GB2134862A - A motor vehicle such as a tractor - Google Patents

A motor vehicle such as a tractor Download PDF

Info

Publication number
GB2134862A
GB2134862A GB08402630A GB8402630A GB2134862A GB 2134862 A GB2134862 A GB 2134862A GB 08402630 A GB08402630 A GB 08402630A GB 8402630 A GB8402630 A GB 8402630A GB 2134862 A GB2134862 A GB 2134862A
Authority
GB
United Kingdom
Prior art keywords
motor vehicle
wheels
shaft
power take
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08402630A
Other versions
GB8402630D0 (en
GB2134862B (en
Inventor
Der Lely Cornelis Van
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C Van der Lely NV
Original Assignee
C Van der Lely NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C Van der Lely NV filed Critical C Van der Lely NV
Publication of GB8402630D0 publication Critical patent/GB8402630D0/en
Publication of GB2134862A publication Critical patent/GB2134862A/en
Application granted granted Critical
Publication of GB2134862B publication Critical patent/GB2134862B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/18Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17
    • B62D21/186Understructures, i.e. chassis frame on which a vehicle body may be mounted characterised by the vehicle type and not provided for in groups B62D21/02 - B62D21/17 for building site vehicles or multi-purpose tractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/02Tractors modified to take lifting devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D49/00Tractors
    • B62D49/06Tractors adapted for multi-purpose use
    • B62D49/0621Tractors adapted for multi-purpose use comprising traction increasing arrangements, e.g. all-wheel traction devices, multiple-axle traction arrangements, auxiliary traction increasing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Agricultural Machines (AREA)

Abstract

A tractor has a frame 1 which terminates at the front above the front wheels 9. The frame comprises two rear beams 2 and two front beams 7, the front beams being closer together than for the rear beams 2. The frame 1 has means for attaching a lifting device 57. A plurality of power take-off shafts 30, 49 and (51, Fig 2) is provided one of which can be selectively driven at different speeds. The power take-off shafts are selectively engageable by driver operated clutches. The wheels 9, 11 are drivable from the engine 17 by hydraulic motors 70,76 which can be coupled in pairs either in series, or in parallel. <IMAGE>

