GB2120293A - Laundry softening detergent - Google Patents

Laundry softening detergent Download PDF

Info

Publication number
GB2120293A
GB2120293A GB08309604A GB8309604A GB2120293A GB 2120293 A GB2120293 A GB 2120293A GB 08309604 A GB08309604 A GB 08309604A GB 8309604 A GB8309604 A GB 8309604A GB 2120293 A GB2120293 A GB 2120293A
Authority
GB
United Kingdom
Prior art keywords
sodium
bentonite
particles
detergent
detergent composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08309604A
Other versions
GB2120293B (en
GB8309604D0 (en
Inventor
Edwin Allen
Joseph Andre Reul
Alan Dillarstone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/366,713 external-priority patent/US4421657A/en
Priority claimed from US06/366,712 external-priority patent/US4419250A/en
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of GB8309604D0 publication Critical patent/GB8309604D0/en
Publication of GB2120293A publication Critical patent/GB2120293A/en
Application granted granted Critical
Publication of GB2120293B publication Critical patent/GB2120293B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/162Organic compounds containing Si
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Abstract

A heavy duty laundering and textile softening detergent composition, in particulate form, useful for automatic machine washing of laundry in water, especially hot water, and readily dispensable from a charging compartment of an automatic washing machine (by action of water being fed through such compartment) includes a synthetic organic detergent, a builder for such detergent and a laundry softening proportion of bentonite, with which there is present a dispensing assisting proportion of a siliconate or similarly functioning derivative of such siliconate. In addition to tending to inhibit firm adherence to the charging compartment walls of the bentonite, which is advantageously in separately agglomerated bead form, and promoting release thereof from such walls, the siliconate also aids in controlling the foaming activity of the built synthetic organic detergent and in strengthening the bentonite agglomerates. It also assists in stabilizing perfumes, dyes and bleaches when such are present in the detergent compositions when it is employed in coatings for particles containing such components.

