GB2180451A - Inactivation of bacterial endotoxins - Google Patents
Inactivation of bacterial endotoxins Download PDFInfo
- Publication number
- GB2180451A GB2180451A GB08620482A GB8620482A GB2180451A GB 2180451 A GB2180451 A GB 2180451A GB 08620482 A GB08620482 A GB 08620482A GB 8620482 A GB8620482 A GB 8620482A GB 2180451 A GB2180451 A GB 2180451A
- Authority
- GB
- United Kingdom
- Prior art keywords
- compound
- peroxydiphosphate
- endotoxin
- composition
- bacterial endotoxins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002158 endotoxin Substances 0.000 title claims abstract description 66
- 230000002779 inactivation Effects 0.000 title claims description 6
- 150000001875 compounds Chemical class 0.000 claims abstract description 30
- 231100000252 nontoxic Toxicity 0.000 claims abstract description 10
- 230000003000 nontoxic effect Effects 0.000 claims abstract description 10
- 208000006386 Bone Resorption Diseases 0.000 claims abstract description 8
- 230000024279 bone resorption Effects 0.000 claims abstract description 8
- 208000001953 Hypotension Diseases 0.000 claims abstract description 7
- 150000002148 esters Chemical class 0.000 claims abstract description 7
- 208000021822 hypotensive Diseases 0.000 claims abstract description 7
- 230000001077 hypotensive effect Effects 0.000 claims abstract description 7
- 230000035939 shock Effects 0.000 claims abstract description 7
- 125000001572 5'-adenylyl group Chemical group C=12N=C([H])N=C(N([H])[H])C=1N=C([H])N2[C@@]1([H])[C@@](O[H])([H])[C@@](O[H])([H])[C@](C(OP(=O)(O[H])[*])([H])[H])([H])O1 0.000 claims abstract description 6
- 125000001417 5'-guanylyl group Chemical group C=12N=C(N([H])[H])N([H])C(=O)C=1N=C([H])N2[C@@]1([H])[C@@](O[H])([H])[C@@](O[H])([H])[C@](C(OP(=O)(O[H])[*])([H])[H])([H])O1 0.000 claims abstract description 6
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 3
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 3
- 229910052718 tin Inorganic materials 0.000 claims abstract description 3
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 3
- 239000011701 zinc Substances 0.000 claims abstract description 3
- 150000003839 salts Chemical class 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 241001465754 Metazoa Species 0.000 claims description 7
- 239000008187 granular material Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 5
- 230000037396 body weight Effects 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 210000004369 blood Anatomy 0.000 claims description 3
- 239000008280 blood Substances 0.000 claims description 3
- 239000003937 drug carrier Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 230000000968 intestinal effect Effects 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 2
- 210000002784 stomach Anatomy 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 6
- 239000003814 drug Substances 0.000 claims 2
- 238000002360 preparation method Methods 0.000 claims 2
- 230000001698 pyrogenic effect Effects 0.000 claims 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 abstract description 2
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 abstract 1
- 239000011135 tin Substances 0.000 abstract 1
- 230000035605 chemotaxis Effects 0.000 description 15
- 210000002966 serum Anatomy 0.000 description 13
- 210000000988 bone and bone Anatomy 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 241000700159 Rattus Species 0.000 description 5
- -1 alkali metal salts Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 4
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 231100000331 toxic Toxicity 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003399 chemotactic effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 210000004211 gastric acid Anatomy 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 239000002510 pyrogen Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- PEKPGBKEIWFPAS-UHFFFAOYSA-J tetrapotassium;[oxido(oxidooxy)phosphoryl] phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]OP([O-])(=O)OP([O-])([O-])=O PEKPGBKEIWFPAS-UHFFFAOYSA-J 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 241000606749 Aggregatibacter actinomycetemcomitans Species 0.000 description 1
- 208000002679 Alveolar Bone Loss Diseases 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- ULBTUVJTXULMLP-UHFFFAOYSA-N butyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCC ULBTUVJTXULMLP-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000000551 dentifrice Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000007893 endotoxin activity Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- OKISBDHRUPZLOC-UHFFFAOYSA-N gallin Chemical compound OC(=O)C1=CC=CC=C1C1C2=CC=C(O)C(O)=C2OC2=C(O)C(O)=CC=C21 OKISBDHRUPZLOC-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 230000011268 leukocyte chemotaxis Effects 0.000 description 1
- 238000012454 limulus amebocyte lysate test Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002895 organic esters Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- NUGJFLYPGQISPX-UHFFFAOYSA-N peroxydiphosphoric acid Chemical class OP(O)(=O)OOP(O)(O)=O NUGJFLYPGQISPX-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000002700 tablet coating Substances 0.000 description 1
- 238000009492 tablet coating Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
A non-toxic, water-soluble, pharmaceutically acceptable peroxydiphosphate compound is used to inhibit hypotensive shock and localised bone resorption caused by bacterial endotoxins. Preferred compounds are alkali metal, zinc, tin or quaternary ammonium salts or C1-12 alkyl, adenylyl, guanylyl, cytosylyl or thymylyl esters.