Description

SPECIFICATION A motor vehicle such as a tractor This invention relates to a motor vehicle, and particularly, but not exclusively, to a tractor for agricultural purposes.
With known tractors employed for attaching and driving implements and machines, the manoeuvrability of the tractor is seriously limited because the steerable front wheels can be turned only through a comparatively small angle due to frame parts on the inboard side of the front wheels. Moreover, in turns through large angles the front wheels project considerably beyond the sides of the tractor.
According to the present invention, there is provided a motor vehicle comprising an engine and a frame which is supported by wheels and terminates at the front, with respect to the intended direction of normal operative travel of the vehicle, above the front wheels, the frame having fastening means for attaching a lifting device to the vehicle.
An embodiment in accordance with the present invention provides a tractor with good manoeuvrability, whilst maintaining the possibility of attaching machines or implements near steerable wheels. Wheels turned through large angles cannot come into contact with frame parts, and it is also possible to arrange these wheels close together so that, even when turned through large angles, they will not project beyond the sides of the tractor. Since the frame extends above the front wheels, a lifting device can be fastened to the front end of the frame.
For a better understanding of the present invention and to show how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings, in which: Figure 1 is a side view of a tractor; Figure 2 is a plan view of the tractor of Figure 1, with parts omitted; Figure 3 is a front view of the tractor of Figures 1 and 2; Figure 4 is a schematic sectional view taken on the line IV--IV in Figure 2; Figure 5 is a diagram representing hydraulic drive circuitry of the tractor; and Figure 6 is a fragmentary view corresponding to part of Figure 3 but showing an alternative construction.
The tractor shown in Figures 1 and 2 comprises a frame 1 having two hollow, box-section frame beams 21 disposed side by side and some distance apart from each other, one on each side of a vertical central plane 3 of the tractor. Each of the two frame beams 2 is provided with an extension which projects forwardly, with respect to the intended direction A of operative travel of the tractor. Each extension comprises a hollow profile which is rigidly secured to the front end of the frame beam 2 concerned and slopes upwardly and forwardly. Each extension 4, as viewed on plan, is in line with its frame beam 2.The two hollow profiles 4, whose length is about 25 to 30% of the length of the frame beams 2 and which, as seen from the side, are at an angle of about 450 to their frame beams 2, are rigidly interconnected at their upper ends by a horizontal tie beam 5, which is normal to the plane 3. At a short distance in front of their rear ends, the frame beams 2 are interconnected by a hollow beam 6 which is normal to the plane and is rigidly secured at its ends to the frame beams 2.
Two channel-section carriers 7 are rigidly secured to the top of the beam 5. These carriers 7 extend forwardly from the beam 5 with respect to the direction A. The open sides of the carriers 7 face each other, and the carriers are situated one on each side of, and at equai distances from, the plane 3. The distance between the outboard webs of the carriers 7 is about half the length of the tie beam 5, measured at right angles to the plane 3.
At their front ends, the carriers 7 are rigidly interconnected by a vertical tie plate 8 which is normal to the plane 3.
Viewed on plan the length of the extensions 4 and the carriers 7, measured in the direction A, is in total equal to about half the length of the frame beams 2.
In the free space at the front ends of the extensions 4 and below the carriers 7, as viewed in Figure 1 , there is a set of two front wheels 9 which are provided with low pressure pneumatic types. Viewed on plan (Figure 2), part of the tyre of each wheel 9 is disposed below one of the carriers 7. The two front wheels 9 are disposed close to each other. The distance between the two tyres is smaller than one quarter of the diameter of each tyre. The two front wheels 9 are pivotable together in a manner to be described later in this description about an upwardly directed pivotal shaft 10, which is located in the plane 3.
The tractor is provided with two rear wheels 11, which are arranged one on each side of the plane 3 and which are rotatable about a wheel axis 12 which is located, as viewed in Figure 1, near the rear ends of the frame beams 2 and which is directed at right angles to the plane 3.
The two rear wheels 11 and the two front wheels 9 have the same diameters as each other, this being about 135 cms. The width of the pneumatic tyres, which are low pressure tyres on all wheels, is about 60 cms. The rear wheels 11, which are arranged on the outboard sides of the frame 1, are spaced apart by a distance such that the tracks of the two front wheels 9 are within those of the rear wheels 11 (see Figure 3) so that the overall width by which the tractor bears on the ground is at least about 240 cms. The low pressure tyres will bulge out considerably near the ground owing to the ground pressure. This results in a large ground contact surface and a relatively low ground pressure.Also, since each wheel has a track which does not coincide with that of another wheel, it is ensured that deterioration of the soil structure with regard to the growth of plants is avoided.