Description

SPECIFICATION Laundry softening detergent The present invention relates to detergent compositions. More particularly, it relates to particular heavy duty laundering and textile softening detergent compositions intended for use in the machine washing of laundry. It also relates to methods for the manufacture of such compositions.
Betonite is advantageous as a softening agent in detergents. The softening properties of bentonite and its desirable adherence to substrates are important advantages but its "gelling" characteristics can cause an objectionable gumminess in the detergent, which sometimes will tend to hold detergent beads and/or bentonite beads or agglomerates to surfaces, thereby tending to inhibit free flow.
Thus, under conditions of high humidity or in the presence of free moisture bentonite can "gel" and become sticky or of reduced flowability, even becoming held to passageway or chamber walls despite applications of forces to the particles to remove them (such as the force of flowing water being charged to an automatic washing machine).
Such adherence could be significantly disadvantageous for a desirably free flowing commercial particulate detergent product and could lead to a lesser degree of acceptance of the product by the consumer. Even when flowability through production lines during the manufacturing and packaging processes, and flowability from the dispensing carton when the product is being employed by the ultimate consumer are satisfactory, the presence of bentonite can cause the detergent composition particles to be held to appliance part walls, especially charging compartment walls, of washing machines equipped with means for automatically charging detergent composition to the wash water in the machine tub or drum, when such particles and the bentonite present are moistened.In such circumstances the bentonite may tend to swell, with the production of moist adherent surfaces, so that the particles may resist removal from surfaces against which they are resting. For example, in washing machines and other appliances equipped with automatic dispensers or charging compartments, the detergent particles may not entirely fall from the dispenser or be washed out of the dispenser, especially if the dispenser walls had been wet before addition of the detergent. Failure to dispense part of the desired charge to the washing machine diminishes the effective detergent and softener concentrations of the wash water and can lead to inaccurate detergent and softener concentrations being employed.
Also, it may create an unsightly build-up which may be objectionable to the consumer. In either situation the result is undesirable and should be avoided, if possible.
In accordance with the present invention a heavy duty laundering and textile softening particulate detergent composition, useful for automatic machine washing of laundry in water and dispensable from a charging or dispensing compartment of such a machine by action of water being fed through such compartment, comprises a built synthetic organic detergent which is an anionic or nonionic detergent or a mixture thereof, a building proportion of a builder for the synthetic organic detergent which is a water soluble or water insoluble builder or a mixture thereof, and a softening proportion of bentonite, with the bentonite being in particles with which there is included a dispensing assisting proportion, preferably at least 0.15%, of a siliconate and/or dispensing assisting derivative thereof.In preferred embodiments of the invention the synthetic organic detergent includes both an anionic detergent, which is preferably a sodium linear higher alkylbenzene sulphonate, and a non ionic detergent, which is preferably a condensation product of a higher fatty alcohol and polyethylene oxide, a higher fatty acid soap is present, the builder salt is primarily pentasodium tripolyphosphate or NTA or a mixture thereof, with a small proportion of sodium silicate, the bentonite is a swelling bentonite of a moisture content of at least 3%, the siliconate is an alkali metal lower alkyl siliconate, more preferably potassium methyl siliconate, and 5 to 35% of a bleaching agent which releases oxygen in aqueous solution at elevated temperature, such as sodium perborate, is present. Also within the invention are methods for making the improved products that have been described herein.
The synthetic organic detergent(s) employed will normally be either nonionic or anionic and very preferably will be a combination of both, but suitable amphoteric or ampholytic detergents, such as those sold under the Miranol trademark may also be used in conjunction with nonionics and anionics in the present compositions.
Cationic detergents, such as the quaternary ammonium halides, e.g. those sold under the Arosurf trademark, can also serve as supplementary fabric softeners in these products but normally will not be used.
Various synthetic anionic organic detergents, such as those characterised as sulphonates and sulphates, usually as alkali metal or sodium salts, may be employed, but those which are most preferred are the linear higher alkylbenzene sulphonates, higher alkyl or fatty alcohol sulphates and higher fatty alcohol polyethoxy or polyethoxylate sulphates. Preferably, in the higher alkyl benzene sulphonates the higher alkyl group is linear and is preferably of 10 to 14 carbon atoms, more preferably 11 to 13, e.g. 12, and the sulphonate is a sodium salt. The alkyl sulphate is preferably a higher fatty alkyl or alcohol sulphate of 10 to 1 6 carbon atoms, more preferably 12 to 14 carbon atoms, e.g. 12, and is preferably also employed as the sodium salt.The higher fatty alcohol polyethoxy sulphates will preferably be of 10 to 18 carbon atoms, more preferably 12 to 16, e.g. 1 2, in the higher fatty alcohol, the ethoxy content will preferably be from 3 to 30 ethoxy groups per mol, more preferably 3 or 5 to 20, and the detergent preferably will be a salt of sodium.
Thus, it will be seen that the alkyl groups of the sulphonates and sulphates are preferably linear or fatty higher alkyl groups of 10 to 18 carbon atoms, the cation is preferably sodium, and when a polyethoxy chain is present the sulphate is preferably at the end thereof. Other useful anionic detergents include the higher olefin sulphonates and paraffin sulphonates, e.g. the sodium salts wherein the olefin or paraffin groups are of 10 to 1 8 carbon atoms. Specific examples of the preferred detergents are sodium dodecyl benzene sulphonate, sodium tallow alcohol polyethoxy (3 EtO) sulphate, and sodium hydrogenated tallow alcohol sulphate. In addition to the preferred anionic detergents mentioned, others of this well known group may also be present, especially in only minor proportions with respect to those previously described.Also, mixtures thereof may be employed and in some cases such mixtures can be superior to single detergents.
Although various nonionic detergents of satisfactory physical characteristics may be utilized, including condensation products of ethylene oxide and propylene oxide with each other and with hydroxy-containing aromatic and aliphatic bases, such as nonyl phenol and Oxotype alcohols, it is highly preferred that the nonionic detergent be a higher fatty alkoxy polylower alkoxy lower alkanol, which may also be described as a condensation product of ethylene oxide (and/or propylene oxide) and a higher fatty alcohol. In such products the higher fatty alkoxy or alcohol is of 10 to 1 6 carbon atoms, preferably 12 to 1 5 carbon atoms, and the nonionic detergent contains from about 3 to 20 lower alkoxy groups, preferably 5 to 15, and more preferably 9 to 13 ethylene oxide groups per mol, e.g. 11.
The builder for the synthetic organic detergent, which helps to improve the washing action of the detergent, is either a water soluble or a water insoluble builder or a mixture thereof. Of course, mixtures of water soluble builders may also be utilized, e.g. polyphosphate and NTA (nitrilotriacetic acid salt, normally the sodium salt), but of the water insoluble builders usually only the zeolites will be present, although mixtures of such zeolites may also be found to be advantageous.
While zeolites are useful components of the present compositions, generally it will preferably to employ water soluble builder(s), and often such will be the only builder(s) present.
The water soluble builder or mixture thereof employed may be one or more of the conventional materials that have been used as builders or suggested for such purpose. These include inorganic and organic builders, and mixtures thereof. Among the inorganic builders those of preference are the various phosphates, preferably polyphosphates, e.g. tripolyphosphates and pyrophosphates, such as pentasodium tripolyphosphate and tetrasodium pyrophosphate.
Trisodium nitrilotriacetate (NTA), preferably employed as the monohydrate and other nitrilotriacetates, such as disodium nitrilotriacetate, are preferred organic builders. The designation NTA, which normally stands for nitrilotriacetic acid, in this specification is employed to also refer to the various salts thereof, preferably the alkali metal salts and most preferably the trisodium salt.
Sodium tripolyphosphate, sodium pyrophosphate and NTA may be utilized in hydrated forms, which are often preferred, but anhydrous forms may also be used. Of course, carbonates, such as sodium carbonate, are useful builders and may desirably be employed, alone or in conjunction with bicarbonates, such as sodium bicarbonate. When the polyphosphates are employed it may be preferred to have sodium pyrophosphate present with sodium tripolyphosphate (STP) in proportion from 1:10 to 10:1, preferably 1:5 to 5:1 with respect to STP, with the total proportion of both builders being about the same as that mentioned herein for the sodium tripolyphosphate.Other water soluble builders that are considered to be effective include the various other inorganic and organic phosphates, borates, e.g. borax, citrates, gluconates, EDTA (ethylene diamine tetracetic acid e.g. as the sodium salt) and iminodiacetates.
Preferably the various builders will be in the forms of their alkali metal salts, either the sodium or potassium salts, or a mixture thereof, but sodium salts are normally more preferred. In some instances, as when neutral or slightly acidic detergent compositions are being produced, acid forms of the builders, especially of the organic builders, may be preferably but normally the salts will either be neutral or basic in nature.The silicates, preferably sodium silicate of Na2O:SiO2 ratio within the range of 1:1.6 to 1:3.0, preferably 1:2 to 1:2.8, e.g. 1:2.35 or 1:2.4, also serve as builder salts but because of their strong binding properties and because they could promote objectionable adherence of detergent particles to dispenser walls they are considered to be special cases of builders, and relatively small proportions thereof will be present (such proportions will be described separately from the other builders.
When it is desired for greater proportions of silicate to be in the detergent composition it may be preferable for hydrated sodium silicate particles to be post-added to spray dried particles containing other builder(s).
The water insoluble builders, as that term is employed in the present specification, are those which help to improve the detergency of synthetic organic detergents, especially that of synthetic anionic organic detergents, and in such cases the mechanism for increasing detergency appears to be related to water softening effects of the builder, such as calcium and/or magnesium ion removal from the wash water, usually by an ion exchange mechanism. While it is within the invention to utilize water insoluble builders other than the zeolites, as a practical matter, at the present time, the zeolites are principal such insoluble builders that are used.
The zeolites employed include crystalline, amorphous and mixed crystalline-amorphous zeolites, of both natural and synthetic origins.
Preferably, such materials are capable of reacting sufficiently rapidly with calcium ions so that, alone or in conjunction with other water softening compounds in the detergent, they soften the wash water before adverse reactions of such ions with other components of the synthetic organic detergent composition occur. The zeolites employed may be characterised as having a high exchange capacity for calcium ion, which is normally from about 200 to 400 or more milligram equivalents of calcium carbonate hardness per gram of aluminosilicate, preferably 250 to 350 mg eq/g.
Although other ion exchanging zeolites may also be utilized, normally the finely divided synthetic zeolite builder particles employed in the practice of this invention will be of the formula (Na2O)x . (AI2O3),, (SiO2) . w H 0 z 2 wherein x is 1, y is from 0.8 to 1.2, preferably about 1, z is from 1.5 to 3.5, preferably 2 to 3 or about 2, and w is from 0 to 9, preferably 2.5 to 6.
The zeolite should be a univalent cationexchanging zeolite, i.e. it should be an aluminosilicate of a univalent cation such as sodium or potassium.
Crystalline types of zeolites utilizable as good ion exchangers in the invention, at least in part, include zeolites of the foliowing crystal structure groups: A, X, Y, L, mordenite and erionite, of which types A, X and Y are preferred. Mixtures of such molecular sieve type zeolites can also be useful, especially when type A zeolite is present.
These crystalline types of zeolites are well known in the art and have been described in many patents in recent years for use as detergent composition builders.
Crystalline zeolites of ion exchanging and water softening properties that are preferred are those which are in hydrated or water loaded form, containing bound water in an amount from about 4% up to about 36% of the zeolite total weight, depending on the type of zeolite used, and are preferably hydrated to about 1 5 to 70% of their capacities. Normally, water contents are in the range of about 5 to 30%, preferably about 10 or 15 to 25%, such as 17 to 22%, e.g. 20%.
Preferably the zeolite should be in a finely divided state, with the ultimate particle diameters being up to 20 microns, e.g. 0.005 to 0.01 to 20 microns, more preferably being from 0.01 to 1 5 microns, e.g. 3 to 12 microns, and especially preferably being of 0.01 to 8 microns mean particle size, e.g. 3 to 7 microns, if crystalline, and 0.01 to 0.1 micron, e.g. 0.01 to 0.05 micron, if amorphous. Although ultimate particle sizes are much lower, usually the zeolite particles will be of sizes within the range of No's. 100 to 400 sieve (U.S. sieve series, which have openings 149 microns across and 37 microns across respectively), preferably 140 to 325 (U.S. sieve series, which have openings 105 microns across and 44 microns across respectively).However, they may sometimes be agglomerated, separately or with spray dried detergent composition particles, to sizes like those of the particles, for example, + 10 or 25%.