Description
SPECIFICATION
Inactivation of Bacterial Endotoxins
The present invention relates to a method for inhibiting hypotensive shock and localised bone resorption caused by bacterial endotoxin which comprises introducing a non-toxic water-soluble, pharmaceutically acceptable peroxydiphosphate compound into contact with endotoxin to cause inactivation of the said bacterial endotoxin.
Endotoxins are complex macromolecules containing lipid, carbohydrate and protein. They are mainly found in the surface of gram negative organisms and are usually referred to as lipopolysaccharides. These macromolecules are toxic to the host and can be fatal. For instance, they can cause severe hypotensive shocks, and also elicit a variety of toxic reactions in the body including bone resorption. In the mouth, endotoxins have been implicated as a major factor in the inflammation of gum tissues and in localized bone loss such as alveolar bone loss.
Theoretically, compounds which release oxygen could inactivate endotoxins. However, due to the quickness with which many oxygen-evolving compounds release oxygen, they generally have little effect in controlling endotoxin growth. Those compounds which release oxygen more slowly could control endotoxin effect. However, their effectiveness is generally limited in that the conditions of oxygen-release do not correspond to the conditions prevailing in the body.
As described in GB Patent Application No. 8515105, filed 14th June, 1985, warm blooded mammals, such as from rodents, up to and including humans and alkaline phosphatase or acid phosphatase in their bodies. Peroxydiphosphate compounds possess the property of slow release of oxygen. The amount of oxygen which they release is one-tenth the amount released by hydrogen peroxide. Only about 50% of their active oxygen is released in 20 hours at 25"C in the presence of alkaline phosphatase or acid phosphatase.
Peroxidiphosphate compounds (PDP) release hydrogen peroxide slowly in the presence of phosphatase enzymes in accordance with the following equation:
wherein X represents a non-toxic pharmaceutically acceptable cation or completes an organic ester moiety.
Phosphatase to break down the peroxydiphosphate is present in saliva as well as in plasma, intestinal fluids and white blood cells.
It has been observed that bacterial endotoxin also reacts with intact PDP. This reaction occurs independently of the presence of phosphatases; that is, it occurs outside of the body of a warm blooded animal, too. However, quite importantly, even in the presence of phosphatase, the reaction also occurs when warm blooded mammalian animals are treated with PDP in accordance with the present invention. It is desirable to provide a regimen whereby treatment continues until endotoxins are inactivated.
A procedure for evidencing inactivation of endotoxin is by overcoming induction of generation of a factor which is chemotactic to polymorphonuclear ieukocytes, hereinafter called "PNM". Such a factor can be assessed in accordance with the Boyden chemotaxis method wherein white blood cells of a rabbit are attracted (chemotaxis) by endotoxin induced factor generated in the area. In the Boyden method, when a bacterial endotoxin lipopolysaccharide is incubated with a serum from a mammalian, what occurs is.
Incubated at
Serum and endotoxin
chemotactic factors for PMN
body temperature
for 1 hr.
The chemotaxis phenomenon is studied using Boyden chambers as described by Cates et al, "Modified
Boyden Chamber Method for Measuring PMN Chemotaxis" in Leukocyte Chemotaxis, Methods, Physiology and ClinicalApplication, edited by Gallin and Quie, Raven Press, N.Y., 1978, pages 67-71. When endotoxin induces chemotaxis as in the present invention, the percentage of inhibition can be quantified using the
Boyden chemotaxis text.
Endotoxin material can be introduced into the body of a warm blooded animal through its presence in the surfaces of gram negative microorganisms, such asActinobaccilus actinomycetemcomitens (A.a.), Escherichia coli (E. coil), Bacteroides melanenogenicus (B. mel) and Salmonella typhi (S. typhi).
