FR3081339A1 - Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox - Google Patents

Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox Download PDF

Info

Publication number
FR3081339A1
FR3081339A1 FR1854380A FR1854380A FR3081339A1 FR 3081339 A1 FR3081339 A1 FR 3081339A1 FR 1854380 A FR1854380 A FR 1854380A FR 1854380 A FR1854380 A FR 1854380A FR 3081339 A1 FR3081339 A1 FR 3081339A1
Authority
FR
France
Prior art keywords
fau
catalyst
mass
zeolite
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1854380A
Other languages
English (en)
Other versions
FR3081339B1 (fr
Inventor
David Berthout
Bogdan Harbuzaru
Eric LLido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR1854380A priority Critical patent/FR3081339B1/fr
Priority to PCT/EP2019/062555 priority patent/WO2019224083A1/fr
Publication of FR3081339A1 publication Critical patent/FR3081339A1/fr
Application granted granted Critical
Publication of FR3081339B1 publication Critical patent/FR3081339B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/78Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

L'invention concerne un procédé de préparation d'un catalyseur à base de zéolithe de type structural AFX de haute pureté et d'au moins un métal de transition comprenant au moins les étapes suivantes : i) mélange en milieu aqueux, d'une zéolithe de type structural FAU ayant un ratio molaire SiO2 (FAU)/Al2O3 (FAU) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), d'un composé organique azoté R, d'au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M jusqu'à l'obtention d'un gel précurseur homogène; ii) traitement hydrothermal dudit gel précurseur pour obtenir une phase solide cristallisée, dite « solide » ; iii) au moins un échange ionique avec un métal de transition, iv) traitement thermique. L'invention concerne également le catalyseur susceptible d'être obtenu ou directement obtenu par le procédé et son utilisation pour la réduction sélective de NOx.

