JP2005172106A - Storing method and apparatus for hydrogen gas - Google Patents

Storing method and apparatus for hydrogen gas Download PDF

Info

Publication number
JP2005172106A
JP2005172106A JP2003411992A JP2003411992A JP2005172106A JP 2005172106 A JP2005172106 A JP 2005172106A JP 2003411992 A JP2003411992 A JP 2003411992A JP 2003411992 A JP2003411992 A JP 2003411992A JP 2005172106 A JP2005172106 A JP 2005172106A
Authority
JP
Japan
Prior art keywords
hydrogen gas
container
hydrogen
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003411992A
Other languages
Japanese (ja)
Inventor
Shigeo Nakayama
茂雄 中山
Yasumi Otani
安見 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003411992A priority Critical patent/JP2005172106A/en
Publication of JP2005172106A publication Critical patent/JP2005172106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storing method and an apparatus for hydrogen gas capable of storing high density hydrogen in a safe and easy to handle state while keeping evaporation loss small. <P>SOLUTION: Hydrogen gas is stored in the hydrogen container at an air pressure larger than atmospheric pressure by introducing hydrogen gas into the hydrogen gas container 3 made of fiber reinforced plastics, dipping the container for hydrogen gas in cryogenic refrigerant 11 consists of liquid nitrogen or inert gas and cooling inside the hydrogen gas container 3 at a temperature equal to or less than inversion temperature of hydrogen. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は燃料電池自動車等において用いるために水素ガスを容器に高密度で充填し貯蔵する水素ガスの貯蔵方法および装置に関する。   The present invention relates to a hydrogen gas storage method and apparatus for filling and storing hydrogen gas in a container at high density for use in a fuel cell vehicle or the like.

近年、石油がもたらす環境破壊が進み地球温暖化が急速に進んでいる。ガソリンを燃料として走る自動車から排出される二酸化炭素、窒素酸化物、炭化水素、硫黄酸化物などは人類の健康に悪影響を及ぼしている。そこで資源や環境の問題を改善するために、地球上に無尽蔵に存在する酸素と水素を燃料とし水だけ排出する燃料電池自動車の開発が精力的に進められている。燃料電池自動車用の液体水素タンクや水素ガスタンクの改良も進められており(下記特許文献1参照)、燃料電池自動車は1回の液体水素充填では約400km、水素ガスの充填で約300km走れるまでに至っている。
特開2002−181295号公報
In recent years, the environmental destruction caused by oil has advanced and global warming has been rapidly progressing. Carbon dioxide, nitrogen oxides, hydrocarbons, and sulfur oxides emitted from automobiles that run on gasoline are adversely affecting human health. Therefore, in order to improve the problems of resources and the environment, development of a fuel cell vehicle that exhausts only water by using oxygen and hydrogen that exist infinitely on the earth as fuel is under way. Improvements to liquid hydrogen tanks and hydrogen gas tanks for fuel cell vehicles are also underway (see Patent Document 1 below), and fuel cell vehicles can run about 400 km with a single liquid hydrogen charge and about 300 km with a hydrogen gas charge. Has reached.
JP 2002-181295 A

液体水素を燃料とした場合、走行距離は水素ガスよりも長いが、長時間停車していると液体水素は容器からの熱侵入により少しずつではあるが蒸発し残量が減少する。
液体水素は大気圧状態では−253℃以下の温度でしか存在しないため、その状態を保持するには真空断熱槽内に多層断熱層を施した極低温保存用の専用容器に入れて輻射熱を防がなければならない。しかしこの専用容器でも支持金具や液体水素の取出し口からの熱伝導により容器内の液体水素は徐々に蒸発する。ある自動車メーカでは燃料電池車の液体水素を貯蔵した容器からの蒸発に伴う損失は一日あたり4〜6%としており、長時間停車しておけば置くほど燃料の損失は大きくなる。自動車を運転する時には既に燃料がないことも考えられ液体水素の維持管理が問題となってくる。
When liquid hydrogen is used as the fuel, the travel distance is longer than that of hydrogen gas. However, when the vehicle is stopped for a long time, the liquid hydrogen evaporates little by little due to heat penetration from the container, and the remaining amount decreases.
Since liquid hydrogen exists only at a temperature of −253 ° C. or less at atmospheric pressure, in order to maintain this state, radiant heat is prevented by placing it in a special container for cryogenic storage with a multilayer insulation layer in a vacuum insulation tank. There must be. However, even in this dedicated container, the liquid hydrogen in the container gradually evaporates due to heat conduction from the support fitting and the liquid hydrogen outlet. A certain automobile manufacturer has a loss of 4 to 6% per day from a container storing liquid hydrogen of a fuel cell vehicle, and the fuel loss increases as the vehicle is left for a long time. When driving a car, it is thought that there is no fuel already, and maintenance of liquid hydrogen becomes a problem.

水素ガスを充填する方式では150リットルほどの高圧ガス容器に35MPaで充填すると約200km走行できるが、同種のガソリン車と比べ走行距離が1/3しかない。この問題を解決するためにはタンク容量を増やすことが考えられるが、自動車という限られた空間に円柱形をしたタンクを増設する余裕はない。バスのように屋根に水素タンクを並べる方式もあるが全体の容積が大きくなってしまう。   In the method of filling with hydrogen gas, if a high pressure gas container of about 150 liters is filled at 35 MPa, the vehicle can travel about 200 km, but the traveling distance is only 1/3 compared to the same type gasoline car. In order to solve this problem, it is conceivable to increase the tank capacity, but there is no room for adding a cylindrical tank in a limited space of an automobile. There is a method of arranging hydrogen tanks on the roof like a bus, but the overall volume becomes large.

その他、高圧ガス容器の充填圧力を上げ水素ガスの絶対量を増加する方法もある。もともと分子直径が小さい水素分子は容器を構成している材料を透過しやすく、高圧になればなるほど漏れの少ない容器の開発が重要になってくる。高圧ガスは容器が破壊したときのエネルギーが大きく危険なため、安全性も考慮して容器の厚さは厚く頑丈に作らなければならず結果的に大きくなりやすい。また水素ステーション(工場で製造した水素を貯蔵し燃料電池車に供給する場所で現在のガソリンスタンドに相当。)で使用する圧縮機も超高圧仕様にする必要があり、関連部品なども開発の要素が多い。
そこで本発明は、高密度の水素を取り扱いやすい安全な状態で蒸発損失少なく貯蔵することのできる水素ガスの貯蔵方法および装置を提供することを目的とする。
In addition, there is a method of increasing the absolute pressure of hydrogen gas by increasing the filling pressure of the high-pressure gas container. Originally, hydrogen molecules with a small molecular diameter are easy to permeate the materials that make up the container, and the higher the pressure, the more important it is to develop a container with less leakage. Since the high-pressure gas has a large energy when the container breaks and is dangerous, the thickness of the container must be made thick and sturdy in consideration of safety, and tends to increase as a result. In addition, the compressor used at the hydrogen station (the place where hydrogen produced at the factory is stored and supplied to the fuel cell vehicle is equivalent to the current gas station) must also be of an ultra-high pressure specification. There are many.
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydrogen gas storage method and apparatus capable of storing high-density hydrogen in a safe and easy-to-handle manner with low evaporation loss.