The frame beams 2 are provided with front supports 13 and rear supports 14 (which are interconnected by a horizontal carrying beam 1 5 normal to the plane of symmetry 3), on which bears a cab 1 6. As viewed from the side, the cab 16 extends from a region above the extensions 4 to above the front half of the rear wheels 11, and viewed on plan or from the front (Figure 3), the cab extends beyond the outer faces of the front wheels 9. From the cab the driver can steer the front wheels 9 and control the drive of the tractor as well as control all further functions of the tractor, for example, those of the power take-off shafts to be described later in this description. The cab floor is located at a lower level than the carriers 7.
In the region between the front wheels 9 and the rear wheels 11 there is a combustion engine 17, preferably an air-cooled Diesel engine, which bears on the front parts of the frame beams 2 and which is supported by the extensions 4 of the frame beams. The engine 1 7 is located partly inside the cab 1 6. The engine 1 7 is positioned near the rear of the front wheels 9. The driving engine 1 7 is disposed so that its crankshaft extends transversely of the plane 3 so that an output shaft 1 8 of the driving engine 1 7 projects to one side of the tractor.The shaft 1 8 is provided with a bevel gear wheel 19, which, as viewed in the direction A, is substantially parallel to the plane 3 and is disposed approximately in a plane containing the outer boundary face of the front wheel 9 located on the same side of the tractor.
The gear wheel 1 9 is in mesh with a bevel gear wheel 20 mounted on a shaft 21 which extends horizontally and parallel to the plane 3. The shaft 21 has a centreline 22, which is near the said boundary face of the front wheel. The gear wheels 1 9 and 20 are situated inside a housing 23, which is rigidly secured with respect to the engine 1 7.
On the front of the housing 23 there is a housing 24 in which two meshing spur gear wheels 25 and 26 are accommodated. The gear wheel 25 is fastened to the shaft 21. In the position shown (Figure 2) the gear wheel 26, which is fastened to a shaft 27, is disposed on the outboard side of the gear wheel 25 with respect to the plane 3. In the region of the gear wheel 26 and its shaft 27 there is a coupling housing 28 which is rigidly secured to the front of the housing 24. The housing 28 encloses a coupling actuable from the cab 1 6 (for example, a hydraulically actuable plate coupling), the input shaft of which comprises the shaft 27.
The output shaft 30 of the coupling 29 constitutes a power take-off shaft of the tractor. The transmission ratios of said gear wheels are such that at a speed of rotation of the engine 1 7 of about 200 to 2200 rev/min the power take-off shaft 30 can be driven at a speed of about 1000 rev/min. The distance between the power take-off shaft 30 and the plane 3 is in the position shown about 100 cms. As viewed from the front, the power take-off shaft is situated outwardly of the outer face of the adjacent front wheel 9 and, as viewed from the side, it is located above the underside of the frame 1 and above a horizontal plane containing the axes of the wheels 9 and 11.
Machines or implements attached to the tractor and having a working width extending beyond the tractor as viewed in the direction A, can be driven from the power take-off shaft 30 without any auxiliary shaft coupled with the power take-off shaft 30 needing to be at a large angle to the shaft 30. Viewed from the side, the power take-off shaft 30 is disposed in the region between the front wheels 9 and the rear wheels 11 and protrudes from one side of the tractor. In this embodiment the power take-off shaft 30 is directed to the front, but it is, of course, also possible to direct the power take-off shaft 30 to the rear and to arrange it near the rear of the tractor.In the latter case it is desirable, in view of the relatively large distance between the rear wheels 11 , to cause the housings 23,24 and 28 to protrude further from the engine 1 7 so that the power take-off shaft 30 is disposed outwardly of a plane which is parallel to the plane 3 and which goes through a side face of the nearest rear wheel 11. In this connection, it is possible to design the above-mentioned drive train to the power take-off shaft 30 in a manner such that the housings 24 and 25 with the gear wheels and the coupling as well as the power take-off shaft 30 constitute a pivotable unit with respect to the housing 23, this unit being pivotable about the centre line 22 of the shaft 21.
By designing the unit 24 and 30 so that it is pivotable with respect to the housing 23 about the centre line 22 and fixable in any one of a plurality of positions, it is possible to turn the power takeoff shaft, for example when the unit is found to be troublesome during transport, to bring the registering centre lines of the shafts 27 to 30 directly below (or above) the centre line 22 or, as viewed on plan, between the centre line 22 and the plane 3. In these alternative positions the shaft 30 can also be used as a power take-off shaft when in one of the turned positions of the unit 24 to 30 a satisfactory disposition with respect to an attached machine is obtained. This movability of the unit 24 to 30 in the direction towards or away from the plane 30 is possible because the housing 24 projects significantly from the housing 23 away from the centre line 22 on one side.The use of such a pivotable power take-off shaft 30 is, in principle, not confined to the region between the front wheels 9 and the rear wheels 11, since it may also be used at the front and/or rear of the tractor.