Description

DOMAINE TECHNIQUE DE L’INVENTION
L’invention a pour objet un procédé de préparation d’un catalyseur à base d’une zéolithe de type structural AFX et d’au moins un métal de transition, le catalyseur préparé ou susceptible d’être préparé par le procédé, et son utilisation pour la réduction sélective catalytique des NOx en présence d’un réducteur, en particulier sur les moteurs à combustion interne.
ART ANTÉRIEUR
Les émissions d'oxydes d'azote (NOx) qui résultent de la combustion de combustibles fossiles sont une préoccupation majeure pour la société. Des normes de plus en plus sévères sont mises en place par les instances gouvernementales afin de limiter l’impact des émissions issues de la combustion sur l’environnement et sur la santé. Pour les véhicules légers en Europe dans le cadre de la réglementation Euro 6c, les émissions de NOx et de particules doivent atteindre un niveau très bas pour l’ensemble des conditions de fonctionnement. Le nouveau cycle de conduite WLTC (Worldwide harmonized Light vehicles Test Cycle) et la réglementation des émissions en conduite réelle (RDE) associée aux facteurs de conformité, exige le développement d'un système de dépollution hautement efficaces pour atteindre ces objectifs. La réduction catalytique sélective, désignée par l’acronyme anglo-saxon « SCR » pour « Selective Catalytic Reduction », apparaît comme une technologie efficace pour éliminer les oxydes d'azote dans les gaz d’échappement riches en oxygène, typiques des moteur Diesel et à allumage commandé en mélange pauvre. La réduction catalytique sélective est réalisé grâce à un réducteur, généralement l’ammoniac, et peut ainsi être désignée par NH3-SCR. L’ammoniac (NH3) impliqué dans le processus SCR est généralement généré via la décomposition d’une la solution aqueuse d'urée (AdBlue ou DEF), et produit N2 et H2O lors de la réaction avec NOx.
Les zéolithes échangées avec des métaux de transitions sont notamment utilisées comme catalyseurs pour les applications NH3-SCR, dans les transports. Les zéolithes à petit pores, en particulier les chabazites échangées au cuivre, sont particulièrement adaptées. Elles existent commercialement sous la forme silicoaluminophosphate Cu-SAPO-34 et aluminosilicates Cu-SSZ-13 (ou Cu-SSZ-62). Leur tenue hydrothermale et leur efficacité de conversion des NOx en font les références actuelles. Cependant, les normes étant de plus en plus contraignantes, les performances des catalyseurs doivent encore être améliorées.
L’utilisation des zéolithes de type structural AFX pour les applications NH3-SCR est connue, mais peu de travaux évaluent l’efficacité de catalyseurs mettant en œuvre cette zéolithe.
Fickel et al. (Fickel, D. W., & Lobo, R. F. (2009), The Journal of Physical Chemistry C, 114(3), 1633-1640) étudie l’utilisation d’une SSZ-16 (type structural AFX) échangée au cuivre pour l’élimination des NOx. Cette zéolithe est synthétisée conformément au brevet US 5,194,235, dans lequel le cuivre est introduit par échange en utilisant du sulfate de cuivre(ll) à 80°C pendant 1h. Des résultats récents (Fickel, D. W., D’Addio, E., Lauterbach, J. A., & Lobo, R. F. (2011), 102(3), 441-448) montrent une excellente conversion et une bonne tenue hydrothermale pour un chargement à 3,78% poids en cuivre.
Des travaux sur la synthèse de zéolithes de type structural AFX ont été effectués avec différents agents structuraux (Lobo, R. F., Zones, S. I., & Medrud, R. C. (1996), Chemistry of materials, 8(10), 2409-2411) ainsi que des travaux d’optimisation de la synthèse (Hrabanek, P., Zikanova, A., Supinkova, T., Drahokoupil, J., Fila, V., Lhotka, M., Bernauer, B. (2016), Microporous and Mesoporous Materials, 228, 107115).
Wang et al. (Wang, D. et al., CrystEngComm., (2016), 18(6), 1000-1008) ont étudié le remplacement de l’agent structurant TMHD par un mélange TEA-TMA pour la formation de SAPO-56 et obtiennent des phases non désirées SAPO-34 et SAPO20. L’incorporation de métaux de transition n’est pas abordée.
La demande US 2016/0137518 décrit une zéolithe AFX quasi-pure, sa synthèse à partir de sources de silice et d’alumine en présence d’un agent structurant de type 1,3-Bis(1-adamantyl)imidazolium hydroxide, la préparation d’un catalyseur à base de la zéolithe AFX échangée avec un métal de transition et son utilisation pour des applications NH3-SCR. Aucune forme particulière de zéolithe AFX n’est évoquée.
Plus récemment, la demande US 2018/0093259 présente la synthèse de zéolithes à petits pores, comme la zéolithe de type structural AFX, à partir de zéolithe de type FAU en présence d’un structurant, comme le 1,3-bis(1-adamantyl)imidazolium hydroxide et d’une source de métal alcalino-terreux. Elle présente également des applications de la zéolithe de type structural AFX obtenue, en particulier l’utilisation de cette zéolithe comme catalyseur de la réduction de NOx, après échange avec un métal comme le fer. Parallèlement, la demande US 2016/0096169A1 présente l’utilisation dans la conversion des NOx, d’un catalyseur à base d’une zéolithe de type structural AFX ayant un rapport Si/AI de 15 à 50 échangée avec un métal, la zéolithe AFX étant obtenue à partir d’un agent structurant de type 1,3-Bis(1-adamantyl)imidazolium hydroxide. Les résultats obtenus, dans la conversion des NOx, montrent en particulier une sélectivité des catalyseurs préparés selon les demandes US 2018/0093259 et US 2016/0096169 vers le protoxyde d’azote ne dépassant pas 20 ppm.
Le document JP 2014-148441 décrit la synthèse d’un solide apparenté à une zéolithe AFX, en particulier d’une SAPO-56 comprenant du cuivre utilisable pour la réduction des NOX. Le solide est synthétisé, puis ajouté à un mélange comprenant un alcool et un sel de cuivre, le tout étant calciné. Le cuivre est donc ajouté après la formation du solide SAPO apparenté à la zéolithe de type structural AFX. Ce solide échangé semble présenter une résistance accrue à la présence d’eau.
Ogura et al. (Bull. Chem. Soc. Jpn. 2018, 91, 355-361) montrent la très bonne activité d’une zéolithe de type SSZ-16 échangée au cuivre par rapport à d’autres structures zéolithiques et ce même après vieillissement hydrothermal.
WO 2017/080722 présente une synthèse directe d’une zéolithe comprenant du cuivre. Cette synthèse impose de partir d’une zéolithe de type structural FAU et d’utiliser un agent complexant ΤΕΡΑ et un élément M(OH)X pour aboutir à différents types de zéolithes, principalement de type CHA. Des zéolithes de type ANA, ABW, PHI et GME sont également produites.
La demanderesse a découvert qu’un catalyseur à base d’une zéolithe de type structural AFX préparé selon un mode de synthèse particulier et d’au moins un métal de transition, en particulier du cuivre, présentait des performances intéressantes de conversion des NOX et de sélectivité vers N2O. Les performances de conversion des NOx, en particulier à basse température (T<250°C), sont notamment supérieures à celles obtenues avec des catalyseurs de l’art antérieur, tels que les catalyseurs à base de zéolithe de type structural AFX échangée au cuivre, tout en conservant une bonne sélectivité vers le protoxyde d’azote N2O.
RESUME DE L’INVENTION
L’invention concerne un procédé de préparation d’un catalyseur à base de zéolithe de type structural AFX et d’au moins un métal de transition comprenant au moins les étapes suivantes :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire SiO2 (fau)/AI20s (fau) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), d’un composé organique azoté R, R étant choisi parmi le dihydroxyde de
1.5- bis(méthylpiperidinium)pentane, le dihydroxyde de
1.6- bis(méthylpiperidinium)hexane ou le dihydroxyde de
1.7- bis(méthylpiperidinium)heptane, d’au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence η, n étant un entier supérieur ou égal à 1, choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux, le mélange réactionnel présentant la composition molaire suivante :
(SiO2 (fau))/(AI2Os (fau)) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence entre 3,00 (borne incluse) et 6,00 (borne exclue)
H2O/(SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60 R/(SîO2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2(FAU)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses, dans laquelle SiO2 (fau) désigne la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (fau) désigne la quantité de AI2O3 apportée par la zéolithe FAU, jusqu’à l’obtention d’un gel précurseur homogène ;
ii) traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) à une température comprise entre 120°C et 220°C, pendant une durée comprise entre 12 heures et 15 jours pour obtenir une phase solide cristallisée, dite « solide » ;
iii) au moins un échange ionique comprenant la mise en contact dudit solide obtenu à l’issue de l’étape précédente, avec une solution comprenant au moins une espèce apte à libérer un métal de transition, en particulier le cuivre, en solution sous forme réactive sous agitation à température ambiante pendant une durée comprise entre 1 h et 2 j ;
iv) traitement thermique par séchage du solide obtenu à l’issue de l’étape précédente à une température comprise entre 20 et 150°C suivi d’au moins une calcination sous flux d’air à une température comprise entre 400 et 700°C.
Les étapes iii) et iv) peuvent être interverties, et éventuellement répétées.
Le mélange réactionnel de l’étape i) peut comprendre au moins une source additionnelle d’un oxyde XO2, X étant un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de sorte que le ratio molaire XO2/SiO2 (fau) soit compris entre 0,1 et 33, et de préférence entre 0,1 et 15, bornes incluses, la teneur en SiO2 (fau) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
Le mélange réactionnel de l’étape i) a alors avantageusement la composition molaire suivante :
(XO2 + SîO2(fau))/AI2O3 (fau) compris entre 2 et 200, de préférence entre 4 et 95 H2O/(XO2 + SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60 R/(XO2 + SîO2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + SîO2(fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses.
De préférence, X est le silicium.
Le mélange réactionnel de l’étape i) peut comprendre au moins une source additionnelle d’un oxyde Y2O3, Y étant un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de sorte que le ratio molaire Y2O3/AI2O3 (fau) soit compris entre 0,001 et 2, et de préférence entre 0,001 et 1,8, bornes incluses, la teneur en AI2O3 (fau) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
Le mélange réactionnel de l’étape i) a alors avantageusement la composition molaire suivante :
S1O2 (fau)/(AI2O3 (fau) + Y2O3) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence entre 3,00 (borne incluse) et 6,00 (borne exclue) H2O/(SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SiO2(FAU)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses,
S1O2 (fau) étant la quantité de S1O2 apportée par la zéolithe FAU, et ΑΙ2Ο3 (fau) étant la quantité de ΑΙ2Ο3 apportée par la zéolithe FAU.
De préférence, Y est l'aluminium.
Le mélange réactionnel de l’étape i) peut contenir :
- au moins une source additionnelle d’un oxyde XO2
- et au moins une source additionnelle d’un oxyde Y2O3, la zéolithe FAU représentant entre 5 et 95% massique, de préférence entre 50 et 95% massique, de manière très préférée entre 60 et 90% massique et de manière encore plus préférée entre 65 et 85% massique d’une zéolithe de type structural FAU par rapport à la quantité totale des sources des éléments trivalents et tétravalents SiO2 (fau), XO2, AI2O3 (fau) et Y2O3 du mélange réactionnel, et le mélange réactionnel présentant la composition molaire suivante :
(XO2 + SiO2 (fau))/(AI2C>3 (fau) + Y2O3) compris entre 2 et 200, de préférence entre 6 et 95
H2O/(XO2 + SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60 R/(XO2 + SîO2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + SîO2(fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses,
Le gel précurseur obtenu à l’issue de l’étape i) présente avantageusement un ratio molaire de la quantité totale exprimée en oxydes d’élément tétravalents sur la quantité totale exprimées en oxydes d’éléments trivalents compris entre 2 et 80, bornes incluses.
Avantageusement, la zéolithe de type structural FAU a un ratio molaire SiO2 (fau)/AI2C>3 (fau) compris entre 3,00 (borne incluse) et 6,00 (borne exclue), de manière préférée un ratio molaire SiO2 (fau)/AI20s <fau) compris entre 4,00 (borne incluse) et 6,00 (borne exclue).
On peut ajouter des germes cristallins d’une zéolithe de type structural AFX au mélange réactionnel de l’étape i), de préférence en quantité comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents.
L’étape i) peut comprendre une étape de mûrissement du mélange réactionnel à une température comprise entre 20 et 100°C, avec ou sans agitation, pendant une durée comprise entre 30 minutes et 48 heures.
Le traitement hydrothermal de l’étape ii) peut être réalisé sous pression autogène à une température comprise entre 120°C et 220°C, de préférence entre 150°C et 195°C, pendant une durée comprise entre 12 heures et 12 jours, de préférence entre 12 heures et 10 jours.
L’étape iii) d’échange ionique peut être réalisée par mise en contact du solide avec une solution comprenant une seule espèce apte à libérer un métal de transition ou par mises en contact successives du solide avec différentes solutions comprenant chacune au moins une, de préférence une seule, espèce apte à libérer un métal de transition, de préférence les métaux de transition des différentes solutions étant différents entre eux.
Ledit au moins un métal de transition libéré dans la solution d’échange de l’étape iii) peut être sélectionné dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr, Rh, Pd, Pt, Au, W, Ag, de préférence dans le groupe formé des éléments suivants : Fe, Cu, Nb, Ce, Mn, de manière plus préférée parmi Fe ou Cu et de manière encore plus préférée ledit métal de transition est Cu.
La teneur en métal(aux) de transition introduite par l’étape d’échange ionique iii) est avantageusement comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
Avantageusement, l’étape iv) de traitement thermique comprend un séchage du solide à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, avantageusement pendant une durée compris entre 2 et 24 heures, suivi d’au moins une calcination, sous air, éventuellement sec, à une température avantageusement comprise entre 450 et 700°C, de préférence entre 500 et 600°C pendant une durée comprise entre 2 et 20 heures, de préférence entre 5 et 10 heures, de manière plus préférée entre 6 et 9 heures, le débit d’air éventuellement sec étant de manière préférée compris entre 0,5 et 1,5 L/h/g de solide à traiter, de manière plus préférée compris entre 0,7 et 1,2 L/h/g de solide à traiter.