請求項1の発明は、繊維強化プラスチックス製の水素ガス容器内に水素ガスを導入し、前記水素ガス容器を極低温の冷媒に浸漬し、前記水素ガス容器内を水素の逆転温度以下の温度に冷却して前記水素ガス容器内に大気圧以上の水素ガスを貯蔵する方法とする。   According to the first aspect of the present invention, hydrogen gas is introduced into a hydrogen gas container made of fiber reinforced plastics, the hydrogen gas container is immersed in a cryogenic refrigerant, and the temperature in the hydrogen gas container is equal to or lower than the reverse temperature of hydrogen. Then, the hydrogen gas is stored at a pressure higher than atmospheric pressure in the hydrogen gas container.

請求項2の発明は、極低温の冷媒を貯留する冷媒容器と、繊維強化プラスチックスからなり内部に熱伝導部材を備え前記冷媒中に浸漬されて逆転温度以下大気圧以上の水素ガスを貯蔵する水素ガス容器とを備えている構成とする。   According to a second aspect of the present invention, there is provided a refrigerant container for storing a cryogenic refrigerant and a fiber-reinforced plastics, and a heat conducting member is provided therein, and is immersed in the refrigerant to store hydrogen gas having an inversion temperature or lower and an atmospheric pressure or higher. It is set as the structure provided with a hydrogen gas container.

請求項3の発明は、前記熱伝導部材は、ワイヤまたは網である構成とする。
請求項4の発明は、前記水素ガス容器に貯蔵すべき水素ガスを導入する経路に、吸着剤を備え前記冷媒中に浸漬された熱交換器を備えている構成とする。
According to a third aspect of the present invention, the heat conducting member is a wire or a net.
According to a fourth aspect of the present invention, a path for introducing hydrogen gas to be stored in the hydrogen gas container is provided with a heat exchanger provided with an adsorbent and immersed in the refrigerant.

本発明によれば、高密度の水素を取り扱いやすい安全な状態で蒸発損失を少なく貯蔵することのできる水素ガスの貯蔵方法および装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the storage method and apparatus of the hydrogen gas which can store a high density hydrogen in a safe state which is easy to handle and with a small evaporation loss can be provided.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例の水素ガスの貯蔵装置は、図1に示すように、真空断熱される冷媒容器1の中に支持部材2によって支持された水素ガス容器3を備えている。冷媒容器1は、真空槽4と冷媒槽5を有し、側壁と底は多層断熱材6によって真空断熱され、フランジによって取り付けられた蓋7には液体窒素供給弁8と安全弁9と水素ガスセンサ10を備え、極低温の冷媒である液体窒素11を貯留している。   As shown in FIG. 1, the hydrogen gas storage device according to the embodiment of the present invention includes a hydrogen gas container 3 supported by a support member 2 in a refrigerant container 1 that is thermally insulated by vacuum. The refrigerant container 1 includes a vacuum tank 4 and a refrigerant tank 5, and the side walls and the bottom are vacuum insulated by a multilayer heat insulating material 6. A liquid nitrogen supply valve 8, a safety valve 9, and a hydrogen gas sensor 10 are attached to a lid 7 attached by a flange. The liquid nitrogen 11 which is a cryogenic refrigerant | coolant is stored.

水素ガス容器3はCFRP(炭素繊維強化プラスチックス)からなり、熱伝導部材として内面にアルミニウム製のライナー13を有し、内部にステンレス鋼製の金網14が充填されている。水素ガス容器3の入口15には吸着剤である活性炭16を備えた不純物トラップ兼用の熱交換器17が接続され、この熱交換器17には、水素ガス供給弁18と圧力計19と吐出弁20を備えた水素ガス導入管21が冷媒容器1の外から挿入されている。なお、符号36は後述する実験6において設ける貫通孔である。
以上のような構成の本実施例の水素ガスの貯蔵装置の作用効果を調べるために下記の実験1から6を行った。
The hydrogen gas container 3 is made of CFRP (carbon fiber reinforced plastics), has a liner 13 made of aluminum on its inner surface as a heat conducting member, and is filled with a metal mesh 14 made of stainless steel. The inlet 15 of the hydrogen gas container 3 is connected to a heat exchanger 17 serving as an impurity trap having activated carbon 16 as an adsorbent. The heat exchanger 17 includes a hydrogen gas supply valve 18, a pressure gauge 19, and a discharge valve. A hydrogen gas introduction pipe 21 having 20 is inserted from the outside of the refrigerant container 1. Reference numeral 36 denotes a through hole provided in Experiment 6 to be described later.
In order to examine the operational effects of the hydrogen gas storage device of the present embodiment having the above-described configuration, the following experiments 1 to 6 were performed.

まず実験1として、図2に示すように、はじめにCFRP製の内容積4.5リットル、外径140mm、長さ500mmの水素ガス容器3を用意した。水素ガス容器3にはゲージ圧で0.1MPaの圧力を維持できるように圧力調整器で調整した水素ガスを導入した。この水素ガス容器3の内外のA,B,C,Dの位置に温度センサを配置し液体窒素11が入った冷媒容器1に浸漬した。そして水素ガス容器3内の温度分布および冷却にかかる経過時間を調べた。   First, as experiment 1, as shown in FIG. 2, first, a hydrogen gas container 3 made of CFRP having an inner volume of 4.5 liters, an outer diameter of 140 mm, and a length of 500 mm was prepared. Hydrogen gas adjusted by a pressure regulator was introduced into the hydrogen gas container 3 so as to maintain a pressure of 0.1 MPa as a gauge pressure. Temperature sensors were arranged at positions A, B, C, and D inside and outside the hydrogen gas container 3 and immersed in the refrigerant container 1 containing liquid nitrogen 11. Then, the temperature distribution in the hydrogen gas container 3 and the elapsed time for cooling were examined.

温度分布の測定結果を図4に×印で示す。図4より水素ガス容器3内の温度分布は液体窒素11の温度よりも高いことがわかる。この原因は、水素ガス容器3が熱伝導の悪いプラスチックス(樹脂)で構成されたCFRPからなるため、水素ガスの対流や輻射による熱伝達が遅く水素ガス容器3内の温度がなかなか液体窒素11温度になりにくいためと考えられる。   The measurement result of the temperature distribution is shown by x in FIG. FIG. 4 shows that the temperature distribution in the hydrogen gas container 3 is higher than the temperature of the liquid nitrogen 11. This is because the hydrogen gas container 3 is made of CFRP made of plastics (resin) having poor heat conduction, and therefore heat transfer due to convection and radiation of hydrogen gas is slow and the temperature in the hydrogen gas container 3 is quite liquid nitrogen 11. This is probably because the temperature is difficult to reach.

次に図3に示すように、水素ガス容器3外から水素ガス容器3内へ熱伝導が起きるように水素ガス容器3に、直径50mmの伝熱盤25を備えた長さ400mm、直径10mm、内径4mmの銅製の冷却パイプ26を挿入した。導入した水素ガス圧は前回と同じ0.1MPaである。   Next, as shown in FIG. 3, the hydrogen gas container 3 is provided with a heat transfer plate 25 having a diameter of 50 mm, a diameter of 10 mm, a diameter of 10 mm, so that heat conduction occurs from outside the hydrogen gas container 3 into the hydrogen gas container 3. A copper cooling pipe 26 having an inner diameter of 4 mm was inserted. The introduced hydrogen gas pressure is 0.1 MPa, the same as the previous time.