As shown in Figure 2, the shaft 21 journalled in the housing 23 projects to the rear where it is enclosed in a tubular supporting piece 31. The supporting piece 31 is secured at its front end to the rear of the housing 23 and at its rear end to the front of a gear box 32 disposed on one side of the plane 3 and, as viewed from the side, directly behind the rear of the engine 17. The gear box 32 (Figure 4) comprises a plurality of meshing gear wheels disposed parallel to each other in a plane normal to the plane 3. Near the outboard side of the gear box 32 there is a gear wheel 33 which is fastened to the shaft 21.The gear wheel 33 is in mesh with a larger gear wheel 34 fastened to a substantially horizontal shaft 35 extending parallel to the plane 3, and the gear wheel 34 is in mesh with a gear wheel 35A of the same size fastened to a shaft 36 extending parallel to the shaft 35.
The gear wheel 35A is disposed near the inboard end of the gear box 32. Apart from the wheels 33, 34 and 35A, gear wheels 37 and 38 having a smaller diameter than the gear wheel 33 are in mesh with the gear wheel 33. The shafts 21, 35 and 36 lie in a common horizontal plane, and the shafts of the gear wheels 37 and 38 lie respectively above and below that plane (Figure 4). The gear wheels 37 and 38 are fastened to shafts 39 and 40 respectively, which project rearwardly from the gear box 32 and which constitute input shafts of hydraulic pumps 41 and 42 respectively which are fastened to the rear of the gear box 32. The transmission ratio from the output shaft 1 8 of the engine 1 7 is such that the shafts 39 and 40 are driven at a speed of rotation of about 3200 rev/min.At a speed of rotation of about 2000 rev/min of the gear wheel 33 the gear wheels 34 and 35A each have a speed of 1000 rev/min. The shafts 35 and 36 of the gear wheels 34 and 35A project from the rear of the box 32 and constitute input shafts of clutches 43 and 44 respectively (Figure 2), which are actuable from the cab 1 6 and which are similar to the clutch 29.
The clutches 43 and 44 have output shafts 45 and 46 respectively which project to the rear. The output shaft 45 is coupled by an auxiliary shaft 47 including two universal joints with an input shaft of a gear box 48, which has a rearwardly projecting output shaft 49 serving as a power take-off shaft. The gear box 48 can be changed stepwise from the cab 1 6 and may comprise a manually operated automobile gear box.The transmission ratios of the gear box 48 are such that with an output speed of the shaft 45 of 1000 rev/min the power take-off shaft 49 can be selectively driven at 1000, 600, 450 or 350 rev/min so that the machine driven by the power take-off shaft 49 can be driven with speeds adjusted to suit the prevailing conditions, for example, in the case of rotary harrows, to suit the soil structure in conjunction with the travelling speed of the machine. The gear box 48 and the power take-off shaft 49 are disposed to one side of the plane 3, in the region of the lateral boundary of the frame 1. The gear box 48 is fastened to the top of one of the frame beams 2 and of the transverse beam 6 situated approximately at the level of the wheel axles of the wheels 9 and 11.
The output shaft 46 of the gear box 32 is directly coupled by an auxiliary shaft 50 having two universal joints with a power take-off shaft 51, which also projects to the rear. The power take-off shaft 51 is journalled in a bearing fastened to the top of the beam 6. The centre line of the power take-off shaft 51 is located in the plane 3 and the shaft can be driven at 1000 rev/min.
Pivotal shafts 52 are fastened to the tie beam 6 on both sides of the power take-off shaft 51.
These shafts 52 are in line with each other and at right angles to the plane 3. A lower lifting arm 53 of a three-point lifting device 54 is pivotable about each of the pivotal shafts 52. The upper lifting arm 55 of the lifting device 54 is pivotable about a pivotal shaft 56 at right angles to the plane 3 and journalled in two supports mounted on the transverse beam 6. The lifting device 54 can be hydraulically actuated in known manner from the cab 16. The lifting arms 53 and 55 are provided at their free ends with coupling members for attaching one or more machines or implements, these members being designed in the form of hooks which open inwardly and downwardly respectively.Since the lifting device 54 is arranged symmetrically with respect to the plane 3, the power take-off shaft 51, which is drivable at a speed of 1000 rev/min from the coupling 44, is disposed, as viewed on plan, between the lifting arms 53, and the power take-off shaft 49 is located outside the adjacent lifting arm 53.
At the front of the tractor there is a lifting device 57 which is releasably fastened to the tie plate 8. A U-shaped carrier 58 is bolted to the tie plate 8 (Figure 2). A pivotal shaft 59 is provided near the front of each limb of the carridr 58 and extends at right angles to the plane 3. A holder 60 is pivotable about the pivotal shafts 59 by a hydraulic cylinder 61 , which can be actuated from the cab 1 6. At the front, the holder 60 carries two channel-section guide beams 62 situated one on each side of, and spaced from, the plane 3. The open sides of the two beams 62 face each other.