L’invention concerne également le catalyseur à base d’une zéolithe AFX et d’au moins un métal de transition susceptible d’être obtenu ou directement obtenu par le procédé de préparation.
Le métal ou les métaux de transition peut (peuvent) être sélectionné(s) dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr, Rh, Pd, Pt, Au, W, Ag, de préférence dans le groupe formé des éléments suivants : Fe, Cu, Nb, Ce, Mn, de manière plus préférée parmi Fe ou Cu et de manière encore plus préférée ledit métal de transition est Cu.
La teneur totale des métaux de transition est avantageusement comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
Dans un mode de réalisation, le catalyseur comprend du cuivre, seul, à une teneur comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique par rapport à la masse totale du catalyseur final anhydre.
Dans un autre mode de réalisation, le catalyseur comprend du cuivre en association avec au moins un autre métal de transition choisi dans le groupe formé par Fe, Nb, Ce, Mn, la teneur en cuivre du catalyseur étant comprise entre 0,05 et 2% massique, de préférence 0,5 et 2% massique, la teneur dudit au moins un autre métal de transition étant comprise entre 1 et 4% massique par rapport à la masse totale du catalyseur final anhydre.
Dans encore un autre mode de réalisation, le catalyseur comprend du fer en association avec un autre métal choisi dans le groupe formé par Cu, Nb, Ce, Mn, la teneur en fer étant comprise entre 0,05 et 2% massique, de préférence entre 0,5 et 2% massique, la teneur dudit autre métal de transition étant comprise entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
L’invention concerne également l’utilisation du catalyseur ci-dessus ou du catalyseur susceptible d’être obtenu ou directement obtenu par le procédé de préparation, pour la réduction sélective de NOX par un réducteur tel que NH3 ou H2.
Le catalyseur peut être mis en forme par dépôt sous forme de revêtement, sur une structure nid d’abeilles ou une structure à plaques.
La structure nid d’abeilles peut être formée de canaux parallèles ouverts aux deux extrémités ou peut comporter des parois poreuses filtrantes pour lesquelles les canaux parallèles adjacents sont alternativement bouchés de part et d’autre des canaux.
La quantité de catalyseur déposé sur ladite structure est avantageusement comprise entre 50 à 180 g/L pour les structures filtrantes et entre 80 et 200 g/L pour les structures avec canaux ouverts.
Le catalyseur peut être associé à un liant tel que la cérine, l’oxyde de zirconium, l’alumine, la silice-alumine non zéolithique, l’oxyde de titane, un oxyde mixte de type cerine-zircone, un oxyde de tungstène et/ou une spinelle pour être mis en forme par dépôt sous forme de revêtement.
Ledit revêtement peut être associé à un autre revêtement présentant des capacités d’adsorption de polluants en particulier de NOx, de réduction de polluants en particulier des NOx ou favorisant l’oxydation de polluants.
Ledit catalyseur peut être sous forme d’extrudé, contenant jusqu’à 100% dudit catalyseur.
La structure revêtue par ledit catalyseur ou obtenue par extrusion dudit catalyseur peut être intégrée dans une ligne d’échappement d’un moteur à combustion interne.
LISTE DES FIGURES
La Figure 1 représente les formules chimiques des composés organiques azotés qui peuvent être choisis comme structurant utilisé dans le procédé de synthèse selon l’invention.
La Figure 2 représente le diagramme de diffraction X de la zéolithe AFX obtenue selon l’exemple 2.
La figure 3 représente la conversion C en % obtenue lors d’un test catalytique de réduction des oxydes d’azote (NOx) par l’ammoniac (NH3) en présence d’oxygène (O2) dans des conditions Standard SCR en fonction de la température T en °C pour les catalyseurs synthétisés suivant l’exemple 2 (CuAFX, selon l’invention, courbe symbolisée par des carrés) et suivant l’exemple 3 (CuSSZ16, comparatif, courbe symbolisée par des triangles).
La figure 4 représente la conversion C en % obtenue lors d’un test catalytique de réduction des oxydes d’azote (NOx) par l’ammoniac (NH3) en présence d’oxygène (O2) dans des conditions Standard SCR en fonction de la température T en °C, après vieillissement hydrothermal, pour les catalyseurs synthétisés suivant les exemples 2 et 3, puis vieillis suivant la procédure décrite dans l’exemple 4 (CuAFX vieilli, selon l’invention, courbe symbolisée par les carrés et CuSSZ16 vieilli, comparatif, courbe symbolisée par les ronds).
D'autres caractéristiques et avantages du procédé de synthèse selon l'invention, du catalyseur selon l’invention et de l’utilisation selon l’invention, apparaîtront à la lecture de la description ci-après d'exemples non limitatifs de réalisations, en se référant aux figures annexées et décrites ci-après.
DESCRIPTION DÉTAILLÉE DE L’INVENTION
La présente invention concerne un procédé de préparation d’un catalyseur comprenant une zéolithe de type structural AFX et au moins un métal de transition, comprenant au moins les étapes suivantes :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire S1O2 (fau/A^Os (fau) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), d’un composé organique azoté R, R étant choisi parmi le dihydroxyde de
1.5- bis(méthylpiperidinium)pentane, le dihydroxyde de
1.6- bis(méthylpiperidinium)hexane ou le dihydroxyde de
1.7- bis(méthylpiperidinium)heptane, d’au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence η, n étant un entier supérieur ou égal à 1, choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux, le mélange réactionnel présentant la composition molaire suivante :
(S1O2 (fau))/(AI2O3 (fau)) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence entre 3,00 (borne incluse) et 6,00 (borne exclue)
H2O/(SiO2(FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(SiO2(FAU)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses, dans laquelle S1O2 (fau) désigne la quantité de S1O2 apportée par la zéolithe FAU, et ΑΙ2Ο3 (fau) désigne la quantité de AI2O3 apportée par la zéolithe FAU, jusqu’à l’obtention d’un gel précurseur homogène ;
ii) le traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) à une température comprise entre 120°C et 220°C, pendant une durée comprise entre 12 heures et 15 jours pour obtenir une phase solide cristallisée, dite « solide » ;
iii) au moins un échange ionique comprenant la mise en contact dudit solide obtenu à l’issue de l’étape précédente, avec une solution comprenant au moins une espèce apte à libérer un métal de transition, en particulier le cuivre, en solution sous forme réactive sous agitation à température ambiante pendant une durée comprise entre 1 heure et 2 jours ;
iv) le traitement thermique par séchage du solide obtenu à l’issue de l’étape précédente à une température comprise entre 20 et 150°C suivi d’au moins une calcination sous flux d’air à une température comprise entre 400 et 700°C ;
les étapes iii) et iv) pouvant avantageusement être interverties, et éventuellement répétées si besoin.
La présente invention concerne également le catalyseur comprenant une zéolithe de type structural AFX et au moins un métal de transition susceptible d’être obtenu ou directement obtenu par le procédé précédemment décrit.
L’invention concerne enfin l’utilisation d’un catalyseur selon l’invention pour la réduction sélective catalytique des NOx en présence d’un réducteur.
Le catalyseur
Le catalyseur selon l’invention comprend au moins une zéolithe de type AFX, et au moins un métal de transition additionnel, de préférence le cuivre.
Selon l’invention, le métal ou les métaux de transition compris dans le catalyseur est (sont) sélectionné(s) parmi les éléments issus du groupe formé par les éléments des groupes 3 à 12 du tableau périodique des éléments incluant les lanthanides. En particulier, le métal ou les métaux de transition compris dans le catalyseur est (sont) sélectionné(s) dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr, Rh, Pd, Pt, Au, W, Ag.
De préférence, le catalyseur selon l’invention comprend du cuivre, seul ou associé avec au moins un autre métal de transition, choisi dans le groupe des éléments listés précédemment ; en particulier Fe, Nb, Ce, Mn.
La teneur totale des métaux de transition est comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, et de façon encore plus préférée entre 1 et 4% massique, par rapport à la masse totale du catalyseur final, sous sa forme anhydre.
Pour les catalyseurs qui ne contiennent que du cuivre comme métal de transition, la teneur se situe entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique par rapport à la masse totale du catalyseur final anhydre.
Pour les catalyseurs comprenant du cuivre et un autre élément comme, de préférence, Fe, Nb, Ce, Mn la teneur en cuivre du catalyseur se situe entre 0,05 et 2% massique, de préférence 0,5 et 2% massique alors que celle de l’autre métal de transition se situe préférablement entre 1 et 4% massique, les teneurs en métaux de transition étant données en pourcentage massiques par rapport à la masse totale du catalyseur sec final.
Pour les catalyseurs qui ne contiennent que du fer comme métal de transition, la teneur se situe entre 0,5 et 4% et encore préférablement entre 1,5 et 3,5% par rapport à la masse totale du catalyseur final anhydre.
Pour les catalyseurs comprenant du fer et un autre élément comme, de préférence Cu, Nb, Ce, Mn la teneur en fer du catalyseur se situe entre 0,05 et 2% massique, de préférence entre 0,5 et 2% massique alors que celle de l’autre métal de transition se situe préférablement entre 1 et 4% massique, les teneurs en métaux de transition étant données en pourcentage massiques par rapport à la masse totale du catalyseur sec final.
Le catalyseur selon l’invention peut également comprendre d’autres éléments, comme par exemple des métaux alcalins et/ou alcalino-terreux, par exemple le sodium, provenant notamment de la synthèse, en particulier des composés du milieu réactionnel de l’étape i) du procédé de préparation dudit catalyseur.
Procédé de préparation du catalyseur
Etape i) de mélange
L’étape i) met en œuvre :
i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire SiO2 (fau)/AI2O3 (fau) supérieur ou égal à 2,00 et strictement inférieur à 6,00, d’un composé organique azoté R, également appelé structurant, spécifique, choisi parmi le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de 1,6-bis(méthylpiperidinium)hexane, ou le dihydroxyde de
1,7-bis(méthylpiperidinium)heptane, au moins un métal alcalin et/ou un métal alcalino-terreux M de valence η, n étant un entier supérieur ou égal à 1, le mélange présentant la composition molaire suivante :
(SiO2 (fau))/(AI2O3 (fau)) compris entre 2,00, borne incluse et 6,00, borne exclue, de préférence strictement compris entre 3,00, borne incluse, et 6,00, borne exclue H2O/(SiO2(FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(SîO2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2(FAU)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 dans laquelle SiO2 (fau) est la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (fau) est la quantité de AI2O3 apportée par la zéolithe FAU, H2O la quantité molaire d’eau présente dans le mélange réactionnel, R la quantité molaire dudit composé organique azoté, M2/nO la quantité molaire exprimée sous forme oxyde de M2/nO apportée par la source de métal alcalin et/ou de métal alcalino-terreux et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium, l’étape i) étant conduite pendant une durée permettant l’obtention d’un mélange homogène appelé gel précurseur ;
ii) le traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) à une température comprise entre 120°C et 220°C pendant une durée comprise entre 12 heures et 15 jours, jusqu'à ce que ladite zéolithe de type structural AFX se forme.
Un avantage de la présente invention est donc de fournir un nouveau procédé de préparation permettant la formation d’une zéolithe de type structural AFX de haute pureté à partir d’une zéolithe de type structural FAU, ledit procédé étant mis en œuvre en présence d’un structurant organique spécifique choisi parmi le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de
1.6- bis (méthylpiperidinium)hexane ou le dihydroxyde de
1.7- bis(méthylpiperidinium)heptane.
La zéolithe de type structural FAU de départ ayant un ratio molaire S1O2/AI2O3 compris entre 2,00 (borne incluse) et 6,00 (borne exclue), peut être obtenue par rïimporte quelle méthode connue par l’homme du métier et peut être utilisée dans sa forme sodique ou toute autre forme ou après échange partiel ou total des cations sodium avec des cations ammonium suivi ou non d’une étape de calcination. On peut citer, parmi les sources de FAU avec un rapport S1O2/AI2O3 compris entre 2,00 (borne incluse) et 6,00 (borne exclue), les zéolithes commerciales CBV100, CBV300, CBV400, CBV500 et CBV600 produites par Zeolyst, les zéolithes commerciales HSZ-320NAA, HSZ-320HOA et HSZ-320HUA produites par TOSOH.
Le procédé de préparation selon l’invention permet donc d’ajuster le ratio S1O2/AI2O3 du gel précurseur contenant une zéolithe de type structural FAU en fonction de l’apport supplémentaire ou pas, au sein du mélange réactionnel d’au moins une source d'au moins un élément tétravalent XO2 et/ou d’au moins une source d'au moins un élément trivalent Y2O3.
Un autre avantage de la présente invention est de permettre la préparation d’un gel précurseur d’une zéolithe de type structural AFX présentant un ratio molaire S1O2/AI2O3 identique, supérieur ou inférieur au ratio molaire SîO2(fau)/AI2O3(fau) de la zéolithe de type structural FAU de départ.
Dans la composition molaire du mélange réactionnel de l’étape i) et dans l’ensemble de la description :
XO2 désigne la quantité molaire du ou des élément(s) tétravalent(s) additionnels, exprimée sous forme oxyde, et Y2O3 désigne la quantité molaire du ou des élément(s) trivalent(s) additionnels, exprimée sous forme oxyde, SiO2 (fau) désigne la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (Fau) désigne la quantité de AI2O3 apportée par la zéolithe FAU
H2O la quantité molaire d’eau présente dans le mélange réactionnel,
R la quantité molaire dudit composé organique azoté,
