GB2155142A - Applying an elastic sleeve over an elongate body - Google Patents
Applying an elastic sleeve over an elongate body Download PDFInfo
- Publication number
- GB2155142A GB2155142A GB08417786A GB8417786A GB2155142A GB 2155142 A GB2155142 A GB 2155142A GB 08417786 A GB08417786 A GB 08417786A GB 8417786 A GB8417786 A GB 8417786A GB 2155142 A GB2155142 A GB 2155142A
- Authority
- GB
- United Kingdom
- Prior art keywords
- sleeve
- carrier
- over
- elongate body
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/08—Cable junctions
- H02G15/18—Cable junctions protected by sleeves, e.g. for communication cable
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/02—Cable terminations
- H02G15/06—Cable terminating boxes, frames or other structures
Landscapes
- Processing Of Terminals (AREA)
Abstract
A tubular sleeve 12 is applied over an elongate body 10 which has a diameter greater than the inner diameter of the sleeve, An end portion 12a of the sleeve is engaged over an end portion of the body 10 to form a partial fluid-tight seal therewith. The opposite end portion of the sleeve is temporarily closed and fluid under pressure is introduced to the interior of the sleeve to inflate it sufficiently to enable it to be floated along the elongate body. Then the sleeve is displaced along the body. The fluid may be air introduced to the sleeve interior through a valve 14 which also temporarily closes the sleeve end. The method is used to apply an insulating sleeve over an electric cable joint or termination. <IMAGE>
Description
SPECIFICATION
Applying an elastic sleeve over an elongate body
This invention relates to a method of applying an elastic sleeve over an elongate body, particularly for use in jointing or terminating electric cables.
Our United Kingdom patent application No.
81.17023 (Serial No.2099 638A) discloses a method of jointing electric cables or terminating an electric cable, wherein the joint or termination an electric cable, wherein the joint or termination insulation comprises one or more insulating layers each consisting of a preformed tubular sleeve of elastic insulating material fitted over the cable joint or cable end respectively. In that method, the preformed tubular sleeve is first rolled upon itself, then fitted over one of the cables (or the one cable) and finally unrolled to cover the required zone of the joint or termination: the sleeve may first be rolled onto a tubular carrier to facilitate fitting over the cable.
Our United Kingdom patent application 83.20822 (Serial No. 2144516A) discloses a method of rolling up a tubular elastomeric sleeve ready for fitting to an electric cable for jointing or terminating that cable, wherein an elongate member is inserted into the tubular sleeve, the elongate member being of smaller diameter or cross-sectional size than the internal diameter of the sleeve, and then the sleeve is progressively rolled upon itself starting from one end, the arrangement being such that the rolled up portion of the sleeve grips the elongate member whilst the remainder portion of the sleeve is free to slide along that elongate member.In practice, it is found that the unrolled portion of the sleeve slides progressively in the direction of rolling but, because it is free to slide in this manner, it is relieved of stresses which might otherwise serve to resist its rolling and indeed relatively little force is required to effect the rolling. A relatively rigid tubular carrier, having a diameter greater than the inner diameter of the tubular insulating sleeve, may be disposed within that sleeve, for example mid-way along the sleeve, prior to the rolling process. The tubular sleeve may then be rolled from one of its ends and onto one end of the carrier, and then rolled from its other end and onto the other end of the carrier.
We have now devised a simple and efficient procedure for applying a tubular sleeve of elastic material over an elongate body which has a diameter or cross-sectional size greater than the inner diameter of the sleeve.
In accordance with this invention, there is provided a method of applying a tubular sleeve of elastic material over an elongate body which has a diameter or cross-sectional size greater than the inner diameter of the sleeve, comprising engaging an end portion of the sleeve over an end portion of the elongate body, temporarily closing the opposite end of the sleeve and introducing fluid under pressure to the interior of the sleeve to inflate it sufficiently to be floated along the elongate member, and then displacing the sleeve along the elongate body. Said end portion of the sleeve forms a partial fluid-tight seal with the elongate body which it embraces and the sleeve when inflated is freely displaceable along the elongate body, the fluid (which conveniently may be air) escaping through this partial seal.
This method may have a number of uses, including for example applying a tubular sleeve over a tubular carrier (as described above) such that the carrier becomes disposed for example mid-way along the length of the sleeve, whereafter the sleeve may be rolled onto the carrier as described above.
