 2013-11-27 캐보트 마이크로일렉트로닉스 코포레이션 산화인듐주석 표면의 cmp를 위한 조성물 및 방법
JP2008112847A (ja) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
US8514476B2 (en) * 2008-06-25 2013-08-20 View, Inc. Multi-pane dynamic window and method for making same
US8842357B2 (en) 2008-12-31 2014-09-23 View, Inc. Electrochromic device and method for making electrochromic device
US9664974B2 (en) * 2009-03-31 2017-05-30 View, Inc. Fabrication of low defectivity electrochromic devices
JP5621488B2 (ja) * 2010-03-17 2014-11-12 ソニー株式会社 光電変換装置
GB201018141D0 (en) 2010-10-27 2010-12-08 Pilkington Group Ltd Polishing coated substrates
US10571772B2 (en) * 2011-01-11 2020-02-25 Ajjer, Llc Added feature electrooptical devices and automotive components
US8780432B1 (en) * 2011-03-22 2014-07-15 Paul Phong Nguyen Electrochromic devices and methods for forming such devices
EP2761629B1 (en) 2011-09-30 2018-11-07 View, Inc. Improved optical device fabrication
US9864250B2 (en) 2014-11-14 2018-01-09 Heliotrope Technologies, Inc. Post-temperable nanocrystal electrochromic devices
KR20170105562A (ko) 2015-01-12 2017-09-19 코닝 인코포레이티드 다중 광자 흡수 방법을 사용한 열적 템퍼링된 기판의 레이저 절단

Also Published As

Publication number Publication date
US20210347684A1 (en) 2021-11-11
US11106105B2 (en) 2021-08-31
US20190033678A1 (en) 2019-01-31
WO2013049379A1 (en) 2013-04-04
EP3428933B1 (en) 2022-03-02
CN103930954A (zh) 2014-07-16
EP2761629A1 (en) 2014-08-06
EP2761629A4 (en) 2015-01-14
EP3428933A1 (en) 2019-01-16
CN103930954B (zh) 2017-02-15
US10126622B2 (en) 2018-11-13
EP2761629B1 (en) 2018-11-07
US10571771B2 (en) 2020-02-25
US20200150506A1 (en) 2020-05-14
US20140329006A1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
HK1200972A1 (en) Improved optical device fabrication
EP2750181A4 (en) SEMICONDUCTOR OPTICAL DEVICE
EP2700869A4 (en) OPTICAL UNIT
EP2710805A4 (en) OPTICAL SCANNING DEVICE
GB201200835D0 (en) Lenses
EP2672318A4 (en) OPTICAL AMPLIFIER
GB201215632D0 (en) Optical device
GB201003398D0 (en) Optical device
GB2493771B (en) Optical sensor
EP2933674A4 (en) OPTICAL DEVICE
EP2719942A4 (en) OPTICAL UNIT
EP2910995A4 (en) OPTICAL DEVICE
EP2708871A4 (en) OPTICAL TOMOGRAPHY DEVICE
EP2679981A4 (en) OPTICAL MEASURING DEVICE
EP2784573A4 (en) OPTICAL DEVICE
TWI561870B (en) Optical switch
HK1172096A1 (zh) 光學膜
EP2812746A4 (en) OPTICAL DEVICE
GB201204197D0 (en) Optical device
EP2779332A4 (en) OPTICAL INTEGRATED DEVICE
EP2927739A4 (en) OPTICAL DEVICE
EP2766714A4 (en) OPTICAL MEASUREMENT
EP2788805A4 (en) OPTICAL CONNECTIONS
GB201113125D0 (en) An optical resonator device
EP2690476A4 (en) OBJECTIVE DEVICE

Legal Events

Date Code Title Description
PC Patent ceased (i.e. patent has lapsed due to the failure to pay the renewal fee)

Effective date: 20230926