FR2967130A1 - Liquefied natural gas isolation device for use in ship tank, has openings for replacement of natural gas with inert gas consisting mainly of argon, lighter gas such as methane, or nitrogen that is present in insulating spaces - Google Patents

Liquefied natural gas isolation device for use in ship tank, has openings for replacement of natural gas with inert gas consisting mainly of argon, lighter gas such as methane, or nitrogen that is present in insulating spaces Download PDF

Info

Publication number
FR2967130A1
FR2967130A1 FR1004328A FR1004328A FR2967130A1 FR 2967130 A1 FR2967130 A1 FR 2967130A1 FR 1004328 A FR1004328 A FR 1004328A FR 1004328 A FR1004328 A FR 1004328A FR 2967130 A1 FR2967130 A1 FR 2967130A1
Authority
FR
France
Prior art keywords
argon
orifices
gas
natural gas
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1004328A
Other languages
French (fr)
Other versions
FR2967130B1 (en
Inventor
Damien Feger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEW GENERATION NATURAL GAS
Original Assignee
NEW GENERATION NATURAL GAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEW GENERATION NATURAL GAS filed Critical NEW GENERATION NATURAL GAS
Priority to FR1004328A priority Critical patent/FR2967130B1/en
Publication of FR2967130A1 publication Critical patent/FR2967130A1/en
Application granted granted Critical
Publication of FR2967130B1 publication Critical patent/FR2967130B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0682Special properties of materials for vessel walls with liquid or gas layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/044Methods for emptying or filling by purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The device has a set of metal membranes and a set of openings (16, 17) provided in an upper part and a lower part of reinforcements (10). Another set of openings (18, 19) is provided in a lower side wall and an upper side wall (8). The openings are utilized for providing upward movement, and provide replacement of a liquefied natural gas with an inert gas consisting mainly of argon, lighter gas such as methane, or nitrogen that is optionally present in insulating spaces of plywood boxes.

Description

. Inertage et ventilation sous argon, de cuves de navires méthaniers â membranes 1 DOMAINE DE L'INVENTION L'invention porte sur un procédé permettant de balayer les espaces d'isolation des cuves de navires méthaniers utilisant la technologie à membrane, tel que décrit dans le brevet français N° 01 147 49 qui permet d'augmenter sensiblement la performance des isolations thermiques de ces cuves, l'argon étant un meilleur isolant thermique que l'azote actuellement utilisé pour ce balayage. L'invention porte plus spécialement sur une amélioration de la technologie des cuves à membranes utilisant des boites de contreplaqué remplie de matériau isolant, telle que décrite, par exemple dans la brochure technique « NO 96 membrane system » éditée par la société Gaz Transport et téléchargeable sur son site www.gtt.fr. On pourra aussi se reporter à l'ouvrage « Quand le méthane prend la mer » de Pierre Jean et Henri Petit, paru aux éditions P. Tacussel. . BACKGROUND OF THE INVENTION The invention relates to a method for sweeping the isolation spaces of vessels of LNG tankers using membrane technology, as described in FIG. French patent No. 01 147 49 which significantly increases the performance of thermal insulation of these tanks, argon being a better thermal insulator than the nitrogen currently used for this scan. The invention relates more particularly to an improvement of the technology of membrane tanks using plywood boxes filled with insulating material, as described, for example in the technical brochure "NO 96 membrane system" published by the company Gaz Transport and downloadable on its website www.gtt.fr. We can also refer to the book "When methane takes to the sea" by Pierre Jean and Henri Petit, published by P. Tacussel.

Elle permet d'assurer, de manière sûre et efficace : - le remplacement par un mélange de gaz, constitué majoritairement d'argon, des 15 gaz initialement présents dans les espaces d'isolation ; - la collecte des fuites de gaz naturel éventuelles venant de la cargaison vers l'extérieur des espaces d'isolation afm de garantir la performance thermique de l'isolation ainsi que la sécurité en évitant l'accumulation de gaz inflammables et /ou plus conducteurs thermiquement. 20 Ceci permet, aussi, de réduire drastiquement les quantités d'argon nécessaires pour remplacer les gaz initialement présents dans ces espaces et de maximiser la réduction de conductivité thermique obtenue. It makes it possible to ensure, in a safe and effective manner: the replacement by a gas mixture, consisting mainly of argon, of the gases initially present in the isolation spaces; the collection of any natural gas leaks from the cargo to the outside of the insulation spaces in order to guarantee the thermal performance of the insulation as well as the safety by avoiding the accumulation of flammable gases and / or more thermally conductive . This also makes it possible to drastically reduce the quantities of argon necessary to replace the gases initially present in these spaces and to maximize the reduction in thermal conductivity obtained.