Two rollers 63 are displaceable lengthwise along each of the two guide beams 62. On their sides facing each other, the rollers 63 are mounted in a framework 64, which is movable up and down on the rollers 63 inside the two guide beams 62 by means of a hydraulic ram 65, the underside of which bears on the holder 60, whilst the end of the piston rod is connected with the top of the framework 64. The hydraulic ram 65 can also be actuated from the cab 1 6. At its lower corners and at a higher, central, position, the framework 64 has hooks which are open at the top and serve as coupling members for machines or implements to be attached. The higher hook dislocated in the plane 3 and serves as a top fastening point of the lifting device 57.
Near the front ends of the carriers 7 there is a steering shaft 66 which extends for most of its length below the carriers 7 and is directed vertically or slopes slightly towards the front from top to bottom. The steering shaft 66 is mainly a cylindrical pipe, the centre line of which coincides with the pivotal axis 10. The steering shaft 66 is surrounded near its top end by a bearing 67 supported by the underside of the two carriers 7.
The centre line 10 of the steering shaft 66 is located in the plane 3.
The bearing 67 comprises a plurality of horizontal plates 68 which are clamped one on top of the other by bolts, the top plate being releasably fastened to the undersides of the carriers 7. These plates 68, which receive at least most of the load on the steering shaft 66, may be made from wear resistant material. Despite the fact that wearresistant material can, in general, be welded only with difficulty, the bearing can be readily exchanged by composing it from stacked plates.
At its lower end, the steering shaft 66 is releasably connected with a tubular support 69, the centre line of which intersects the centre line 10 at right angles, The tubular support 69 is symmetrical to the plane 3 in the straight-ahead position of the front wheels 9, as shown. A hydraulic wheel motor 70 is rigidly secured to each end of the tubular support 69. The output shafts of these wheel motors 70 coincide with the rotary axes of the front wheels 9 which are fastened to these output shafts. The steering shaft 66 extends through the bearing 67 into the space between the two carriers 7, where it is provided with a lever 71 (Figure 2), which projects laterally in the straight-ahead position of the front wheels 9.
The free end of the lever 71 is connected with the end of the piston rod of a hydraulic cylinder 72, which is pivotable about a substantially vertical pivotal shaft 73 journalled inside one of the carriers 7. By actuating the hydraulic cylinder 72 from the cab 16, the lever 71 and hence the steering shaft 66 can turn the tubular support 69 together with the wheel motors 70 and the front wheels 9 about the centre line 10 out of the straight-ahead position through an angle of about 750 to each side, i.e. through a total.angle of about 150". This large lock is not hindered by the frame since, as is shown in the side elevation of Figure 1, it extends above the front wheels.
An alternative embodiment of the connection of the front wheels 9 with the steering shaft 66 is shown in Figure 6 and comprises a pivotal joint between the support 69 and the steering shaft 66 by means of a horizontal pivotal shaft 69A located in the plane 3. This connection has the advantage that during operation all wheels 9, 11 always make contact with the ground so that the ground pressure of ail wheels is maintained. This is important for the steerability of the front wheels 9.
Moreover, the engine 1 7 located near the front provides an effective load on the two front wheels.
The outboard sides of the rear ends of the two frame beams 2 are provided with tubular supports 74, which extend outwardly from the associated frame beam. The centre lines of the supports 74 coincide with the wheel axis 1 2 of the rear wheels 11. Each of the tubular supports 74 is rigidly supported on its frame beam 2 by a lateral strut 75, which projects forwardly and inwardly away from the associated support. The struts 75 and the lateral supports 74 transfer the reactive force of the driving torque exerted on the rear wheels 11 during operation to the sides of the frame beam 2 at relatively spaced points, the arrangement being such that each strut 75 is fastened to a point of the frame beam 2 where the hollow beam 6 is welded to said frame beam.
A wheel motor 76 is rigidly secured to the outermost end face of each tubular support 74.
Each wheel motor 76 extends outwardly away from its support 74, and the centre line of the output shaft of each wheel motor, provided at the end remote from the support 74, coincides with the wheel axis 12 of the rear wheels 11. The frame 1, the supports 74 and the wheel motors 76 as well as the rear wheels 11 are proportioned so that, as viewed in the direction A, the inner boundary faces of the rear wheels 11 are at a short distance outside the outer faces of the front wheels 9. This distance is at the most about one quarter of the diameter of the wheels. The power take-off shaft 30 is situated, at least in the illustrated position, in front of one of the rear wheels 11.