この水素ガス容器3を液体窒素11に浸漬したときの水素ガス容器3内の温度分布と冷却時間を調べた。温度センサの位置は前記と同じ個所である。その結果を図4に記号○で示す。また、個所Bの冷却時間特性を図5に示す。図5より、冷却パイプ26ありのほうが冷媒である液体窒素の温度に到達する時間が冷却パイプ26なしの場合よりも早いことがわかる。   The temperature distribution in the hydrogen gas container 3 and the cooling time when the hydrogen gas container 3 was immersed in the liquid nitrogen 11 were examined. The position of the temperature sensor is the same as described above. The result is indicated by symbol ◯ in FIG. Further, the cooling time characteristic of the location B is shown in FIG. From FIG. 5, it can be seen that the time to reach the temperature of the liquid nitrogen that is the refrigerant is faster with the cooling pipe 26 than without the cooling pipe 26.

この温度分布は、伝熱盤25を備えた冷却パイプ26による熱伝導と、熱伝導によって冷却された冷却パイプ26からの輻射や対流による冷却の効果が現れて水素ガス容器3内の温度がより液体窒素11の温度に近づいていることを示しており、挿入した冷却パイプ26の効果が現れていることを示している。   This temperature distribution shows the effect of heat conduction by the cooling pipe 26 provided with the heat transfer board 25 and cooling by radiation and convection from the cooling pipe 26 cooled by the heat conduction, so that the temperature in the hydrogen gas container 3 is further increased. This shows that the temperature of the liquid nitrogen 11 is approaching, and the effect of the inserted cooling pipe 26 appears.

つぎに実験2として、図6に示すように、冷却パイプ26を挿入した内容積4.5リットル、外径140mm、長さ500mmのCFRP製水素ガス容器3に熱交換器17を接続し、水素ガス容器3内にはゲージ圧で0.1MPaの水素ガスを満たした。次に水素ガス容器3を配置してから真空断熱の冷媒容器1内に静かに液体窒素11を注入した。熱交換器17と水素ガス容器3が完全に液体窒素11に浸漬してから液体窒素の注入を止めた。次に熱交換器17に接続する弁30,31を調整しながら10MPaの水素ガスの供給を行った。約34分後に供給圧と水素ガス容器3の圧力が同一になり平衡状態になった。   Next, as Experiment 2, as shown in FIG. 6, the heat exchanger 17 was connected to a CFRP hydrogen gas container 3 having an inner volume of 4.5 liters, an outer diameter of 140 mm, and a length of 500 mm into which the cooling pipe 26 was inserted. The gas container 3 was filled with hydrogen gas having a gauge pressure of 0.1 MPa. Next, after the hydrogen gas container 3 was placed, liquid nitrogen 11 was gently poured into the vacuum-insulated refrigerant container 1. After the heat exchanger 17 and the hydrogen gas container 3 were completely immersed in the liquid nitrogen 11, the injection of liquid nitrogen was stopped. Next, 10 MPa of hydrogen gas was supplied while adjusting the valves 30 and 31 connected to the heat exchanger 17. After about 34 minutes, the supply pressure and the pressure in the hydrogen gas container 3 became the same and became in an equilibrium state.

このとき、容器3の位置A,B,C,Dに配置された温度センサが示す温度は、Aが−191℃,Bが−196℃、Cが−192℃、Dが液体窒素温度の−196℃であった。この条件下での水素の密度は温度と圧力から約33kg/cmとなり,水素は超臨界状態にあると推定される。この状態での密度を0℃の水素ガス圧力だけで再現するには約50MPaにしなければならない。この条件に合う超高圧容器を新たに開発する必要がある。このように、冷却パイプ26を挿入した水素ガス容器3を比較的低圧で極低温に維持することによって高密度の水素を貯蔵することができる。 At this time, the temperatures indicated by the temperature sensors arranged at positions A, B, C, and D of the container 3 are as follows: A is −191 ° C., B is −196 ° C., C is −192 ° C., and D is liquid nitrogen temperature. It was 196 degreeC. The density of hydrogen under this condition is about 33 kg / cm 3 from the temperature and pressure, and it is estimated that hydrogen is in a supercritical state. In order to reproduce the density in this state only with a hydrogen gas pressure of 0 ° C., it must be about 50 MPa. It is necessary to develop a new ultrahigh pressure vessel that meets this requirement. Thus, high-density hydrogen can be stored by maintaining the hydrogen gas container 3 with the cooling pipe 26 inserted therein at a relatively low pressure and a very low temperature.

次に実験3として、上記実験2におけると同じ条件で実験準備をしたあと、供給圧力を5MPaに調整して水素ガス容器3に水素ガスを導入した。約20分後に水素ガス容器3の内圧が供給圧と同じになり平衡状態になった。水素ガスの容器3の位置A,B,C,Dに配置された温度センサが示す温度は、Aが−192℃、Bが−196℃、Cが−193℃、Dが液体窒素温度の−196℃であった。この条件下での水素の密度は温度と圧力から約16kg/cmである。この状態の密度を0℃の水素ガス圧力だけで再現するには水素ガス容器3を約20MPa(200kg/cm)にしなければならない。このように、極低温に冷却することによって比較的低圧で簡単に密度の高い水素ガスを貯蔵することができる。 Next, as Experiment 3, after preparing the experiment under the same conditions as in Experiment 2, the supply pressure was adjusted to 5 MPa and hydrogen gas was introduced into the hydrogen gas container 3. After about 20 minutes, the internal pressure of the hydrogen gas container 3 became the same as the supply pressure, and an equilibrium state was reached. The temperatures indicated by the temperature sensors arranged at positions A, B, C, and D of the hydrogen gas container 3 are as follows: A is −192 ° C., B is −196 ° C., C is −193 ° C., and D is liquid nitrogen temperature. It was 196 degreeC. The density of hydrogen under these conditions is about 16 kg / cm 3 from the temperature and pressure. In order to reproduce the density in this state only with a hydrogen gas pressure of 0 ° C., the hydrogen gas container 3 must be about 20 MPa (200 kg / cm 2 ). Thus, by cooling to a very low temperature, hydrogen gas having a high density can be easily stored at a relatively low pressure.

次に実験4として、図7に示すように、冷却パイプ26を備えたCFRP(4.5リットル、外径140mm、長さ500mm)製の水素ガス容器3を用意し、この水素ガス容器3にさらに同程度の内容積を持つCFRP製の取出し容器32を接続した。水素ガス容器3には水素ガスの供給側に熱交換器17が接続されている。   Next, as Experiment 4, as shown in FIG. 7, a hydrogen gas container 3 made of CFRP (4.5 liters, outer diameter 140 mm, length 500 mm) equipped with a cooling pipe 26 is prepared. Furthermore, a CFRP take-out container 32 having the same internal volume was connected. A heat exchanger 17 is connected to the hydrogen gas container 3 on the hydrogen gas supply side.

液体窒素11への浸漬時に水素ガス容器3および取出し容器32が負圧にならないように、これらの容器3,32内にはあらかじめ圧力調整器29で調整した0.1MPaの水素ガスを導入した。水素ガス容器3にはA,B,C,Dの位置に温度センサを配置した。また水素ガス容器3と熱交換器17を真空断熱の冷媒容器1内に配置した。その後水素ガス容器3が急激な温度変化を受けないように、少量ずつ液体窒素11を冷媒容器1に注入した。水素ガス容器3が完全に液体窒素11で浸漬されてから液体窒素の供給を止めた。   In order to prevent the hydrogen gas container 3 and the extraction container 32 from becoming negative pressure when immersed in the liquid nitrogen 11, hydrogen gas of 0.1 MPa previously adjusted by the pressure regulator 29 was introduced into the containers 3 and 32. In the hydrogen gas container 3, temperature sensors were arranged at positions A, B, C, and D. Further, the hydrogen gas container 3 and the heat exchanger 17 were disposed in the vacuum insulated refrigerant container 1. Thereafter, liquid nitrogen 11 was poured into the refrigerant container 1 little by little so that the hydrogen gas container 3 was not subjected to a rapid temperature change. After the hydrogen gas container 3 was completely immersed in the liquid nitrogen 11, the supply of liquid nitrogen was stopped.