2 ETAT DE LA TECHNIQUE ANTERIEURE 25 La figure 1 donne le principe général d'une isolation à membrane de cuves de navire méthanier utilisant un assemblage de boites en contreplaqué remplise de matériau isolant, dans le cas d'un balayage de ces espaces d'isolation par de l'azote. Cette isolation est constituée des éléments suivants : 5 10 20 25 30 - Une membrane primaire (1) métallique, qui assure l'étanchéité vis-à-vis de la cargaison, et qui repose sur une première couche de boites (2) en contreplaqué remplies d'isolant qui assure à la fois l'isolation thermique et le transfert mécanique des efforts de pression. - Une membrane secondaire (3) métallique qui assure une redondance de l'étanchéité et qui elle aussi supportée par une deuxième couche de boites en contreplaqué (4). Par soucis de simplification, nous ne détaillerons pas les procédés mécaniques utilisés pour rendre solidaire de la double coque (5) l'assemblage composé des boites (2) et (4) ainsi que des membranes (1) et (2). On pourra se reporter utilement, pour ces détails, aux documents déjà cités. Pour réduire les risques d'explosion, les règlements internationaux requièrent que les espaces entre les membranes (1) et (3) et la coque du navire (5) soient balayés en permanence par un gaz inerte (dans le cas de l'art antérieur de l'azote) afin de diluer les éventuelles fuites traversant les membranes et de les collecter pour les rejeter vers l'extérieur, le but étant de maintenir la concentration de vapeur de gaz naturel dans les espaces d'isolation bien en deçà de la limite d'inflammabilité de ce gaz dans l'air. La figure 2 présente, plus en détail, la conception des boites en contreplaqué supportant les membranes. Pour reprendre les efforts de compression, le fond (6) et le couvercle (7) de la boite sont reliés non seulement par les parois latérales (8) et (9), mais aussi par une série de renforts internes (10). Les espaces (11) délimités par ces partitions sont remplis de matériau isolant, typiquement de la silice expansée, connue commercialement sous le nom de Perlite. Alternativement, une isolation sous forme d'aérogel ou un autre matériau à faible conductivité peut être considérée. Pour permettre le balayage par le gaz inerte, et, aussi, éviter des différences de pression entre les espaces (11) et l'extérieur de la boite, des orifices (12) et (13) sont ménagés dans les renforts internes (10) et les parois latérales (8) qui leur font face, les deux autres parois latérales (9) étant aveugles. On notera que dans le cadre de l'état de l'art, ces orifices sont placés à mi hauteur des parois (8) et des renforts (10). Typiquement, ces orifices sont de simples ouvertures circulaires percés dans le contreplaqué, occultées, en ce qui concerne les parois extérieures des boites, par une pastille de tissus de verre qui permet le passage des gaz mais évite que le matériau isolant ne s'échappe de la boite. Dans le cas du remplacement de l'azote par de l'argon pour réduire les entrée , thermiques dans la cargaison, cette configuration est dommageable car le remplacement de l'azote dans la totalité des espaces (11) est problématique, du fait de l'absence, dans le cas de boites posées suivant un plan proche de l'horizontale, de points haut et bas par rapport à la force de gravité, l'argon risquant d'occuper que la partie (14) des espaces (11) qui est en dessous des lignes d'orifices (12) et (13) , l'azote ou les gaz résiduels plus légers étant piégés au dessus, dans la partie (15), voir figure 3. Ce phénomène réduirait, typiquement de moitié, ta réduction de conduction thermique gazeuse attendue dans ces espaces par le remplacement du gaz initialement présent (typiquement de l'azote) par de l'argon. PRIOR ART FIG. 1 gives the general principle of a membrane insulation of vessels of a LNG carrier using an assembly of plywood boxes filled with insulating material, in the case of a sweep of these isolation spaces. by nitrogen. This insulation consists of the following elements: A metal primary membrane (1), which seals against the cargo, and which rests on a first layer of boxes (2) made of plywood filled with insulation that provides both thermal insulation and mechanical transfer of pressure forces. - A secondary membrane (3) which provides a redundant sealing and which is also supported by a second layer of plywood boxes (4). For the sake of simplification, we will not detail the mechanical processes used to make integral with the double shell (5) the composite assembly of boxes (2) and (4) and membranes (1) and (2). For these details, reference may be made to the documents already mentioned. To reduce the risk of explosion, international regulations require that the spaces between the membranes (1) and (3) and the hull of the ship (5) be swept continuously by an inert gas (in the case of the prior art Nitrogen) to dilute any leaks through the membranes and collect them for discharge to the outside, the goal being to keep the concentration of natural gas vapor in the isolation spaces well below the limit flammability of this gas in the air. Figure 2 shows, in more detail, the design of the plywood boxes supporting the membranes. To recover the compression forces, the bottom (6) and the cover (7) of the box are connected not only by the side walls (8) and (9), but also by a series of internal reinforcements (10). The spaces (11) delimited by these partitions are filled with insulating material, typically expanded silica, known commercially as Perlite. Alternatively, insulation in the form of airgel or other low conductivity material may be considered. To enable scanning by the inert gas, and also to avoid pressure differences between the spaces (11) and the outside of the box, orifices (12) and (13) are formed in the internal reinforcements (10). and the side walls (8) facing them, the other two side walls (9) being blind. It will be noted that in the context of the state of the art, these orifices are placed at mid-height of the walls (8) and reinforcements (10). Typically, these orifices are simple circular openings pierced in the plywood, occulted, as regards the outer walls of the boxes, by a glass fabric pellet which allows the passage of gases but prevents the insulating material from escaping from the box. In the case of the nitrogen replacement with argon to reduce the thermal inputs into the cargo, this configuration is harmful because the replacement of the nitrogen in all the spaces (11) is problematic, because of the absence, in the case of boxes placed in a plane close to the horizontal, of high and low points with respect to the force of gravity, the argon being likely to occupy only the part (14) of the spaces (11) which is below the lines of orifices (12) and (13), the nitrogen or the lighter residual gases being trapped above, in the part (15), see Figure 3. This phenomenon would reduce, typically by half, reduction of gaseous thermal conduction expected in these spaces by the replacement of the initially present gas (typically nitrogen) with argon.