Oral endotoxin isolated from A.a. is toxic to avelolar bone. Non-oral endotoxin purified from E. coli can prove fatal to the host
Other known procedures for inhibiting endotoxin formation are done using resorption in a bone culture medium; a chick embryo lethality test can also be used.
The toxic reaction is effectively inhibited by treating endotoxin in situ in a warm blood host with an inhibiting-effective amount of non-toxic, water-soluble pharmaceutically acceptable peroxy-diphosphate compound. The peroxydiphosphate reacts with the endotoxin in the body as an intact molecule, while inactivating the peroxydiphosphate compound. Since the endotoxin is inactivated, it is apparent that endotoxin reacts with the peroxydiphosphate.
Generally, about 0.17% of peroxydiphosphate compound in a pharmaceutical carrier, such as in solution is effective in a regimen dosage of about 0.2-14 mg per kg body weight. Inhibition effectiveness can be evidenced by reduced endotoxin effect and is quantified on the basis of inhibited chemotaxis to
PMN.
Typical non-toxic, water-soluble pharmaceutically acceptable peroxydiphosphate compounds are the alkali metal salts (e.g. lithium, sodium and potassium), alkaline earth metal salts (e.g. magnesium, calcium and strontium) and zinc, tin and quaternary ammonium salts, as well as C112 alkyl, adenylyl, guanylyl, cytosylyl and thymylyl esters. Alkali metal, particularly potassium salt is preferred from among the inorganic cations. The tetrapotassium peroxydiphosphate is a stable, odourless, finely divided, freeflowing, white non-hygroscopic crystalline solid having a molecular weight of 346.35 and an active oxygen content of 4.6%.
Tetrapotassium peroxydiphosphate is 47-51% water-soluble at 00--610C, but insolubie in common solvents such as acetonitrile, alcohols, ethers, ketones, dimethyl formamide, dimethyl sulphoxide, and the like. A 2% aqueous solution has a pH of about 9.6 and a saturated solution thereof a pH of about 10.9. A 10% solution in water at 25"C showed no active oyxgen loss after four months; and at 50"C a 10% solution showed an active oxygen loss of 3% in 6 months.
From among the organic compounds those providing hydrophobic properties such as C1 -12 alkyl radical and those which facilitate the rapid uptake of peroxidiphosphate moiety by the cells, such as adenylyl, guanylyl, cytosylyl, and thymylyl esters are preferrred.
Peroxydiphosphate compound may be administered orally or systemically to inhibit endotoxins in the oral cavity or other parts of the body.
Pharmaceutical carriers suitable for oral ingestion are coated tablets composed of material which resists breakdown by gastric acids in the stomach pH (about 1-3) since peroxydiphosphate would be inactivated by such gastric acids. Rather, the carriers, with tabletted granules of the peroxydiphosphoric acid salt solid material therein, are dissolved by intestinal fluids which have a higher pH (about 5.510) and do not inactivate the peroxydiphosphate, leaving it subject to enzymatic action by phosphatase present in humans or other warm blooded animals.A desirable tablet coating solution is composed of a fatty acid ester such as N-butyl stearate (typically about450, preferably about 45 parts by weight), wax such as carnauba wax (typically about 1 25, preferably about 20 parts by weight), fatty acid such as stearic acid (typically about 2030 parts, preferably 25 parts by weight) and cellulose ester, such as cellulose acetate phthalate (typically about 5--15, preferably about 10 parts by weight) and organic solvent (typically about 400900 parts. Other desirable coating materials include shellac and copolymers of maleic anhydride and ethylenic compounds such as polyvinyl methyl ether.Such coatings are distinct from tablets which are broken down in the oral cavity in which the tablet material typically contains about 8090 parts by weight of mannitoi and about 30 < 0 parts by weight of magnesium stearate.
Tabletted granules of the peroxydiphosphate salt are formed by blending about 3050 parts by weight of the peroxydiphosphate salt with about 4565 parts by weight of a polyhydroxy sugar solid such as mannitol and wetting with about 2035 parts by weight of a polyhydroxy sugar compound solution such as sorbitol, screening to size, blending with about 2035 parts by weight of a binding agent such as magnesium stearate and compressing the granules into tablets with a tablet compressing machine. The tabletted granules are coated by spraying a form of a solution of the coating material thereon and drying to remove solvent. Such tablets differ from dental tablets which are typically compressed granules without a special protective coating.