冷媒容器1外に設けられ水素ガス容器3と接続された取出し容器32には圧力計33とガス吐出弁34を取り付けた。供給圧力を5MPaにして水素ガス容器3に水素ガスの導入を開始した。導入開始から約51分後に水素ガス容器3と取出し容器32の圧力が供給圧力とほぼ同一の5MPaになり平衡状態になった。水素ガス容器3内の温度はAで−191℃,Bで−196℃,Cで−191℃,Dでは−196℃であった。取出し容器32内Eの温度は約28℃であった。吐出弁34を開けると水素ガスの放出が確認された。このような構成によって、水素ガス容器に貯蔵された極低温高圧の水素ガスを常温常圧にして取り出すことができる。   A pressure gauge 33 and a gas discharge valve 34 were attached to an extraction container 32 provided outside the refrigerant container 1 and connected to the hydrogen gas container 3. The supply pressure was set to 5 MPa, and introduction of hydrogen gas into the hydrogen gas container 3 was started. About 51 minutes after the start of the introduction, the pressures of the hydrogen gas container 3 and the extraction container 32 became 5 MPa, which was almost the same as the supply pressure, and reached an equilibrium state. The temperature in the hydrogen gas container 3 was −191 ° C. for A, −196 ° C. for B, −191 ° C. for C, and −196 ° C. for D. The temperature of E in the take-out container 32 was about 28 ° C. When the discharge valve 34 was opened, the release of hydrogen gas was confirmed. With such a configuration, the cryogenic high pressure hydrogen gas stored in the hydrogen gas container can be taken out at normal temperature and pressure.

次に実験5として、さきに図1に示した貯蔵装置を構成した。すなわち内容積4.5リットル(外径140mm、長さ500mm)のCFRP製の水素ガス容器3内に50メッシュ(幅1インチあたり50個の穴の数)のステンレス鋼製平織りの金網(長さ300mm、幅約360mm)を水素ガス容器3の入口より1枚ずつ丸めて導入し7層からなる金網14の層を形成した。   Next, as Experiment 5, the storage device shown in FIG. That is, a metal mesh (length) of 50 mesh (number of 50 holes per inch) of stainless steel in a CFRP hydrogen gas container 3 having an inner volume of 4.5 liters (outer diameter 140 mm, length 500 mm). 300 mm and a width of about 360 mm) were introduced by rolling them one by one from the inlet of the hydrogen gas container 3 to form a seven-layer metal mesh 14 layer.

導入した金網14はステンレス鋼製で弾性があり、水素ガス容器3内では最初に挿入した金網はアルミニウムライナー13と接触しており他の金網とも連続して接触している。この水素ガス容器3に活性炭16の入った不純物トラップ兼用の熱交換器17を接続し、まず水素ガス容器3内を水素ガスで満たした。水素ガス導入と真空排気を数回行い純度の高い水素ガス状態にした。次に水素ガス容器3を冷媒容器1に配置して多層断熱材6を8時間排気し真空断熱機能をもたせた。次に水素ガスの供給圧力を0.15MPaに設定して液体窒素11を静かに注入した。   The introduced wire mesh 14 is made of stainless steel and has elasticity. In the hydrogen gas container 3, the wire mesh inserted first is in contact with the aluminum liner 13 and is continuously in contact with the other wire mesh. A heat exchanger 17 also serving as an impurity trap containing activated carbon 16 was connected to the hydrogen gas container 3. First, the hydrogen gas container 3 was filled with hydrogen gas. Hydrogen gas was introduced and evacuated several times to obtain a high purity hydrogen gas state. Next, the hydrogen gas container 3 was placed in the refrigerant container 1, and the multilayer heat insulating material 6 was evacuated for 8 hours to provide a vacuum heat insulating function. Next, the supply pressure of hydrogen gas was set to 0.15 MPa, and liquid nitrogen 11 was gently injected.

水素ガス容器3が液体窒素11中に完全に浸漬したときに水素ガスの供給圧力を1.0MPaに設定し水素ガス容器3に供給した。30秒保持した後さらに1.0MPaごとに昇圧と保持を繰返し5.0MPaで水素ガス供給を止めた。供給圧力と水素ガス容器圧力が平衡状態になる時間は前実験2と比較して短く7分30秒であった。このとき水素ガス容器3の中心部Fの温度センサは−190℃であった。このように、水素ガス容器3内に金網14を多層挿入した構成にして、液体窒素11で熱交換した水素ガスを導入することによって比較的短時間で極低温で高圧の状態が得られる。   When the hydrogen gas container 3 was completely immersed in the liquid nitrogen 11, the hydrogen gas supply pressure was set to 1.0 MPa and the hydrogen gas container 3 was supplied. After holding for 30 seconds, the pressurization and holding were repeated every 1.0 MPa and the hydrogen gas supply was stopped at 5.0 MPa. The time during which the supply pressure and the hydrogen gas container pressure were in an equilibrium state was shorter than that of the previous experiment 2 and was 7 minutes 30 seconds. At this time, the temperature sensor at the center F of the hydrogen gas container 3 was -190 ° C. In this way, by introducing a multi-layered metal mesh 14 into the hydrogen gas container 3 and introducing the hydrogen gas heat exchanged with the liquid nitrogen 11, a high pressure state can be obtained at a very low temperature in a relatively short time.

次に実験6として、図1の貯蔵装置において水素ガス容器3にが入りその亀裂から水素ガスが漏れ出ることを模擬した実験を行った。まず水素ガス容器3に直径0.1mmの貫通孔36をあけてから実験5で示したと同じ構成で装置を構成した。水素ガスを0.09MPaに設定してから液体窒素11を注入した。浸漬してから液体窒素供給弁8を閉めた。18秒後に水素ガスセンサ10が水素ガスを検知した。水素ガスセンサ10の設置部は水素ガス密度が小さいことを考慮し冷媒容器1の蓋7に突出部をつくり、軽い水素ガスが集まりやすい構造にしてある。このように、水素ガス容器3を液体窒素11に浸漬しておくことにより水素ガス容器3になんらかの原因で亀裂が入った場合、液体窒素11中で拡散することもなく小さな気泡のまま冷媒容器1の上部へ上昇してくるので水素ガスの漏れをいち早く検出することができる。   Next, as an experiment 6, an experiment was performed that simulated that the hydrogen gas leaked from the crack after entering the hydrogen gas container 3 in the storage device of FIG. First, a through-hole 36 having a diameter of 0.1 mm was formed in the hydrogen gas container 3, and then the apparatus was configured in the same configuration as shown in Experiment 5. After setting the hydrogen gas to 0.09 MPa, liquid nitrogen 11 was injected. After immersion, the liquid nitrogen supply valve 8 was closed. After 18 seconds, the hydrogen gas sensor 10 detected hydrogen gas. Considering that the hydrogen gas density is low, the installation part of the hydrogen gas sensor 10 is formed with a protrusion on the lid 7 of the refrigerant container 1 so that light hydrogen gas is easily collected. In this way, when the hydrogen gas container 3 is immersed in the liquid nitrogen 11 and the hydrogen gas container 3 is cracked for some reason, the refrigerant container 1 remains as a small bubble without diffusing in the liquid nitrogen 11. As a result, the leakage of hydrogen gas can be detected quickly.