L'objet de la présente innovation est d'éviter ces zones de piégeage, en facilitant le remplacement, par l'effet de la gravité, des gaz initialement présents dans les espaces (11) par de l'argon. The object of the present innovation is to avoid these trapping zones, by facilitating the replacement, by the effect of gravity, of the gases initially present in the spaces (11) by argon.

3 EXPOSE DE L'INVENTION La figure 4 illustre, plus en détail, la conception d'une boite isolante suivant l'invention. Elle se caractérise par : - La présence d'au moins deux orifices (16) et (17) dans la partie inférieure et supérieure de chaque renfort (10). - La présence d'au moins deux orifices (18) et (19) dans la partie inférieure 20 et supérieure des parois latérales (8). - Alternativement, ou en complément, des orifices similaires (20) et (21) pourront être ménagés dans le fond (6) ou le couvercle (7) ; - Alternativement ou en complément, des orifices similaires (22) et (23) pourront être ménagés respectivement dans les parties inférieures et supérieures des 25 parois latérales (9). SUMMARY OF THE INVENTION FIG. 4 illustrates, in more detail, the design of an insulating box according to the invention. It is characterized by: - The presence of at least two orifices (16) and (17) in the lower and upper part of each reinforcement (10). - The presence of at least two orifices (18) and (19) in the lower portion 20 and upper side walls (8). - Alternatively, or in addition, similar orifices (20) and (21) may be formed in the bottom (6) or the cover (7); Alternatively or in addition, similar orifices (22) and (23) may be formed respectively in the lower and upper portions of the side walls (9).