Although sodium sulphate and sodium chloride and other filler salts possess no building properties they are some times utilized in detergent compositions for their filling characteristics, and sodium sulphate is especially useful as a processing aid. In addition to increasing the volume and weight of the product to facilitate measuring they also sometimes improve bead stabilities and physical properties of the detergent composition beads in which they are incorporated. Nevertheless, because the present compositions are satisfactory without any fillers being present, such are often avoided entirely or any proportion thereof present may be minimized.
The softening clay that is an important component of the present detergent compositions is of the type characterised as "bentonite".
Bentonites are colloidal clays (aluminium silicates) containing montmorillonite. They are of varying composition and are obtainable from natural deposits in many countries, including Italy, Spain, U.S.S.R., Canada and the United States (principally Wyoming, Mississippi and Texas). The bentonites which are useful in accordance with the present invention are those which have "lubricating" and dispersing properties, which appear to be associated with swelling capacity in water. Although some bentonites, principally those which may be characterised as calcium (or magnesium) bentonites, have low or negligible swelling capacities, these may be converted or "activated" so as to increase such swelling capacity.Such conversion may be effected by appropriate treatment with alkaline material, preferably aqueous sodium carbonate solution, in a manner known in the art, to insert a monovalent metal, such as an alkali metal, e.g. sodium (or potassium), into the clay structure in place of the divalent alkaline earth metal or magnesium. In addition to improving the swelling capacity of the bentonite, which benefits fabric softening and dispensing capabilities thereof, the alkali or alkali metal carbonate solution treatment of the nonswelling clay or poorly flowing clay replaces, for example,5 to 100%, to 90% or 15to 50% of the exchangeable calcium and/or magnesium with sodium (or potassium), and thereby improves the exchange capacity of the clay for water hardness ions, such as those of calcium and magnesium. The resulting byproducts, calcium carbonate and magnesium carbonate, are left with the bentonite, and appear to have desirable adjuvant properties in the final products.
Although ion exchange capacities of bentonites have been mentioned in the patent literature as being relevant to softening capacity, it is a feature of the present invention that good textile softening is obtainable with sodium bentonites of comparatively low ion exchange capacities.
Whether the swelling bentonite (also called sodium bentonite herein because in most cases the exchangeable metal will be sodium) is a naturally occurring clay or is obtained by alkali treatment of a non-swelling or poorly swelling bentonite, it may be used in the present textile softening detergent compositions. Treated Italian bentonites have been found to be especially useful and are considered most appropriate for products intended for European markets. For American markets Wyoming bentonite is often preferable and such does not have to be treated because it already contains sodium ion in the bentonite structure and has swelling properties.
Analysis of a typical Italian bentonite (after alkali treatment) shows that it may contain 66.2% of SiO2,17.9% of Al203,2.80% of MgO,2.43% of Na,O, 1.26% of Fe,O,, 1.1 5% of CaO, 0.14% of TiO2 and 0.13% of K20. A typical Wyoming or western bentonite (untreated) may contain from 64.8% to 73.0% of SiO2, 14 to 18% of AI2O3, 1.6 to 2.7% of MgO, 0.8 to 2.8% of Na20,2.3 to 3.4% of Fe203, 1.3 to 3.1% of CaO and 0.4 to 7.0% of K20. Thus, it is seen that the compositions of the bentonites are quite different although both types have swelling properties.It is considered that if the Na20 content of the clay is at least about 0.5%, preferably at least 1% and more preferably at least 2% (the equivalent proportion of K20 may also be taken into account), the clay will be satisfactorily swelling for the purposes of the present invention, with satisfactory softening and dispersing properties in aqueous suspension (the swelling of the bentonite facilitates breakup of the bentonite agglomerate).While it is expected that proportions of the various constituents of the swelling bentonites (which may herein be referred to as sodium bentonites, whether natural or "activated") within the ranges between the typical analyses given will result in useful components of the present compositions, it is also considered that the percentages of the components of the natural swelling bentonite may be raised or lowered about 10% and that the.
typical analysis of the treated bentonites may be expanded + 10%, with the bentonites within those ranges still being useful. Additionally, other swelling bentonites may be substituted, at least in part. Generally, the useful bentonites will have swelling capacities of at least 1 or 2 millilitres per gram, more preferably at least 5 or 10 ml/g. Of course, higher swelling capacity bentonites will also be useful. Normally the range of swelling capacities will be from 5 to 30 ml/g and frequently will be in the 5 to 20 ml/g range.
The sodium bentonite or swelling bentonite preferably will be agglomerated before being blended with spray dried built detergent beads and any other adjuvants to be post-added. Such agglomeration will be carried out in known manner, as by utilizing a water or aqueous binder spray application to tumbling bentonite powder, extrusion, compaction, pan agglomeration or other technique. However, it is highly desirable that the bentonite be in finely divided powder form before agglomeration so that, when the agglomerate breaks up in the wash water, the particles of bentonite will be small enough to be effective lubricants, as deposited on the laundry.
Thus, it will normally be desirable for essentially all of the bentonite powder, before agglomeration, to pass through a No. 100 sieve (U.S. Sieve Series which has openings 149 microns across), with at least 99% passing such a sieve and with over a major proportion thereof passing through a No. 200 sieve (U.S. Sieve Series, which has openings 74 microns across), preferably with less than about 30% by weight of the particles failing to pass through such a sieve and more preferably with no more than 20% resting on such sieve. Of course, the ultimate particle sizes are lower.
Also important to promote ready break-up of bentonite agglomerates and dispersion in the wash water, so that the minute particles thereof may be adhered to textile fibres to soften them, is the moisture content of the bentonite. Although it is desirable to limit the free moisture content of the bentonite utilized to about 10% or so, with moisture contents above 15% not normally being employed, it is even more important to make certain that the bentonite includes enough free moisture, most of which is considered to be present between adjacent plates of bentonite, to facilitate quick disintegration of the bentonite and any adjacent materials in the particles when such particles or detergent compositions containing them are brought into contact with water, such as wash water.It has been found that at least about 2%, preferably at least 3% and more preferably, about 4% or more of water should be present in the bentonite (so-called "internal" moisture), and that the bentonite should not be dried so that less than such percentages of water are even temporarily present in it. In other words, overdrying to the point where the bentonite loses its internal moisture can significantly diminish the utility of the present compositions. When the bentonite moisture content is too low the bentonite does not aid in satisfactorily swelling and disintegrating the agglomerated beads in the wash water.
Preferred swelling bentonites of the types described above are sold under the trade names Laviossa and Winkelmann, e.g. Laviosa AGB and Winkelmann G 13, both of which are treated Italian bentonites, and Mineral Colloid No. 101 (and other similar designations) corresponding to Thixo-Gels No's. 1,2, 3 and 4 (marketed by Benton Clay Company, and affilitate of Georgia Kaolin Co.). As will be described iater, the treated bentonites will also preferably be essentially free of grit, preferably having been further processed by grinding to a fine powder before agglomeration.Usually the commercial bentonite used will have a pH in water (at 6% concentration) in the range of 8 to 9.4, a maximum free moisture content of about 8%, a specific gravity of about 2.6 and a viscosity, at 10% concentration in water, within the range of 5 to 30 centipoises, preferably 10 to 30 cp.
The siliconate, which is employed in conjunction with the bentonite, preferably to coat it, and which also can be used to coat the detergent composition particles, and which acts to inhibit sticking of the bentonite and the detergent to charging compartment walls of an automatic washing machine (and to walls of other "containers" for the product), is one which may be easily applied to the bentonite and which can at least partially coat the particles thereof and inhibit their adhesion to wails of a compartment in which they may be stored temporarily, even when such walls are damp or wet. The siliconate is a salt of siliconic acid, preferably an alkali metal salt thereof, and the siliconic acid is preferably a lower alkyl siliconic acid.While it is desirable that the salt-forming metal or other cation be one which will produce a water soluble siliconate, so that it may be applied to the bentonite in aqueous solution, such may not be necessary and it is contemplated that water dispersible siliconates will also be utilized.
Furthermore, it is within the invention to employ lipophilic siliconates, which may be applied in organic solvent solution or in aqueous organic solvent solution, or in corresponding emulsions or dispersions. The alkali metal of the siliconate is preferably either sodium or potassium, but other salt-forming cations may also be utilized providing that the siliconate is suitable for the present purposes. It is contemplated that other alkali metal salts of siliconic acids than the lower alkyl siliconates may be utilized, including both aliphatic and aromatic siliconates, but the lower alkyl siliconates, wherein the lower alkyl is of 1 to 3 or 4 carbon atoms, e.g. potassium methyl siliconate and sodium propyl siliconate, are considered to be preferred. Instead of employing the siliconate an equivalent charge of the corresponding siliconic acid and a corresponding base may be utilized.
For most effective results it is much preferred to employ the lower alkyl siliconates previously described but it is recognized that such compounds may polymerize, at least partially, to siliconic or other film-forming and foam-inhibiting compounds or polymers and accordingly it is within the broader bounds of this invention to utilize such "derivative" materials directly, at least in part, as a component of the present detergent compositions. When such a derivative of the siliconate is employed it will be one which aids in improving the dispensing of the bentonite beads or detergent composition particles from a charging compartment of an automatic washing machine, such as a compartment wherein the particulate contents are washed out by the flow of water into the washing tub of the machine.
Although the operation of the present invention should not be considered to be limited by the mechanism to be described, it may well be that the water soluble alkali metal lower alkyl siliconates (which may also be described as alkali metal lower alkyl silanolates), may be converted to polymethyl siloxanes, as by the action of atmospheric carbon dioxide or other acidic acting material, which could also result in the production of alkali metal carbonate, such as sodium carbonate, a useful builder salt. The polymethyl siloxanes are known to be hydrophobic and it is possible that their presence is the cause of the improved properties of the coated bentonite (or other detergent particles) with respect to being of improved dispensing properties from the charging compartment of an automatic washing machine.
The production of siloxanes by the described reaction has been mentioned in the text Chemistry and Technology of Silicones, by Walter Noll, published by Academic Press in 1 968.
However, although silicones have been included in detergent compositions in the past, often for their anti-foaming properties, no disclosure of the use of water soluble siliconates to coat bentonite and detergent particles to promote free release from damp surfaces of charging compartments, as in the present invention, is known and such process and the resulting compositions are considered to be unobvious from the prior art.
The water soluble soap, which is a desirable component of the present detergent compositions and which has a useful foam limiting action in the wash water, which is especially advantageous for side loading or horizontal tub washing machines, is normally a higher fatty acid soap of an alkali metal, such as sodium or potassium, with sodium soaps being highly preferred. Such soaps are well known and need not be described at length.
Suffice it to say that they may be made from natural fats and oils, such as those from animal fats and greases and from vegetable and seed oils, for example, tallow, hydrogenated tallow, coconut oil, palm kernel oil, and correspondent "natural" and synthetic fatty acids, and that they are normally of 10 to 24 carbon atoms, preferably 14 to 18 carbon atoms. Preferably such soaps are of hydrogenated tallow or hydrogenated tallow fatty acids, e.g. stearic acid. The water soluble soap which may be included in the present compositions will preferably be chosen so as to have a desirable balance of good detergent properties, effective foam reducing effect and other good physical properties. Specifically, among those other physical properties will be desirable hardness, good binding effect and little or no tendency to produce adhesive gels under use conditions (as in the washing machines charging compartment). It has been found that the sodium hydrogenated tallow soaps satisfy these conditions best but even compositions containing them are desirably also treated with siliconate to further inhibit adhesion to damp compartment walls. Of course, for compositions wherein foaming is desirable the soap content is lowered, the soap is omitted or a lower fatty acid soap, e.g. sodium laurate, may be used instead.
Bleaching agents do not have to be incorporated in all of the detergent compositions of this invention but for best cleaning and whitening of laundry it is often preferable that a bleach be employed. When the wash water temperature in the automatic washing machine is high enough sodium perborate is the bleaching agent of choice because the elevated temperature, especially when it is above 800C, e.g. 900C or 950C, can cause decomposition of the perborate and release of bleaching oxygen from it. Thus, under such conditions the sodium perborate, which is often referred to as sodium perborate tetrahydrate or sodium borate perhydrate, and which will usually have an active oxygen content of at least about 10%, releases such oxygen without the need for employment of an activating agent or decomposition catalyst.