One of the two hydraulic pumps 41, 42 feeds the two hydraulic wheel motors 76 of the rear wheels 11, and the other hydraulic pump is coupled with the hydraulic wheel motors 70 of the front wheels 9. The two hydraulic pumps 41 and 42 have a variable fluid displacement determined by the driver, which displacement can be adjusted by means of a known swashplate which can be operated from the cab. The diagram of Figure 5 represents a hydraulic circuit arrangement between, for example, the pump 41 and the wheel motors 70 of the front wheels 9. A similar arrangement is also provided for the hydraulic pump 42 and the wheel motors 76 for the rear wheels 11 so that this hydraulic arrangement is duplicated in the tractor. The pump 41 feeds the wheel motor 70 through a valve 77, arranged in the cab 1 6 within reach of the driver's hand, and through a duct 78.The outlet duct 79 of the motor 70 communicates through the valve 77 with a duct 80 feeding the other wheel motor 70. The outlet duct 81 of the latter motor 70 communicates through the valve 77 and a duct 82 with a fluid reservoir 83. In the illustrated position of the valve 77, the wheel motors 70 are arranged in series. When the driver shifts the valve 77 to its other position, the pressurized fluid is passed from the pump 41 through the ducts 78 and 80 to the two wheel motors 70 and through the ducts 79 and 81 and the duct 82 to the reservoir 83. In this case the two motors 70 are arranged in parallel.
The same arrangement applies to the pump 42 and the wheel motors 76.
The duct 78 is in all cases a high pressure duct.
The duct 78 is branched through a duct 84 to an adjustable, commercially available electric switch 85, which is open at a relatively low hydraulic pressure in the ducts 78 and 84, and closes when the limit value of the hydraulic pressure is attained. This limit value is adjustable by means of the switch 85. The switch 85 is earthed to the mass of the tractor and connected through a signal producer 86 (for example, a buzzer or a light signal) and a switch 87 (for example, the ignition switch of the tractor) to the positive terminal of an accumulator 88 of the tractor.
The above-described possibility of connecting the two wheel motors of the rear wheels 11 and the two wheel motors of the front wheels 9 in series or in parallel from the cab is important in the event of unfavourable soil conditions, when one of the two wheels slips or tends to slip, since it is desirable for the other wheel to remain capable of exerting a driving force on the ground.
In this case the wheel motors 70 and/or 76 are arranged in series. During normal operation the wheel motors 70 and 76 are arranged in parallel with regard to, inter alia, driving through bends.
Apart from the arrangement described above, the circuit shown in Figure 5 can be used to control the wheels on one side of the tractor, another similar arrangement controlling the wheels on the other side of the tractor, it being possible to change over from the first to the latter arrangement and conversely.
The switch 85 may be constructed in the form of a safety valve, in conjunction with the signal generator 86. In this case the pressure in the ducts 78, 84 cannot exceed the set limit value.
During operation it is desirable to have under all conditions, a proportion of the power or the driving torque of the driving engine 1 7 at one's disposal for driving machines or implements from the foremost power take-off shaft 30 and/or the hindmost power take-off shaft 51 (both 1000 rev/min) and/or the hindmost power take-off shaft 49 (100, On,600,450 and 350 rev/min). This means that the power or torque respectively required for the propulsion of the tractor and the machinery attached thereto must not exceed a given part of the maximum power or torque of the engine 17.
The power of the driving engine 1 7 in this embodiment is about 100 kW. The hydraulic pressure in the duct 78 (Figure 5) provides a measure of the power or the torque absorbed in propelling the tractor and the attached machinery or implements. When the hydraulic pressure in the ducts 78 and 84 reaches a given limit value (corresponding to, for example, 50 kW), the electric switch 85 closes and the signal generator 86 arranged in the cab produces a signal so that the driver will know that the minimum value of the proportion of the power available for driving the attached machinery under any condition has been reached and that this proportion (100 -- 50 = 50 kW in this example) may tend to drop below the predetermined minimum value.
The driver can then take steps to reduce the power required for propulsion, for example, by reducing the travelling speed by means of the pumps 41 and 42 and/or, when for example a soil cultivating machine is attached, he can slightly lift the front and/or rear lifting device so that the ground resistance of the machine decreases. As soon as the power or torque used for propulsion gets again below the limit value, the signal generator 86 stops because the pressure in the ducts 78 and 84 has dropped. It can thus be ensured in a simple manner that there is always a given proportion of the engine power available for driving attached machinery. Therefore, in principle substantially the entire engine power or torque is available at the power take-off shafts (when the propulsion power is very low or zero) and the power take-off drives are constructed for this power or torque.
In the space between the rear of the engine 1 7 and one of the rear wheels 11 there is a fuel tank 89 which is fastened to one side of the tractor, whilst the reservoir 83 for hydraulic fluid is arranged between the pumps 41 and 42 fastened to the gear box 32 and the adjacent rear wheel on the side opposite the fuel tank 89. The reservoirs 83 and 89 are located for the major part below the cab 16.
The overall length of the tractor is at least about 5 metres, and the overall width of the tractor is about 3 metres. The weight of the tractor is about 3000 kgs.
Whilst various features of the tractor that have been described, and that are illustrated in the drawings, will be set forth in the following claims as inventive features, it is to be noted that the invention is not necessarily limited to these features and that it encompasses all of the features that have been described both individually and in various combinations.