On voit ainsi que par simple effet gravitaire, voir figure 5, l'argon, plus lourd, pourra pénétrer, via les orifices (16), (18),(20) ou (22) le bas des espaces (11) et les remplir progressivement, chassant vers le haut les gaz plus légers tels que l'azote, le 30 méthane ou l'air qui seront, par effet piston, poussés et évacués via les orifices (17), (19) 421) ou (23) à l'extérieur de la boite. Il suffit donc, pour remplir avec de l'argon les espaces d'isolation, d'injecter ce gaz dans les volumes d'isolation compris entre les membranes (1) et (3) et la coque (5) pour chasser vers le haut de ces volumes les autres gaz plus légers. 4 INDICATION DE LA MANIERE DONT L'INVENTION EST SUSCEPTIBLE D'APPLICATION La figure 6 présente, à titre d'exemple, la manière dont l'invention est susceptible d'être appliquée. On remarque, dans cet exemple, que les orifices médians (12) ont été supprimés et remplacés par des orifices alternativement placés : - pour les orifices (16) et (18) dans la partie inférieure des renforts (10) et des parois latérales (8) ; - pour les orifices (17) et (19) dans la partie supérieure des renforts (10) et des parois latérales (8) ; De plus, un orifice (20) est placé dans le fond (6), ainsi qu'un orifice (21) dans le 10 couvercle (7). De plus, deux orifices (22) et (23) sont placés dans les parties inférieures et supérieures des parois (9). It can thus be seen that, by simple gravitational effect, see FIG. 5, argon, which is heavier, can penetrate via the orifices (16), (18), (20) or (22) the bottom of the spaces (11) and the gradually fill up, chasing up the lighter gases such as nitrogen, methane or air which will, by piston effect, be pushed and evacuated via the orifices (17), (19) 421) or (23) outside the box. It is therefore sufficient, to fill the isolation spaces with argon, to inject this gas into the insulation volumes between the membranes (1) and (3) and the shell (5) to drive upwards. of these volumes the other lighter gases. 4 INDICATING THE WAY WHICH THE INVENTION IS LIKELY TO APPLY Figure 6 shows, by way of example, how the invention is likely to be applied. Note in this example that the median orifices (12) have been removed and replaced by orifices alternately placed: - for the orifices (16) and (18) in the lower part of the reinforcements (10) and the side walls ( 8); - for the orifices (17) and (19) in the upper part of the reinforcements (10) and the side walls (8); In addition, an orifice (20) is placed in the bottom (6) and an orifice (21) in the lid (7). In addition, two orifices (22) and (23) are placed in the lower and upper parts of the walls (9).