M2/nO la quantité molaire exprimée sous forme oxyde de M2/nO apportée par la source de métal alcalin et/ou de métal alcalino-terreux.
L’étape i) comprend le mélange en milieu aqueux, d'une zéolithe de type structural FAU ayant un ratio molaire S1O2 (fau/A^Os (fau) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), d’un composé organique azoté R, R étant le dihydroxyde de
1.5- bis(méthylpiperidinium)pentane, le dihydroxyde de
1.6- bis(méthylpiperidinium)hexane, ou le dihydroxyde de
1.7- bis(méthylpiperidinium)heptane, au moins un métal alcalin et/ou un métal alcalino-terreux M de valence η, n étant un entier supérieur ou égal à 1, le mélange réactionnel présentant la composition molaire suivante :
(SiO2 (fau))/(AI2O3 (fau)) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence compris entre 3,00 (borne incluse) et 6,00 (borne exclue), H2O/(SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SiO2(FAU)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2(FAU)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 dans laquelle S1O2 (fau) est la quantité de S1O2 apportée par la zéolithe FAU, et AI2O3 (fau) est la quantité de AI2O3 apportée par la zéolithe FAU, H2O la quantité molaire d’eau présente dans le mélange réactionnel, R la quantité molaire dudit composé organique azoté, M2/nO la quantité molaire exprimée sous forme oxyde de M2/nO par la source de métal alcalin et/ou de métal alcalino-terreux et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
Dans un mode de réalisation préféré, le mélange réactionnel de l’étape i) comprend également au moins une source additionnelle d’un oxyde XO2 de sorte que le ratio molaire XO2/S1O2 (fau) soit compris entre 0,1 et 33, le mélange présentant avantageusement la composition molaire suivante :
(XO2 + SiO2(FAU))/AI2O3 (fau) compris entre 2 et 200, de préférence entre 4 et 95 H2O/(XO2 + S1O2 (fau)) compris entre 1 et 100, de préférence entre 5 et 60 R/(XO2 + SîC>2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + SîO2(fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 dans laquelle X est un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de préférence X est le silicium, SiO2 (fau) étant la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (fau) étant la quantité de AI2O3 apportée par la zéolithe FAU, R étant le dihydroxyde de 1,5-bis(méthylpipehdinium)pentane, le dihydroxyde de
1.6- bis(méthylpipehdinium)hexane ou le dihydroxyde de
1.7- bis(méthylpipehdinium)heptane, et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
Dans un autre mode de réalisation préféré, le mélange réactionnel de l’étape i) comprend également au moins une source additionnelle d’un oxyde Y2O3 de sorte que le ratio molaire Y2O3/AI2O3 (fau) soit compris entre 0,001 et 2, le mélange présentant avantageusement la composition molaire suivante :
SiO2 (fau)/(AI2O3 (fau) + ΥζΟ3) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence compris entre 3,00 (borne incluse) et 6,00 (borne exclue), H2O/(SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60
R/(SîO2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2(FAU)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 dans laquelle Y est un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de préférence Y est l'aluminium, SiO2 <fau) étant la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (fau) étant la quantité de AI2O3 apportée par la zéolithe FAU, R étant le dihydroxyde de 1,5-bis(méthylpipehdinium)pentane, le dihydroxyde de
1.6- bis(méthylpipehdinium)hexane ou le dihydroxyde de
1.7- bis(méthylpipehdinium)heptane, et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
Dans un autre mode de réalisation préféré, le mélange réactionnel de l’étape i) contient un pourcentage entre 5 et 95% massique, de préférence entre 50 et 95% massique, de manière très préférée entre 60 et 90% massique et de manière encore plus préférée entre 65 et 85% massique d’une zéolithe de type structural FAU par rapport à la quantité totale des sources des éléments trivalents et tétravalents S1O2 (fau), XO2, ΑΙ2Ο3 (fau) et Y2O3 du mélange réactionnel et comprend également au moins une source additionnelle d’un oxyde XO2 et au moins une source additionnelle d’un oxyde Y2O3, le mélange réactionnel présentant la composition molaire suivante :
(XO2 + S1O2 (fau))/(AI2O3 (fau) + Y2O3) compris entre 2,00 et 200, de préférence entre 4,00 et 95
H2O/(XO2 + SîO2(fau)) compris entre 1 et 100, de préférence entre 5 et 60 R/(XO2 + SîC>2(fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + SîC>2(fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 dans laquelle X est un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de préférence X est le silicium, Y est un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de préférence le aluminium, S1O2 (fau) étant la quantité de S1O2 apportée par la zéolithe FAU, et AI2O3 (fau) étant la quantité de AI2O3 apportée par la zéolithe FAU, R étant le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de
1,6-bis(méthylpiperidinium)hexane ou le dihydroxyde de 1,7-bis(méthylpiperidinium) heptane, et M est un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux choisi(s) parmi le lithium, le sodium, le potassium, le calcium, le magnésium et le mélange d'au moins deux de ces métaux, de manière très préférée M est le sodium.
L’étape i) permet l’obtention d’un gel précurseur homogène.
Conformément à l'invention, une zéolithe de type structural FAU ayant un ratio molaire S1O2 (fau/A^Os (fau) compris entre 2,00 (borne inférieure incluse) et 6,00 (borne supérieure exclue), de préférence compris entre 3,00 (borne inférieure incluse) et 6,00 (borne supérieure exclue), et de manière très préférée compris entre 4,00 (borne inférieure incluse) et 6,00 (borne supérieure exclue), est incorporée dans le mélange réactionnel pour la mise en œuvre de l’étape (i) comme source d’élément silicium et aluminium.
Conformément à l'invention, R est un composé organique azoté choisi parmi le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de
1.6- bis(méthylpiperidinium)hexane ou le dihydroxyde de
1.7- bis(méthylpiperidinium)heptane, ledit composé étant incorporé dans le mélange réactionnel pour la mise en oeuvre de l’étape (i), comme structurant organique. L’anion associé aux cations ammoniums quaternaires présents dans l'espèce organique structurante pour la synthèse d’une zéolithe de type structural AFX selon l'invention est l’anion hydroxyde.
Conformément à l'invention, au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence n, est mise en œuvre dans le mélange réactionnel de l’étape i), n étant un entier supérieur ou égal à 1, M étant de préférence choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux. De manière très préférée, M est le sodium.
De préférence, la source d'au moins un métal alcalin et/ou alcalino-terreux M est l’hydroxyde de sodium.
Conformément à l'invention, au moins une source additionnelle d’un oxyde XO2, X étant un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, et de préférence X est le silicium, de sorte que le ratio molaire XO2/SîO2(fau) soit compris entre 0,1 et 33, et de préférence entre 0,1 et 15, la teneur en SiO2 (fau) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU, est avantageusement mise en œuvre dans le mélange réactionnel de l’étape i).
L’ajout d’au moins une source additionnelle d’un oxyde XO2 permet notamment d’ajuster le ratio XO2/Y2O3 du gel précurseur d’une zéolithe de type structural AFX obtenu à l’issue de l’étape i).
La ou les source(s) du(es)dit(s) élément(s) tétravalent(s) peu(ven)t être tout composé comprenant l'élément X et pouvant libérer cet élément en solution aqueuse sous forme réactive.
Lorsque X est le titane, on utilise avantageusement Ti(EtO)4 comme source de titane.
Dans le cas préféré où X est le silicium, la source de silicium peut être l'une quelconque desdites sources couramment utilisée pour la synthèse de zéolithes, par exemple de la silice en poudre, de l'acide silicique, de la silice colloïdale, de la silice dissoute ou du tétraéthoxysilane (TEOS). Parmi les silices en poudre, on peut utiliser les silices précipitées, notamment celles obtenues par précipitation à partir d'une solution de silicate de métal alcalin, des silices pyrogénées, par exemple du CAB-OSIL ou du Aerosil et des gels de silice. On peut utiliser des silices colloïdales présentant différentes tailles de particules, par exemple de diamètre équivalent moyen compris entre 10 et 15 nm ou entre 40 et 50 nm, telles que celles commercialisées sous les marques déposées telle que LUDOX. De manière préférée, la source de silicium est le Aerosil.
Conformément à l'invention, au moins une source additionnelle d’un oxyde Y2O3, Y étant un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, est avantageusement mise en œuvre dans le mélange de l’étape i). De préférence Y est l'aluminium, de sorte que le ratio molaire Y2O3/AI2O3 (Fau) soit compris entre 0,001 et 2, et de préférence entre 0,001 et 1,8, la teneur en AI2O3 <Fau) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
L’ajout d’au moins une source additionnelle d’un oxyde Y2O3 permet donc d’ajuster le ratio XO2/Y2O3 du gel précurseur d’une zéolithe de type structural AFX obtenu à l’issue de l’étape i).
La ou les source(s) du(es)dit(s) élément(s) trivalent(s) Y peu(ven)t être tout composé comprenant l'élément Y et pouvant libérer cet élément en solution aqueuse sous forme réactive. L'élément Y peut être incorporé dans le mélange sous une forme oxydée YOb avec 1 < b < 3 (b étant un nombre entier ou un nombre rationnel) ou sous toute autre forme. Dans le cas préféré où Y est l'aluminium, la source d'aluminium est de préférence de l’hydroxyde d'aluminium ou un sel d'aluminium, par exemple du chlorure, du nitrate, ou du sulfate, un aluminate de sodium, un alkoxyde d'aluminium, ou de l'alumine proprement dite, de préférence sous forme hydratée ou hydratable, comme par exemple de l'alumine colloïdale, de la pseudoboehmite, de l'alumine gamma ou du trihydrate alpha ou bêta. On peut également utiliser des mélanges des sources citées ci-dessus.
L'étape (i) du procédé selon l'invention consiste à préparer un mélange réactionnel aqueux contenant une zéolithe de type structural FAU, éventuellement une source d’un oxyde XO2 ou d’une source d’un oxyde Y2O3, au moins un composé organique azoté R, R étant choisi parmi le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de 1,6-bis(méthylpiperidinium)hexane ou le dihydroxyde de
1,7-bis(méthylpiperidinium)heptane en présence d’au moins une source d'un ou plusieurs métal(aux) alcalin(s) et/ou alcalino-terreux, pour obtenir un gel précurseur d’une zéolithe de type structural AFX. Les quantités desdits réactifs sont ajustées comme indiqué précédemment de manière à conférer à ce gel une composition permettant la cristallisation d’une zéolithe de type structural AFX.
Il peut être avantageux d'additionner des germes d’une zéolithe de type structural AFX au mélange réactionnel au cours de ladite étape i) du procédé de l'invention afin de réduire le temps nécessaire à la formation des cristaux d’une zéolithe de type structural AFX et/ou la durée totale de cristallisation. Lesdits germes cristallins favorisent également la formation de ladite zéolithe de type structural AFX au détriment d'impuretés. De tels germes comprennent des solides cristallisés, notamment des cristaux d’une zéolithe de type structural AFX. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents. Lesdits germes ne sont pas non plus pris en compte pour déterminer la composition du mélange réactionnel et/ou du gel, définie plus avant, c’est-à-dire dans la détermination des différents rapports molaires de la composition du mélange réactionnel.
L’étape i) de mélange est mise en œuvre jusqu’à obtention d’un mélange homogène, de préférence pendant une durée supérieure ou égale à 30 minutes, de préférence sous agitation par tout système connu de l’homme du métier à faible ou fort taux de cisaillement.
A l’issue de l’étape i) on obtient un gel précurseur homogène.
Il peut être avantageux de mettre en œuvre un mûrissement du mélange réactionnel avant la cristallisation hydrothermale au cours de ladite étape i) du procédé de l'invention afin de contrôler la taille des cristaux d’une zéolithe de type structural AFX. Ledit mûrissement favorise également la formation de ladite zéolithe de type structural AFX au détriment d'impuretés. Le mûrissement du mélange réactionnel au cours de ladite étape i) du procédé de l'invention peut être réalisé à température ambiante ou à une température comprise entre 20 et 100°C avec ou sans agitation, pendant une durée avantageusement comprise entre 30 minutes et 48 heures.
Etape ii) de traitement hydrothermal
Conformément à l'étape ii) du procédé selon l'invention, le gel précurseur obtenu à l’issue de l’étape i) est soumis à un traitement hydrothermal, préférentiellement réalisé à une température comprise entre 120°C et 220°C pendant une durée comprise entre 12 heures et 15 jours, jusqu'à ce que ladite zéolithe de type structural AFX (ou « solide cristallisé ») se forme.
Le gel précurseur est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température de préférence comprise entre 120°C et 220°C, de préférence entre 150°C et 195°C, jusqu'à la cristallisation complète d’une zéolithe de type structural AFX.
La durée nécessaire pour obtenir la cristallisation varie entre 12 heures et 15 jours, de préférence entre 12 heures et 12 jours, et de manière plus préférée entre 12 heures et 10 jours.
La mise en réaction s'effectue généralement sous agitation ou en absence d'agitation, de préférence sous agitation. Comme système d’agitation on peut utiliser tout système connu par l’homme de métier, par exemple, des pales inclinées avec des contrepales, des turbines d’agitation, des vis d’Archimède.
De manière très avantageuse, le procédé de l'invention conduit à la formation d'une zéolithe de type structural AFX, exempte de toute autre phase cristallisée ou amorphe.
Etape iii) d’échange
Le procédé de préparation du catalyseur selon l’invention comprend au moins une étape d’échange ionique comprenant la mise en contact du solide cristallisé obtenu à l’issue de l’étape précédente, c'est-à-dire de la zéolithe AFX obtenue à l’issue de l’étape ii) ou de la zéolithe AFX séchée et calcinée obtenue à l’issue de l’étape iv) dans le cas préféré où les étapes iii) et iv) sont interverties, avec au moins une solution comprenant au moins une espèce apte à libérer un métal de transition, de préférence le cuivre, en solution sous forme réactive, sous agitation à température ambiante pendant une durée comprise entre 1 heure et 2 jours, avantageusement pendant une durée comprise entre 0,5 jour et 1,5 jours, la concentration en ladite espèce apte à libérer le métal de transition dans ladite solution étant fonction de la quantité de métal de transition que l’on souhaite incorporer audit solide cristallisé.