An effective dosage of administration of peroxydiphosphate with a prescribed regimen, when administration is by oral ingestion, is about 0.1-6 mg per kg of body weight daily; when administration is systemic, such as by intramuscular, intraperitoneal or intravenous injection, the dosage is about 0.1-2 mg per kg of body weight daily.
Physiologically acceptable pyrogen-free solvents are suitable carriers for use in the art-recognised manner for systemic administration. Saline solution buffered with phosphate to a physiological pH of about 7 to 7.4 is the preferred carrier for systemic administration. Such solvents are distinct from water-humectant vehicles typically used in dentifrices.Such solution is typically prepared by sterilising deionised distilled water, checking to ensure non-pyrogenicity using the Limulus amebocyte lysate (LAL) test described by
Tsuji et al in "Pharmaceutical Manufacturing", October, 1984, pages 3541, and then adding thereto a phosphate buffer (pH e.g. about 8.510) made in pyrogen free sterile water and about 1-100 mg peroxydiphosphate compound derivative and sodium chloride to a concentration of about 0.51.5% by weight. The solution can be packed in viais for use after being resterilised by passing through a micropore filter. As alternatives, other solutions such as Ringer's solution containing 0.86% by weight sodium chloride, 0.03% by weight potassium chloride and 0.033% by weight calcium chloride may be used.
The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the accompanying examples which iliustrate the ability of peroxidiphosphate (PDP) compound to inhibit chemotaxis induced by endotoxin generated factor in serum and to inhibit endotoxin toxicity to bone.
EXAMPLES 1Ato 1F
PMN are obtained from the peritoneal cavities of adult New Zealand white rabbits 12 hours after intraperitoneal injections of 200 ml of solution containing 0.2% glycogen in sterile isotonic saline (0.85%
NaCI). The cells (PMN) are purified from the exudate obtained from the rabbit peritoneal cavity and purified as described byTaichman et al. (Arch. Oral Biol. 21 page 257, 1976). Bacterial endotoxin purified from E. Coli obtained from Associates of Cape Cod Inc. Woods Hole, Maine, is pre-treated with different concentrations of PDP (tetrapotassium salt) at 37"C for 1 hour. The chemotaxis assay is then run with treated and untreated endotoxins using Boyden Chambers as described above. The data are summarised in Tables 1 and 2.
TABLE 1
Chemotaxis
mean No. of % Reduction
Example Treatment PMN migrating in chemotaxis 1A Control (Serum A2) 139+4.21 1B Serum B3 and 1 343.0*36.7 nanogram/ml
endotoxin
1C 0.5% PDPand 142.5*12.0 serum3
1D Endotoxin (1 ng/ml) 188.0+18.4 -44% compared to 1B
pretreated with
0.5% PDP and
serum2 1E Endotoxin 154.0*2.8 -56% compared to 1B (0.5 ng/ml pre
treated with 0.5%
PDP and serum A2 1F Endotoxin 138.5*2.8 -60% compared to 1B
(0.25 ng/ml) pre
treated with 0.5%
PDP and serum A2
Notes on Table 1 1 This is the standard deviation (S.D.) 2 Serum A=Earl's solution containing 10% bovine serum albumin 3 Serum B=human serum (normal).
The results in Table 1 indicate that endotoxin as expected, induces a great release of a factor which increased chemotaxis of PMN (Example 1 B treatment); PDP (0.5%) has no effect on PMN (Example 1C); and endotoxins pretreated with PDP, have the chemotactic activity of the toxin significantly reduced (Examples 1D, E and 1 F). These data indicate that a treatment of endotoxin with PDP, deactivates the biological effect of the toxin.
EXAMPLES 2Ato 2F
Table 2 shows data obtained with further Boyden Chamber Tests as in Examples lAto 1 F. PDP is employed as the tetrapotassium salt
TABLE 2
Chemotaxis
mean No. of PMN % Reduction
Example Treatment migrating in chemotaxis
2A Control medium 136.5~6.3 (as in Ex. 1A) 2B Endotoxin 1 ng/ml 329.0*39.5 and serum3
2C PDP0.5% and 139.5*4.9 serum 2D Endotoxin (1 ng/ml) 188.0+9.8 -43.0% pretreated with 0.5%
PDP and serum1
2E Endotoxin (1 ng/ml) 206.5*17.6 -37% pretreated with 0.25%
PDP and serum3
2F Endotoxin (1 ng/ml) 231.0+17.6 -30%
pretreated with 0.1% PDP and serum3
Notes on Table 2 1as in Table 1 3 as in Table 1.