On supprime ainsi la possibilité de piégeage par gravité de gaz plus légers que 15 l'argon dans les espaces (11), ceux-ci étant chassés vers les orifices supérieurs (17) , (19) (21) et (23) par l'argon venant des orifices inférieurs (16), (18) (20) et (22). Du point de vue du coût de la fabrication des boites et de leur tenue mécanique, on voit que l'on n'a pas augmenté, de manière significative, le nombre et la taille des orifices, et donc que les impacts économiques et mécaniques sont négligeables. 20 On notera que l'invention ne se limite pas aux parties (plafond (23) et plancher (24)) de l'isolation des cuves qui sont proches de l'horizontale. Cette approche, s'applique, de manière similaire, aux parois plus ou moins inclinées, telles que les parois latérales (25) et longitudinales (non représentées dans la vue en coupe figure 7), ainsi que les talus (26) et les talons (27) des cuves. Dans chaque cas, on prendra compte de 25 l'orientation des boites par rapport à la verticale pour ménager des orifices de ventilation aux points haut et bas correspondants. Pour des raisons de constructions, les différents volumes d'isolation correspondants sont indépendants les uns des autres , aussi pour assurer une ventilation efficace de ces espaces et bénéficier des effets de la gravité pour évacuer vers l'extérieur de ces espaces les gaz légers et les remplacer par de l'argon, on 30 prendra soin d'injecter de manière préférentielle l'argon dans ces volumes par des 2 piquages (28), représentés par des « * » figure 7, situés dans leur partie inférieure, alors ; que l'évacuation de ces gaz se fera de manière préférentielle par des piquages (29), représentés par des « + » situées dans leur partie supérieure. On voit ainsi que l'argon injecté remplira progressivement par le bas les boites d'isolation (2) et (4), chassant devant lui, vers les piquages (29) les gaz plus légers, tels que le méthane ou l'azote. La mise sous argon des espaces d'isolation pourra donc se faire de la manière suivante, en supposant qu'initialement les espaces d'isolation sont remplis d'air ambiant, les cuves du navire étant vides et à la température ambiante : - tirage au vide des espaces d'isolation en utilisant les pompes à vides prévues à cet effet ; - remplissage et ventilation par de l'azote sec des espaces d'isolation, jusqu'à élimination de l'air ambiant ; - remplissage et ventilation par de l'argon sec des espaces d'isolation jusqu'à élimination de l'azote. Le navire peut alors être chargé en gaz naturel liquéfié, des apports d'argon supplémentaire étant effectués à la demande pour maintenir lors de la descente en froid la pression dans les espaces d'isolation à une pression proche de la pression de la cargaison. Ceci étant fait, un balayage par de l'argon des espaces d'isolation peut être effectué en permanence pour collecter les fuites venant de la cargaison (principalement du méthane et de l'azote) et les évacuer vers l'extérieur des espaces d'isolation, comme cela est décrit, par exemple, dans le brevet français déjà cité. This eliminates the possibility of gravitational trapping of gases lighter than argon in the spaces (11), these being driven towards the upper orifices (17), (19) (21) and (23) by the argon from the lower ports (16), (18) (20) and (22). From the point of view of the cost of manufacturing the boxes and their mechanical strength, we see that we have not significantly increased the number and size of the orifices, and therefore the economic and mechanical impacts are negligible. It should be noted that the invention is not limited to the parts (ceiling (23) and floor (24)) of the insulation of the tanks which are close to the horizontal. This approach applies similarly to the more or less inclined walls, such as the side walls (25) and longitudinal (not shown in the sectional view Figure 7), as well as the slopes (26) and the heels (27) tanks. In each case, the orientation of the boxes relative to the vertical will be taken into account to provide ventilation holes at the corresponding high and low points. For reasons of construction, the different volumes of insulation corresponding are independent of each other, also to ensure efficient ventilation of these spaces and benefit from the effects of gravity to evacuate to the outside of these spaces the light gases and replace with argon, care will be taken to preferentially inject argon into these volumes by 2 taps (28), represented by "*" Figure 7, located in their lower part, then; that the evacuation of these gases will preferably be by taps (29), represented by "+" located in their upper part. It can thus be seen that the injected argon will progressively fill the insulation boxes (2) and (4) from below, chasing lighter gases, such as methane or nitrogen, towards the taps (29). The placing of the insulating spaces under argon can therefore be done in the following manner, assuming that initially the isolation spaces are filled with ambient air, the vessels of the vessel being empty and at ambient temperature: empty isolation spaces using the vacuum pumps provided for this purpose; - filling and ventilation with dry nitrogen insulation spaces, until elimination of ambient air; - filling and ventilation with dry argon insulation spaces until nitrogen removal. The ship can then be loaded with liquefied natural gas, additional argon flows being made on demand to maintain during the cold descent the pressure in the isolation spaces at a pressure close to the pressure of the cargo. This being done, an argon sweep of the isolation spaces can be carried out continuously to collect the leaks coming from the cargo (mainly methane and nitrogen) and evacuate them out of the spaces. insulation, as described, for example, in the French patent already cited.