以上のような本実施例の水素ガス貯蔵装置において、水素ガスを充填する水素ガス容器3は水素ガスを充填する前にあらがじめ水素の逆転温度(−80℃)以下の温度を持つ液体窒素(沸点 −196℃)、液化アルゴン(沸点 −195.8℃)、液化ネオン(沸点 −246℃)等の極低温冷媒または極低温冷凍機で冷却しておく。しかしながら水素ガス容器3は繊維強化プラスチックス(FRP)で製作されており、熱伝導が悪いので極低温冷媒の温度まで冷却されるのに時間がかかる。さらに水素の熱伝導率は温室状態よりも極低温状態のほうが小さい(例えば 10MPa一定圧力下で温度300Kでは189mW/m・Kに対して80Kでは87.3mW/m・Kになる)ので冷却に支障がある。   In the hydrogen gas storage device of the present embodiment as described above, the hydrogen gas container 3 filled with hydrogen gas is a liquid having a temperature equal to or lower than the reverse temperature of hydrogen (−80 ° C.) before filling with hydrogen gas. It cools with cryogenic refrigerants or cryogenic refrigerators, such as nitrogen (boiling point -196 degreeC), liquefied argon (boiling point -195.8 degreeC), and liquefied neon (boiling point -246 degreeC). However, since the hydrogen gas container 3 is made of fiber reinforced plastics (FRP) and has poor heat conduction, it takes time to cool down to the temperature of the cryogenic refrigerant. Furthermore, the thermal conductivity of hydrogen is smaller in the cryogenic state than in the greenhouse state (for example, 189 mW / m · K at a temperature of 300 K and 87.3 mW / m · K at 80 K under a constant pressure of 10 MPa). There is a problem.

そこで水素ガス容器3の外から中へ通じるように熱伝導部材として金属製の冷却パイプ26を挿入して水素ガスの冷却効率を高める。さらに水素ガス容器3の内面にアルミニウムや銅、ステンレス等の熱伝導性のよい材料で内張り施工し、内張り材(ライナー)の一端を容器3外に接続して冷媒の熱伝導がしやすい構造とすることによって水素ガス容器3内の冷却の効果が増大する。しかし水素ガス注入時の絞りの効果を生じるように冷却パイプ26の内径を小さくしておくと水素ガスの充填時間がかかりすぎる欠点がある。その対策として水素ガス容器3の口径を大きくする代わりに容器3内に熱伝導部材としてステンレス鋼や銅、アルミニウム等熱伝導性のよい金網14またはワイヤをランダムに充填する。このような状態下で4.2K冷凍機や液体ヘリウム等で冷却しておくと、充填された水素が金網14の目の近傍で固体状になり、とくに加圧しなくても高密度の状態で貯蔵される。なお、水素ガス容器3内には活性炭やカーボンナノチューブ等の吸着剤を加えても密度維持が図れる。   Therefore, a cooling pipe 26 made of metal is inserted as a heat conducting member so as to communicate from the outside to the inside of the hydrogen gas container 3 to increase the cooling efficiency of the hydrogen gas. Further, the inner surface of the hydrogen gas container 3 is lined with a material having good thermal conductivity such as aluminum, copper, and stainless steel, and one end of the lining material (liner) is connected to the outside of the container 3 to facilitate heat conduction of the refrigerant. By doing so, the cooling effect in the hydrogen gas container 3 is increased. However, if the inner diameter of the cooling pipe 26 is made small so as to produce a throttling effect when hydrogen gas is injected, there is a drawback that it takes too long to fill the hydrogen gas. As a countermeasure, instead of increasing the diameter of the hydrogen gas container 3, the container 3 is randomly filled with a wire mesh 14 or a wire having good thermal conductivity such as stainless steel, copper, or aluminum as a heat conductive member. When cooled in a 4.2K refrigerator, liquid helium, or the like under such conditions, the charged hydrogen becomes solid in the vicinity of the mesh of the metal mesh 14, and it is in a high density state without any particular pressure. Stored. The density can be maintained even if an adsorbent such as activated carbon or carbon nanotube is added to the hydrogen gas container 3.

FRP製の水素ガス容器3を液体窒素等の冷媒で冷却する利点は4点挙げられる。第1点は、分子直径が小さく粘性も低い水素ガスのFRPからの漏れを防ぐ効果である。すなわちたとえば液体窒素でFRPを冷却すると、繊維の網目や成型後にできやすい樹脂の隙間に窒素分子や不純物の水分子が入り込み、網目や隙間を塞ぎ水素分子の透過(漏れ)が抑制される。そのほか使用中に生じやすい亀裂からの漏れを極低温冷媒でふさぐ効果もある。すなわち水素ガス容器3のライナー13を構成する金属材料であるアルミニウムやクロムモリブデン鋼などは金型プレスや溶接構造で製作する場合が多く残留応力が生じやすい。また、35MPa(350kg/cm)もの高圧力で水素ガスの充填、吐出を繰り返す水素ガス容器3は繰返し応力による金属疲労を蓄積してくる。さらに水素ガス中の不純物が原因で起きやすい内面腐食などがある。これらが複合して起きることのある亀裂からの水素ガスの漏れの可能性を低減することができる。 There are four advantages of cooling the hydrogen gas container 3 made of FRP with a refrigerant such as liquid nitrogen. The first point is an effect of preventing leakage of hydrogen gas having a small molecular diameter and low viscosity from FRP. That is, for example, when FRP is cooled with liquid nitrogen, nitrogen molecules and water molecules of impurities enter the gaps between the fiber network and the resin that is easily formed after molding, thereby closing the meshes and gaps and suppressing the permeation (leakage) of hydrogen molecules. In addition, it also has the effect of blocking leakage from cracks that tend to occur during use with a cryogenic refrigerant. That is, aluminum or chromium molybdenum steel, which is a metal material constituting the liner 13 of the hydrogen gas container 3, is often manufactured by a die press or a welded structure, and residual stress is likely to occur. The hydrogen gas container 3 that repeatedly fills and discharges hydrogen gas at a high pressure of 35 MPa (350 kg / cm 2 ) accumulates metal fatigue due to repeated stress. Furthermore, there is internal corrosion that is likely to occur due to impurities in hydrogen gas. The possibility of leakage of hydrogen gas from cracks that may occur in combination of these can be reduced.

第2点は、もし水素ガス容器3の亀裂部分から水素ガスが冷媒中に漏れ出た場合そのガスを検出しやすい効果がある。水素ガスの密度は極低温冷媒の液体窒素よりも軽く冷媒容器1の上層部にたまりやすい。そこに水素ガスセンサ10を設置しておくことによって、密度の小さい水素ガスは冷媒中で拡散せずに気泡となって上方へ上がるので早急に漏れを感知することができる。   The second point is advantageous in that if hydrogen gas leaks from the cracked portion of the hydrogen gas container 3 into the refrigerant, the gas can be easily detected. The density of the hydrogen gas is lighter than the liquid nitrogen of the cryogenic refrigerant and tends to accumulate in the upper layer portion of the refrigerant container 1. By installing the hydrogen gas sensor 10 there, the hydrogen gas having a low density does not diffuse in the refrigerant and rises in the form of bubbles, so that leakage can be detected quickly.