Il est également avantageux d'obtenir la forme protonée de la zéolithe de type structural AFX après l’étape ii). Ladite forme hydrogène peut être obtenue en effectuant un échange d'ions avec un acide, en particulier un acide minéral fort comme l'acide chlorhydrique, sulfurique ou nitrique, ou avec un composé tel que le chlorure, le sulfate ou le nitrate d'ammonium, avant l’échange ionique avec le ou les métaux de transition.
Le métal de transition libéré dans la solution d’échange est sélectionné dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr,
Rh, Pd, Pt, Au, W, Ag. De préférence le métal de transition est Fe, Cu, Nb, Ce ou Mn, de préférence Cu.
Selon l’invention, par « espèce apte à libérer un métal de transition », on entend une espèce apte à se dissocier en milieu aqueux, comme par exemple les sulfates, les nitrates, les chlorures, les oxalates, les complexes organométalliques d’un métal de transition ou leurs mélanges. De préférence, l’espèce apte à libérer un métal de transition est un sulfate ou un nitrate dudit métal de transition.
Selon l’invention, la solution avec laquelle le solide cristallisé ou solide cristallisé séché et calciné est mis en contact, comprend au moins une espèce apte à libérer un métal de transition, de préférence une seule espèce apte à libérer un métal de transition, de préférence le fer ou cuivre, préférentiellement le cuivre.
Avantageusement, le procédé de préparation du catalyseur selon l’invention comprend une étape iii) d’échanges ioniques par mise en contact du solide cristallisé avec une solution comprenant une espèce apte à libérer un métal de transition ou par mise en contact successive du solide avec plusieurs solutions comprenant chacune une espèce apte à libérer un métal de transition, les différentes solutions comprenant des espèces aptes à libérer un métal de transition différentes.
A la fin de l’échange, le solide obtenu est avantageusement filtré, lavé et ensuite séché pour obtenir ledit catalyseur sous forme de poudre.
La quantité totale de métal de transition, de préférence le cuivre, contenue dans ledit catalyseur final est comprise entre 0,5 et 6% massique par rapport à la masse totale du catalyseur sous sa forme anhydre.
Selon un mode de réalisation, le catalyseur selon l’invention est préparé par un procédé comprenant une étape iii) d’échange ionique, le solide ou le solide séché et calciné étant mis en contact avec une solution comprenant une espèce apte à libérer du cuivre en solution sous forme réactive. De manière avantageuse, la quantité de cuivre totale contenue dans ledit catalyseur final, c'est-à-dire à l’issue du procédé de préparation selon l’invention, est comprise entre 0,5 et 6%, de préférence entre 1 et
6% massique, tous les pourcentages étant des pourcentages massiques par rapport à la masse totale du catalyseur final selon l’invention sous sa forme anhydre, obtenu à l’issue du procédé de préparation.
Etape iv) de traitement thermique
Le procédé de préparation selon l’invention comprend une étape iv) de traitement thermique réalisée à l’issue de l’étape précédente, c’est-à-dire à l’issue de l’étape ii) de traitement hydrothermal ou à l’issue de l’étape iii) d’échange, de préférence à l’issue de l’étape iii) d’échange ionique. L’étape iii) du procédé de préparation peut avantageusement être intervertie avec l’étape iv). Chacune des deux étapes iii) et iv) peut également éventuellement être répétée.
Ladite étape iv) de traitement thermique comprend un séchage du solide à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, avantageusement pendant une durée compris entre 2 et 24 heures, suivi d’au moins une calcination sous air, éventuellement sec, à une température avantageusement comprise entre 450 et 700°C, de préférence entre 500 et 600°C pendant une durée comprise entre 2 et 20 heures, de préférence entre 5 et 10 heures, de manière plus préférée entre 6 et 9 heures, le débit d’air éventuellement sec étant de manière préférée compris entre 0,5 et 1,5 L/h/g de solide à traiter, de manière plus préférée compris entre 0,7 et 1,2 L/h/g de solide à traiter. La calcination peut être précédée d’une montée en température progressive.
Le catalyseur obtenu à l'issue de l'étape iv) de traitement thermique est dépourvu de toute espèce organique, en particulier dépourvu du structurant organique R.
En particulier, le catalyseur obtenu par un procédé comprenant au moins les étapes i), ii), iii), et iv) précédemment décrites présente des propriétés améliorées pour la conversion des NOX.
Caractérisation du catalyseur préparé selon l’invention
Le catalyseur comprend une zéolithe de structure AFX selon la classification de l’international Zeolite Association (IZA), échangée par au moins un métal de transition. Cette structure est caractérisée par diffraction aux rayons X (DRX).
Le diagramme de diffraction aux rayons X (DRX) est obtenu par analyse radiocristallographique au moyen d’un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Και du cuivre (λ = 1,5406A). A partir de la position des pics de diffraction représentée par l’angle 20, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l’échantillon. L’erreur de mesure A(dhki) sur dhki est calculée grâce à la relation de Bragg en fonction de l’erreur absolue Δ(2θ) affectée à la mesure de 20. Une erreur absolue Δ(2θ) égale à ± 0,02° est communément admise. L’intensité relative lrei affectée à chaque valeur de dhki est mesurée d’après la hauteur du pic de diffraction correspondant. La comparaison du diffractogramme avec les fiches de la base de données d’ICDD (International Centre for Diffraction Data) en utilisant un logiciel comme par exemple le DIFFRACT.SUITE nous permet aussi de faire l’identification des phases cristallines présentes dans le matériau obtenu.
Une zéolithe de type structural AFX pure est utilisée comme référence.
L’analyse qualitative et quantitative des espèces chimiques présentes dans les matériaux obtenus est faite par spectrométrie de fluorescence des rayons X (FX). Celle-ci est une technique d'analyse chimique utilisant une propriété physique de la matière, la fluorescence de rayons X. Le spectre des rayons X émis par la matière est caractéristique de la composition de l'échantillon, en analysant ce spectre, on peut en déduire la composition élémentaire, c'est-à-dire les concentrations massiques en éléments.
La perte au feu (PAF) du catalyseur obtenu après l’étape de séchage (et avant calcination) ou après l’étape de calcination de l’étape iv) du procédé selon l’invention est généralement comprise entre 4 et 15% poids. La perte au feu d’un échantillon, désignée sous l’acronyme PAF, correspond à la différence de masse de l’échantillon avant et après un traitement thermique à 1000°C pendant 2 heures. Elle est exprimée en % correspondant au pourcentage de perte de masse. La perte au feu correspond en général à la perte de solvant (comme l’eau) contenu dans le solide mais aussi à l’élimination de composés organiques contenus dans les constituants solides minéraux.
Utilisation du catalyseur selon l’invention
L’invention concerne également l’utilisation du catalyseur selon l’invention, directement préparé ou susceptible d’être préparé par le procédé décrit précédemment pour la réduction sélective de NOX par un réducteur tel que NH3 ou H2, avantageusement mis en forme par dépôt sous forme de revêtement (« washcoat » selon la terminologie anglo-saxonne) sur une structure nid d’abeilles principalement pour les applications mobiles ou une structure à plaques que l’on retrouve particulièrement pour les applications stationnaires.
La structure nid d’abeilles est formée de canaux parallèles ouverts aux deux extrémités (flow-through en anglais) ou comporte des parois poreuses filtrantes et dans ce cas les canaux parallèles adjacents sont alternativement bouchés de part et d’autre des canaux afin de forcer le flux de gaz à traverser la paroi (wall-flow monolith en anglais). Ladite structure nid d’abeilles ainsi revêtue constitue un pain catalytique. Ladite structure peut être composée de cordiérite, carbure de silicium (SiC), titanate d’aluminium (AITi), alumine alpha, mullite ou tout autre matériau dont la porosité est comprise entre 30 et 70%. Ladite structure peut être réalisée en tôle métallique, en acier inoxydable contenant du Chrome et de l’aluminium, acier de type FeCrAI.
La quantité de catalyseur selon l’invention déposé sur ladite structure est comprise entre 50 à 180 g/L pour les structures filtrantes et entre 80 et 200 g/L pour les structures avec canaux ouverts.
Le revêtement proprement dit (« washcoat ») comprend le catalyseur selon l’invention, avantageusement associé à un liant tel que la cérine, l’oxyde de zirconium, l’alumine, la silice-alumine non zéolithique, l’oxyde de titane, un oxyde mixte de type cerine-zircone, un oxyde de tungstène, une spinelle. Ledit revêtement est avantageusement appliqué à ladite structure par une méthode de dépôt (washcoating en anglais) qui consiste à tremper le monolithe dans une suspension (slurry en anglais) de poudre de catalyseur selon l’invention dans un solvant, de préférence de l’eau, et potentiellement des liants, oxydes métalliques, stabilisateurs ou autres promoteurs. Cette étape de trempe peut être répétée jusqu’à atteindre la quantité souhaitée de revêtement. Dans certains cas le slurry peut aussi être pulvérisé au sein du monolithe. Le revêtement une fois déposé, le monolithe est calciné à une température de 300 à 600°C pendant 1 à 10 heures.
Ladite structure peut être revêtue d’un ou plusieurs revêtements. Le revêtement comprenant le catalyseur selon l’invention est avantageusement associé à, c’est-àdire recouvre un ou est recouvert par, un autre revêtement présentant des capacités d’adsorption de polluants en particulier de NOx, de réduction de polluants en particulier des NOx ou favorisant l’oxydation de polluants, en particulier celle de l’ammoniac.
Une autre possibilité est de mettre le catalyseur sous forme d’extrudé. Dans ce cas, la structure obtenue peut contenir jusqu’à 100% de catalyseur selon l’invention.
Ladite structure revêtue par le catalyseur selon l’invention est avantageusement intégrée dans une ligne d’échappement d’un moteur à combustion interne fonctionnant principalement en mélange pauvre, c'est-à-dire en excès d’air par rapport à la stœchiométrie de la réaction de combustion comme c’est le cas pour les moteurs Diesel par exemple. Dans ces conditions de fonctionnement du moteur, les gaz d’échappement contiennent notamment les polluants suivants : des suies, des hydrocarbures imbrulés (HC), du monoxyde de carbone (CO), des oxydes d’azotes (NOx). En amont de ladite structure revêtue du catalyseur selon l’invention peut être placé un catalyseur d’oxydation dont la fonction est d’oxyder les HC et le CO ainsi qu’un filtre pour éliminer les suies des gaz d’échappement, la fonction de ladite structure revêtue étant d’éliminer le NOx, sa gamme de fonctionnement de se situant entre 100 et 900°C et de manière préférée entre 200°C et 500°C.
AVANTAGES DE L’INVENTION
Le catalyseur selon l’invention, à base d’une zéolithe de type structural AFX et d’au moins un métal de transition, en particulier du cuivre, présente des propriétés améliorées par rapport aux catalyseurs de l’art antérieur. En particulier, l’utilisation du catalyseur selon l’invention permet d’obtenir des températures d’amorçage plus faibles pour la réaction de conversion des NOx et une meilleure conversion des NOX sur l’ensemble de la gamme de température de fonctionnement (150°C - 600°C), tout en conservant une bonne sélectivité en N2O. Il présente aussi une meilleure tenue en vieillissement hydrothermal, garantissant des performances élevées même après ce vieillissement.
EXEMPLES
Exemple 1: préparation du dihydroxyde de 1,6-bis(méthylpiperidinium)hexane (structurant R).
g de 1,6-dibromohexane (0,20 mole, 99%, Alfa Aesar) sont ajoutés dans un ballon de 1 L contenant 50 g de N-méthylpipéridine (0,51 mole, 99%, Alfa Aesar) et 200 mL d'éthanol. Le milieu réactionnel est agité et porté à reflux pendant 5 heures. Le mélange est ensuite refroidi à température ambiante, puis filtré. Le mélange est versé dans 300 mL de diéthyléther froid, puis le précipité formé est filtré et lavé avec 100 mL de diéthyléther. Le solide obtenu est recristallisé dans un mélange éthanol/éther. Le solide obtenu est séché sous vide pendant 12 heures. On obtient 71 g d'un solide blanc (soit un rendement de 80%).
Le produit possède le spectre RMN 1H attendu. RMN 1H (D2O, ppm/TMS) : 1,27 (4H,m) ; 1,48 (4H,m) ; 1,61 (4H,m) ; 1,70 (8H,m) ; 2,85 (6H,s) ; 3,16 (12H,m).
18,9 g d'Ag2O (0,08 mole, 99%, Aldrich) sont ajoutés dans un bêcher en téflon de 250 mL contenant 30 g du structurant dibromure de 1,6-bis(méthylpiperidinium)hexane (0,07 mole) préparé et 100 mL d'eau déionisée. Le milieu réactionnel est agité à l'abri de la lumière pendant 12 heures. Le mélange est ensuite filtré. Le filtrat obtenu est composé d'une solution aqueuse de dihydroxyde de 1,6-bis(méthylpiperidinium)hexane. Le dosage de cette espèce est réalisé par RMN du proton en utilisant l'acide formique en tant qu'étalon.
Exemple 2: préparation d’une zéolithe de type structural AFX selon l’invention 3% Cu
Préparation de la zéolithe AFX
19,62 g d'une solution aqueuse de dihydroxyde de 1,6-bis(méthylpiperidinium)hexane (21,56% en poids) préparé selon l’exemple 1 sont mélangés avec 52,4 g d’eau permutée, sous agitation et à température ambiante. 0,774 g d’hydroxyde de sodium (98% en poids, Aldrich) sont dissous dans le mélange précédent sous agitation et à température ambiante. On verse ensuite par petites fractions 4,52 g de silice Aerosil 380 (100% en poids, Degussa) sous agitation. Dès que la suspension obtenue est homogène on commence à verser 2,67 g de zéolithe de type structural FAU (CBV600 Zeolyst, SiO2/AI2O3= 5,48, PAF = 12,65%) et on maintien sous agitation la suspension obtenue pendant 30 minutes, à température ambiante. Le rapport molaire (SiO2(Aerosil)/SiO2(FAU) est de 2,65. Le gel précurseur obtenu présente la composition molaire suivante: 1 SiO2: 0,05 AI2O3: 0,125 R : 0,093 Na2O: 36,73 H2O, soit un ratio SiO2/AI2O3 de 20. Dans le gel précurseur sont introduits sous agitation 0,6 g de germes de zéolithe de type structural AFX (8,7% par rapport à la masse de zéolithe CBV600 anhydre et de silice Aerosil 380). Ensuite le gel précurseur contenant les germes de zéolithe AFX est transféré dans un réacteur inox de 160 mL doté d’un système d’agitation à 4 pales inclinées. Le réacteur est fermé puis chauffé pendant 14 heures à 170°C sous agitation à 100 tr/min. Le solide obtenu est filtré, lavé à l'eau déionisée puis séché une nuit à 100°C.