The data in the above Table 2 shows that PDP is effective at a concentration at least as low as 0.1% to de-activate the biological activity of endotoxin.
EXAMPLE 3
This shows the effects of PDP on endotoxin activity in a bone culture system.
The test is one in which an endotoxin isolated from Actinobacillus actinomycetemcomitans Y4 (AAY4) induces the resorption of bone in a bone culture system (Kiley and Holt, Infect Immun. 30:362-373, 1980).
The test is used to assess whether PDP deactivates the bone resorptive activity of endotoxin from Y4. Foetal rat bone culture as described by Raisz, J. Clin. Invest. 44:103--116, 1965, is prepared by injecting rats with 45CaCI2 on the 18th day of gestation. The rats are then sacrificed on the 19th day, and radii and ulnae of the embryos, with their cartilagenous ends, are removed and placed for culturing in BGJ medium (Gibco,
Buffalo, NY) at 37"C with 5% CO2. The medium is supplemented with 5% heated (57"C for 3 hours) foetal calf serum. Bones are placed four to a well in twenty four well dishes (Nunc, Gibco) containing 0.5 ml of medium per well.The release of 45Ca into the culture media from bone incubated in the presence of a test agent is compared with the release from bones incubated in control media, and the results of bone resorption are expressed as a ratio.
Endotoxin from AAY4 is obtained from the University of Pennsylvania, School of Dentistry. AAY4 endotoxin is treated with different concentrations of PDP tetrapotassium salt at 37"C. The excess PDP is removed by dialysis membrane (3500 mol. wt. maximum). This permits unreactive PDP to diffuse out while the endotoxin having molecular weight greater than 3500 is retained inside the bag. Table 3 summarises the data.
TABLE 3
No. of Testy
Example Treatment Rats % 45Ca released Control Significance
3A Control 6 30.11+1.981 3B 10 ug/mI endotoxin 6 85.46+4.71 2.87*0.16 98% compared to 3A Y4AA 3C 101lg/mlendotoxin 6 78.47+2.9 2.61+0.1 notsignificantly pretreated with different from 3B
100 mcg PDP
3D 10 Cig/ml endotoxin 6 31.98+4.27 1.06+0.14 97% compared to 3B prated with
1000 mcg PDP
Notes on Table 3 1 Table 1 The data show that endotoxin from Y4AA significantly induced bone resorption (compare 3A to 3B) while a pretreatment of the endotoxin with 100 mcg/ml of PDP (0.1 %) effectively inhibits the bone resorptive activity of the endotoxin.
The foregoing results in Examples 1-3 are representative of the effects of PDP tetrapotassium salt and other non-toxic water-soluble pharmaceutically acceptable PDP salts such as other alkali metal salts, alkaline earth metal salts, zinc salt and tin salt as well as C1~,2 alkyl PDP salts and other organic PDP compounds, particularly including the adenylyl, guanylyl, cytosylyl and thymylyl esters and quaternary ammonium PDP salts in inhibiting chemotaxis induced by endotoxin generated factor in serum and to inhibit endotoxin toxicitytobone in rats, rabbits and mammals in general.
Claims (12)
1. A non-toxic water-soluble, pharmaceutically acceptable peroxydisphosphate compound for use in inhibiting hypotensive shock and localised bone resorption caused by bacterial endotoxins.
2. Peroxydiphosphate compounds in the form of a salt of alkalimetal, zinc, tin or quaternary ammonium or C1 -12 alkyl, adenylyl, guanylyl, cytosylyl or thymylyl ester, for use in inhibiting hypotensive shock and localised borie resorption caused by bacterial endotoxins.
3. A composition comprising peroxydiphosphate compound present in an amount of about 0.17% in a pharmaceutical carrier.
4. A composition as claimed in Claim 3, in which the said peroxydisphosphate compound is present in tabletted granules having a coating thereon which is not broken down during passage through the stomach of a warm blood animal and which coating is dissolved by intestinal fluids having a pH of 510.
5. A composition as claimed in Claim 3, in which the said peroxydiphosphate compound is in a solution of non-pyrogenic distilled water and sodium chloride buffered with phosphate.
6. A composition as claimed in Claim 3,4 or 5 in which the peroxydiphosphate compound is present as a potassium salt.
7. A composition as claimed in Claim 3,4 or 5 in which the said peroxydisphosphate compound is present as a C,-,2 ester.
8. A composition as claimed in Claim 3,4 or 5 in which the said peroxydiphosphate compound is present as an adenylyl, guanylyl, cytosylyl or thymylyl ester.
9. The use of a non-toxic water-soluble, pharmaceutically acceptable peroxydiphosphate compound in the preparation of a medicament for use in inhibiting hypotensive shock and localised bone resorption caused by bacterial endotoxins.
10. The use of a non-toxic water-soluble pharmaceutically acceptable peroxydiphosphate compound in the preparation of a medicament for inactivation of bacterial endotoxins.
11. A method for inhibiting hypotensive shock and localised bone resorption caused by bacterial endotoxins, which comprises introducing a non-toxic water-soluble pharmaceutically peroxydiphosphate compound into contact with endotoxin thereby causing inactivation of said bacterial endotoxin.
12. A method as claimed in Claim 11 in which the said contact of the said peroxydiphosphate compound and the said endotoxin is in a warm blooded mammalian animal and the said peroxydiphosphate compound is introduced in a regimen dosage of about 0.2-14 mg/kg of body weight of the said warm blood mammalian animal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US76839685A | 1985-08-22 | 1985-08-22 | |
US85191586A | 1986-04-14 | 1986-04-14 |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8620482D0 GB8620482D0 (en) | 1986-10-01 |
GB2180451A true GB2180451A (en) | 1987-04-01 |
GB2180451B GB2180451B (en) | 1989-10-18 |
Family
ID=27118049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8620482A Expired GB2180451B (en) | 1985-08-22 | 1986-08-22 | Inactivation of bacterial endotoxins |
Country Status (12)
Country | Link |
---|---|
BE (1) | BE905319A (en) |
CA (1) | CA1282004C (en) |
CH (1) | CH670046A5 (en) |
DE (1) | DE3627759A1 (en) |
DK (1) | DK168513B1 (en) |
FR (1) | FR2586351B1 (en) |
GB (1) | GB2180451B (en) |
HK (1) | HK593A (en) |
IT (1) | IT1196587B (en) |
NL (1) | NL8602140A (en) |
SE (1) | SE468626B (en) |
SG (1) | SG108892G (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003077684A1 (en) * | 2002-03-19 | 2003-09-25 | Andreas Skulberg | Composition comprising phosphate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2586350B1 (en) * | 1985-08-22 | 1992-05-15 | Colgate Palmolive Co | PHARMACEUTICAL COMPOSITION BASED ON PEROXODIPHOSPHATE FOR INHIBITION OF SECRETION OF PARATHYROIDIAN HORMONE |
DE4201858A1 (en) * | 1992-01-24 | 1993-07-29 | Renschler Aloys Dr Med | AGENT FOR TREATING MALIGNER CELLS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041149A (en) * | 1976-01-12 | 1977-08-09 | Colgate-Palmolive Company | Composition and method of controlling and preventing mouth odor |
GB2116035A (en) * | 1981-12-23 | 1983-09-21 | Colgate Palmolive Co | Topical treatment of skin lesions using peroxydiphosphate salts |
GB2161074A (en) * | 1984-06-27 | 1986-01-08 | Colgate Palmolive Co | Inhibition of tumour development |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4975423A (en) * | 1984-06-27 | 1990-12-04 | Colgate-Palmolive Company | Inhibition of tumor development |
-
1986
- 1986-08-16 DE DE19863627759 patent/DE3627759A1/en not_active Ceased
- 1986-08-18 FR FR868611812A patent/FR2586351B1/en not_active Expired - Lifetime
- 1986-08-19 SE SE8603486A patent/SE468626B/en not_active IP Right Cessation
- 1986-08-19 IT IT48389/86A patent/IT1196587B/en active
- 1986-08-21 CA CA000516466A patent/CA1282004C/en not_active Expired - Lifetime
- 1986-08-22 NL NL8602140A patent/NL8602140A/en not_active Application Discontinuation
- 1986-08-22 CH CH3377/86A patent/CH670046A5/de not_active IP Right Cessation
- 1986-08-22 BE BE0/217073A patent/BE905319A/en not_active IP Right Cessation
- 1986-08-22 DK DK402086A patent/DK168513B1/en not_active IP Right Cessation
- 1986-08-22 GB GB8620482A patent/GB2180451B/en not_active Expired
-
1992
- 1992-10-14 SG SG1088/92A patent/SG108892G/en unknown
-
1993
- 1993-01-07 HK HK5/93A patent/HK593A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041149A (en) * | 1976-01-12 | 1977-08-09 | Colgate-Palmolive Company | Composition and method of controlling and preventing mouth odor |
GB2116035A (en) * | 1981-12-23 | 1983-09-21 | Colgate Palmolive Co | Topical treatment of skin lesions using peroxydiphosphate salts |
GB2161074A (en) * | 1984-06-27 | 1986-01-08 | Colgate Palmolive Co | Inhibition of tumour development |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003077684A1 (en) * | 2002-03-19 | 2003-09-25 | Andreas Skulberg | Composition comprising phosphate |
Also Published As
Publication number | Publication date |
---|---|
SG108892G (en) | 1992-12-24 |
NL8602140A (en) | 1987-03-16 |
FR2586351B1 (en) | 1991-10-18 |
IT1196587B (en) | 1988-11-16 |
SE8603486L (en) | 1987-02-23 |
DK168513B1 (en) | 1994-04-11 |
DE3627759A1 (en) | 1987-03-19 |
GB2180451B (en) | 1989-10-18 |
SE468626B (en) | 1993-02-22 |
BE905319A (en) | 1987-02-23 |
DK402086A (en) | 1987-02-23 |
CA1282004C (en) | 1991-03-26 |
IT8648389A0 (en) | 1986-08-19 |
GB8620482D0 (en) | 1986-10-01 |
FR2586351A1 (en) | 1987-02-27 |
CH670046A5 (en) | 1989-05-12 |
SE8603486D0 (en) | 1986-08-19 |
DK402086D0 (en) | 1986-08-22 |
HK593A (en) | 1993-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK167518B1 (en) | PREPARATIONS FOR SYNTHESIS OF PROSTAGLANDINES AND HYDROXYPHETIC ACIDS IN BIOLOGICAL SYSTEMS AND USE OF THESE FOR THE PREPARATION OF MEDICINAL PRODUCTS | |
KR890009376A (en) | Spray dried ibuprofen | |
US3851056A (en) | Method of depressing fatty acids and triglycerides | |
SI9111842A (en) | Stable formulation of enalapryl salt, process for its preparation and its use | |
US5945420A (en) | Immunopotentiating and infection protective agent and production thereof | |
Klugmann et al. | Inhibitors of adriamycin-induced histamine release in vitro limit adriamycin cardiotoxicity in vivo | |
GB2180451A (en) | Inactivation of bacterial endotoxins | |
HU199775B (en) | Process for production of formed by fatty acids salts of amin acids and medical compositions containing them | |
US5034383A (en) | Inactivation of bacterial endotoxins using peroxy-diphosphate compoounds | |
US4975423A (en) | Inhibition of tumor development | |
JP2002530326A (en) | Use of phosphonoformic acid derivatives for the treatment of infectious diseases | |
DK168191B1 (en) | Use of peroxydiphosphates for the preparation of pharmaceutical tablets or pharmaceutical aqueous solutions | |
US3362879A (en) | Tyrosine tranquilizing compositions and methods of treatment | |
JPS62123121A (en) | Inactivation of toxin in bacteria | |
US5028439A (en) | Inhibition of parathyroid hormone secretion | |
GB2179255A (en) | Inhibition of parathyroid hormone secretion | |
US5780516A (en) | Material and methods for inhibiting bacterial cell wall biosynthesis | |
US3642993A (en) | Pharmaceutical composition containing 2-methyl - 5 - phenyl - 1 2-dihydro-3h-2-benzazepine for treatment of a condition associated with anxiety or tension | |
RU2181049C2 (en) | Use of aminopurine antiviral compounds for treatment and prophylaxis of latent states caused by herpes virus | |
WO1998003176A1 (en) | Treatment of feline infections peritonitis by an antiviral | |
PH26645A (en) | Method of treating human viral infections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 19940822 |