第3点は、水素ガス容器3を液体アルゴン、液体ネオン、液体窒素等の不活性の極低温冷媒で覆うことにより、事故によって水素放出が起こったときにも安全性を維持できる。すなわち事故時には容器破壊を防ぐ目的で水素ガスを緊急に放出しなければならないが、この状態の時に水素ガスを冷媒中に放出させると、不活性ガスである冷媒が水素ガスと混合しながら放出されることにより、燃焼のための3条件(可燃性ガスが支燃性ガス中にあり発火温度にされされること)からはずれるため安全性が保たれる。   Third, by covering the hydrogen gas container 3 with an inert cryogenic refrigerant such as liquid argon, liquid neon, or liquid nitrogen, safety can be maintained even when hydrogen is released due to an accident. In other words, hydrogen gas must be released urgently for the purpose of preventing container destruction in the event of an accident, but if hydrogen gas is released into the refrigerant in this state, the inert gas refrigerant is released while mixing with the hydrogen gas. Therefore, safety is maintained because it deviates from the three conditions for combustion (the combustible gas is in the combustion-supporting gas and is set to the ignition temperature).

第4点は、極低温冷媒の冷却による水素ガスの中の不純物の除去である。たとえば液体窒素で水素ガス容器3を冷却することによって液体窒素の沸点温度以上の水素中の不純物はトラップされる。冷却前の水素ガスの純度は99.99%以上に管理されているが、充填作業において着脱用継手の接続持に空気が少なからず混入する。また導入管や容器内壁に吸着している物質は水素ガスがキャリヤとなって冷媒で冷却されている熱交換器17へ運ばれ不純物がトラップされる。その結果、水素ガス容器3内の水素ガス純度が高まり高純度の水素ガスを貯蔵し供給することができる。この観点からトラップ兼用の熱交換器17は効果がある。さらに低温で吸着性能が上がる活性炭16やモレキュラシーブ等の吸着剤を熱交換器17に入れておくことによって不純物の除去排出、吸着剤の交換等の管理を容易に行うことができる。   The fourth point is removal of impurities in the hydrogen gas by cooling the cryogenic refrigerant. For example, by cooling the hydrogen gas container 3 with liquid nitrogen, impurities in hydrogen having a temperature equal to or higher than the boiling temperature of liquid nitrogen are trapped. The purity of the hydrogen gas before cooling is controlled to 99.99% or more, but not a little air is mixed in the holding joint of the detachable joint in the filling operation. Further, the substance adsorbed on the introduction pipe or the inner wall of the container is carried to the heat exchanger 17 cooled by the refrigerant using hydrogen gas as a carrier, and impurities are trapped. As a result, the purity of the hydrogen gas in the hydrogen gas container 3 is increased, and high purity hydrogen gas can be stored and supplied. From this point of view, the trap combined heat exchanger 17 is effective. Further, by placing an adsorbent such as activated carbon 16 or molecular sieve whose adsorption performance is improved at a low temperature in the heat exchanger 17, it is possible to easily manage the removal and discharge of impurities, the exchange of the adsorbent, and the like.

本実施例の水素ガスの貯蔵装置は、水素ガス容器3が冷却された状態で高圧の水素ガスを充填する。しかし冷却された水素ガス容器3に逆転温度以上の水素ガスを注入すると冷却の効果がなくなるため、充填する水素ガスも水素ガス容器3の冷却に使用した極低温冷媒や極低温冷凍機で逆転温度以下に冷却する。   The hydrogen gas storage device of this embodiment is filled with high-pressure hydrogen gas in a state where the hydrogen gas container 3 is cooled. However, if hydrogen gas having a temperature higher than the reverse temperature is injected into the cooled hydrogen gas container 3, the cooling effect is lost. Therefore, the hydrogen gas to be filled is also used with the cryogenic refrigerant or cryogenic refrigerator used for cooling the hydrogen gas container 3. Cool to below.

極低温高圧下でガス状態を維持する方法としては、液体窒素、液体アルゴン、液体ネオン等の極低温冷媒で水素ガス容器3を冷却し高圧状態に維持する。現時点では資源が豊富で潜熱が大きく工業製品として普及し価格が他の極低温冷媒と比べ安い液体窒素を用いるのが望ましい。水素ガス容器3に取り付けた伝熱盤25を直接冷凍機で冷却する方法もあるが、この方法は冷凍機を稼動するための電力を必要としたり冷凍機自体を冷却するための水冷設備などが必要となるため、現状では冷媒を用いる方法がよい。   As a method of maintaining the gas state under a cryogenic high pressure, the hydrogen gas container 3 is cooled with a cryogenic refrigerant such as liquid nitrogen, liquid argon, liquid neon or the like and maintained in a high pressure state. At present, it is desirable to use liquid nitrogen that is rich in resources, has large latent heat, is widely used as an industrial product, and is cheaper than other cryogenic refrigerants. There is also a method of directly cooling the heat transfer plate 25 attached to the hydrogen gas container 3 with a refrigerator, but this method requires electric power for operating the refrigerator or water cooling equipment for cooling the refrigerator itself. At present, a method using a refrigerant is preferable because it is necessary.

水素ガスを極低温状態にすることは常温の水素ガスの密度と比べ高密度になることを意味している。たとえば20MPaの圧力下では温度273.15Kでの密度は15.69kg/mであるのに対し、90Kに冷却するとその密度は約3倍の43.65kg/mに増加する。高密度のまま水素ガス容器3に充填することが効果的である。充填する水素ガスの温度と充填される水素ガス容器3内の温度とが共に極めて少ない温度差で冷却されている条件下において、低温で高密度の水素ガスが効率よく水素ガス容器3に充填される。 Setting the hydrogen gas to an extremely low temperature state means that the hydrogen gas has a higher density than the density of the hydrogen gas at room temperature. For example, under a pressure of 20 MPa, the density at a temperature of 273.15 K is 15.69 kg / m 3 , whereas when cooled to 90 K, the density increases approximately three times to 43.65 kg / m 3 . It is effective to fill the hydrogen gas container 3 with a high density. Under the condition that the temperature of the hydrogen gas to be filled and the temperature in the hydrogen gas container 3 to be filled are both cooled with a very small temperature difference, the hydrogen gas container 3 is efficiently filled with the hydrogen gas having a low temperature and a high density. The

水素ガスの臨界点付近の低温でかつ高圧の条件で充填すると、高密度ガスからなる超臨界状態の水素を効果的に貯蔵することができる。水素における超臨界状態とは水素の臨界点(温度33K、圧力1.3MPa)以上またはその近傍の温度と圧力を維持した状態を言い、液体でもなく(擬似液体状態であり)気体でもない(擬似気体状態である)。臨界点近傍の極低温領域で温度と圧力を変えることにより液体や気体の密度以上の状態を自由にコントロールすることができる。   When filling under conditions of low temperature and high pressure near the critical point of hydrogen gas, hydrogen in a supercritical state composed of high density gas can be effectively stored. The supercritical state in hydrogen means a state in which the temperature and pressure at or near the critical point of hydrogen (temperature 33K, pressure 1.3 MPa) are maintained, and it is neither liquid (pseudo liquid state) nor gas (pseudo). Gas state). By changing the temperature and pressure in the cryogenic region near the critical point, it is possible to freely control the state above the density of the liquid or gas.