Z.30 Z.30

Claims (2)

REVENDICATIONS1) Isolation de cuves de navires méthaniers utilisant des membranes métalliques (1) et (3) reposant, via des boites en contreplaqué (2) et (4), remplies de matériau isolant, sur la coque du navire (5), ces boites se caractérisant par : - La présence d'au moins deux orifices (16) et (17) dans la partie inférieure et supérieure de chaque renfort (10). - La présence d'au moins deux orifices (18) et (19) dans la partie inférieure et supérieure des parais latérales (8). - Alternativement, ou en complément, des orifices similaires (20) et (21) pourront être ménagés dans le fond (6) ou le couvercle (7) ; . Alternativement ou en complément, des orifices similaires (22) et (23) pourront être ménagés respectivement dans les parties inférieures et supérieures des parois latérales (9) ; ces orifices permettant le déplacement vers le haut et le remplacement par un gaz inerte constitué majoritairement d'argon, par effet gravitaire, de gaz plus légers tels que le méthane, ou l'azote éventuellement présents dans les espaces d'isolation (11) de ces boites. CLAIMS1) Insulation tanks of LNG carriers using metal membranes (1) and (3) resting, via plywood boxes (2) and (4), filled with insulating material, on the hull of the ship (5), these boxes characterized by: - The presence of at least two orifices (16) and (17) in the lower and upper part of each reinforcement (10). - The presence of at least two orifices (18) and (19) in the lower and upper side of the side walls (8). - Alternatively, or in addition, similar orifices (20) and (21) may be formed in the bottom (6) or the cover (7); . Alternatively or in addition, similar orifices (22) and (23) may be formed respectively in the lower and upper portions of the side walls (9); these orifices making it possible to move upwards and replace them with an inert gas consisting mainly of argon, by gravitational effect, of lighter gases such as methane, or nitrogen possibly present in the insulation spaces (11) of these boxes. 2) Isolation de cuves de navires méthaniers caractérisés en ce que les volumes d'isolation compris entre les membranes (1) et (2) et la coque (5) du navire sont balayés, via des piquages (28), par un gaz neutre constitué majoritairement d'argon, situés dans leurs parties inférieures, l'évacuation de ce gaz neutre mélangé avec les gaz initialement présents dans ces volumes ou provenant de fuites venant de la cargaison se faisant via des piquages (29) situés dans les parties supérieures de ces volumes. 25 30 2) Isolation of vessels of LNG carriers characterized in that the insulation volumes between the membranes (1) and (2) and the hull (5) of the vessel are swept, via connections (28), by a neutral gas composed mainly of argon, located in their lower parts, the evacuation of this neutral gas mixed with the gases initially present in these volumes or coming from leakage coming from the cargo being made via taps (29) located in the upper parts of these volumes. 25 30
FR1004328A 2010-11-04 2010-11-04 INTEGRATION AND VENTILATION UNDER ARGON OF TANKS OF METHANE MEMBRANE SHIPS Expired - Fee Related FR2967130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1004328A FR2967130B1 (en) 2010-11-04 2010-11-04 INTEGRATION AND VENTILATION UNDER ARGON OF TANKS OF METHANE MEMBRANE SHIPS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1004328A FR2967130B1 (en) 2010-11-04 2010-11-04 INTEGRATION AND VENTILATION UNDER ARGON OF TANKS OF METHANE MEMBRANE SHIPS

Publications (2)

Publication Number Publication Date
FR2967130A1 true FR2967130A1 (en) 2012-05-11
FR2967130B1 FR2967130B1 (en) 2012-10-26

Family

ID=44314945

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1004328A Expired - Fee Related FR2967130B1 (en) 2010-11-04 2010-11-04 INTEGRATION AND VENTILATION UNDER ARGON OF TANKS OF METHANE MEMBRANE SHIPS

Country Status (1)