Other uses would be to place a sleeve over an elongate member such as an electric cable e.g. to rebuild the insulation at a joint or termination, to cover a repair, to cover a termination with a protective sleeve, to cover a joint with a protective sleeve, to position a sleeve on a mandrel, or to position a sleeve on a member for the purpose of providing corrosion protection.
In certain cable terminations (for example on multi-core power cables), a relatively long sleeve is required to cover the exposed length of cable core, typically 700 mm. approximately but sometimes up to 1200 mm. or more. It is difficult or impossible to roll up a sleeve of this length. Also, we have found that for cable terminations, as compared with cable joints, a material of relatively high tear strength is required for the sleeve in order that it is sufficiently robust to withstand handling on site: sleeves of this higher tear strength are particularly difficult to roll onto a tubular carrier, even when the sleeves are short in length. Thus the method in accordance with this invention is particularly suited to the application of sleeves to cable terminations.The cables may be paper insulated or elastomeric insulated, may be single-core or multi-core (typically 3-core), and the terminations may be indoors (for example connecting cables to transformers or switchgear boxes and bus bars in indoor substations) or outdoors (for example connecting cables to an overhead line or substation bus bars). In general, the cables may be intended for voltages in the range 6.6 to 36 KV for example and perhaps up to 66KV for single-core elastomeric insulated cables.
When jointing electric cables, and by using the method in accordance with this invention, a sleeve may be applied to one cable and floated along that cable until clear of the jointing zone, then the cables can be joined (involving mechanically and electrically interconnecting their conductors) and thereafter the sleeve can be floated back along the cables until it is positioned over the jointing zone. In order to carry out these steps, the sleeve is preferably inflated through its side wall, rather than through its extreme end, so that the valve arrangement does not prevent the trailing end of the sleeve initially floating onto and thereafter floating along the cables.
When it is desired to provide a sleeve rolled onto a tubular carrier as described above, it may be desirable to float the sleeve onto an elongate member of greater cross-section than the inner diameter of the sieeve (by the method in accordance with this invention), and then to roll the sleeve up from one of its ends, or from its opposite ends. The tubular carrier may be placed around the elongate member initially, so that the sleeve is floated over the elongate member and over the carrier so that the sleeve can next be rolled (either from one of its ends or both of its ends) onto the carrier. Instead, the sleeve may be floated onto the elongate member then rolled up from one end, whereafterthe carrier is slid along the elongate member from the same end to abut the roll of sleeve.The sleeve is then sightly unrolled, so that its rolled portion rides onto the carrier, and the sleeve can then be rolled up from its opposite end until the thus-formed second roll also rides up onto the carrier, which can now be slid off the elongate member. These procedures are appropriate if the carrier is relatively large in outer diameter, such that difficulty would be experienced in making the roll of sleeve ride onto the carrier from the elongate member if the latter were smaller in diameter than the inside of the sleeve and thereby present a substantial difference in diameter between the elongate member and the outer surface of the carrier.Despite the fact that the sleeve tightly embraces the elongate member, it is found that the sleeve can be rolled up quite easily: this is because, when the sleeve is inflated, then floated along the elongate member and finally allowed to deflate, it is found to have been stretched in length (the friction between the dry or unlubricated surfaces of the sleeve and elongate member preventing the sleeve restoring to its natural length); the rolling process is then aided by the stresses, due to stretching, which are stored in the sleeve.
By contrast, when applying a sleeve to a cable joint or termination using the inflation and floating techniques described above, an appropriate lubricant is preferably applied between the sleeve and the underlying cable, so that after the sleeve is deflated it is able to restore to its natural length, avoiding a condition that longitudinal stresses will remain within the sleeve in the completed joint or termination.
Embodiments of this invention will now be described, by way of examples only, with reference to the accompanying drawing, in which:
Figure 1 is a diagrammatic longitudinal section through an elongate body and a tubular sleeve which is to be applied to that elongate body, the sleeve at this stage having one end embraced around a free end of the elongate body and ready to be inflated and floated onto the elongate body;
Figure 2 is a similar view at a later stage in the procedure for applying the sleeve over the elongate body, the sleeve having been inflated and displaced for part of its length along the elongate body;
Figure 3 is a schematic view of one example of cable termination, to which sleeves have been applied by method illustrated in Figures 1 and 2;;
Figure 4 is a diagrammatic longitudinal section through a tubular sleeve being applied to a cable as a preliminary step in jointing that cable to another cable;
Figure 5 is a diagrammatic longitudinal section through a tubular sleeve being applied over a short tubular carrier;
Figure 6a is a diagrammatic longitudinal section through a sleeve applied over an elongate member having a tubular carrier pre-positioned around it;
Figure 6b is a similar view of a sleeve applied over the elongate member alone and rolled up from one end and then with a tubular carrier slid along the elongate member; and
Figure 6c shows stages, subsequent to that shown in Figure 6b of rolling the sleeve onto the carrier.
Referring to Figure 1, an elongate body 10, which may be circular or of any other cross-sectional shape, is to receive a tubular sleeve 12 of elastic material, the sleeve 12 having an inner diameter or cross-sectional size smaller than the outer diameter or cross-sectional size of the elongate body so that the sleeve resiliently embraces the elongate body. In carrying out the method of applying the sleeve 12 to the body 10, one end of the sleeve is stretched over a free end of the body 10 as shown.The extreme end portion of the sleeve may be turned back on itself as shown at 1 2a to ensure that this end of the sleeve will form a partial air-tight seal with the body when the sleeve is inflated: instead or in addition, an appropriate elastic band or clip or other elastic means may be fitted around the end of the sleeve to ensure the partial air-tight seal, whilst in other circumstances the partial air-tight seal may be formed without the need for such elastic means and without the need to fold the end portion of the sleeve back on itself.
The other end of the sleeve 12 is closed by stretching it over an adaptor 14 which incorporates a non-return valve, for example a schraedervalve. A pump is attachable to this valve and is used to inflate the sleeve 12 sufficiently to allow itto be floated over the body 10, as shown in Figure 2. Thus the sleeve 12 is inflated to a cross-sectional size preferably equal to or greater than that of the elongate body 10, so that little force is neded to displace the sleeve along the body: at the same time, air is expelled from within the sleeve, passing through the partial airtight seal formed between the end of the sleeve and the body itself.The sleeve may be displaced along the body as far as required, or until the adaptor 14 abuts the free end of the elongate body with just a short length of the sleeve projecting from the elongate body.
Figure 3 shows an example of cable termination in which insulating sleeves have been applied using the method described with reference to Figures 1 and 2. In this example, the cable is a 3-core cable and terminates in a generally upright position as shown.
A considerable length of the 3 cores (only 2 of which can be seen) have been stripped of outer insulating layers 20 of the cable and the cores (which are sectoral in cross-section) have been spread apart as shown. Adjacent their lower ends, the exposed cores each receive a shorttube 22 of partially conductive elastomeric material, which tubes provide for stress control. An appropriate compound is applied at 24 to seal the cut-backs ends of the cable insulating layers 20, and further such compound is applied as a ring around the cable at 26: an elastomeric glove 28 is applied over this region, the glove having one tubular end portion 28a embracing the cable immediately below the stripped cores, and at its other end 3 tubular portions e.g. 28b, 28b which embrace the respective cores as shown.
Along each of the cores, there is applied an elastic insulating sleeve 30 of considerable length, and this is applied using the method illustrated by Figures 1 and 2. At its lower end, each sleeve 30 embraces the end of the tubular portion 28b of the glove 28, around which also further insulating compound may optionally be applied, as shown at 32. In the example shown, each sleeve 30 is cut-back (after being floated onto its core) level with the cut-back end of the core insulation 34. Instead, the sleeve 30 may be cut-back lower down the core and a further short insulating sleeve applied (as by rolling on) to cover the end portion of the main sleeve 30, the end portion of the core insulation 34 and also a portion of a metal connector 36 which receives the cable conductor 38.
In the example shown, the termination is outdoors and a series of so-called sheds 40 are slipped onto each core over the sleeve 30. Each shed is formed of elastomeric insulating material and comprises a tubular upper portion and a conical lower portion: the sheds serve to extend the creepage path along the length of the core to reduce electrical leakage currents. Finally, in the example shown, insulating compound is applied at42 around the exposed cable conductor and the adjacent portions of the uppermost shed and of the connector 36 and over these a short sleeve 44 is applied.
Figure 4 shows the arrangements for forming a cable joint. A sleeve 50, folded back on itself at both ends is provided with a valve arrangement 52 in its side wall, adjacent one end. This valve arrangement may, as shown, comprise a relatively flat or buttonshaped fitment sealed into the sleeve wall and provided with means, such as a metal screw thread, for coupling to a valved nozzle of an air line (not shown). When this coupling is made, the sleeve can be inflated once its leadng end is embraced over the cable end 54 and is trailing is temporarily closed, e.g.
by being folded manually. The inflated sleeve can then be floated along the cable until its trailing end, still held folded over, reaches the cable end: then if the folded end is released quickly whilst the sleeve is still being displaced longitudinally, its advance will continue until the trailing end of the sleeve has advanced onto the cable and formed a partial seal therearound. The sleeve can then be floated along the cable as far as desired to enable the cable end to be stripped of its insulation and joined to another cable, whereafter the sleeve is floated back into position over the jointing zone. The valve arrangement 52 will be remote from the more highly stressed (electrically) regions of the joint, so that it can be left: alternatively the end portion of the sleeve, including this valve arrangement, can be cut away.The valve arrangement is flat so that, if left, it will not protrude and prevent other insulating layers being applied.
The joint sleeve may comprise several layers i.e.
two or more tubes one around another, all applied as one sleeve as just described. The tubes may be variously of insulating or semi-conducting material as required. Alternatively, several sleeves may be built up one over another over the jointing zone, using a plurality of sleeves applied separately: for example each of the two cables to be joined may have one or more sleeves floated onto and along it to a convenient "parking position", whereafter the cables are joined and the sleeves one-by-one floated back into position, one over another, over the jointing zone. Again, the different sleeves may be variously of insulating or semi-conducting material as required.
As previously mentioned, in the case of the termination (Figure 3) or the joint (Figure 4) lubricant is preferably applied between the sleeve and underlying cable, so that after the sleeve is deflated it is able to restore to its natural length, avoiding a condition that longitudinal stresses will remain within the sleeve in the completed joint or termination.
The method in accordance with this invention is not limited as to the length of the sleeve which can be applied. The method has been described assuming that the elongate body, which is to receive the sleeve, is solid and will thus close the leading end of the sleeve, but the elongate body may itself be tubular, in which case its opposite end must be sealed, for example temporarily. For example, and referring to Figure 5, if the sleeve is to be applied over a short tubular carrier 60 as previously described, the carrier to become disposed perhaps mid-way along the sleeve, then the other end of the carrier may be closed by urging againt it a relatively small diameter rod 62 provided at its end with a sealing gasket 64 which engages around the inner rim of that other end of the carrier: the sleeve 66 can then be floated over the carrier and over the rod to its required position.The rod can then be withdrawn and the sleeve can be rolled up onto the carrier as described in our previously-mentioned application 83.20822.
Figure 6 illustrates use of the method in accordance with this invention for providing a tubular sleeve rolled up onto a tubular carrier, wherein the sleeve 72 is floated onto an elongate member 70 of greater diameter than the inner diameter of the sleeve, and then rolled (e.g. from its opposite ends) along the member 70 and finally up onto the carrier 74. it can be arranged that there is relatively little difference between the outer diameter of the member 70 and the outer diameter of the carrier, so that only relatively little effort is required to roll the sleeve from the member 70 and up onto the carrier.
Despite the fact that the sleeve tightly embraces the member 70, it is found that the sleeve can be rolled up quite easily: this is because, when the sleeve is inflated, then floated along member 70 and finally allowed to deflate, it is found to have been stretched in length (the friction between the dry or unlubricated surfaces of the sleeve and member 70 preventing the sleeve restoring to its natural length); the rolling process is then aided by the stresses, due to stretching, which are stored in the sleeve. As shown in Figure 6a sleeve 72 may be floated over both the member 70 and the carrier 74 (pre-positioned perhaps half-way along the member 70), and then the sleeve can be rolled up from its opposite ends and onto the carrier, which can then be removed form the member 70.Instead, as shown in Figure 6b, the sleeve 72 may be floated onto member 70 alone, then the sleeve is rolled up form one end and next the carrier 74 is applied to the member 70 and slid along until it abuts the rolled portion 72a of the sleeve: next, as shown in Figure 6c, the sleeve is partly unrolled, so that its rolled portion 72a rides onto the carrier 74, and finally the sleeve is rolled up from its opposite end until the thus-formed rolled portion 72b also rides onto the carrier.