When lower temperature laundering is undertaken, either in cold water or hot water, for example, at temperatures from 200C to 600 C, the sodium perborate will not usually sufficiently decompose to satisfactorily bleach textiles being washed and in such circumstances an activator will be employed or another suitable bleaching agent will be used, also usually with an activator.
Many such systems have been described in the literature, most of which belong to the class of peroxygen compounds, such as persulphuric acid, peracetic acid, performic acid, perphthalic and perbenzoic acid, and salts thereof, such as the alkali metal and alkaline earth metal salts, e.g.
sodium or magnesium salts. Various activators for such compositions are known which promote the controlled release of oxygen from them in hot and cold water systems. Included among such activators are heavy metal salts, such as copper salts, and various inorganic and organic compounds, which have been described in the art.
Among the lower temperature bleaches that which is preferred is magnesium dimonoperoxyphthalate. Of course, various other oxygen releasing bleaching materials, such as the hydroperoxides, may be employed and in the proper circumstances chlorine releasing bleaching materials can be incorporated in the present detergent compositions.
Various adjuvants may be present in the crutcher mix from which base beads or detergent compositions may be spray dried, or such adjuvants may be post-added, with the decision as to the mode of addition often being determined by the physical properties of the adjuvant, its resistance to heat, its resistance to degradation in the aqueous crutcher medium, and its volatility.
Among the adjuvants often employed are enzyme powders or prills, which normally are post-added to the base heads because they are heat sensitive.
These may be any of a variety of commercially available products, included among which are Alcalase (Registered Trade Mark), manufactured by Novo Industri, A/S, and Maxatase (Registered Trade Mark), both of which are alkaline proteases (subtilisin). Among specific enzyme preparations that may be employed are Novo Alcalase 2M (2 Anson units per gram) and Maxatase P 440,000.
Although the alkaline proteases are most frequently employed, amylolytic enzymes, such as alpha-amylase, may also be utilized. These enzyme compositions usually contain active enzymes in combination with an inert powdered vehicle, such as sodium or calcium sulphate, and the proportion of active enzyme may vary widely, usually being from 2 to 80% of the commercial preparation. In this specification proportions referred to are of the enzyme preparations, not the active part thereof.
Among the fluorescent brighteners those most commonly employed are the stilbene brighteners, e.g. Tinopal 5 BM, especially in extra concentrated form. Among the stilbene compounds are cotton brighteners, such as those sometimes referred to as CC/DAS brighteners, derived from the reaction product of cyanuric chloride and the disodium salt of diaminostilbene disulphonic acid, including variations thereof with respect to substituents on the triazine and aromatic rings. This class of brighteners is known in the detergent art and will most often be used when bleaching components are not present in the final product. When it is desired for the detergent composition to include a bleach, such as sodium perborate or other oxidizing bleach, bleach stable brighteners may be incorporated in the crutcher mix.Among these there may be mentioned the benzidene sulphone disulphonic acids, naphthotriazolyl stilbene sulphonic acids and benzimidazolyl derivatives. Polyamide brighteners, which also may be present, include aminocoumarin on diphenyl pyrazoline derivatives, and polyester brighteners, which can also be used, include naphthotriazolyl stilbenes.
Such brighteners are normally used as their soluble salts, e.g. sodium salts, but they may be charged as the corresponding acids. The cotton brighteners will usually comprise major proportions of the brightener systems employed.
When it is desired that the product made be entirely or partially coloured, various suitable dyes and dispersible pigments may be employed.
When blue dyes, such as Acilan blue, or pigments, such as ultramarine blue, are utilized they have their dual effects of serving to colour some or all of the detergent composition particles, or particles of components of the detergent composition, and helping to give the washed laundry a desirable bluish tint. Colouring of agglomerated bentonite particles by suitable dyes or pigments may be especially desirable because natural bentonite sometimes may be off-colour, so that the agglomerates may be converted from particles that look dirty to those which are of attractive colour and appearance.
Perfumes employed, which are usually heat sensitive and may contain volatile constituents, including a solvent, such as alcohol or a suitable glycol or polyol or hydrocarbon, are normally of synthetic perfumery materials, sometimes mixed with natural components, and generally will include alcohols, aldehydes, terpenes, fixatives and/or other normal perfume components, known in the art.
In addition to the adjuvants mentioned there may also be present flow promoting agents, antisetting materials employed to prevent premature gelation of the crutcher mix, dispersion aids, antiredeposition agents and, in some cases, additional softening agents, e.g. cationic softeners such as the quaternary ammonium halides, e.g.
dimethyldioctadecyl ammonium chloride.
However, as was indicated previously, normally the cationic softening agents will not be employed and if used, they will be post-added.
Of course, water is present in the crutcher from which the spray dried component of the present composition is made, wherein it serves as a medium for dissolving or dispersing the various components of the spray dried beads. Therefore, some water, in both free and hydrate forms, is in the product. Similarly, water may be employed to agglomerate the bentonite and perborate powders and dissolve the siliconate. While it may be preferred to employ deionized water, so that the hardness ion contents thereof may be very low and so that metallic ions that can promote decomposition of any organic materials which may be present will be minimized, city or tap water may be utilized instead and sometimes, for economic or supply reasons, will be used exclusively. Normally the hardness cdntent of such water will be not greater than about 300 parts per million, as calcium carbonate.
The proportions of the various components in the final product of this invention will be such as to result in it being effective as a fabric softening detergent, free flowing and of improved dispensability from a charging compartment of an automatic washing machine by action of wash water passing through such compartment. The proportion of anionic detergent will normally be from 3 to 10% of the final product, preferably 3 to 7% and more preferably 4 to 6%, e.g. 5%. Usually the nonionic detergent content will be from 1 to 5%, preferably 2 to 4%, e.g. 3 or 4%.In those instances when nonionic detergent is not being employed the proportion of anionic detergent may be increased by as much as 5% and in cases in which the anionic detergent is omitted the nonionic detergent content may be increased by up to 10%, providing that the detergent composition remains satisfactorily dispensable.
While it is possible for effective detergent compositions to be made without either the anionic or nonionic detergent, such products will not be as useful as preferred compositions of this invention. The builder content will generally be in the range of 20 to 75%, preferably 30 to 50% (and such is often preferably entirely water soluble builder salt) and more preferably 30 to 40%, e.g. about 35%. As was previously indicated sodium tripolyphosphate and NTA are preferred water soluble builders, which may be the sole builders employed. When they are utilized in admixture the mixture will preferably contain from 10 to 90% of one of them, with the balance being the other such builder, and within such ranges preferred proportions may be 20 to 80% and 40 to 60%, and complementing percentages.Similar ranges of percentages are applicable when the builder is a mixture of water soluble builder salt and water insoluble builder, such as a zeolite.
The bentonite content of the textile softening detergent, preferably in the form of a siliconate coated agglomerate of more finely divided bentonite powder particles, will be a satisfactorily softening proportion thereof, which usually will be within the range of 5 to 25%, preferably 10 to 20%, more preferably 14 to 18%, e.g. about 16%.
The siliconate used will be employed in a proportion sufficient to have the desired dispensing assisting effect and such proportion will normally be from 0.05 to 1%, preferably 0.15 to 19/0, although up to 3% can be employed. A preferred range of proportions of the silicatone is from 0.1 or 0.1 5 to 0.3 or 0.4%, for examples, 0.1 5% or 0.3%. When the siliconate is used to cover agglomerated bentonite only, on a coated bentonite agglomerate basis the siliconate content will usually be at least 0.15%, often 0.15 to 5%, preferably 0.15 to 1% and more preferably 0.15 to 0.5%, e.g. 0.4%.
When a fatty acid soap is present the proportion thereof will usually be no greater than 10%. A preferred range of soap contents is from 2 to 6%, more preferably from 2 to 4%, e.g. 3%.
When a bleaching agent is present the proportion thereof will usually be within the range of 5 to 35%, preferably 1 5 to 25%, e.g. 209/0. However, it will be kept in mind that such proportions are based on employment of sodium perborate and will be modified when other oxidizing agents are utilized, so as to have approximately the same bleaching effect (or active oxygen content). The moisture content of the product, which does not include hydrate moisture which is not removable during the standard heating at 1 050C for two hours, will usually be within the range of 3 to 20%, with the higher percentages thereof being permissible when a substantial proportion, at least 1/4 and preferably at least 1/2 of the moisture is in hydrate form.A preferred such content is from 10 to 1 5%, e.g. 109/0. Any moisture not removable by the standard test mentioned above is considered to be a part of the compound in which it is present as a hydrate, e.g.
a zeolite.
The total proportion of various adjuvants which may also be present in the detergent composition will usually be no more than 20%, preferably being limited to 15% and more preferably to 10%.
Although water soluble sodium silicate has building properties, especially with respect to its action against magnesium ions in hard water, because it also acts as a binder the proportion thereof present will not be limited by the builder content proportions previously given and will be considered herein with other adjuvants for the present compositions. Usually it will constitute no more than 8% of the product, with a normal range of 1 to 5%, preferably 2 to 4%, e.g.3%. The content of filler salt, such as sodium sulphate, when it is present, will also normally be limited, to no more than 10%, and will normally constitute from 0.5 to 5%, preferably 0.5 to 2%, e.g. 1 or 1.5% of the product.The percentage of proteolytic enzyme used will normally be from 0.1 to 2%, preferably 0.2 to 1%, e.g. 0.3%, and the percentage of optical brightener dye will be from 0.1 to 2%, preferably 0.1 to 0.5%, e.g. about 0.2%. Perfume content will normally be from 0.05 to 2%, preferably 0.1 to 1, and more preferably 0.2 to 0.5%, e.g. about 0.3%. Among other adjuvants it may sometimes be desirable to have present small proportions of particulate sequestering agents and flow promoters. Among such materials a preferred sequenstrant is diethylenetriamine pentaacetic acid, magnesium salt (magnesium DTPA) but other diethylenetriamine acetates may be substituted for it.
Magnesium silicate is a preferred flow promoter, which also may serve as a carrier for the sequestrant. Commercially, a mixture of such products is available comprising 15% of the magnesium DTPA and 85% of MgSiO3 and when such is employed the proportion thereof is preferably from 0.1 to 1%, more preferably 0.1 to 0.5%, e.g. 0.2%. Proportions of the sequestrant (or stabilizer) may be from 0.01 to 0.2%, preferably 0.02 to 0.1%, and for the MgSiO3 concentrations are in the range of 0.1 to 0.9%, preferably 0.2 to 0.5%.Amounts of other adjuvants employed will be such as to accomplish the purpose for which the adjuvant is included in the detergent composition but normally such proportions will not be in excess of 1 to 2% and frequently will be within the range of 0.05 to 19/0.
In addition to the detergent composition containing synthetic organic detergent, builder, bentonite and siliconate, with soap, bleach and adjuvants often also being present, also within the present invention are siliconate-treated bentonite, siliconate-treated perborate and siliconatetreated enzyme. For the siliconate-treated bentonite the siliconate content will be from 0.2 to 10%, preferably 0.5 to 5% and more preferably 1 to 3%. For the corresponding detergent composition without bentonite and for the enzyme and perborate the proportions of siliconate will be the same as those for the final detergent composition but such proportions may be increased from 10 to 100%, depending on conditions and the proportions of the various adjuvants in the detergent composition.
To make the products of this invention, known spray drying, agglomerating and mixing techniques (preferably all three) may be employed. Because such are not considered to be significant features of the invention they will be referred to only briefly herein. In the spray drying operation a crutcher mix containing various components desired to be present in the spray dried bead and sufficiently stable to withstand the crutching and spray drying operations, such as detergent, builder and suitable adjuvants, is spray dried from an aqueous crutcher mix, which normally will contain from about 40 to about 70 to 75% of solids, preferably 50 to 65% thereof, with the balance being water.The crutcher mix may contain the anionic detergent and a portion or all of the nonionic detergent, although usually no more than 5% of nonionic detergent (on the basis of the final product) will be in the crutcher (the rest, if any, being post-added). All of the builder or mixture of builders will normally be added in the crutcher, although this is not necessary. The bentonite powder is separately agglomerated and is post-added to the spray dried product but sometimes it may be incorporated in the crutcher mix. Aqueous silicate solution, stable fluorescent brightening dye, soap and filler salt are usually added in the crutcher, together with any stable pigment and other colourants that may be employed. Instead of charging a neutralized detergent, the crutcher may be utilized as a neutralizing vessel, in which anionic organic detergent acid is neutralized with aqueous caustic.Such acid, for example, may be dodecylbenzene suiphonic acid containing about 45 to 50% of active ingredient, which may be neutralized with an aqueous sodium hydroxide solution, such as one containing 38% of Na20. If the detergent acid is made by sulphonating the alkylbenzene with sulphur trioxide the active ingredient content of the acid may be as high as 99%. A higher fatty acid mixture may also be neutralized in the crutcher with the detergent acid to produce a desired higher fatty acid soapdetergent mixture.