Country Link
FR (1) FR2967130B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016097461A1 (en) * 2014-12-16 2016-06-23 Wärtsilä Finland Oy Lng tank
EP2759758A3 (en) * 2013-01-23 2018-02-21 Cryolor Cryogenic vessel
EP3699475A1 (en) * 2019-02-21 2020-08-26 Gaztransport et Technigaz Sealed and thermally insulating vessel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023617A (en) * 1973-12-26 1977-05-17 Continental Oil Company Construction having integral circulatory system
US4320654A (en) * 1979-05-29 1982-03-23 Shell Internationale Research Maatchappij System for detecting cracks in the heat-insulating lining of a container for liquefied gas
FR2867831A1 (en) * 2004-03-17 2005-09-23 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
FR2942199A1 (en) * 2009-02-16 2010-08-20 Damien Feger Argon storing and purifying unit for methane ship, has container filled with adsorbent material for separating contaminate argons at low temperature, and compressor utilized by propulsion system of ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023617A (en) * 1973-12-26 1977-05-17 Continental Oil Company Construction having integral circulatory system
US4320654A (en) * 1979-05-29 1982-03-23 Shell Internationale Research Maatchappij System for detecting cracks in the heat-insulating lining of a container for liquefied gas
FR2867831A1 (en) * 2004-03-17 2005-09-23 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
FR2942199A1 (en) * 2009-02-16 2010-08-20 Damien Feger Argon storing and purifying unit for methane ship, has container filled with adsorbent material for separating contaminate argons at low temperature, and compressor utilized by propulsion system of ship

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2759758A3 (en) * 2013-01-23 2018-02-21 Cryolor Cryogenic vessel
WO2016097461A1 (en) * 2014-12-16 2016-06-23 Wärtsilä Finland Oy Lng tank
EP3699475A1 (en) * 2019-02-21 2020-08-26 Gaztransport et Technigaz Sealed and thermally insulating vessel
US20200271273A1 (en) * 2019-02-21 2020-08-27 Gaztransport Et Technigaz Sealed and thermally insulating tank
CN111594747A (en) * 2019-02-21 2020-08-28 气体运输技术公司 Sealed heat insulation tank
FR3093159A1 (en) * 2019-02-21 2020-08-28 Gaztransport Et Technigaz Sealed and thermally insulating tank
US11796130B2 (en) * 2019-02-21 2023-10-24 Gaztransport Et Technigaz Sealed and thermally insulating tank

Also Published As

Publication number Publication date
FR2967130B1 (en) 2012-10-26

Similar Documents

Publication Publication Date Title
EP3129700B1 (en) Sealed, heat-insulated vessel housed in a buoyant structure
EP3250849B1 (en) Apparatus for storing and transporting a cryogenic fluid on-board a ship
EP2739895B1 (en) Sealed, thermally-insulating vessel
EP2768592A1 (en) Device for collecting and separating aqueous and/or oily liquids and cryogenic liquid
FR2967130A1 (en) Liquefied natural gas isolation device for use in ship tank, has openings for replacement of natural gas with inert gas consisting mainly of argon, lighter gas such as methane, or nitrogen that is present in insulating spaces
CN106537022B (en) Heat-insulating container and heat-insulating structure
EP2726375B2 (en) Cryogenic fluid tank and its use
WO1999026033A1 (en) Cold box for cryogenic distilling plant
WO2013017773A2 (en) Insulating block for manufacturing a tank wall
OA12073A (en) Liquefied gas storage barge with floating concrete structure.
WO2015124536A2 (en) Method and system for inerting a wall of a liquefied fuel gas-storage tank
WO2015132307A1 (en) Forced diffusion treatment for an insulating part made from expanded synthetic foam
EP3710741B1 (en) Device for inerting a liquefied gas storage tank for a ship for transporting this gas
KR101454619B1 (en) Cargo for liquefied gas and unloading method using the same
KR101078652B1 (en) A structure of insulation for lng carrier cargo
WO2021140218A8 (en) Storage facility for liquefied gas
EP1916465B1 (en) Vacuumed heat barrier
KR20160148309A (en) Collecting apparatus of leakage for liquid gas storage tank and marine structure including the same
FR2944577A1 (en) ISOLATION, UNDER ARGON ATMOSPHERE, OF DOUBLE-WALLED LIQUEFIED GAS RESERVOIRS
JP2005172106A (en) Storing method and apparatus for hydrogen gas
KR102310842B1 (en) Carrier cargo tank and manufacturing method thereof
EP4198375A1 (en) Liquefied gas storage facility comprising a vessel and a dome structure
EP3699475A1 (en) Sealed and thermally insulating vessel
WO2021144531A1 (en) Double access hatch for a liquefied-gas transport tank
EP4098539A1 (en) Vessel for transporting or using a cold fluid

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20160729