The method in accordance with this invention enables a given diameter of sleeve to be applied to cable cores (or other eongate bodies) within a significant range of diameters or cross-sectional sizes. A very long length of sleeve may be applied whilst the method is simple and efficient to carry out whilst being low in cost. The method moreover enables the use of materials of the higher tear strength, as mentioned above. In those cases which avoid the sleeves being rolled onto carriers in the factory and stored for some time in this rolled-up condition, the method avoids the possibility (which may arise for some elastomeric materials) that the electrial andior elastic properties of the sleeve may slowly deteriorate owing to it being maintained under stress.
Claims (14)
1. A method of applying a tubular sleeve of elastic material over an elongate body which has a diameter or cross-sectional size greater than the inner diameter of the sleeve, comprising engaging an end portion of the sleeve over an end portion of the elongate body and forming a partial fluid-tight seal between said sleeve end portion and said elongate body, temporarily closing the opposite end of the sleeve and introducing fluid under pressure to the interior of the sleeve through its side wall or said opposite end thereof to inflate it sufficiently to be floated along the elongate body, and then displacing the sleeve along the elongate body.
2. A method as claimed in claim 1, wherein said fluid is air.
3. A method as claimed in claim 1 or 2, wherein said end portion of the sleeve is turned back on itself and stretched over said end portion of the elongate body to form said partial fluid-tight seal.
4. A method as claimed in claim 1, 2 or 3 wherein said fluid is introduced to the interior of the sleeve through a relatively flat valve arrangement in its side wall adjacent one end of the sleeve.
5. A method as claimed in claim 4, wherein said opposite end of the sleeve is temporarily closed by folding that end over on itself.
6. A method as claimed in ay one of the preceding clams, wherein the elongate member is an electric cable.
7. A method as claimed in claim 6, wherein a lubricant is applied between the sleeve and the cable.
8. A method as claimed in any one of claims 1 to 5, for disposing said sleeve in a rolled-up condition on a tubular carrier of shorter length than said sleeve, wherein said tubular carrier forms said elongate member, and the sleeve is floated over said carrier and a further elongate member coaxial therewith and closing the end of the carrier opposite to the end portion thereof over which the sleeve is initially engaged to a desired position, and thereafter rolled-up onto the carrier.
9. A method as claimed in any one of claims 1 to 5, for disposing said sleeve in a rolled-up condition on a tubular carrier of shorter length than the sleeve, comprising disposing said carrier on said elongate member, floating said sleeve over said elongate member and carrier, and thereafter rolling said sleeve onto said carrier.
10. A method as claimed in any one of claims 1 to 5, for disposing said sleeve in a rolled up condition on a tubular carrier of shorter length than the sleeve, comprising partially rolling said sleeve up from one end after it has been floated onto said elongate member, positioning said carrier on such elongate member to abut the rolled portion of the sleeve, unrolling the sleeve so that its rolled portion rides onto the carrier, and thereafter rolling up said sleeve from its opposite end until the thus formed second rolled portion rides up onto the carrier.
11. A method as claimed in any one of claims 1 to 5, wherein a plurality of said tubular sleeves are applied over said elongate body simultaneously to provide a plurality of layers of elastic material thereon.
12. A method as claimed in any one of claims 1 to 5, wherein a plurality of said tubular sleeves are applied separately over said elongate body to provide a plurality of layers of elastic material thereon.
13. A method as claimed in any one of claims 1 to 5, 13 and 14, wherein said elongate member comprises an electric cable joint or termination.
14. A method of applying a tubular sleeve of elastic material over an elongate body which has a diameter or cross-sectional size greater than the inner diameter of the sleeve, substantially as herein described with reference to Figures 1 and 2, 3, 4, 5, 6A or 6i3 and 6C.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT19352/85A IT1199660B (en) | 1984-02-24 | 1985-02-01 | APPLICATION OF AN ELASTIC SLEEVE ON AN ELONGATED BODY |
CA000473547A CA1258569A (en) | 1984-02-24 | 1985-02-05 | Applying an elastic sleeve over an elongate body |
US06/698,311 US4573251A (en) | 1984-02-24 | 1985-02-05 | Applying an elastic sleeve over an elongate body |
FR858502049A FR2560451B1 (en) | 1984-02-24 | 1985-02-13 | METHOD FOR PLACING AN ELASTIC SLEEVE ON AN ELONGATED BODY LIKE A CABLE |
BR8500682A BR8500682A (en) | 1984-02-24 | 1985-02-14 | METHOD OF APPLYING AN ELASTIC GLOVE ON AN ELONGED BODY |
DE3505214A DE3505214C2 (en) | 1984-02-24 | 1985-02-15 | Method of applying an elastic piece of tubing to one end of an elongated body |
AU38925/85A AU565784B2 (en) | 1984-02-24 | 1985-02-18 | Applying an elastic sleeve over an elongate body |
NZ211157A NZ211157A (en) | 1984-02-24 | 1985-02-19 | Applying elastic sleeve over elongate body by inflation |
BE0/214542A BE901780A (en) | 1984-02-24 | 1985-02-20 | METHOD OF PLACING AN ELASTIC SLEEVE ON AN ELONGATED BODY LIKE A CABLE. |
SE8500856A SE462940B (en) | 1984-02-24 | 1985-02-22 | APPLY TO APPLY A TERRIFULATED HALF OF ELASTIC MATERIAL OVER A LONG STRENGTH BODY |
ES541134A ES8603232A1 (en) | 1984-02-24 | 1985-02-22 | Applying an elastic sleeve over an elongate body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB848404869A GB8404869D0 (en) | 1984-02-24 | 1984-02-24 | Applying elastic sleeve over elongate body |
Publications (3)
Publication Number | Publication Date |
---|---|
GB8417786D0 GB8417786D0 (en) | 1984-08-15 |
GB2155142A true GB2155142A (en) | 1985-09-18 |
GB2155142B GB2155142B (en) | 1987-11-11 |
Family
ID=10557125
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB848404869A Pending GB8404869D0 (en) | 1984-02-24 | 1984-02-24 | Applying elastic sleeve over elongate body |
GB08417786A Expired GB2155142B (en) | 1984-02-24 | 1984-07-12 | Applying an elastic sleeve over an elongate body |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB848404869A Pending GB8404869D0 (en) | 1984-02-24 | 1984-02-24 | Applying elastic sleeve over elongate body |
Country Status (2)
Country | Link |
---|---|
GB (2) | GB8404869D0 (en) |
ZA (1) | ZA85512B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3536250A1 (en) * | 1985-10-11 | 1987-04-16 | Minnesota Mining & Mfg | CABLE TERMINAL FOR PAPER INSULATED THREE-WIRE MEDIUM VOLTAGE CABLES |
DE3812398A1 (en) * | 1988-04-14 | 1989-10-26 | Minnesota Mining & Mfg | SHEET OF PLASTIC FILM MATERIAL FOR A CABLE TERMINAL, CABLE CONNECTOR OR ANOTHER SECTION OF AN ELECTRIC CABLE REMOVED FROM THE CABLE SHEATH |
US5903973A (en) * | 1995-10-16 | 1999-05-18 | Lucent Technologies Inc. | Protective wrappings for spliced cable connectors |
FR2902578A1 (en) * | 2006-06-16 | 2007-12-21 | Nexans Sa | Electric conductor separation sealing device for cylindrical shaped multiphase electric cable, has cover with large opening by which sheath passes and small openings by which conductors passes, and film between tube and holding sheath |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB772059A (en) * | 1954-09-09 | 1957-04-10 | Leslie Arthur Burn | Method of and means for covering tubes with plastic |
GB789969A (en) * | 1955-08-25 | 1958-01-29 | Alfred Roberts & Sons Ltd | Improvements relating to the manufacture of high pressure hose |
GB866265A (en) * | 1956-10-08 | 1961-04-26 | Ass Elect Ind | An improved method of applying insulation to electrical conductors |
GB921629A (en) * | 1960-05-20 | 1963-03-20 | Ericsson Telefon Ab L M | Method and apparatus for applying a covering to a longitudinally extending body |