The crutcher mix may be spray dried in a conventional spray tower, utilizing either concurrent or countercurrent flow. Normally the mix will be at a temperature in the 20 to 800C range, preferably 40 to 700C and will be spray dried in a tower in which the drying air is at a temperature of 200 to 4000C, to produce spray dried beads of particle sizes in the range of No's 10 to 100 (U.S Sieve Series) sieves. Any particles that are outside the desired range may be removed by screening and may be reprocessed.
The beads thus made have a bulk density in the range of 0.3 to 0.6 g/ml, e.g. 0.5 g/ml. They are of a moisture content in a range which may be as broad as about 3 to 20% but normally will be about 10 to 15%.
After production of the spray dried portion of the compositions other components thereof may be mixed with the beads or sprayed onto them (and onto other components of the product, when desired). Generally it will be preferred for the bentonite, enzyme, bleach, and any other particulate products, such as those in powder, agglomerate or prill form (except the siliconate), which are intended to be post-added to the spray dried beads, to be mixed with them, after which any liquids (including siliconate in solution) to be postadded may be sprayed onto the mixture.
However, orders of post-addition of components may be varied and sometimes part of the particulate material may be post-added after one or more of the liquids. Two or more of the particulate materials may be pre-mixed before post-addition and similarly, mixtures of liquids may also be made.
Solvents may be employed for various components to be applied as liquids and in some cases emulsions may be employed. Thus, while the siliconate is preferably applied in the solution form, in water, if a less soluble siliconate is employed it may be applied as an aqueous emulsion. In some instances it may be desirable to utilize the siliconate in an aqueous emulsion with perfume and/or nonionic detergent.
However, it is much preferred first to coat the unperfumed detergent composition with an aqueous siliconate solution spray and subsequently to spray perfume onto the "siliconated" product. In some instances it may be desirable to extend the perfume with a suitable solvent, such as a comparatively odourless aikylate (hydrocarbon). Instead of spraying the siliconate onto the mixture of spray dried (or otherwise manufactured to similar product characteristics) detergent beads, bentonite agglomerate, enzyme prills or agglomerates, and perborate particles in mixture, the siliconate may be applied to such individual components separately or in various combinations.Such can be accomplished with separate sprays of siliconate, in which case the proportion thereof deposited on the different components may be readily controllable, or a single siliconate spray may be directed onto different feed streams of such components as they enter a suitable mixer.
When nonionic detergent is post-added (and it will sometimes be preferred that all of the nonionic detergent be added in the crutcher so that the siliconate will be of greatest dispensing assisting effect) it may be sprayed onto or otherwise satisfactorily applied to the surfaces of the spray dried beads before admixing with the other particulate components of the final product and before application of siliconate spray thereto.
Also, as previously indicated, the nonionic detergent, in liquid form, may be mixed with the siliconate and/or perfume to be sprayed onto the product, in which case it may act like an emulsifier.
The apparatus for effecting the various mixings and sprayings is known in the art and accordingly will not be described in detail herein. Spraying may be through conventional nozzles, usually of wide spray pattern design, but other types of spraying equipment may also be employed. The mixers may be of various designs but preferably include revolving inclined tubes or drums, inside which spraying may be effected. However, the Vshaped blenders, especially those of continuous feed design, and other commercial powder blenders can also be satsifactory.
The amount of siliconate that will be sprayed onto the surfaces of the various particulate components of the detergent composition will be such that the final product includes a dispensing assisting proportion of the siliconate (or a derivative thereof). Because it is thought that the bentonite agglomerates can to some extent interfere with satisfactory dispensing of the particulate detergent composition from the feed chamber of an automatic washing machine (of the "European type"), it may be preferable for a greater proportion of siliconate to be applied to such bentonite agglomerate particles, e.g. up to 5%, when such is feasible. In some cases only the bentonite particles will be treated with the siliconate, in which instances the proportion of siliconate in the final detergent composition may often be decreased, e.g. by as much as 50%.
Applications of the siliconate involve addition of moisture to the composition being treated, when the siliconate is in aqueous solution or emulsion (but not if in non-aqueous solution). Such can either be desirable or not, depending on the moisture content and the properties of the detergent composition and processing apparatus.
Accordingly, the concentration of siliconate in the spray liquid may be adjusted. Of course, the greater the volume of the spray and the greater the dilution of the siliconate the more uniformly a spray may be distributed on the particulate material. On the other hand, if the product is borderline or too high in moisture concentration a dilute siliconate spray may exacerbate this condition. Generally the concentration of siliconate in the liquid will be at least 5%, and preferably will be at least 10%. Because the siliconate is completely miscible with water higher concentrations may be employed, which are usually within the ranges of 5 or 10 to 25 or 50%.
The various mixing and spraying operations will normally take place at about room temperature but operations in the range of 10 to 400 C, preferably 20 to 300C are preferred. The particle sizes of the materials being coated with siliconate will usually be like those of the final product, within the No's. 10 to 100 or 200 sieve (U.S. Sieve series) range (the perborate and enzyme ranges may extend to No. 200). The agglomerated bentonite particles will be those resulting from agglomeration or compaction of more finely divided particles, such as those of which over 50% pass through a No. 200 sieve (U.S. Sieve Series, which has openings 74 microns across).Such particles will be essentially grit-free and will normally have from 0.05 to 0.15 to 3 or 5%, preferably 0.1 or 0.15 to 0.5 or 1% of siliconate, such as potassium methyl siliconate or sodium propyl siliconate, sprayed onto the surfaces thereof to at least partially coat such surfaces. They may be coloured with a suitable dye or pigment, such as Acilan Brilliant Blue FFR, or such or other suitable coiourant may be applied with the siliconate. The siliconate does not obscure the colour. Sometimes the bentonite agglomerates may be larger than the other particles in the product, e.g. 10 to 50% greater in diameter, to accentuate their difference. In many instances the bentonite agglomerates will preferably be of sodium carbonate treated bentonite (such treatment improves the colour of off-colour clay) and will contain magnesium carbonate and/or calcium carbonate therein, resulting from such treatment. When the particles are only partially coated with siliconate it is desirable for at least 10% of the surface area (of the equivalent spheres) to be covered by the siliconate, and more preferably a greater percentage will be covered, e.g. 50%, to facilitate dispensing. Similar considerations and conditions apply when the enzyme, bleach and detergent particles are being treated, with the exception that in such cases a lesser proportion of siliconate may be employed than that used for coating bentonite agglomerates.
In the various cases mentioned above the coating of the solid siliconate will normally be on the outer 1% of the thicknesses of the particles.
For example, for a particle that is one millimeter in thickness such as siliconate coating would be about 5 microns thick. Preferably the coating will be on the outer 0,5% of the particle bead diameter, more preferably the outer 0.2% thereof.
Of course, when only partial coatings are applied and when greater percentages of siliconate are utilized, as when only the bentonite agglomerates are coated, the siliconate thicknesses will be greater, but preferably less than 2%. Normally, such thicknesses will be at least 0.05% of the particle thickness.
The products and processes of this invention possess many advantages, several of which have already been mentioned. With respect to the products, the application of siliconate to particle surfaces, even when the entire particle is not covered with the siliconate, improves the dispensing characteristics of such particle without having any adverse effects. Thus, detergent compositions of the types described herein, and the particulate components of such compositions mentioned, are easier to dispense from a charging compartment of an automatic washing machine of the European type than the control products untreated with siliconate. This difference is most pronounced with respect to the agglomerated bentonite particles.The tests for comparing such results are practical use tests, employing a variety of different makes of such European washing machines, with the evaluator noting the number of particles remaining in the charging compartment after a normal charging and dispensing operations or after repeated such operations. To accentuate the differences and make the test more difficult, the walls of the charging compartment are first wet to promote adherence to them of the bentonite (and other materials). To simulate such a test one may sprinkle equal weights of test and control product onto a wet horizontal surface, allow them to stand for one or two minutes, and then direct a gentle spray of water onto the particles for a measured time, e.g. 30 seconds, after which the numbers of particles may be compared.By such tests the products of this invention show a marked improvement over the controls; normally one may expect to obtain less than half the number of particles still adhering to the pre-moistened surfaces when the "experimental" product is used, compared to the control. Often no particles will be adhering to the pre-moistened surface when at least 0.1 5% of siliconate is used, several particles will be sticking when at least 0.05% but less than 0.15% of siliconate is employed, and an appreciable number of particles will be adhering when no siliconate is present.
When most of the detergent will be charged to the washing tub in normal use of the automatic washing machine so that the retention of some particles in the charging chamber may not initially be more than psychologically objectionable, with repeated washings greater numbers may be retained, thereby changing the composition of the fabric softening detergent and possibly even significantly affecting the charge weight. Also, the appearance of the charging compartment with particles retained therein is unsatisfactory and can lead to consumer rejection of the product.
Because of the different washing techniques employed in America, coating bentonite detergent particles with siliconate may not be as important there but it is considered that the presence of the siliconate on the particle will assist in making the detergent more stable and more freely flowing, especially in damp conditions, and will help to counteract any gelation of the bentonite under such conditions.
In addition to promoting dispensing, the siliconate also has the desirable effect of preventing excessive foaming of the detergent composition in aqueous solution. The bentonite also helps to limit foaming and the combination is superior to the individual components. The siliconate also appears to have a stabilizing effect on enzymes and bleaches coated with it and helps to prevent interaction between perfume components and other detergent constituents, thereby helping to stabilize the perfume. It can also have such an effect on colourants. Yet, these various advantages are obtained without the disadvantages of the product being excessively hydrophobic, because it is initially water soluble.
It does not interfere with the desired quick dissolving and dispersing of the detergent components and does not appear to cause an objectionable buildup of hydrophobic deposits on washed and softened laundry. It does not interfere with the particular softening effect of the hydrophilic bentonite and does not interfere with the good detergency of the composition. The detergent compositions resulting are excellent laundry detergents and effectively soften washed laundry, as has been established by comparative tests against similar compositions containing neither bentonite nor siliconate. The products are satisfactorily free flowing and of desired bulk density and appearance. They are also nondusting which may at least in part be attributable to the siliconate.
Processes in which siliconate solutions or emulsions are sprayed onto detergent, bentonite and other detergent component particles are easily carried out and do not require special equipment. Due to the water solubility of the siliconate it may be applied in an aqueous solvent without adding other components to the detergent formula. Yet, it can also be emulsified or otherwise distributed with other detergent compounds. The processes lend themselves to modification to allow different concentrations of siliconate on different detergent components. The coating materials do not gel or thicken objectionably, do not block spray nozzles and do not form gummy deposits in the spraying and mixing equipment. The siliconate may be applied at room temperature because it does not require heating, as do some other protective coating materials.
The siliconate can be retained principally on the surfaces of the particles, allowing less to be employed while still producing the desired dispensing assisting effect. Also, apparently due to the nature of the siliconate or derivative thereof on the detergent or component particle, it is effective even when the particle is not completely covered by it.
The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the accompanying examples. Unless otherwise indicated, all parts are by weight and all temperatures in OC.
Example 1 A crutcher mix totalling 3,199.5 kilograms of material is made by reactirig 364 kg of Dobane JNQ (which contains 48.8% active ingredient which is dodecylbenzene sulphonic acid) and 1 67 kg of hydrogenated fatty acids (16 to 18 carbon atoms per mol of fatty acid) with 47 kg of caustic soda (38% Na20) in an aqueous medium containing a suitable proportion (to maintain the reaction) of 952 kg of city water (300 p.p.m.
hardness, as CaCO3). The balance of such water is employed to cool the reaction mix, as desirable, and to dilute other components of the crutcher mix. Subsequently there are added to the crutcher 242 kg of aqueous sodium silicate solution (Na20:Si02=1 :2.4) at a 44.1% solids concentration, 7.5 kg of fluorescent stilbene type brightener, 7 kg of Sydex 808 (85% MgSiO3 and 15% magnesium DTPA), 1,252 kg of hydrated sodium tripolyphosphate (TPP "H"), 54 kg of anhydrous sodium sulphate (99.5% pure) and 107 kg of a nonionic detergent, which may be considered as the condensation product of 11 mols of ethylene oxide with one mol of higher fatty alcohol having 1 2 to 1 5 carbon atoms per mol.
The crutcher mix is heated for about an hour, with stirring, so that its temperature rises to about 550C, after which it is pumped to a spray drying tower where it is sprayed at elevated pressure through multiple spray nozzles into drying air at a temperature of about 3000C. Particles of a moisture content of about 12% result, most of which are within the No's 10 to 100 sieve range (U.S. Sieve Series, which have openings 2000 microns (2 mms) and 149 microns across respectively). Particles outside this range are screened out.
63.1 Parts of the spray dried powder (bulk density of about 0.4 g/ml) are then blended with 0.3 part of prilled proteolytic enzyme (Alcalase, of 2 Anson units per gram, although Maxatase P 440,000 may be substituted), 20 parts of granular sodium perborate and 16 parts of agglomerated bentonite. All such powders are of particle sizes within the particle size range for the spray dried detergent composition component but smaller particles of the enzyme and perborate may also be employed, down to about No. 200 (U.S. Sieve Series which has openings 74 microns across). The bentonite particles are composed of 82.3 parts of anhydrous bentonite, 1 6.1 parts of water, 1.5 parts of sodium silicate (previously described) and 0.06 part of Acilan Brilliant Blue dye, with the dye being applied to the surface of the particles.The bentonite particles are made by agglomeration of more finely divided particles of bentonite (Laviosa AGB) with the dilute sodium silicate solution (in the water, after which they are dyed. The bentonite employed is one which has been treated with sodium carbonate to replace calcium and magnesium therein with sodium and from which a natural content of gritty material has been removed, after treatment, by centrifugal separation. Such processing methods for the bentonite will be described subsequently in this example. The moisture content of suitable agglomerated bentonite may be varied and can be as low as 3%, when mixed with other components of the present softening detergent.
Onto the mixture of spray dried beads, enzyme, perborate and coloured bentonite particles, in an inclined drum mixer, there are sprayed 0.5 part of the nonionic detergent, 0.25 part of Rhodorsil Siliconate 51 T (50% solution of potassium methyl siliconate) and 0.25 part of detergent perfume. The spraying is regulated so that the sprayed liquid evenly coats the particles in the mixer or tumbling drum to produce about 100 parts of uniform product.
The final product is of particle sizes within the range of No's 10 to 60 sieve (U.S. Sieve Series, which have openings 2000 microns and 250 microns across respectively), a bulk density of about 0.5 g/mi and a moisture content of about 12% (although on standing this may be reduced to about 8 to 10% e.g. 9%). The particulate fabric softening detergent resulting is non-dusting, free flowing and attractive in appearance, with somewhat larger (averaging 20 to 200% greater in diameter) blue agglomerated bentonite particles contrasting with the other white particles. While the spray dried beads and the bentonite agglomerates are distinct, the perborate and enzyme, especially when particles thereof are of sizes at the low end of the range mentioned, may appear to blend with the other beads, thus improving enzyme appearance. However, they are not agglomerated and if not separate, are readily separable from the other such particles and from each other.
When the product described is subjected to practical laundry testing it is found to be an excellent detergent with desirable fabric softening properties. When evaluated, it is noted that it is more readily dispensable, leaving fewer particles behind in the charging compartment of a European type automatic washing machine, than a control in which the siliconate coating is not present. This is especially important when the bentonite particles are larger, since they may tend more to adhere to wet chamber walls during dispensing.
When the above experiment is repeated but with 100 kg of dodecyibenzene sulphonic acid, 1.324 kg of TPP "H" and 0.6 part of Rhodorsil Siliconate 51 Teing employed instead of the amounts previously used the product resulting is of as satisfactory physical properties and functions but additionally is even more readily automatically dispensable, leaving no particles behind in the charging compartment of a European type automatic washing machine.
In modifications of the above procedure the anionic detergent is replaced by equal weights, respectively, of sodium lauryl sulphate, sodium hydrogenated tallow alcohol sulphate and sodium tallow alcohol polyethoxy (3EtO) sulphate.
Alternatively, mixtures of such materials, e.g.
equal parts of sodium dodecylbenzene sulphonate and sodium hydrogenated tallow alcohol sulphate, are employed together. In all such cases the final detergent composition resulting is one which is an excellent textile softening laundry detergent. All such products are also of improved dispensing characteristics, when tested by the methods previously described. Similar results are also obtainable when, instead of the anionic detergent being varied, the nonionic detergent is changed, being replaced by a block copolymer of propylene oxide and ethylene oxide, such as Pluronic L 44 or L-62, nonyl phenol polyoxyethylene (12 EtO) glycol or a condensation product of C12~15 fatty alcohol with 3 or 7 mols of ethylene oxide per mol, or with a mixture of two or more of such detergents, e.g. in equal parts.
When half or all of the sodium tripolyphosphate is replaced by NTA the final product is also a satisfactory detergent, with softening properties, and is of improved dispensing properties compared to a control of the same formula without the siliconate.
When the soap is omitted from the formula diminished foam control results but otherwise the product is acceptable and is like those previously described. When the sodium perborate is replaced by other bleaching agents, such as sodium persulphate, sodium perisophthalate or magnesium dimonoperoxyphthalate, good bleaching and cleaning by the product is still obtainable. When known activators for oxidizing agents are present bleaching may be effected by use of the composition at lower temperatures than those near the boil (which are normally employed in the processes of this example to obtain maximum bleaching activity). When it is desired to include more silicate in the product the amount of silicate is doubled by post-adding similarly sized hydrous sodium silicate particles with the other postadded particulate solids.When sodium propyl siliconate is substituted for potassium methyl siliconate comparable products are obtainable and this is also the case when siliconates of lesser degrees of water solubility are employed in replacement of some. e.g. 25%, of the other siliconates.
The bentonite agglomerates employed in this example are substantially regular spheres consisting essentially of bentonite with a small proportion of silicate binder and with a bluing colourant on the surface thereof. To make them, an Italian clay, low in exchangeable sodium, is processed to increase the sodium content, swelling capacity and softening effects. First, such clay, containing a minor proportion, e.g. about 3%, of hard, black gritty mineral, is crushed and size reduced so that the particles thereof pass through a No. 4 sieve (U.S. Sieve Series which has openings 4760 microns (4.76 mms) across), after which they are treated with an excess e.g.
50% excess, of sodium carbonate solution, such as one at a concentration of about 10%. The mix is allowed to stand, with intervening periods of mixing, for a suitable time for reaction, such as about four hours, at which point sufficient ion exchange has occurred between the exchangeable calcium and magnesium of the clay so that a typical analysis thereof is that given for Italian bentonite (after alkaline treatment) earlier in this specification. By such treatment the Na2O content of the clay has been increased significantly (about 2%) and the MgO and CaO contents have been diminished by corresponding proportions. The clay is then dried, for example to a moisture content of about 5%, after which it is size reduced to particles that are desirably less than No.100 sieve (U.S.Sieve Series which has openings 149 microns across) (although sometimes larger sizes of particles may be present) and is subjected to centrifugal air separation in a cyclone separator (although sizeseparating techniques may also be employed) to remove the grit. The grit-free bentonite, containing less than 0.1% of grit having a swelling capacity of about 5 ml/g and being of a viscosity of about 1 5 centiposes, at 6% concentration in water, and of a moisture content of about 7%, is next agglomerated by the method described earlier herein, with the dilute sodium silicate solution being sprayed onto the surfaces of the moving particles while they are being tumbled in an inclined drum. Tumbling is continued until the particles are of the desired size range and are satisfactorily rounded.At the end of the tumbling period, which may last for up to an hour, on the average, a dilute dye solution is sprayed onto the beads to colour them, and they are ready for mixing with the other components to make a final detergent product.
Example 2 The procedures of Example 1 are varied by applying the siliconate, in aqueous solution (20% solids), as a finely divided spray (preferably with the spray droplets being "micron sized", e.g. 1 to 50 or 1 to 10 microns in diameter), or otherwise as satisfactorily small sized liquid droplets, to each of the particulate components to be blended together separately before such blending. The various coated particles are all of bulk densities in the prescribed range (0.3 to 0.6 g/ml, e.g. 0.5 g/ml). Subsequently, the perfume is similarly sprayed onto the mix. The nonionic detergent is not post-sprayed but instead, is incorporated in the crutcher mix. The resulting product is one which is also of improved dispensing properties.
The siliconate coated agglomerated bentonite, spray dried detergent composition beads (without bentonite), enzyme and perborate can all be separately produced and stored, and subsequently are useful for formulating fabric softening detergents of different compositions and different desired properties, e.g. coated bentonite plus uncoated spray dried beads.
Example 3 A softening detergent like that of the first formula of Example 1 is made from a crutcher mix of 10.24 parts of the dodecylbenzene suiphonic acid, 2.81 parts of the hydrogenated fatty acid, 0.81 part of the caustic soda, 26.54 parts of water, 37.2 parts of pentasodium tripolyphosphate (hydrated), 6.8'parts of sodium silicate solution, 0.21 part of fluorescent brightener, 1.46 parts of sodium sulphate and 3.0 parts of the nonionic detergent, added sequentially. This is spray dried by the method described in Example 1 to produce 62.5 parts of a product of similar bulk density and particle size.The spray dried particles are then mixed with 0.3 part of proteolytic enzyme, 20.0 parts of the sodium perborate granules, 16.0 parts of the agglomerated bentonite and 0.2 parts of Sydex 808, and onto the tumbling powder mix there is sprayed a blend of 0.3 part of the detergent perfume and 0.4 part of C10-13 linear alkylate, and 0.15 part of potassium methyl siliconate is sprayed onto the product in suitable liquid state, preferably dissolved in water (50% concentration). The product made is of better dispensing properties for dispensing from the charging compartment of an automatic washing machine in normal use. It exhibits a slightly greater foaming tendency than the similar products of Example 1. When 0.3 part of the siliconate is used the dispensing properties of the detergent composition are further improved.
When, instead of employing an agglomerated sodium carbonate-treated Italian bentonite from which grit has been removed, as in Example 1, a competitive grit-free swelling clay product (Winkelmann agglomerate) or a Wyoming type bentonite, such as that sold under the trade name Mineral Colloid No. 101 (formerly Thixogel No. 1) is employed, similar final products are obtained which are good softening detergents and are readily dispensed. Also, when other lower alkyl siliconates, such as sodium propyl siliconate, are utilized, comparable results are obtainable. When the Acilan Blue dye, used to colour the bentonite agglomerates, is replaced by ultramarine blue, good colouring and bluing effects are also obtained.Similarly, when the siliconate is applied only to the agglomerated bentonite, with the total proportion of siliconate in the product being the same, or 50% less in some cases, the properties of the detergent resulting are similar to those previously described and dispensing is also improved, compared to a control.
Example 4 When the proportions of the various components in the preceding Examples are modified * 10%, +20% and +30%, maintaining them within the ranges previously given and keeping the ratios of anionic detergent to nonionic detergent within the range of about 1:1 to 3:1, the ratio of total detergent content to builder content within the range of about 1:3 to 1:8 and the ratio of sodium bentonite to total detergent within the range of about 1:1 to 2:1, products of properties similar to those described in Example 1 are obtained. Such is also the case when the water soluble builder salt(s) of Example 1 are replaced with zeolite A (20% hydrated) and when any of a variety of synthetic anionic and nonionic detergents is employed in admixture, optionally with an amphoteric detergent, such as one of the Miranol type. Also, the invention may be used to improve the dispensing properties of various other bentonites and particulate detergent compositions of widely different formulas, densities (0.2 to 0.9 g/ml) and sizes (preferably No. 10--40 sieve; U.S. Sieve Series, 10 having openings 2000 microns across and 40 openings 420 microns across).

Claims (80)

Claims
1. A particulate laundry composition or a component therefor which includes a dispensing assisting proportion of a siliconate or a dispensing assisting derivative thereof or both.
2. A laundry composition as claimed in Claim 1 which is a heavy duty laundering and textile softening particulate detergent composition, useful for automatic machine washing of laundry in water and dispensable from a charging compartment of such a machine by action of water being fed through such compartment, which comprises a built synthetic organic detergent which is an anionic or a nonionic detergent or a mixture thereof, a building proportion of builder for the synthetic organic detergent which is a water soluble or a water insoluble builder or a mixture thereof, and a softening proportion of bentonite, with the bentonite being in particles with which there is included a dispensing assisting proportion of a siliconate and/or a dispensing assisting derivative thereof.
3. A laundry composition as claimed in Claim 1 or Claim 2 in which the dispensing assisting proportion is at least 0.15%.
4. A detergent composition as claimed in Claim 2 or Claim 3 which comprises 3 to 10% of a sodium salt of a synthetic anionic organic detergent which is a sulphonate or a sulphate or a mixture thereof, 1 to 5% of an nonionic detergent, 0 to 10% of a water soluble alkali metal soap, 20 to 75% of a builder for the synthetic organic detergent, 5 to 35% of a bleaching agent which releases oxygen in aqueous solution at elevated temperature, and 5 to 25% of bentonite.
5. A detergent composition as claimed in Claim 4 in which the sodium salt of the anionic detergent is a sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 10 to 14 carbon atoms, a sodium higher fatty alcohol sulphate in which the higher fatty alcohol is of 10 to 16 carbon atoms, or a sodium higher fatty alcohol polyethoxy sulphate wherein the higher fatty alcohol is of 10 to 1 8 carbon atoms and which contains from 3 to 20 ethoxy groups per mol, or a mixture thereof.
6. A detergent composition as claimed in Claim 4 or Claim 5 which comprises from 3 to 7% of sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 11 to 13 carbon atoms.
7. A detergent composition as claimed in any one of Claims 4 to 6 in which the higher alkyl group of the sodium linear higher alkyl benzene sulphonate is a dodecyl group.
8. A detergent composition as claimed in any one of Claims 4 to 7 comprising about 5% of sodium linear dodecyl benzene sulphonate.
9. A detergent composition as claimed in any one of Claims 4 to 8 in which the nonionic detergent is a higher fatty alkoxy poly-lower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 10 to 1 6 carbon atoms and the lower alkoxy and lower alkanol groups are of 2 to 3 carbon atoms and which contains from 3 to 20 lower alkoxy groups per mol.
10. A detergent composition as claimed in any one of Claims 4 to 9 in which the nonionic detergent comprises 2 to 5% of a higher fatty alkoxy poly-lower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 12 to 15 carbon atoms, the lower alkoxy and lower alkanol groups are of 2 carbon atoms, and the molar ratio of higher fatty alkoxy to lower alkoxy is from 1:5 to 1:15.
11. A detergent composition as claimed in any one of Claims 4 to 10 in which the nonionic detergent is a condensation product of a higher fatty alcohol of
12 to 1 5 carbon atoms and 9 to
13 mols of ethylene oxide per mol of higher fatty alcohol.
1 2. A detergent composition as claim in any one of Claims 4 to 11 in which the nonionic detergent is about 3% of higher fatty alkoxy polylower alkoxy lower alkanol nonionic detergent wherein the higher fatty alkoxy group is of 1 2 to 1 5 carbon atoms, the lower alkoxy and lower alkanol groups are of 2 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is about 1:11.
1 3. A detergent composition as claimed in any one of Claims 4 to 12 in which the soap is a soap of higher fatty acids of 10 to 24 carbon atoms per mol.
14. A detergent composition as claimed in any one of Claims 1 to 13 in which there is 2 to 6% of sodium soap of higher fatty acids of 14 to 1 8 carbon atoms per mol.
15. A detergent composition as claimed in any one of Claim 4 to 14 in which the soap is a sodium soap of hydrogenated tallow fatty acids.
1 6. A detergent composition as claimed in Claim 15 in which the soap is about 5% of sodium soap of hydrogenated tallow fatty acids.
1 7. A detergent composition as claimed in any one of Claims 4 to 16 in which the builder is a water soluble or a water insoluble builder or a mixture thereof.
1 8. A detergent composition as claimed in any one of Claims 4 to 17 in which the builder is 30 to 50% of water soluble builder salt
19. A detergent composition as claimed in any one of Claims 4 to 18 in which the builder salt is primarily of pentasodium tripolyphosphate.
20. A detergent composition as claimed in Claim 19 in which the builder is about 35% of hydrated pentasodium tripolyphosphate.
21. A detergent composition as claimed in any one of Claims 4 to 20 in which the bleaching agent is sodium perborate.
22. A detergent composition as claimed in Claim 21 in which the bleaching agent is 1 5 to 25% of sodium perborate.
23. A detergent composition as claimed in Claim 22 in which the bleaching agent is about 20% of sodium perborate.
24. A detergent composition as claimed in any one of Claims 4 to 23 in which the bentonite particles are in the form of agglomerated particles produced after sodium carbonate treatment of bentonite containing magnesium and/or calcium to replace such magnesium and/or calcium with sodium, with resulting magnesium carbonate and/or calcium carbonate present with the bentonite in the particles.
25. A detergent composition as claimed in any one of Claims 4 to 24 in which the bentonite is an agglomerate of smaller particles of ground sodium bentonite from which accompanying grit has been removed after grinding and before agglomeration.
26. A detergent composition as claimed in any one of Claims 4 to 25 in which the bentonite swells in water, having a swelling capacity of at least 1 ml/g.
27. A detergent composition as claimed in any one of Claims 4 to 26 in which the bentonite is of a swelling capacity in the range of 5 to 30 ml/g.
28. A detergent composition as claimed in any one of Claims 4 to 27 in which the bentonite has a viscosity, in 10% dispersion in water, of 5 to 30 centipoises.
29. A detergent composition as claimed in any one of Claims 4 to 28 in which the bentonite is of a moisture content of at least 3%.
30. A detergent composition as claimed in any one of Claims 4 to 29 in which the bentonite is sodium bentonite.
31. A detergent composition as claimed in any one of Claims 4 to 30 in which 10 to 20% of bentonite is present in the composition.
32. A detergent composition as claimed in Claim 31 in which 16% of bentonite is present in the composition.
33. A detergent composition as claimed in any one of Claims 4 to 32 in which the particles are of sizes within the range of No. 10 to No. 100, U.S.
Sieve Series (which have openings 2000 microns and 149 microns across respectively).
34. A detergent composition as claimed in any one of Claims 4 to 33 in which the sodium higher alkyl benzene sulphonate, soap and builder salt are together in substantially homogeneous particles spray dried from the same crutcher mix, the sodium perborate is in separate or separable particles and the bentonite is in separate particles.
35. A detergent composition as claimed in any one of Claims 4 to 34 in which the agglomerated bentonite particles are of average particle sizes greater than the average particle sizes of the spray dried particles and the perborate particles.
36. A detergent composition as claimed in any one of Claims 4 to 35 in which the bentonite particles are differently coloured from the detergent particles and from the perborate particles so that they are readily identifiable in the detergent composition.
37. A detergent composition as claimed in any one of Claims 4 to 36 containing 1 to 5% of sodium sulphate, 0.1 to 2% of optical brightener dye and 0.1 to 1% of proteolytic enzyme.
38. A detergent composition as claimed in any one of Claims 4 to 37 containing about 3% of sodium silicate, about 0.3% of proteolytic enzyme, about 0.6% of perfume, about 0.2% of optical brightener and about 9% of moisture.
39. A detergent composition as claimed in Claim 4 in which the sodium salt of the anionic detergent is a sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 10 to 14 carbon atoms, a sodium higher fatty alcohol sulphate in which the higher fatty alcohol is of 10 to 16 carbon atoms, or a sodium higher fatty alcohol polyethoxy sulphate wherein the higher fatty alcohol is of 10 to 18 carbon atoms and which contains from 3 to 20 ethoxy groups per mol, or a mixture thereof, the nonionic detergent is a higher fatty alkoxy poly-lower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 10 to 1 6 carbon atoms and the lower alkoxy and lower alkanol groups are of 2 to 3 carbon atoms and which contains from 3 to 20 lower alkoxy groups per mol, the soap is a soap of higher fatty acids of 10 to 24 carbon atoms per mol, the builder is a water soluble or a water insoluble builder or a mixture thereof, the bleaching agent is sodium perborate and the bentonite is of a moisture content of at least 3% and swells in water, having a swelling capacity of at least 1 ml/g.
40. A detergent composition as claimed in Claim 39 which comprises from 3 to 7% of sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 11 to 13 carbon atoms, 2 to 5% of a higher fatty alkoxy poly-lower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 12 to 1 5 carbon atoms, the lower alkoxy and lower alkanol groups are of 2 carbon atoms, and the molar ratio of higher fatty alkoxy to lower alkoxy is from 1:5 to 1:15,2 to 6% of sodium soap of higher fatty acids of 14 to 18 carbon atoms per mol, 30 to 50% of water soluble builder salt, 1 5 to 25% of sodium perborate and 10 to 20% of sodium bentonite.
41. A detergent composition as claimed in Claim 40 in which the particles are of sizes within the range of No. 10 to No. 100, U.S. Sieve Series (which have openings 2000 microns and 149 microns across respectively), the sodium higher alkyl benzene sulphonate, soap and builder salt are together in substantially homogeneous particles spray dried from the same crutcher mix, the sodium perborate is in separate or separable particles and the bentonite is in separate particles.
42. A detergent composition as claimed in Claim 41 in which the higher alkyl group of the sodium linear higher alkyl benzene sulphate is a dodecyl group, the nonionic detergent is a condensation product of a higher fatty alcohol of 12 to 1 5 carbon atoms and 9 to 13 mols of ethylene oxide per mol of higher fatty alcohol, the soap is a sodium soap of hydrogenated tallow fatty acids, the builder salt is primarily of pentasodium tripolyphosphate and the bentonite particles are in the forms of agglomerates produced after sodium carbonate treatment of bentonite containing magnesium and/or calcium to produce sodium bentonite, with resulting magnesium carbonate and/or calcium carbonate present with the bentonite in the particles.
43. A detergent composition as claimed in Claim 42 which comprises 1 to 5% of sodium sulphate, 0.1 to 2% of optical brightener dye and 0.1 to 1% of proteolytic enzyme, in which the agglomerated bentonite particles are of average particle sizes greater than the average particle sizes of the spray dried particles and the perborate particles, and are differently coloured so that they are readily identifiable in the detergent composition.
44. A detergent composition as claimed in Claim 43 in which the sodium bentonite is of a swelling capacity in the range of 5 to 30 ml/g and of a viscosity, in 10% dispersion in water, of 5 to 30 centipoises, and is an agglomerate of smaller particles of ground sodium bentonite from which accompanying grit has been removed after grinding and before agglomeration.
45. A detergent composition as claimed in Claim 44 comprising about 5% of sodium linear dodecyl benzene sulphonate, about 3% of higher fatty alkoxy poly-lower alkoxy lower alkanol anionic detergent wherein the higher fatty alkoxy group is of 12 to 1 5 carbon atoms, the lower alkoxy and lower alkanol groups are of 2 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is about 1:11, about 5% of sodium soap of hydrogenated tallow fatty acids, about 20% of sodium perborate, about 16% of sodium bentonite, about 35% of hydrated pentasodium tripolyphosphate, about 3% of sodium silicate, about 0.3% of proteolytic enzyme, about 0.6% of perfume, about 0.2% of optical brightener and about 9% of moisture.
46. A detergent composition as claimed in Claim 4 in which the bentonite particles are in the form of agglomerated particles produced after sodium carbonate treatment of bentonite containing magnesium and/or calcium to replace such magnesium and/or calcium with sodium, with resulting magnesium carbonate and/or calcium carbonate present with the bentonite in the particles.
47. A detergent composition as claimed in Claim 46 in which the sodium bentonite agglomerate is of a swelling capacity in the range of 5 to 30 ml/g and of a viscosity, in 6% dispersion in water, of 5 to 30 centipoises, and is an agglomerate of smaller particles of ground sodium bentonite from which accompanying grit has been removed after grinding and before agglomeration.
48. A component for a laundry composition as claimed in Claim 1 which comprises agglomerated bentonite particles.
49. Agglomerated bentonite particles, useful for incorporation in a particulate heavy duty detergent composition for use in automatic washing machines which comprise such bentonite with which there is included a dispensing assisting proportion of a siliconate and/or dispensing assisting derivative thereof.
50. Agglomerated bentonite particles as claimed in Claim 48 or Claim 49 in which the dispensing assisting proportion is at least 0.15%.
51. Agglomerated bentonite particles as claimed in Claim 49 or Claim 50 which are of sizes in the range of No's 10 to 100, U.S. Sieve Series, (which have openings 2000 microns across and 149 microns across respectively).
52. Agglomerated bentonite particles as claimed in Claims 49, 50 or 51 which are formed after sodium carbonate treatment of bentonite containing magnesium and/or calcium to produce sodium bentonite, with the resulting magnesium carbonate and/or calcium carbonate present with the bentonite in the particles.
53. A laundry composition as claimed in Claim 1 which is a particulate synthetic organic detergent composition which comprises a built synthetic organic detergent which is an anionic or a nonionic detergent or a mixture thereof, a building proportion of a builder for the synthetic organic detergent which is a water soluble or a water insoluble builder or a mixture thereof.
54. A laundry composition as claimed in Claim 53 which is in spray dried bead form of particle sizes within the range of No's 10 to 100 (U.S.
Sieve Series which have openings 2000 microns across and 149 microns across respectively), which comprises about 3 to 7 parts of sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 11 to 13 carbon atoms, 2 to 4 parts of higher fatty alkoxy polylower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 12 to 1 5 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is from 1:5 to 1:15, 2 to 6 parts of sodium soap of higher fatty acids of 14 to 18 carbon atoms per mol, 30 to 50 parts of pentasodium tripolyphosphate and 0 to 1 5 parts of adjuvants, with the total being 100%.
55. A component for a laundry composition as claimed in Claim 1 which is particles of sodium perborate of sizes in the range of No's 10 to 200, (U.S. Sieve Series which have openings 2000 microns across and 74 microns across respectively).
56. A component for a laundry composition as claimed in Claim 1 which is particles of enzyme of sizes in the range of No's 10 to 200 (U.S. Sieve Series which have openings 2000 microns across and 74 microns across respectively).
57. A particular laundry composition or a component therefor as claimed in any one of the preceding claims in which the siliconate is an alkali metal lower alkyl siliconate.
58. A composition or a component as claimed in Claim 57 in which the alkali metal lower alkyl siliconate is water soluble, the alkali metal thereof is potassium or sodium, and the lower alkyl group thereof is of 1 to 3 carbons.
59. A composition or component as claimed in Claim 57 or 58 in which the siliconate is potassium methyl siliconate.
60. A composition or component as claimed in Claim 57, 58 or 59 containing 0.05 to 3% of the silicate or derivative thereof.
61. A composition or component as claimed in Claim 60 containing 0.05 to 1% of the siliconate or derivative thereof.
62. A composition or component as claimed in Claim 61 containing 0.15 to 0.3% af the silicate or derivative thereof.
63. A composition or component as claimed in Claim 62 containing about 0.1% of the siliconate or derivative thereof.
64. A detergent composition as claimed in Claim 1 which comprises 3 to 10% of a sodium salt of a synthetic anionic organic detergent which is a sulphonate or a sulphate or a mixture thereof, 1 to 5% of a nonionic detergent, 0 to 10% of a water soluble alkali metal soap, 20 to 75% of a builder for the synthetic organic detergent, 5 to 35% of a bleaching agent which releases oxygen in aqueous solution at elevated temperature, and 5 to 25% of bentonite, and an alkali metal lower alkyl siliconate, and/or dispensing assisting derivative thereof.
65. A detergent composition as claimed in Claim 64 in which the sodium salt of the anionic detergent is a sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 10 to 14 carbon atoms, a sodium higher fatty alcohol sulphate in which the higher fatty alcohol is of 10 to 16 carbon atoms, or a sodium higher fatty alcohol polyethoxy sulphate wherein the higher fatty alcohol is of 10 to 1 8 carbon atoms and which contains from 3 to 30 ethoxy groups per mol, or a mixture thereof, the nonionic detergent is a higher fatty alkoxy poly-lower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 10 to 16 carbon atoms and the lower alkoxy and lower alkanol groups are of 2 to 3 carbon atoms and which contains from 3 to 20 lower alkoxy groups per mol, the soap is a sodium soap of higher fatty acids of 10 to 24 carbon atoms per mol, the builder is a water soluble salt or a water insoluble zeolite or a mixture thereof, the bleaching agent is sodium perborate, the bentonite is of a moisture content of at least 3% and swells in water, with the swelling capacity thereof being at least 1 ml/g and the alkali metal lower alkyl siliconate is water soluble, the alkali metal thereof is potassium or sodium, and the lower alkyl group thereof is of 1 to 3 carbons.
66. A detergent composition as claimed in Claim 65 which comprises from 3 to 7% of sodium linear higher alkylbenzene sulphonate in which the higher alkyl is of 11 to 13 carbon atoms, 2 to 4% of a higher fatty alkoxy poly-iower alkoxy lower alkanol wherein the higher fatty alkoxy is of 12 to 1 5 carbon atoms, the lower alkoxy and lower alkanol groups are of 2 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is from 1:5 to 1:15,2 to 6% of sodium soap of higher fatty acids of 14 to 18 carbon atoms per mol, 30 to 50% of water soluble builder salt, 1 5 to 25% of sodium perborate, 10 to 20% of sodium bentonite and 0.15 to 0.3% of potassium methyl siliconate.
67. A detergent composition as claimed in Claim 66 in which the higher alkyl group of the sodium linear higher alkyl benzene sulphonate is dodecyl, the nonionic detergent is a condensation product of a higher fatty alcohol of 12 to 1 5 carbon atoms and 9 to 13 mols of ethylene oxide per mol of higher fatty alcohol, the soap is a sodium soap of hydrogenated tallow fatty acids, the builder salt is primarily of pentasodium tripolyphosphate, the bentonite particles are in the form of agglomerates produced after sodium carbonate treatment of bentonite containing magnesium and/or calcium to produce sodium bentonite, with resulting magnesium carbonate and/or calcium carbonate present with the bentonite in the particles, and the particles thereof are coated or partially coated with potassium methyl siliconate.
68. A detergent composition as claimed in Claim 67 comprising about 5% of sodium linear dodecyl benzene sulphonate, about 3% of higher fatty alkoxy poly-lower alkoxy lower alkanol nonionic detergent wherein the higher fatty alkoxy is of 12 to 1 5 carbon atoms, the lower alkoxy and lower alkanol are of 2 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is about 1:11, about 5% of sodium soap of hydrogenated tallow fatty acids, about 20% of sodium perborate, about 16% of sodium bentonite, about 35% of hydrated pentasodium tripolyphosphate, about 3% of sodium silicate, about 0.1% of potassium methyl siliconate, about 0.3% of proteolytic enzyme, about 0.3% of perfume, about 0.2% of optical brightener and about 12% of moisture.
69. Agglomerated bentonite particles as claimed in Claim 1 which contain from 0.05 to 3% of alkali metal lower alkyl siliconate and/or dispensing assisting derivative thereof at the surfaces of the particles.
70. Agglomerated bentonite as claimed in Claim 69 which are coated or partially coated by 0.05 to 1% of potassium methyl siliconate.
71. A detergent composition as claimed in Claim 1 which is in spray dried bead form of particle sizes within the range of No's 10 to 100 (U.S. Sieve Series which have openings 2000 microns across and 149 microns across respectively), which comprises about 3 to 7 parts of sodium linear higher alkylbenzene sulphonate in which the higher alkyl group is of 11 to 13 carbon atoms, 2 to 4 parts of higher fatty alkoxy polylower alkoxy lower alkanol wherein the higher fatty alkoxy group is of 12 to 1 5 carbon atoms and the molar ratio of higher fatty alkoxy to lower alkoxy is from 1:5 to 1::15, 2 to 6 parts of sodium soap of higher fatty acids of 14 to 1 8 carbon atoms per mol, 30 to 50 parts of pentasodium tripolyphosphate and 0 to 1 5 parts of adjuvants, with the total being 100%, and the particles of which are at least partially coated by 0.05 to 1% of potassium methyl siliconate.
72. Sodium perborate particles as claimed in Claim 1 which are coated with from 0.05 to 1% of potassium methyl siliconate.
73 Enzyme particles as claimed in Claim 1 which are coated with from 0.05 to 1% of potassium methyl siliconate.
74. A laundry composition as claimed in Claim 1 substantially as specifically described herein with reference to the accompanying examples.
75. A method of manufacturing a heavy duty laundry and textile softening particulate detergent composition, useful for automatic machine washing of laundry in water and dispensable from a charging compartment of such a machine by action of water being fed through such compartment, which includes a built synthetic organic detergent which is an anionic or a nonionic detergent or a mixture thereof, a building proportion of a builder for the synthetic organic detergent which is a water soluble or a water insoluble builder or a mixture thereof, and a softening proportion of bentonite, with the bentonite being in particles with which there is included a dispensing assisting proportion of a siliconate or a dispensing assisting derivative thereof or both, which comprises agglomerating particles of bentonite from finely divided from, passing through a No. 100 sieve (U.S.Sieve Series which has openings 149 microns across) and with over 50% thereof passing through a No.
200 sieve (U.S. Sieve Series which has openings 74 microns across), into agglomerates of particle sizes within the range of No's 10 to 100 sieves (U.S. Sieve Series, No. 10 has openings 2000 microns across), spray drying an aqueous crutcher mix of the synthetic organic detergent and the builder to detergent composition particles of sizes within the No's. 10 to 100 sieve range (U.S. Sieve Series), blending the bentonite agglomerate particles and spray dried detergent composition particles and applying to the surfaces of such particles a dispensing assisting proportion of a siliconate or a dispensing assisting derivative thereof or both.
76. A method as claimed in Claim 75 in which 0.05 to 1% of potassium methyl siliconate is sprayed onto the surfaces of the particles to at least partially coat them.
77. A method of manufacturing a heavy duty laundering detergent composition, useful for automatic machine washing of laundry in water and dispensable from a charging compartment of such a machine by action of water being fed through such compartment, which includes a built synthetic organic detergent which is an anionic or a nonionic detergent or a mixture thereof, and a building proportion of a builder for the synthetic organic detergent which is a water soluble or a water insoluble builder or a mixture thereof which comprises drying an aqueous crutcher mix of the synthetic organic detergent and the builder to particles of sizes within the No. 10 to 100 sieve range (U.S. Sieve Series), and applying to the surface of such particles a dispensing assisting proportion of a siliconate or a dispensing assisting derivative thereof or both.
78. A method as claimed in Claim 77 in which the detergent includes sodium dodecyl benzene sulphonate, the builder is pentasodium tripolyphosphate or NTA or a mixture thereof, and 0.05 to 1% of potassium methyl siliconate is sprayed onto the surfaces of the spray dried particles to at least partially coat them.
79. A method of manufacturing agglomerated bentonite particles, useful for incorporation in a particulate heavy duty detergent composition which is dispensable from the charging compartment of an automatic washing machine by action of water being fed through such compartment, which comprises applying to surfaces of agglomerated bentonite particles a dispensing assisting proportion of a siliconate or a dispensing assisting derivative thereof or both.
80. A method as claimed in Claim 79 in which the agglomerated bentonite particles are of particle sizes within the range of No's 10 to 100 sieve (U.S. Sieves Series), and are agglomerates of essentially grit-free particles of sodium bentonite which pass through a No. 100 sieve (U.S. Sieve Series) and of which over 50% pass through a No. 200 sieve (U.S. Sieve Series), and wherein 0.05 to 1% of potassium methyl siliconate is sprayed onto surfaces of the agglomerated particles to at least partially coat them.
GB08309604A 1982-04-08 1983-04-08 Laundry softening detergent Expired GB2120293B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/366,713 US4421657A (en) 1982-04-08 1982-04-08 Heavy duty laundry softening detergent composition and method for manufacture thereof
US06/366,712 US4419250A (en) 1982-04-08 1982-04-08 Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions.

Publications (3)

Publication Number Publication Date
GB8309604D0 GB8309604D0 (en) 1983-05-11
GB2120293A true GB2120293A (en) 1983-11-30
GB2120293B GB2120293B (en) 1985-12-11

Family

ID=27003464

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08309604A Expired GB2120293B (en) 1982-04-08 1983-04-08 Laundry softening detergent

Country Status (19)

Country Link
AT (1) AT394380B (en)
AU (1) AU558317B2 (en)
BE (1) BE896412A (en)
CA (1) CA1209934A (en)
CH (1) CH656395B (en)
DE (1) DE3311568C2 (en)
DK (1) DK160102C (en)
ES (1) ES8604469A1 (en)
FR (2) FR2524902B1 (en)
GB (1) GB2120293B (en)
GR (1) GR78821B (en)
HK (1) HK90990A (en)
IT (1) IT1167403B (en)
MX (1) MX159235A (en)
MY (1) MY8700916A (en)
NL (1) NL8301249A (en)
NO (1) NO154758C (en)
PT (1) PT76517B (en)
SE (4) SE459658B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0287343A2 (en) * 1987-04-15 1988-10-19 Unilever Plc A composition for softening fabrics
GB2207144A (en) * 1987-06-23 1989-01-25 Camille Simon Limited Detergent compositions comprising a softening clay and an amphoteric material
EP0313146A2 (en) 1987-10-19 1989-04-26 The Procter & Gamble Company Detergent compositions
US4966606A (en) * 1986-11-07 1990-10-30 Lever Brothers Company, Division Of Conopco, Inc. Detergent composition
AU628136B2 (en) * 1989-03-02 1992-09-10 Unilever Plc Agglomerates for addition to detergent powders
EP0948590A1 (en) * 1996-11-01 1999-10-13 The Procter & Gamble Company Cleansing compositions
WO2004050818A1 (en) * 2002-12-05 2004-06-17 Unilever Plc Granular component for use in particulate detergent compositions

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4436637A (en) * 1982-12-13 1984-03-13 Colgate-Palmolive Company Fabric softening heavy duty liquid detergent containing a mixture of water insoluble soap and clay
US4472287A (en) * 1982-12-13 1984-09-18 Colgate-Palmolive Company Particulate fabric softening composition, fabric softening detergent useful for hand washing laundry and process for manufacture and use thereof
US4524012A (en) * 1983-06-08 1985-06-18 Colgate-Palmolive Company Fabric softening and fluffing detergent composition
GB8413802D0 (en) * 1984-05-30 1984-07-04 Procter & Gamble Detergent with suds control
US4798005A (en) * 1986-07-01 1989-01-17 Lowell Thomas A Component piano string angle gauge
US4828721A (en) * 1988-04-28 1989-05-09 Colgate-Palmolive Co. Particulate detergent compositions and manufacturing processes
GB8902286D0 (en) * 1989-02-02 1989-03-22 Bp Chem Int Ltd Detergent formulations
FR2708620B1 (en) * 1993-08-06 1995-09-01 Rhone Poulenc Chimie Use of siliconate in detergent compositions for automatic dishwashing.
FR2720074B1 (en) * 1994-05-20 1996-08-09 Rhone Poulenc Chimie Detergent powder composition based on percarbonate stabilized by adding silicate / carbonate cogranules.
DE19952383A1 (en) * 1999-10-30 2001-05-17 Henkel Kgaa Detergents and cleaning agents
DE10064963A1 (en) * 2000-12-23 2002-07-11 Erbsloeh Lohrheim Gmbh & Co Kg Hydrophobizing particulate fillers useful for e.g. making building materials, tiles, and plasterboard, comprises reacting a filler powder, suspension or paste with an alkyl or aryl silanol
DE102005022075A1 (en) * 2005-05-12 2006-11-16 Süd-Chemie AG Fast disintegrating Betonitgranulate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139546A (en) * 1977-09-06 1979-02-13 Witco Chemical Corporation Anionic silicone defoamer
US4138363A (en) * 1977-09-14 1979-02-06 Pq Corporation Silane-zeolite compositions
IT1160682B (en) * 1977-10-14 1987-03-11 Po Corp. DETERGENT COMPOSITIONS WITH SILANO-ZEOLITE ADJUVANT
CH636123A5 (en) * 1978-06-07 1983-05-13 Ciba Geigy Ag METHOD FOR PRODUCING FOAM-REGULATED DETERGENTS.
EP0026529B2 (en) * 1979-09-29 1992-08-19 THE PROCTER & GAMBLE COMPANY Detergent compositions
US4243545A (en) * 1979-12-10 1981-01-06 Pq Corporation Detergent compositions with silane-zeolite silicate builder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966606A (en) * 1986-11-07 1990-10-30 Lever Brothers Company, Division Of Conopco, Inc. Detergent composition
EP0287343A2 (en) * 1987-04-15 1988-10-19 Unilever Plc A composition for softening fabrics
EP0287343B1 (en) * 1987-04-15 1994-03-16 Unilever Plc A composition for softening fabrics
GB2207144A (en) * 1987-06-23 1989-01-25 Camille Simon Limited Detergent compositions comprising a softening clay and an amphoteric material
GB2207144B (en) * 1987-06-23 1991-07-31 Camille Simon Limited Detergent compositions
EP0313146A2 (en) 1987-10-19 1989-04-26 The Procter & Gamble Company Detergent compositions
EP0313146B2 (en) 1987-10-19 2001-09-05 The Procter & Gamble Company Detergent compositions
AU628136B2 (en) * 1989-03-02 1992-09-10 Unilever Plc Agglomerates for addition to detergent powders
EP0948590A1 (en) * 1996-11-01 1999-10-13 The Procter & Gamble Company Cleansing compositions
EP0948590A4 (en) * 1996-11-01 2000-07-26 Procter & Gamble Cleansing compositions
WO2004050818A1 (en) * 2002-12-05 2004-06-17 Unilever Plc Granular component for use in particulate detergent compositions

Also Published As

Publication number Publication date
SE503144C2 (en) 1996-04-01
GR78821B (en) 1984-10-02
ATA119183A (en) 1991-09-15
FR2541301B1 (en) 1987-07-17
SE8301906L (en) 1983-10-09
AU558317B2 (en) 1987-01-29
PT76517A (en) 1983-05-01
DK160102C (en) 1991-06-10
CA1209934A (en) 1986-08-19
MX159235A (en) 1989-05-04
DK156583A (en) 1983-10-09
NO154758C (en) 1986-12-17
PT76517B (en) 1986-01-27
ES8604469A1 (en) 1986-02-01
SE458763B (en) 1989-05-08
FR2524902A1 (en) 1983-10-14
CA1260417C (en) 1989-09-26
DE3311568C2 (en) 1994-10-20
SE8802490L (en) 1988-07-04
DE3311568A1 (en) 1983-10-20
AT394380B (en) 1992-03-25
GB2120293B (en) 1985-12-11
NO831236L (en) 1983-10-10
IT8348063A0 (en) 1983-04-07
HK90990A (en) 1990-11-09
AU1325083A (en) 1983-10-13
FR2541301A1 (en) 1984-08-24
SE459658B (en) 1989-07-24
CH656395B (en) 1986-06-30
NL8301249A (en) 1983-11-01
GB8309604D0 (en) 1983-05-11
SE8802488D0 (en) 1988-07-04
MY8700916A (en) 1987-12-31
DK156583D0 (en) 1983-04-08
FR2524902B1 (en) 1987-07-31
DK160102B (en) 1991-01-28
ES521306A0 (en) 1986-02-01
BE896412A (en) 1983-10-10
SE8802487D0 (en) 1988-07-04
SE466155B (en) 1992-01-07
SE8802490D0 (en) 1988-07-04
SE8301906D0 (en) 1983-04-07
IT1167403B (en) 1987-05-13
NO154758B (en) 1986-09-08
SE8802487L (en) 1988-07-04

Similar Documents

Publication Publication Date Title
US4421657A (en) Heavy duty laundry softening detergent composition and method for manufacture thereof
US4419250A (en) Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions.
GB2120293A (en) Laundry softening detergent
GB2138037A (en) Heavy duty fabric softening detergent
US4469605A (en) Fabric softening heavy duty liquid detergent and process for manufacture thereof
US4488972A (en) Bentonite agglomerates
US4552681A (en) Granular, free-flowing detergent component and method for its production
US4482630A (en) Siliconate-coated enzyme
IE52739B1 (en) Base beads for manufacture of detergent compositions
US4482477A (en) Particulate detergent containing siliconate, composition and method for manufacture thereof
US4411809A (en) Concentrated heavy duty particulate laundry detergent
GB1591518A (en) Detergent compositions
US4715969A (en) Controlling viscosity of fabric softening heavy duty liquid detergent containing bentonite
US4857223A (en) Non-caking bleaching detergent composition containing a lower hydrate of sodium perborate
US4482471A (en) Siliconate-coated sodium perborate
US5080820A (en) Spray dried base beads for detergent compositions containing zeolite, bentonite and polyphosphate
IE58675B1 (en) Controlling viscosity of fabric softening heavy duty liquid detergent containing bentonite
US5024778A (en) Spray dried base beads for detergent compositions containing zeolite, bentonite and polyphosphate
CA1276091C (en) Non-caking bleaching detergent composition containing a lower hydrate ofsodium perborate
US4851137A (en) Process for manufacturing bentonite agglomerates
US4666738A (en) Method for making a phosphate containing concentrated heavy duty particulate laundry detergent
US4741851A (en) Non-caking bleaching detergent composition containing a lower hydrate of sodium perborate
GB2159531A (en) Particulate built nonionic detergent composition
US4767546A (en) Fabric softening bentonite agglomerates for use in laundry detergents
US4664950A (en) Concentrated heavy duty particulate laundry detergent

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19960408