Le cycle de calcination comprend une montée de 1,5°C/min en température jusqu'à 200°C, un palier à 200°C maintenu durant 2 heures, une montée de 1°C/min en température jusqu'à 550°C suivie d'un palier à 550°C maintenu durant 8 heures puis un retour à la température ambiante.
Le produit solide calciné est analysé par diffraction des rayons X et identifié comme une zéolithe de type structural AFX.
La zéolithe AFX calcinée est mise en contact d’une solution de NH4NO3 3 molaire pendant 1 heure sous agitation à 80°C pour échange ionique au NH4 +. Le rapport entre le volume de solution de NH4NO3 et la masse de solide est de 10. Le solide obtenu est filtre et lavé et la procédure d’échange est répétée encore deux fois dans les mêmes conditions. Le solide final est séparé, lavé et séché 12 heures à 100°C. Une analyse DRX montre que le produit obtenu est une zéolithe sous forme ammoniacale de type structural AFX pure.
La zéolithe AFX sous forme ammoniacale est traitée sous flux d’air à 550°C pendant 8 heures avec une rampe de montée en température de 1°C/min. La perte au feu (PAF) est de 4% poids. Le produit obtenu est une zéolithe AFX sous forme protonée.
Echange ionique au Cu
La zéolithe AFX calcinée sous forme protonée est mise en contact avec une solution de [Cu(NH3)4](NO3)2 pendant 1 journée sous agitation à température ambiante. Le solide final est séparé, lavé et séché 12 heures à 100°C.
Le solide échangé Cu-AFX obtenu après la mise en contact avec la solution de [Cu(NH3)4](NO3)2 est traité sous flux d’air à 550°C durant 8 heures.
Le produit solide calciné est analysé par diffraction des rayons X et identifié comme une zéolithe de type structural AFX.
Le produit présente un rapport molaire SiO2/AI2O3 de 14,2 et un pourcentage massique de Cu de 3% tel que déterminé par fluorescence X.
Le catalyseur obtenu est noté CuAFX.
Exemple 3
Dans cet exemple, une zéolithe SSZ-16 échangée au Cu est synthétisée selon l’art antérieur. Dans cet exemple, le cuivre est introduit par échange ionique.
Préparation de la zéolithe SSZ-16
17,32 g d’hydroxyde de sodium sont dissous dans 582,30 g d’eau déionisée, sous agitation (300 tr/min) et à température ambiante. On rajoute dans cette solution 197,10 g de silicate de sodium et on homogénéise l’ensemble sous agitation (300 tr/min à température ambiante. On rajoute ensuite 9,95 g de zéolithe NaY CBV100 sous agitation (300 tr/min) et on poursuit ainsi jusqu’à dissolution de la zéolithe. On dissout dans la solution obtenue, 43,67 g du structurant DABCO-C4 et on homogénéise ainsi sous agitation (450 tr/min) pendant 30 minutes, à température ambiante.
Le mélange réactionnel présente la composition molaire suivante : 100 S1O2 : 1,67 AI2O3 : 50 Na2O: 10 DABCO-C4: 4000 H2O
Le mélange réactionnel obtenu à l’étape de mélange est maintenu à température ambiante sous agitation pendant 24 heures.
Le gel obtenu est laissé en autoclave à une température de 150°C pendant 6 jours sous agitation (200 tr/min). Les cristaux obtenus sont séparés et lavés avec de l’eau permutée jusqu’à obtention d’un pH des eaux de lavage inférieur à 8. Le catalyseur lavé est séché 12 heures à 100°C.
Une analyse DRX montre que le produit obtenu est une zéolithe SSZ-16 de type structural AFX brute de synthèse et pure (fiche ICDD, PDF 04-03-1370).
La zéolithe SSZ-16 brute de synthèse est traitée sous flux de N2 sec à 550°C pendant 8 heures, puis calcinée sous flux d’air sec à 550°C durant 8 heures. La perte au feu (PAF) est de 18% poids.
La zéolithe SSZ-16 calcinée est mise en contact d’une solution de NH4NO3 3 molaire pendant 5 heures sous agitation à température ambiante pour échange ionique au NH4 +. Le rapport entre le volume de solution de NH4NO3 et la masse de solide est de 10. Le solide obtenu est filtre et lavé et la procédure d’échange est répété encore une fois dans les mêmes conditions. Le solide final est séparé, lavé et séché 12 heures à 100°C.
La zéolithe SSZ-16 sous forme ammoniacale (NH4-SSZ-16) est traitée sous flux d’air sec à 550°C pendant 8 heures avec une rampe de montée en température de1°C/min. La perte au feu (PAF) est de 4% poids. Le produit obtenu est une zéolithe SSZ-16 sous forme protonée (H-SSZ-16).
Echange ionique au Cu sur la H-SSZ-16
La zéolithe H-SSZ-16 est mise en contact d’une solution de [Cu(NH3)4](NO3)2 pendant 1 journée sous agitation à température ambiante. Le solide final est séparé, lavé et séché et calciné sous flux d’air sec à 550°C durant 8 heures. Une analyse DRX montre que le produit obtenu est une zéolithe SSZ-16 de type structural AFX pure (fiche ICDD, PDF 04-03-1370).
L’analyse chimique par fluorescence des rayons X (FX) donné un rapport molaire SiO2/AI2O3 de 13 et un pourcentage massique de Cu de 3%.
Le catalyseur obtenu est noté CuSSZ16.
Exemple 4 : Etape de vieillissement hydrothermal
200mg de chacun des échantillons synthétisés selon l’exemple 2 (CuAFX) et l’exemple 3 (CuSSZ16) sont placés sous forme de poudre dans un réacteur en quartz. Ils sont traversé par un débit de 150 L/h d’un mélange de composition molaire suivante : 10% H2O, 20% O2 et N2 en complément.
Les échantillons sont soumis à ces conditions pendant 4h à une température de 800°C.
Ils sont ensuite refroidis à température ambiante sous flux de N2.
Exemple 5 :
L’échantillon synthétisé selon l’exemple 2 et vieilli sous les conditions de l’exemple 4 est nommé CuAFXvieilli.
L’échantillon synthétisé selon l’exemple 3 et vieilli sous les conditions de l’exemple 4 est nommé CuSSZI6vieilli.
Exemple 6 : Conversion des NOx en Standard SCR : comparaison des catalyseurs selon l’invention avec l’art antérieur
Un test catalytique de réduction des oxydes d’azote (NOx) par l’ammoniac (NH3) en présence d’oxygène (O2) dans des conditions Standard SCR est réalisé à différentes températures de fonctionnement pour les catalyseurs synthétisés suivant l’exemple 2 (CuAFX) et l’exemple 3 (CuSSZ16).
Pour le test de chaque échantillon, 200 mg de catalyseur sous forme de poudre est disposé dans un réacteur en quartz. 145 L/h d’une charge représentative d’un mélange de gaz d’échappement d’un moteur Diesel sont alimentés dans le réacteur.
Cette charge présente la composition molaire suivante : 400 ppm NO, 400 ppm NH3, 8,5% O2, 9% CO2, 10% H2O, qpc N2.
Un analyseur FTIR permet de mesurer la concentration des espèces NO, NO2, NH3, N2O, CO, CO2, H2O, O2 en sortie de réacteur. Les conversions de NOx calculées comme suivant :
Conversion = (NOx entrée -NOx sortie) / NOx entrée
Les résultats de conversion de NOx dans les conditions Standard SCR sont présentés sur la figure 3, la courbe marquée par des carrés et celle marquée par des triangles correspondant respectivement aux tests réalisés avec les catalyseurs synthétisés suivant l’exemple 2 (CuAFX) et l’exemple 3 (CuSSZ16).ll apparaît que les catalyseurs selon l’invention permettent de convertir les NOx.
Le catalyseur CuAFX synthétisé selon l’invention donne des performances supérieures au catalyseur synthétisé selon l’art antérieur CuSSZ16 en termes de conversion de NOx sur l’ensemble de la plage de température testée. Une conversion maximum de 100% est atteinte entre 310 et 400°C pour le catalyseur CuAFX alors que le catalyseur CuSSZ16 synthétisé selon l’art antérieur atteint seulement 89% de conversion entre 340 et 400°C.
Les températures d’amorçage des catalyseurs sont données ci-dessous pour les conditions Standard-SCR :
T50 T80 T90 T100
CuAFX 188°C 230°C 258°C 310°C
CuSSZ16 190°C 257°C - -
T50 correspond à la température à laquelle 50% des NOx du mélange gazeux sont convertis par le catalyseur. T80 correspond à la température à laquelle 80% des NOx du mélange gazeux sont convertis par le catalyseur. T90 correspond à la température à laquelle 90% des NOx du mélange gazeux sont convertis par le catalyseur. T100 correspond à la température à laquelle 100% des NOx du mélange gazeux sont convertis par le catalyseur.
Le catalyseur CuAFX synthétisé selon l’invention donne des performances très supérieures au catalyseur CuSSZ16 synthétisé selon l’art antérieur en termes de températures d’amorçage et de conversion de NOx sur l’ensemble de la plage de températures testée en condition Standard SCR. En effet, à même taux de conversion (50% ou 80%), les températures d’amorçage obtenues avec le catalyseur selon l’invention CuAFX sont plus faibles par rapport à celles obtenues avec le catalyseur CuSSZ16.
Exemple 7 : Conversion des NOx en Fast SCR: comparaison des catalyseurs selon l’invention avec l’art antérieur
Un test catalytique de réduction des oxydes d’azote (NOx) par l’ammoniac (NH3) en présence d’oxygène (O2) dans les conditions Fast SCR est réalisé à différentes températures de fonctionnement pour le catalyseur synthétisé suivant l’invention (exemple 2) et l’échantillon CuSSZ16 synthétisé selon l’art antérieur (exemple 3) 200 mg de catalyseur sous forme de poudre est disposé dans un réacteur en quartz. 218 L/h d’une charge représentative d’un mélange de gaz d’échappement d’un moteur Diesel sont alimentés dans le réacteur. Cette charge présente la composition molaire suivante : 200 ppm NO, 200 ppm NO2, 400 ppm NH3, 8,5% O2, 9% CO2, 10% H2O, qpc N2 pour les conditions Fast SCR.
Un analyseur FTIR permet de mesurer la concentration des espèces NO, NO2, NH3, N2O, CO, CO2, H2O, O2 en sortie de réacteur. Les conversions de NOx calculées comme suivant :
Conversion = (NOx entrée -NOx sortie) / NOx entrée
Les températures d’amorçage des catalyseurs sont données ci-dessous pour les conditions Fast-SCR
T50 T80 T90 T100
CuAFX 150°C 182°C 209°C 300°C
CuSSZ16 185°C 233°C 269°C 402°C
T50 correspond à la température à laquelle 50% des NOx du mélange gazeux sont convertis par le catalyseur. T80 correspond à la température à laquelle 80% des NOx du mélange gazeux sont convertis par le catalyseur. T90 correspond à la température à laquelle 90% des NOx du mélange gazeux sont convertis par le catalyseur. T100 correspond à la température à laquelle 100% des NOx du mélange gazeux sont convertis par le catalyseur.
Le catalyseur CuAFX synthétisé selon l’invention donne des performances supérieures au catalyseur CuSSZ16 synthétisé selon l’art antérieur en termes de températures d’amorçage et de conversion de NOx sur l’ensemble de la plage de températures testée en conditions Fast SCR. En effet, à même taux de conversion (50%, 80%, 90% ou 100%), les températures d’amorçage obtenues avec le catalyseur selon l’invention CuAFX sont plus faibles par rapport à celles obtenues avec le catalyseur CuSSZ16.
De plus, les émissions de protoxyde (N2O) d’azote, dans le cas du catalyseur CuAFX selon l’invention, restent faibles sur toute la plage de températures testée (<15ppm entre 150 et 550°C).
Exemple 8 : Conversion des NOx en Standard et Fast SCR après vieillissement hydrothermal:
Un test catalytique de réduction des oxydes d’azote (NOx) par l’ammoniac (NH3) en présence d’oxygène (O2) dans des conditions Standard SCR et Fast SCR est réalisé à différentes températures de fonctionnement pour les catalyseurs synthétisés suivant les exemples 2 et 3, puis vieillis suivant la procédure décrite dans l’exemple 4, notés CuAFXvieilli et CuSSZI6vieilli.
200 mg de catalyseur sous forme de poudre est disposé dans un réacteur en quartz. 145 l/h d’une charge représentative d’un mélange de gaz d’échappement sont alimentés dans le réacteur. Cette charge présente la composition molaire suivante :
400 ppm NO, 400 ppm NH3, 8,5% O2, 9% CO2, 10% H2O, qpc N2 pour les conditions Standard SCR et la composition molaire suivante : 200 ppm NO, 200 ppm NO2, 400ppm NH3, 8,5% O2, 9% CO2, 10% H2O, qpc N2 pour les conditions Fast SCR.
Un analyseur FTIR permet de mesurer la concentration des espèces NO, NO2, NH3, N2O, CO, CO2, H2O, O2 en sortie de réacteur. Les conversions de NOx calculées comme suivant :
Conversion = (NOx entrée -NOx sortie) / NOx entrée
La figure 4 présente la conversion des NOx des catalyseurs CuAFX vieilli et CuSSZ16 vieilli en fonction de la température dans les conditions Standard SCR.
Les températures d’amorçage des catalyseurs sont données ci-dessous pour les conditions Standard-SCR :
T50 T80 T90 T100
CuAFX vieilli 214°C 251 °C 273°C 330°C
CuSSZ16 vieilli 228°C - - -
Les températures d’amorçage des catalyseurs sont données ci-d essous pour les
conditions Fast-SCR
T50 T80 T90 T100
CuAFX vieilli 172°C 198°C 230°C 310°C
CuSSZ16 vieilli 196°C - - -
T50 correspond à la température à laquelle 50% des NOx du mélange gazeux sont convertis par le catalyseur. T80 correspond à la température à laquelle 80% des NOx du mélange gazeux sont convertis par le catalyseur. T90 correspond à la température à laquelle 90% des NOx du mélange gazeux sont convertis par le catalyseur. T100 correspond à la température à laquelle 100% des NOx du mélange gazeux sont convertis par le catalyseur.
Le catalyseur CuAFX synthétisé selon l’invention donne des performances très supérieures au catalyseur CuSSZ16 synthétisé selon l’art antérieur en termes de températures d’amorçage et en conversion de NOx sur l’ensemble de la plage de température testée en conditions Standard SCR après vieillissement hydrothermal.
En effet, à même taux de conversion (50%), les températures d’amorçage obtenues avec le catalyseur selon l’invention CuAFX sont plus faibles par rapport à celles obtenues avec le catalyseur CuSSZ16. Une conversion de 100% est atteinte entre 330 et 370°C pour le catalyseur CuAFX alors que le catalyseur CuSSZ16 atteint seulement 66% de conversion au maximum à 335°C.
Les performances en conditions Fast SCR sont également supérieures pour le catalyseur CuAFX vieilli synthétisé selon l’invention ; le maximum de conversion est de 100% et est atteint entre 310 et 370°C alors que le catalyseur CuSSZ16 vieilli atteint seulement 78% au maximum entre 305 et 360°C.
Les émissions de protoxyde (N2O) d’azote sont comparables pour les deux 15 catalyseurs testés (<15ppm entre 150 et 550°C).