GB2099638A (en) * | 1981-06-03 | 1982-12-08 | Pirelli General Plc | Improvements relating to jointing and/or terminating electric cables |
-
1984
- 1984-02-24 GB GB848404869A patent/GB8404869D0/en active Pending
- 1984-07-12 GB GB08417786A patent/GB2155142B/en not_active Expired
-
1985
- 1985-01-22 ZA ZA85512A patent/ZA85512B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB772059A (en) * | 1954-09-09 | 1957-04-10 | Leslie Arthur Burn | Method of and means for covering tubes with plastic |
GB789969A (en) * | 1955-08-25 | 1958-01-29 | Alfred Roberts & Sons Ltd | Improvements relating to the manufacture of high pressure hose |
GB866265A (en) * | 1956-10-08 | 1961-04-26 | Ass Elect Ind | An improved method of applying insulation to electrical conductors |
GB921629A (en) * | 1960-05-20 | 1963-03-20 | Ericsson Telefon Ab L M | Method and apparatus for applying a covering to a longitudinally extending body |
GB2099638A (en) * | 1981-06-03 | 1982-12-08 | Pirelli General Plc | Improvements relating to jointing and/or terminating electric cables |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3536250A1 (en) * | 1985-10-11 | 1987-04-16 | Minnesota Mining & Mfg | CABLE TERMINAL FOR PAPER INSULATED THREE-WIRE MEDIUM VOLTAGE CABLES |
DE3812398A1 (en) * | 1988-04-14 | 1989-10-26 | Minnesota Mining & Mfg | SHEET OF PLASTIC FILM MATERIAL FOR A CABLE TERMINAL, CABLE CONNECTOR OR ANOTHER SECTION OF AN ELECTRIC CABLE REMOVED FROM THE CABLE SHEATH |
US5903973A (en) * | 1995-10-16 | 1999-05-18 | Lucent Technologies Inc. | Protective wrappings for spliced cable connectors |
FR2902578A1 (en) * | 2006-06-16 | 2007-12-21 | Nexans Sa | Electric conductor separation sealing device for cylindrical shaped multiphase electric cable, has cover with large opening by which sheath passes and small openings by which conductors passes, and film between tube and holding sheath |
Also Published As
Publication number | Publication date |
---|---|
GB2155142B (en) | 1987-11-11 |
GB8404869D0 (en) | 1984-03-28 |
ZA85512B (en) | 1985-11-27 |
GB8417786D0 (en) | 1984-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4573251A (en) | Applying an elastic sleeve over an elongate body | |
EP0212851B1 (en) | Protection of cables and pipes | |
US5070597A (en) | Tubular article | |
US5230640A (en) | Connecting device for one or two electric cables, and process for mounting this device on the end of the cable or cables | |
US4868967A (en) | Tubular article | |
US7728227B2 (en) | Method for covering an elongate object and device for covering said elongate object | |
EP0554270B1 (en) | Transition joint for oil-filled cables | |
EP0225784A2 (en) | High voltage cable splice protector | |
JPH11502399A (en) | Method and apparatus for positioning a sheath-like elastic cable sleeve by fitting it into a cable connection | |
US5735981A (en) | Substrate covering | |
EP0966780B1 (en) | Compact covering device | |
CA2774747A1 (en) | Cold shrinkable primary joint | |
GB2155142A (en) | Applying an elastic sleeve over an elongate body | |
EP3545596B1 (en) | Cover assemblies for cables and electrical connections and pre-expanded units and methods including same | |
US3582868A (en) | Sealed receptacle tap | |
KR20090038665A (en) | Self-contraction cable connector and self-contraction cable connecting unit and cable connecting method | |
EP0210061A2 (en) | Lubrication system | |
CN113809714B (en) | Waterproof intermediate joint and mounting method thereof | |
CA2062663C (en) | Connecting device for one or two electric cables, and process for mounting this device on the end of the cable or cables | |
JPH10512135A (en) | Pre-stretch module barrier boot | |
US3536822A (en) | T-tap insulator | |
JPS647466B2 (en) | ||
RU21255U1 (en) | THERMAL-Shrinkable KIT FOR MOUNTING CABLE COUPLINGS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PE20 | Patent expired after termination of 20 years |
Effective date: 20040711 |