Claims (29)

1. A motor vehicle comprising an engine and a frame which is supported by wheels and terminates at the front, with respect to the intended direction of normal operative travel of the vehicle, above the front wheels, the frame having fastening means for attaching a lifting device to the vehicle.
2. A motor vehicle as claimed in claim 1, in which the frame comprises a beam which is approximately at the same horizontal level as the wheel axes, and a further beam disposed above the wheels.
3. A motor vehicle as claimed in claim 2, in which the beam and the further beam are rigidly interconnected by an upwardly inclined beam.
4. A motor vehicle as claimed in any one of the preceding claims, in which the frame comprises two longitudinal beams at the rear which are further apart than two further longitudinal beams at the front.
5. A motor vehicle as claimed in any one of the preceding claims, in which the frame comprises at the rear side a transverse beam which is disposed ahead of the axis of the rear wheels, with respect to the intended direction of normal operative travel of the vehicle.
6. A motor vehicle as claimed in claim 5, in which a lifting device is fastened to the transverse beam.
7. A motor vehicle as claimed in claim 5 or 6, in which a power take-off shaft is mounted on the transverse beam.
8. A motor vehicle as claimed in any one of the preceding claims, in which at least two power take-off shafts are provided near one end, at least one of which can be driven at different speeds of rotation.
9. A motor vehicle as claimed in claim 7 or 8, in which the power take-off shaft can be driven at any one of at least four different speeds of rotation.
10. A motor vehicle as claimed in claim 8 or 9, in which the power take-off shaft can be selectively driven at speeds of about 1000, 600, 450 and 350 rev/min.
11. A motor vehicle as claimed in any one of claims 8 to 10, in which the power take-off shaft which is drivable with different speeds of rotation is disposed at the rear of the vehicle.
12. A motor vehicle as claimed in any one of the preceding claims, in which at least one power take-off shaft is provided which can be driven from the engine through a clutch.
13. A motor vehicle as claimed in claim 12, in which the clutch can be engaged and disengaged from the driver's seat.
14. A motor vehicle as claimed in claim 12 or 13, in which the clutch can be driven by an output shaft of a gear box which comprises a gear wheel system by means of which, in addition, hydraulic pumps for driving wheels of the vehicle can be driven.
15. A motor vehicle as claimed in claim 14, in which the hydraulic pumps have a fluid displacement which can be varied from the driver's seat.
1 6. A motor vehicle as claimed in any one of the preceding claims, in which the engine has a maximum power of about 100 kw.
17. A motor vehicle as claimed in any one of the preceding claims, in which four wheels are provided that can be driven by means of hydraulic motors.
18. A motor vehicle as claimed in any one of the preceding claims, in which two hydraulic pumps are provided, one of which supplies motors driving the rear wheels and the other of which supplies motors driving the front wheels.
19. A motor vehicle as claimed in any one of the preceding claims, in which at least two wheels are drivable by wheel motors which can be driven in parallel or in series by a hydraulic pump.
20. A motor vehicle as claimed in claim 19, in which the wheel motors of the rear wheels and/or those of the front wheels may be selectively connected in series or parallel.
21. A motor vehicle as claimed in any one of claims 1 7 to 20, in which each hydraulic motor is connected to the frame by means of a tubular support.
22. A motor vehicle as claimed in any one of the preceding claims, in which the engine is arranged near the front wheels and comprises an air-cooled Diesel engine.
23. A.motor vehicle as claimed in any one of the preceding claims, in which a power take-off shaft is arranged near the engine at one side of the vehicle.
24. A motor vehicle as claimed in any one of the preceding claims, in which a steering shaft for steerable wheels is provided which is journalled in a bearing comprising a plurality of plates of wearresistant material which are disposed one above the other, the top plate being releasably fastened to the frame.
25. A motor vehicle as claimed in claim 24, in which two front wheels are mounted on the steering shaft at a short distance from each other, one on each side of the steering shaft, the front wheels being pivotable together with respect to the steering shaft about a substantially horizontal pivotal axis extending in the intended direction of normal travel of the vehicle.
26. A motor vehicle as claimed in claim 24 or 25, in which the upwardly directed steering shaft is adapted to be turned with respect to the frame about its centre line through an angle of about 1 500.
27. A motor vehicle as claimed in any one of the preceding claims, in which a driver's cab is provided, of which the floor is at a lower level than a frame part disposed above the front wheels.
28. A motor vehicle as claimed in any one of the preceding claims, in which a driver's cab is provided which, as viewed on plan, extends forwardly approximately up to the front of the engine, the rear of the cab, as viewed on plan, extending forwardly approximately up to the front of the engine, the rear of the cab, as viewed from the side, being above the front parts of the rear wheels.
29. A motor vehicle as claimed in any one of the preceding claims, which is an agricultural tractor.
GB08402630A 1983-02-07 1984-02-01 A motor vehicle such as a tractor Expired GB2134862B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL8300454A NL8300454A (en) 1983-02-07 1983-02-07 TRACTOR OR SIMILAR VEHICLE.