本実施例の水素ガスの貯蔵装置はまた、水素ガス容器3に高圧かつ極低温の状態で貯蔵している水素を室温状態で取り出すための取出し容器32を設ける。この取出し容器32の冷却はせず、高圧で極低温状態で貯蔵している水素ガス容器3とパイプで連結しておき、圧力のみ平衡させて同圧にする。この構成によれば、高圧極低温状態の高密度水素ガスを室温かつ低密度状態の水素ガスとして取り出し、酸素との適正な濃度での反応比で燃料電池に供給することができる。または取出し容器32を適度に冷却や加温することにより適度な温度密度の水素を提供できるようにしてもよい。   The hydrogen gas storage device of this embodiment is also provided with an extraction container 32 for extracting hydrogen stored in the hydrogen gas container 3 at a high pressure and a very low temperature in a room temperature state. The take-out container 32 is not cooled, but is connected to the hydrogen gas container 3 stored at a high pressure and a very low temperature by a pipe, and only the pressure is balanced to be the same pressure. According to this configuration, the high-density cryogenic high-temperature hydrogen gas can be taken out as room-temperature and low-density hydrogen gas and supplied to the fuel cell at a reaction ratio at an appropriate concentration with oxygen. Alternatively, hydrogen having an appropriate temperature density may be provided by appropriately cooling or heating the extraction container 32.

以上のように本実施例において貯蔵する水素は高密度状態であるが液体ではないため蒸発に伴う損失は少ない。その水素を冷却する冷媒も極低温の液体窒素や液化ネオン、液化アルゴンなどを使用するので、高真空断熱容器内で長期間保存可能であり高密度状態を維持することができる。   As described above, the hydrogen stored in the present embodiment is in a high density state but is not a liquid, so that there is little loss due to evaporation. Since the refrigerant for cooling the hydrogen also uses cryogenic liquid nitrogen, liquefied neon, liquefied argon, or the like, it can be stored for a long time in a high vacuum heat insulating container and can maintain a high density state.

以上のように本実施例においては、伝熱盤25を備えた水素ガス容器3、あるいは水素ガス容器3の内側にアルミニウム、銅、ステンレス金属等からなるワイヤまたは金網14を満たし、液体窒素11、液体アルゴン等の極低温の冷媒で冷却して、水素ガス容器3に充填した水素ガスの温度を冷媒の温度とほぼ同じ温度にし大気圧以上の高圧状態に維持して、極低温で高密度の水素を貯蔵する。   As described above, in this embodiment, the hydrogen gas container 3 provided with the heat transfer plate 25, or the inside of the hydrogen gas container 3 is filled with a wire or wire mesh 14 made of aluminum, copper, stainless steel, etc., and the liquid nitrogen 11, Cooling with a cryogenic refrigerant such as liquid argon, the temperature of the hydrogen gas filled in the hydrogen gas container 3 is made substantially the same as the temperature of the refrigerant, and maintained at a high pressure state above atmospheric pressure. Store hydrogen.

また水素ガス容器3を冷媒である液体窒素11に浸漬させ、水素の緊急発生時には冷媒中に放出することにより、不活性の冷媒と混合して放出されるため安全性を保つことができる。水素ガス容器3からの万一の水素ガス漏れは冷媒容器1の上部に設置した水素ガスセンサ10により感知する。また冷媒でCFRP製の水素ガス容器3を冷却することは、繊維網目や成型後にできやすい樹脂の隙間に冷媒の分子や不純物の水分子がはいりこみ隙間を埋めるため、分子直径の小さい水素分子でもその透過や漏れを低減する効果がある。   Further, the hydrogen gas container 3 is immersed in the liquid nitrogen 11 that is a refrigerant and released into the refrigerant in the event of an emergency occurrence of hydrogen, so that the safety can be maintained because the hydrogen gas container 3 is mixed with the inert refrigerant and released. An emergency hydrogen gas leak from the hydrogen gas container 3 is detected by a hydrogen gas sensor 10 installed at the upper part of the refrigerant container 1. Cooling the CFRP-made hydrogen gas container 3 with a refrigerant allows the refrigerant molecules and impurity water molecules to enter the gaps between the fiber network and the resin that is easily formed after molding, so that even hydrogen molecules with a small molecular diameter are filled. There is an effect of reducing the permeation and leakage.

極低温の冷媒で冷却した水素ガス容器3にたとえば10MPa〜5MPaの比較的低圧力で水素を充填することにより、従来の方法(常温で35MPaの高圧力で充填し絶対量を確保する)よりも簡単に高密度の水素を貯蔵することができる。   By filling hydrogen gas container 3 cooled by a cryogenic refrigerant with hydrogen at a relatively low pressure of, for example, 10 MPa to 5 MPa, the conventional method (filling at a high pressure of 35 MPa at normal temperature to ensure an absolute amount) is achieved. It can easily store high density hydrogen.

本発明の実施例の水素ガスの貯蔵装置を示す断面図。Sectional drawing which shows the storage apparatus of the hydrogen gas of the Example of this invention. 本発明の実施例の水素ガスの貯蔵装置の作用効果を検証する実験1の装置構成を示す図。The figure which shows the apparatus structure of the experiment 1 which verifies the effect of the storage apparatus of the hydrogen gas of the Example of this invention. 本発明の実施例の水素ガスの貯蔵装置の作用効果を検証する実験2の他の装置構成を示す図。The figure which shows the other apparatus structure of Experiment 2 which verifies the effect of the storage apparatus of the hydrogen gas of the Example of this invention. 前記実験1によって得られた結果を示すグラフ。3 is a graph showing the results obtained by the experiment 1; 前記実験1によって得られた結果を示すグラフ。3 is a graph showing the results obtained by the experiment 1; 本発明の実施例の水素ガスの貯蔵装置の作用効果を検証する実験2,3の装置構成を示す図。The figure which shows the apparatus structure of Experiment 2 and 3 which verifies the effect of the storage apparatus of the hydrogen gas of the Example of this invention. 本発明の実施例の水素ガスの貯蔵装置の作用効果を検証する実験4の装置構成を示す図。The figure which shows the apparatus structure of the experiment 4 which verifies the effect of the storage apparatus of the hydrogen gas of the Example of this invention.

符号の説明Explanation of symbols

1…冷媒容器、2…水素ガス容器支持部材、3…水素ガス容器、4…真空槽、5…冷媒槽、6…多層断熱材、7…蓋、8…液体窒素供給弁、9…安全弁、10…水素ガスセンサ、11…液体窒素、13…ライナー、14…金網、15…水素ガス容器入口、16…活性炭、17…熱交換器、18…水素ガス供給弁、19…圧力計、20…吐出弁、21…水素ガス導入管、25…伝熱盤、26…冷却パイプ、27…冷却ガス吐出口、28…圧力計、29…圧力調整器、30,31…弁、32…取出し容器、33…圧力計、34…ガス吐出弁、35…緊急放出弁、36…貫通孔、A,B,C,D,E,F…温度センサ設置個所、H…水素ガス導入経路。

DESCRIPTION OF SYMBOLS 1 ... Refrigerant container, 2 ... Hydrogen gas container support member, 3 ... Hydrogen gas container, 4 ... Vacuum tank, 5 ... Refrigerant tank, 6 ... Multilayer heat insulating material, 7 ... Cover, 8 ... Liquid nitrogen supply valve, 9 ... Safety valve, DESCRIPTION OF SYMBOLS 10 ... Hydrogen gas sensor, 11 ... Liquid nitrogen, 13 ... Liner, 14 ... Wire mesh, 15 ... Hydrogen gas container inlet, 16 ... Activated carbon, 17 ... Heat exchanger, 18 ... Hydrogen gas supply valve, 19 ... Pressure gauge, 20 ... Discharge Valve, 21 ... Hydrogen gas introduction pipe, 25 ... Heat transfer panel, 26 ... Cooling pipe, 27 ... Cooling gas discharge port, 28 ... Pressure gauge, 29 ... Pressure regulator, 30, 31 ... Valve, 32 ... Extraction container, 33 ... pressure gauge, 34 ... gas discharge valve, 35 ... emergency discharge valve, 36 ... through hole, A, B, C, D, E, F ... temperature sensor installation location, H ... hydrogen gas introduction path.

Claims (4)

繊維強化プラスチックス製の水素ガス容器内に水素ガスを導入し、前記水素ガス容器を極低温の冷媒に浸漬し、前記水素ガス容器内を水素の逆転温度以下の温度に冷却して前記水素ガス容器内に大気圧以上の水素ガスを貯蔵することを特徴とする水素ガスの貯蔵方法。   Hydrogen gas is introduced into a hydrogen gas container made of fiber reinforced plastics, the hydrogen gas container is immersed in a cryogenic refrigerant, and the hydrogen gas container is cooled to a temperature equal to or lower than the reversal temperature of hydrogen. A hydrogen gas storage method characterized by storing hydrogen gas at atmospheric pressure or higher in a container. 極低温の冷媒を貯留する冷媒容器と、繊維強化プラスチックスからなり内部に熱伝導部材を備え前記冷媒中に浸漬されて逆転温度以下大気圧以上の水素ガスを貯蔵する水素ガス容器とを備えていることを特徴とする水素ガスの貯蔵装置。   A refrigerant container for storing a cryogenic refrigerant, and a hydrogen gas container made of fiber reinforced plastics, provided with a heat conducting member therein, and immersed in the refrigerant to store hydrogen gas having an inversion temperature or lower and an atmospheric pressure or higher. A hydrogen gas storage device. 前記熱伝導部材は、ワイヤまたは網であることを特徴とする請求項2記載の水素ガスの貯蔵装置。   3. The hydrogen gas storage device according to claim 2, wherein the heat conducting member is a wire or a net. 前記水素ガス容器に貯蔵すべき水素ガスを導入する経路に、吸着剤を備え前記冷媒中に浸漬された熱交換器を備えていることを特徴とする請求項2記載の水素ガスの貯蔵装置。

3. The hydrogen gas storage device according to claim 2, further comprising a heat exchanger provided with an adsorbent and immersed in the refrigerant in a path for introducing hydrogen gas to be stored in the hydrogen gas container.

JP2003411992A 2003-12-10 2003-12-10 Storing method and apparatus for hydrogen gas Pending JP2005172106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003411992A JP2005172106A (en) 2003-12-10 2003-12-10 Storing method and apparatus for hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003411992A JP2005172106A (en) 2003-12-10 2003-12-10 Storing method and apparatus for hydrogen gas

Publications (1)

Publication Number Publication Date
JP2005172106A true JP2005172106A (en) 2005-06-30

Family

ID=34732570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411992A Pending JP2005172106A (en) 2003-12-10 2003-12-10 Storing method and apparatus for hydrogen gas

Country Status (1)

Country Link
JP (1) JP2005172106A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026332A2 (en) * 2005-09-02 2007-03-08 Csir Storage of compressed gaseous fuel
WO2017183185A1 (en) * 2016-04-22 2017-10-26 株式会社タツノ Gas filling device
CN110792924A (en) * 2018-08-01 2020-02-14 乔治洛德方法研究和开发液化空气有限公司 Device and method for filling a container with a pressurized gas
KR102144518B1 (en) * 2019-02-22 2020-08-13 부산대학교 산학협력단 Cryogenic storage system for storing liquefied hydrogen
ES2874852A1 (en) * 2021-09-11 2021-11-05 Lapesa Grupo Empresarial S L Compressed hydrogen storage tank in cryogenic system (Machine-translation by Google Translate, not legally binding)
KR20230124347A (en) * 2022-02-18 2023-08-25 크라이오에이치앤아이(주) Apparatus for storing liquefied hydrogen using cryogenic refrigerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026332A2 (en) * 2005-09-02 2007-03-08 Csir Storage of compressed gaseous fuel
WO2007026332A3 (en) * 2005-09-02 2007-07-05 Csir Storage of compressed gaseous fuel
WO2017183185A1 (en) * 2016-04-22 2017-10-26 株式会社タツノ Gas filling device
KR20180136486A (en) * 2016-04-22 2018-12-24 가부시끼가이샤 다쓰노 Gas filling device
JPWO2017183185A1 (en) * 2016-04-22 2019-02-28 株式会社タツノ Gas filling device
KR102519974B1 (en) * 2016-04-22 2023-04-10 가부시끼가이샤 다쓰노 gas filling device
CN110792924A (en) * 2018-08-01 2020-02-14 乔治洛德方法研究和开发液化空气有限公司 Device and method for filling a container with a pressurized gas
KR102144518B1 (en) * 2019-02-22 2020-08-13 부산대학교 산학협력단 Cryogenic storage system for storing liquefied hydrogen
ES2874852A1 (en) * 2021-09-11 2021-11-05 Lapesa Grupo Empresarial S L Compressed hydrogen storage tank in cryogenic system (Machine-translation by Google Translate, not legally binding)
KR20230124347A (en) * 2022-02-18 2023-08-25 크라이오에이치앤아이(주) Apparatus for storing liquefied hydrogen using cryogenic refrigerator
KR102648100B1 (en) * 2022-02-18 2024-03-18 크라이오에이치앤아이(주) Apparatus for storing liquefied hydrogen using cryogenic refrigerator

Similar Documents

Publication Publication Date Title
JP6838067B2 (en) Ship containment system for liquefied gas
US20080314050A1 (en) No-vent liquid hydrogen storage and delivery system
JP4753696B2 (en) Hydrogen filling device
US20110302933A1 (en) Storage and supply system of liquefied and condensed hydrogen
KR102122023B1 (en) Fuel Supply System of Liquefied Hydrogen Fuel Cell Propulsion Ship And Method for Operating the Same
JP3888972B2 (en) Deep refrigerant storage container
JP2007533935A (en) Absorbable gas fuel storage system and method of forming the same
JP2008510115A (en) Deep refrigerant storage container
JP6570536B2 (en) Forced diffusion treatment for insulating parts made from foamed synthetic foam
JP2008546956A (en) Deep refrigerant storage container
KR20180017105A (en) Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas
KR102543434B1 (en) Loading system of liquid hydrogen storage tank for ship
CN111006124B (en) Fire extinguishing and heat preservation integrated vehicle-mounted liquid hydrogen storage tank integrated device based on liquid nitrogen
US7165408B2 (en) Method of operating a cryogenic liquid gas storage tank
WO2006114137A1 (en) Two-step-process for filling gas containers for airbag systems and gas filling device for a two-step-filling process
FI120776B (en) Method for Preventing and Evaporating Liquefied Gas Stored in a Pressure Resistant Container and Container
JP2005172106A (en) Storing method and apparatus for hydrogen gas
US9853301B2 (en) Thermal conditioning fluids for an underwater cryogenic storage vessel
KR101751841B1 (en) Leakage Liquefied Gas of Storage Tank Treatment System and Method
JP2006057787A (en) Liquefied gas tank and liquefied gas filling method into tank
WO2022084430A1 (en) Improved cryogenic storage tank
EP1813853B1 (en) High pressure gas container with an auxiliary valve and process for filling it
RU2222749C2 (en) Gas storage vessel
KR101874047B1 (en) Valve locking device and liquified gas cargo tank
KR101819280B1 (en) Test storage tank

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060830