Claims (32)

  1. REVENDICATIONS
    1. Procédé de préparation d’un catalyseur à base de zéolithe de type structural AFX et d’au moins un métal de transition comprenant au moins les étapes suivantes :
    i) le mélange en milieu aqueux, d’une zéolithe de type structural FAU ayant un ratio molaire S1O2 (fau)/AI2O3 (fau> compris entre 2,00 (borne incluse) et 6,00 (borne exclue), d’un composé organique azoté R, R étant choisi parmi le dihydroxyde de 1,5-bis(méthylpiperidinium)pentane, le dihydroxyde de
    1.6- bis(méthylpiperidinium)hexane ou le dihydroxyde de
    1.7- bis(méthylpiperidinium)heptane, d’au moins une source d'au moins un métal alcalin et/ou alcalino-terreux M de valence η, n étant un entier supérieur ou égal à 1, choisi parmi le lithium, le potassium, le sodium, le magnésium et le calcium et le mélange d'au moins deux de ces métaux, le mélange réactionnel présentant la composition molaire suivante :
    (S1O2 (fau))/(AI2Os (fau)) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence entre 3,00 (borne incluse) et 6,00 (borne exclue) H2O/(SiO2(FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(SiO2 (fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses, dans laquelle S1O2 <fau> désigne la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3(fau) désigne la quantité de AI2O3 apportée par la zéolithe FAU, jusqu’à l’obtention d’un gel précurseur homogène ;
    ii) traitement hydrothermal dudit gel précurseur obtenu à l’issue de l’étape i) à une température comprise entre 120°C et 220°C, pendant une durée comprise entre 12 heures et 15 jours pour obtenir une phase solide cristallisée, dite « solide » ;
    iii) au moins un échange ionique comprenant la mise en contact dudit solide obtenu à l’issue de l’étape précédente, avec une solution comprenant au moins une espèce apte à libérer un métal de transition, en particulier le cuivre, en solution sous forme réactive sous agitation à température ambiante pendant une durée comprise entre 1 heure et 2 jours ;
    iv) traitement thermique par séchage du solide obtenu à l’issue de l’étape précédente à une température comprise entre 20 et 150°C suivi d’au moins une calcination sous flux d’air à une température comprise entre 400 et 700°C.
  2. 2. Procédé selon la revendication 1, dans lequel les étapes iii) et iv) sont interverties, et éventuellement répétées.
  3. 3. Procédé selon l’une des revendications 1 ou 2 dans lequel le mélange réactionnel de l’étape i) comprend au moins une source additionnelle d’un oxyde XO2, X étant un ou plusieurs élément(s) tétravalent(s) choisi(s) dans le groupe formé par les éléments suivants : silicium, germanium, titane, de sorte que le ratio molaire XO2/SiO2 (fau) soit compris entre 0,1 et 33, et de préférence entre 0,1 et 15, bornes incluses, la teneur en SiO2 (fau) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
  4. 4. Procédé selon la revendication 3 dans lequel le mélange réactionnel de l’étape i) a la composition molaire suivante :
    (XO2 + SiO2 (fau))/AI2O3 (fau) compris entre 2 et 200, de préférence entre 4 et 95 H2O/(XO2 + SiO2 (fau)) compris entre 1 et 100, de préférence entre 5 et 60
    R/(XO2 + S1O2 (fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + S1O2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses.
  5. 5. Procédé selon l’une des revendications 3 ou 4 dans lequel X est le silicium.
  6. 6. Procédé selon l’une des revendications précédentes dans lequel le mélange réactionnel de l’étape i) comprend au moins une source additionnelle d’un oxyde Y2O3, Y étant un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, bore, gallium, de sorte que le ratio molaire Y2O3/AI2O3 (FAU) soit compris entre 0,001 et 2, et de préférence entre 0,001 et 1,8, bornes incluses, la teneur en AI2O3 (FAU) dans ledit ratio étant la teneur apportée par la zéolithe de type structural FAU.
  7. 7. Procédé selon la revendication 6 dans lequel le mélange réactionnel de l’étape i) a la composition molaire suivante :
    S1O2 (fau)/(AI2O3 (FAu) + Y2O3) compris entre 2,00 (borne incluse) et 6,00 (borne exclue), de préférence entre 3,00 (borne incluse) et 6,00 (borne exclue) H2O/(SiO2(FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(SiO2 (fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(SiO2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses,
    SiO2 (fau) étant la quantité de SiO2 apportée par la zéolithe FAU, et AI2O3 (Fau) étant la quantité de AI2O3 apportée par la zéolithe FAU.
  8. 8. Procédé selon l’une des revendications 6 à 7 dans lequel Y est l’aluminium.
  9. 9. Procédé selon l’une des revendications précédentes dans lequel le mélange réactionnel de l’étape i) contient :
    - au moins une source additionnelle d’un oxyde XO2
    - et au moins une source additionnelle d’un oxyde Y2O3, la zéolithe FAU représentant entre 5 et 95% massique, de préférence entre 50 et 95% massique, de manière très préférée entre 60 et 90% massique et de manière encore plus préférée entre 65 et 85% massique d’une zéolithe de type structural FAU par rapport à la quantité totale des sources des éléments trivalents et tétravalents SiO2 <fau), XO2, AI2O3 (FAU) et Y2O3 du mélange réactionnel, et le mélange réactionnel présentant la composition molaire suivante :
    (XO2 + SiO2 (fau))/(AI2O3 (fau) + Υ3Ο3) compris entre 2 et 200, de préférence entre 6 et 95
    H2O/(XO2 + SiO2(FAU)) compris entre 1 et 100, de préférence entre 5 et 60 R/(XO2 + SiO2 (fau)) compris entre 0,01 à 0,6, de préférence entre 0,05 et 0,5 M2/nO/(XO2 + SiO2 (fau)) compris entre 0,005 à 0,7, de préférence entre 0,05 et 0,6 bornes incluses,
  10. 10. Procédé selon l’une des revendications précédentes dans lequel le gel précurseur obtenu à l’issue de l’étape i) présente un ratio molaire de la quantité totale exprimée en oxydes d’élément tétravalents sur la quantité totale exprimées en oxydes d’éléments trivalents compris entre 2 et 80, bornes incluses.
  11. 11. Procédé selon l’une des revendications précédentes dans lequel la zéolithe de type structural FAU a un ratio molaire SiO2 (fau)/AI2O3 (Fau) compris entre 3,00 (borne incluse) et 6,00 (borne exclue), de manière préférée un ratio molaire SiO2 (fau)/AI2O3 (fau) compris entre 4,00 (borne incluse) et 6,00 (borne exclue).
  12. 12. Procédé selon l’une des revendications précédentes dans lequel on ajoute des germes cristallins d’une zéolithe de type structural AFX au mélange réactionnel de l’étape i), de préférence en quantité comprise entre 0,01 et 10% de la masse totale des sources desdits élément(s) tétravalent(s) et trivalent(s) sous forme anhydre présentes dans le mélange réactionnel, lesdits germes cristallins n’étant pas pris en compte dans la masse totale des sources des éléments tétravalents et trivalents.
  13. 13. Procédé selon l’une des revendications précédentes dans lequel l’étape i) comprend une étape de mûrissement du mélange réactionnel à une température comprise entre 20 et 100°C, avec ou sans agitation, pendant une durée comprise entre 30 minutes et 48 heures.
  14. 14. Procédé selon l’une des revendications 1 à 13 dans lequel le traitement hydrothermal de l’étape ii) est réalisé sous pression autogène à une température comprise entre 120°C et 220°C, de préférence entre 150°C et 195°C, pendant une durée comprise entre 12 heures et 12 jours, de préférence entre 12 heures et 10 jours.
  15. 15. Procédé selon l’une des revendications 1 à 14, dans lequel l’étape iii) d’échange ionique est réalisée par mise en contact du solide avec une solution comprenant une seule espèce apte à libérer un métal de transition ou par mises en contact successives du solide avec différentes solutions comprenant chacune au moins une, de préférence une seule, espèce apte à libérer un métal de transition, de préférence les métaux de transition des différentes solutions étant différents entre eux.
  16. 16. Procédé selon la revendication 15 dans lequel ledit au moins un métal de transition libéré dans la solution d’échange de l’étape iii) est sélectionné dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr, Rh, Pd, Pt, Au, W, Ag, de préférence dans le groupe formé des éléments suivants : Fe, Cu, Nb, Ce, Mn, de manière plus préférée parmi Fe ou Cu et de manière encore plus préférée ledit métal de transition est Cu.
  17. 17. Procédé selon l’une des revendications précédentes dans lequel la teneur en métal(aux) de transition introduite par l’étape d’échange ionique iii) est comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
  18. 18. Procédé selon l’une des revendications précédentes, dans lequel l’étape iv) de traitement thermique comprend un séchage du solide à une température comprise entre 20 et 150°C, de préférence entre 60 et 100°C, avantageusement pendant une durée compris entre 2 et 24 heures, suivi d’au moins une calcination, sous air, éventuellement sec, à une température avantageusement comprise entre 450 et 700°C, de préférence entre 500 et 600°C pendant une durée comprise entre 2 et 20 heures, de préférence entre 5 et 10 heures, de manière plus préférée entre 6 et 9 heures, le débit d’air éventuellement sec étant de manière préférée compris entre 0,5 et 1,5 L/h/g de solide à traiter, de manière plus préférée compris entre 0,7 et 1,2 L/h/g de solide à traiter.
  19. 19. Catalyseur à base d’une zéolithe AFX et d’au moins un métal de transition obtenu par le procédé selon l’une des revendications 1 à 18.
  20. 20. Catalyseur selon la revendication 19 dans lequel le métal ou les métaux de transition est (sont) sélectionné(s) dans le groupe formé des éléments suivants : Ti, V, Mn, Mo, Fe, Co, Cu, Cr, Zn, Nb, Ce, Zr, Rh, Pd, Pt, Au, W, Ag, de préférence dans le groupe formé des éléments suivants : Fe, Cu, Nb, Ce, Mn, de manière plus préférée parmi Fe ou Cu et de manière encore plus préférée ledit métal de transition est Cu.
  21. 21. Catalyseur selon l’une des revendications 19 à 20 dans lequel la teneur totale des métaux de transition est comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
  22. 22. Catalyseur selon la revendication 21 comprenant du cuivre, seul, à une teneur comprise entre 0,5 à 6% massique, de préférence entre 0,5 et 5% massique, de manière plus préférée entre 1 et 4% massique par rapport à la masse totale du catalyseur final anhydre.
  23. 23. Catalyseur selon la revendication 21 comprenant du cuivre en association avec au moins un autre métal de transition choisi dans le groupe formé par Fe, Nb, Ce, Mn, la teneur en cuivre du catalyseur étant comprise entre 0,05 et 2% massique, de préférence 0,5 et 2% massique, la teneur dudit au moins un autre métal de transition étant comprise entre 1 et 4% massique par rapport à la masse totale du catalyseur final anhydre.
  24. 24. Catalyseur selon la revendication 21 comprenant du fer en association avec un autre métal choisi dans le groupe formé par Cu, Nb, Ce, Mn, la teneur en fer étant comprise entre 0,05 et 2% massique, de préférence entre 0,5 et 2% massique, la teneur dudit autre métal de transition étant comprise entre 1 et 4% massique, par rapport à la masse totale du catalyseur final anhydre.
  25. 25. Utilisation du catalyseur selon l’une des revendications 19 à 24 ou obtenu par le procédé selon l’une quelconques des revendications 1 à 18, pour la réduction sélective de NOX par un réducteur tel que NH3 ou H2.
  26. 26. Utilisation selon la revendication 25 , pour laquelle le catalyseur est mis en forme par dépôt sous forme de revêtement sur une structure nid d’abeilles ou une structure à plaques.
  27. 27. Utilisation selon la revendication 26, pour laquelle la structure nid d’abeilles est formée de canaux parallèles ouverts aux deux extrémités ou comporte des parois poreuses filtrantes pour lesquelles les canaux parallèles adjacents sont alternativement bouchés de part et d’autre des canaux.
  28. 28. Utilisation selon la revendication 27, pour laquelle la quantité de catalyseur déposé sur ladite structure est comprise entre 50 à 180 g/L pour les structures filtrantes et entre 80 et 200 g/L pour les structures avec canaux ouverts.
  29. 29. Utilisation selon l’une des revendications 25 à 28, pour laquelle le catalyseur est associé à un liant tel que la cérine, l’oxyde de zirconium, l’alumine, la silicealumine non zéolithique, l’oxyde de titane, un oxyde mixte de type cerinezircone, un oxyde de tungstène et/ou une spinelle pour être mis en forme par
    5 dépôt sous forme de revêtement.
  30. 30. Utilisation selon l’une des revendications 26 à 29, pour laquelle ledit revêtement est associé à un autre revêtement présentant des capacités d’adsorption de polluants en particulier de NOx, de réduction de polluants en particulier des NOx ou favorisant l’oxydation de polluants.
    10
  31. 31. Utilisation selon la revendication 25, pour laquelle ledit catalyseur est sous forme d’extrudé, contenant jusqu’à 100% dudit catalyseur.
  32. 32. Utilisation selon l’une des revendications 25 à 31, pour laquelle la structure revêtue par ledit catalyseur ou obtenue par extrusion dudit catalyseur est intégrée dans une ligne d’échappement d’un moteur à combustion interne.
FR1854380A 2018-05-24 2018-05-24 Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox Active FR3081339B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1854380A FR3081339B1 (fr) 2018-05-24 2018-05-24 Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox
PCT/EP2019/062555 WO2019224083A1 (fr) 2018-05-24 2019-05-16 Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1854380A FR3081339B1 (fr) 2018-05-24 2018-05-24 Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox
FR1854380 2018-05-24

Publications (2)

Publication Number Publication Date
FR3081339A1 true FR3081339A1 (fr) 2019-11-29
FR3081339B1 FR3081339B1 (fr) 2023-11-10

Family

ID=63722494

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1854380A Active FR3081339B1 (fr) 2018-05-24 2018-05-24 Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox

Country Status (2)

Country Link
FR (1) FR3081339B1 (fr)
WO (1) WO2019224083A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3095130B1 (fr) * 2019-04-19 2022-03-11 Ifp Energies Now Synthese rapide d’un catalyseur comprenant une zeolithe de type structural afx et au moins un metal de transition pour la reduction selective de nox
FR3101259B1 (fr) * 2019-09-30 2022-07-29 Ifp Energies Now Synthese a basse temperature de catalyseur a base de zeolithe afx et son application en nh3-scr
CN112591760B (zh) * 2020-12-03 2022-06-17 金华职业技术学院 一种y分子筛转晶合成新形貌的ssz-16分子筛及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160096169A1 (en) * 2014-10-07 2016-04-07 Johnson Matthey Public Limited Company Molecular Sieve Catalyst For Treating Exhaust Gas
WO2017087385A1 (fr) * 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Matériaux adsorbants et procédés d'adsorption de dioxyde de carbone
WO2017202495A1 (fr) * 2016-05-24 2017-11-30 Exxonmobil Chemical Patents Inc. Zéolite synthétique comprenant un métal catalytique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194235A (en) 1992-08-27 1993-03-16 Chevron Research And Technology Company Synthesis of SSZ-16 zeolite catalyst
JP6070230B2 (ja) 2013-02-01 2017-02-01 東ソー株式会社 Afx型シリコアルミノリン酸塩及びその製造方法、並びにこれを用いた窒素酸化物還元方法
US20160137518A1 (en) 2014-11-14 2016-05-19 Johnson Matthey Public Limited Company Afx zeolite
EP3362173B1 (fr) 2015-10-12 2019-08-28 Umicore AG & Co. KG Synthèse directe de zéolites à petite pores contenant du cuivre
US10500573B2 (en) 2016-09-30 2019-12-10 Johnson Matthey Public Limited Company Zeolite synthesis with alkaline earth metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160096169A1 (en) * 2014-10-07 2016-04-07 Johnson Matthey Public Limited Company Molecular Sieve Catalyst For Treating Exhaust Gas
WO2017087385A1 (fr) * 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Matériaux adsorbants et procédés d'adsorption de dioxyde de carbone
WO2017202495A1 (fr) * 2016-05-24 2017-11-30 Exxonmobil Chemical Patents Inc. Zéolite synthétique comprenant un métal catalytique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUSTIN W FICKEL ET AL: "The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 102, no. 3, 9 December 2010 (2010-12-09), pages 441 - 448, XP028139896, ISSN: 0926-3373, [retrieved on 20101216], DOI: 10.1016/J.APCATB.2010.12.022 *
MARTÍN NURIA ET AL: "Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 217, 29 May 2017 (2017-05-29), pages 125 - 136, XP085112832, ISSN: 0926-3373, DOI: 10.1016/J.APCATB.2017.05.082 *
WANG AIYONG ET AL: "NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects", CATALYSIS TODAY, vol. 320, 7 October 2017 (2017-10-07), pages 91 - 99, XP085513181, ISSN: 0920-5861, DOI: 10.1016/J.CATTOD.2017.09.061 *
XIAOJIAO LIU ET AL: "Ammonia selective catalytic reduction of NO over Ce-Fe/Cu-SSZ-13 catalysts", RSC ADVANCES, vol. 5, no. 104, 1 January 2015 (2015-01-01), pages 85453 - 85459, XP055552933, DOI: 10.1039/C5RA16072C *

Also Published As

Publication number Publication date
FR3081339B1 (fr) 2023-11-10
WO2019224083A1 (fr) 2019-11-28

Similar Documents

Publication Publication Date Title
FR3081348A1 (fr) Catalyseur comprenant une zeolithe de type structural afx de tres haute purete et au moins un metal de transition pour la reduction selective de nox
JP6347913B2 (ja) Cha構造を備えた銅含有分子篩を調整する方法、触媒、システム及び方法
JP2015533343A (ja) 低温性能を向上させるための促進剤を有する8員環小孔分子ふるい
WO2020212354A1 (fr) Synthese rapide d&#39;un catalyseur comprenant une zeolithe de type structural afx et au moins un metal de transition pour la reduction selective de nox
EP3655363B1 (fr) Synthese directe d&#39;un materiau aluminosilicate microporeux de structure afx comprenant du cuivre et utilisation de ce materiau
WO2019224081A1 (fr) Synthese directe d&#39;un catalyseur comprenant une zeolithe de type structural afx et au moins un metal de transition pour la reduction selective de nox
EP3630681B1 (fr) Synthese directe d&#39;un materiau sapo de structure afx comprenant du cuivre et utilisation de ce materiau
WO2019224083A1 (fr) Catalyseur comprenant une zeolithe de type structural afx de haute purete et au moins un metal de transition pour la reduction selective de nox
FR3111886A1 (fr) Synthese directe d’un catalyseur a base de zeolithe afx contenant du cuivre pour la reduction selective des nox
WO2019224082A1 (fr) Catalyseur comprenant une zeolithe de type structural afx preparee a partir d&#39;un melange de fau et au moins un metal de transition pour la reduction selective de nox
EP3801894B1 (fr) Catalyseur comprenant un melange d&#39;une zeolithe de type structural afx et d&#39;une zeolithe de type structural bea et au moins un metal de transition pour la reduction selective de nox
EP4037830A1 (fr) Synthese a basse temperature de catalyseur a base de zeolithe afx et son application en nh3-scr
FR3081338A1 (fr) Catalyseur a base d&#39;un materiau aluminosilicate composite comprenant du cuivre et un melange de zeolithes de type structural afx et de type structural bea, pour la reduction selective de nox
EP4340992A1 (fr) Synthese d&#39;un catalyseur composite a base de zeolithe afx-bea contenant du palladium pour l&#39;adsorption des nox
WO2022243164A1 (fr) Synthese d&#39;un catalyseur a base de zeolithe afx contenant du palladium pour l&#39;adsorption des nox
FR3136752A1 (fr) SYNTHESE D’UN CATALYSEUR COMPRENANT UNE ZEOLITHE DE TYPE STRUCTURAL AFX CONTENANT DU FER POUR LA REDUCTION DES NOx ET N2O
WO2023242061A1 (fr) Synthese de catalyseur comprenant une zeolithe nu-86 de haute purete et du fer pour la conversion des nox et n2o
EP1316358A1 (fr) Composition à base d&#39;une ferrierite et son utilisation dans un procédé pour la réduction des émissions des oxydes d&#39;azote

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20191129

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6