Publications (3)

Publication Number Publication Date
GB8402630D0 GB8402630D0 (en) 1984-03-07
GB2134862A true GB2134862A (en) 1984-08-22
GB2134862B GB2134862B (en) 1986-11-12

Family

ID=19841371

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08402630A Expired GB2134862B (en) 1983-02-07 1984-02-01 A motor vehicle such as a tractor

Country Status (4)

Country Link
DE (1) DE3403932A1 (en)
FR (1) FR2540452A1 (en)
GB (1) GB2134862B (en)
NL (1) NL8300454A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3740605A1 (en) * 1987-12-01 1989-06-15 Boeck Xaver Removable coupling device for farm tractors
DE102005000936A1 (en) * 2005-01-07 2006-07-20 Rebo Landmaschine Gmbh Farm tractor with a chassis
FR2998522B1 (en) * 2012-11-26 2014-12-19 Naturagriff Sarl INTERMEDIATE CHASSIS WITH INCORPORATED HYDRAULIC POWER PLANT AND MULTIFUNCTIONAL TRANSMISSION

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582352A (en) * 1944-05-30 1946-11-13 Arthur William Bean A power driven vehicle for horticultural or similar purposes
GB660055A (en) * 1949-02-15 1951-10-31 Louis Henri Denis Marie Ballu Improvements in or relating to light tractors
GB976752A (en) * 1960-02-08 1964-12-02 Lely Nv C Van Der Improvements in or relating to tractor and agricultural
GB1013113A (en) * 1960-12-09 1965-12-15 Lely Nv C Van Der Improvements in or relating to a motor vehicle
GB1278875A (en) * 1969-11-25 1972-06-21 Schilter & Co Maschf Improvements in and relating to power take-off trucks
GB1383730A (en) * 1972-05-17 1974-02-12 Svenska Sockerfabriks Ab Agricultur' 'machines
GB1372886A (en) * 1970-10-30 1974-11-06 Lely Nv C Van Der Tractors
GB1399307A (en) * 1972-08-17 1975-07-02 Kloeckner Humboldt Deutz Ag Agricultural motor vehicles and the like
GB2029784A (en) * 1978-09-02 1980-03-26 Carruthers & Co Ltd J Improvements in or Relating to Tractive Vehicles
GB1600788A (en) * 1977-11-10 1981-10-21 Kubota Ltd Offset type tractors
GB1600960A (en) * 1977-07-15 1981-10-21 Kubota Ltd Offset type tractors
GB2126544A (en) * 1982-08-31 1984-03-28 Lely Nv C Van Der Agriculturial tractors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE487730A (en) * 1948-03-08
GB916749A (en) * 1960-10-13 1963-01-30 Agrostrog Protejov An improved frame for a tractor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB582352A (en) * 1944-05-30 1946-11-13 Arthur William Bean A power driven vehicle for horticultural or similar purposes
GB660055A (en) * 1949-02-15 1951-10-31 Louis Henri Denis Marie Ballu Improvements in or relating to light tractors
GB976752A (en) * 1960-02-08 1964-12-02 Lely Nv C Van Der Improvements in or relating to tractor and agricultural
GB1013113A (en) * 1960-12-09 1965-12-15 Lely Nv C Van Der Improvements in or relating to a motor vehicle
GB1278875A (en) * 1969-11-25 1972-06-21 Schilter & Co Maschf Improvements in and relating to power take-off trucks
GB1372886A (en) * 1970-10-30 1974-11-06 Lely Nv C Van Der Tractors
GB1383730A (en) * 1972-05-17 1974-02-12 Svenska Sockerfabriks Ab Agricultur' 'machines
GB1399307A (en) * 1972-08-17 1975-07-02 Kloeckner Humboldt Deutz Ag Agricultural motor vehicles and the like
GB1600960A (en) * 1977-07-15 1981-10-21 Kubota Ltd Offset type tractors
GB1600788A (en) * 1977-11-10 1981-10-21 Kubota Ltd Offset type tractors
GB2029784A (en) * 1978-09-02 1980-03-26 Carruthers & Co Ltd J Improvements in or Relating to Tractive Vehicles
GB2126544A (en) * 1982-08-31 1984-03-28 Lely Nv C Van Der Agriculturial tractors

Also Published As

Publication number Publication date
GB8402630D0 (en) 1984-03-07
NL8300454A (en) 1984-09-03
GB2134862B (en) 1986-11-12
FR2540452A1 (en) 1984-08-10
DE3403932A1 (en) 1984-08-09

Similar Documents

Publication Publication Date Title
US4618016A (en) Motor vehicle such as a tractor
US4448274A (en) Vehicle
US4131170A (en) Tractor having dual side-by-side engines
US4363374A (en) Tractor
US4181315A (en) Articulated agricultural tractors with two engines in tandem and a high capacity fuel tank
US4186811A (en) Tractor vehicle in particular for agricultural use
US4161991A (en) Tractors
US4585084A (en) Agricultural tractor
CA1076963A (en) Tractor vehicle in particular for agricultural use
US4523656A (en) Tractor for agricultural purposes
US4791996A (en) Agricultural tractor with lightweight frame and front and rear wheels forming substantially continuous wheel path
GB2135641A (en) Motor vehicles such as tractors
US4860843A (en) Pulling or loading vehicle with free space between the rear wheels
US4296826A (en) Vehicle having bogie mounted wheels
GB2029784A (en) Improvements in or Relating to Tractive Vehicles
GB2134862A (en) A motor vehicle such as a tractor
US4105085A (en) Tractors and other vehicles
US4591018A (en) Tractor
GB2128147A (en) Agricultural tractor
GB1568565A (en) Auxiliary attachment for a tractor
CA1178308A (en) Multi-purpose vehicle
WO1984000934A1 (en) A tractor
CN215529816U (en) Combined soil preparation machine
US2686063A (en) Auxiliary steering arrangement for vehicles
GB2132145A (en) Motor vehicles such as tractors

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee