FR2922299A1 - Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel - Google Patents

Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel Download PDF

Info

Publication number
FR2922299A1
FR2922299A1 FR0707231A FR0707231A FR2922299A1 FR 2922299 A1 FR2922299 A1 FR 2922299A1 FR 0707231 A FR0707231 A FR 0707231A FR 0707231 A FR0707231 A FR 0707231A FR 2922299 A1 FR2922299 A1 FR 2922299A1
Authority
FR
France
Prior art keywords
panel
channels
coolant
fluid
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0707231A
Other languages
French (fr)
Inventor
Jean Paul Georges Leo Vincent Fabre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FABRE JEAN PAUL GEORGES LEO VI
Original Assignee
FABRE JEAN PAUL GEORGES LEO VI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FABRE JEAN PAUL GEORGES LEO VI filed Critical FABRE JEAN PAUL GEORGES LEO VI
Priority to FR0707231A priority Critical patent/FR2922299A1/en
Publication of FR2922299A1 publication Critical patent/FR2922299A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/73Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being of plastic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/72Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits being integrated in a block; the tubular conduits touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The device has a monoblock and self-supporting panel (4) made of extruded material and including adjacent channels and distant channels (8, 9) that are blocked at their ends (1, 2), where coolant is circulated at the interior of the panel. The coolant is internally transferred between the adjacent channels by trimming ends of a partition (7) separating the adjacent channels. The coolant is externally transferred between the distant channels through troughs (11-14) fixed on a rear facade of the panel.

Description

-1- La présente invention concerne un dispositif pour collecter le rayonnement solaire afin de chauffer un fluide caloporteur. Les collecteurs solaires actuels : • Sont constitués de nombreux composants, qu'il faut assembler mécaniquement puis interconnecter, ce qui nécessite beaucoup interventions • Utilisent des matériaux couteux. Le dispositif technique décrit ici permet de remédier à ces inconvénients : • Le collecteur est un panneau extrudé, réalisé en matière plastique (i.e. polycarbonate) ou en métal (i.e. aluminium). Il est constitué de tubes, appelés ici canaux, disposés côte à côte. Ce collecteur est monobloc, autoportant, sa taille peut être adaptée à la demande, y compris pour réaliser des collecteurs de très grande taille, sans pour autant compliquer sa réalisation, il est même possible de le cintrer. • Le fluide caloporteur, gaz ou liquide, chemine à l'intérieur des canaux. Le fluide baignant toute la surface exposée au soleil, il n'est pas nécessaire de réaliser le collecteur dans un matériau particulièrement performant en termes de conductibilité thermique. Les deux extrémités du panneau sont obturées (1) et (2). Le fluide est injecté dans un premier canal (3), puis chemine successivement à l'intérieur des autres canaux, où il se réchauffe, grâce au rayonnement solaire, avant d'être extrait du panneau (4). Ce cheminement peut être réalisé sous deux formes, conduisant à deux modes particuliers de réalisation : 20 I. Figure 1 : transfert interne du fluide entre canaux contigus (5), en rognant l'extrémité (6) de la cloison (7) les séparant. II. Figure 2 : transfert externe du fluide entre canaux distants (8), (9), grâce à des perforations (10) pratiquées dans la façade arrière du panneau, perforations à travers lesquelles le fluide est extrait d'un canal, puis réinjecté dans un canal distant. Le transfert du fluide s'effectue 25 dans des `goulottes' (11), (12), (13), (14), fixées sur la façade arrière du panneau. On peut, selon le nombre et la structure de ces goulottes, mettre en oeuvre d'autres types de cheminements, dont la figure 2 n'illustre qu'un exemple. La figure 1 représente (partiellement) un exemple de collecteur mesurant l cm d'épaisseur, lm de large et lm de long (soit 100 canaux de section lem * lcm, sur lm de 30 longueur) et illustre un trajet du fluide entre canaux contigus. On y distingue les canaux (5), délimités par des cloisons (7), tous les canaux étant obturés en leurs extrémités (1) et (2). Le fluide caloporteur pénètre dans le collecteur en (3), y chemine par des lumières obtenues en rognant les cloisons (6), et finit par en être extrait (4). La figure 2 représente (partiellement) un exemple de collecteur mesurant l cm 35 d'épaisseur, lm de large et lm de long (soit 100 canaux de section l cm * l cm, sur lm de longueur) et illustre un trajet du fluide entre canaux distants. Le dispositif représenté ici concerne la face qui n'est pas exposée au soleil, la face exposée au soleil étant vierge de tout dispositif.The present invention relates to a device for collecting solar radiation in order to heat a heat transfer fluid. The current solar collectors: • Are made up of many components, which must be assembled mechanically then interconnect, which requires a lot of interventions • Use expensive materials. The technical device described here overcomes these disadvantages: • The collector is an extruded panel, made of plastic (i.e. polycarbonate) or metal (i.e. aluminum). It consists of tubes, called here channels, arranged side by side. This collector is monobloc, self-supporting, its size can be adapted to the request, including to make very large collectors, without complicating its realization, it is even possible to bend. • The coolant, gas or liquid, flows inside the channels. The fluid bathes the entire surface exposed to the sun, it is not necessary to make the collector in a material that performs particularly well in terms of thermal conductivity. Both ends of the panel are closed (1) and (2). The fluid is injected into a first channel (3), then travels successively inside the other channels, where it heats, thanks to solar radiation, before being extracted from the panel (4). This path can be made in two forms, leading to two particular embodiments: I. FIG. 1: internal transfer of the fluid between adjacent channels (5), by trimming the end (6) of the partition (7) separating them . II. Figure 2: external transfer of the fluid between the remote channels (8), (9), through perforations (10) made in the rear panel of the panel, perforations through which the fluid is extracted from a channel and then reinjected into a remote channel. The transfer of the fluid takes place in 'chutes' (11), (12), (13), (14), fixed on the back panel of the panel. Depending on the number and the structure of these chutes, it is possible to use other types of paths, of which Figure 2 illustrates only one example. FIG. 1 shows (partially) an example of a collector measuring 1 cm thick, 1m wide and 1m long (ie 100 channels of section 1m * 1cm, over 1m in length) and illustrates a path of fluid between adjacent channels. . It distinguishes the channels (5), delimited by partitions (7), all the channels being closed at their ends (1) and (2). The heat transfer fluid enters the collector at (3), it travels by lights obtained by cutting the partitions (6), and finally extracted (4). FIG. 2 shows (partially) an example of a collector measuring 1 cm thick, 1m wide and 1m long (ie 100 channels of section 1cm * 1cm, over 1m in length) and illustrates a fluid path between remote channels. The device shown here relates to the face that is not exposed to the sun, the face exposed to the sun being blank of any device.

10 15 On distingue sur cette figure 2 : - d'une part quatre goulottes (Il), (12), (13), (14), préalablement cloisonnées (15) - d'autre part les canaux (8), (9), tous obturés en leurs extrémités (1) et (2), délimités par des cloisons (7) et enfin les perforations (10) par lesquelles le fluide est transféré des goulottes aux canaux, et inversement. Le fluide caloporteur pénètre ainsi dans le collecteur en (3) par la goulotte (11) pour être injecté dans le premier canal, puis passe par la goulotte (14) pour être transféré dans le troisième canal ...et ainsi de suite. Arrivé dans le dernier canal impair (le canal 99) le fluide est injecté dans le canal précédent de rang pair (le canal 98) par la goulotte (12), pour cheminer ensuite à travers le collecteur, en sens inverse, à travers les canaux pairs et les goulottes (12) et (13), pour finalement être extrait du panneau (4). Dans les deux formes de transfert du fluide (figures 1 et 2), il est possible : - de faire cheminer le fluide caloporteur dans plusieurs canaux contigus, voire simultanément dans tous les canaux, ce qui permet de faciliter la circulation du fluide, tout en conservant la rigidité mécanique du panneau - d'isoler certains canaux qui, n'étant pas parcourus par le fluide caloporteur, peuvent alors être réservés à la fixation du panneau (fixations traversantes ou câbles passés dans ces canaux). Pour absorber le rayonnement solaire on peut, soit teinter le collecteur (peinture ou coextrusion), soit teinter le liquide, s'il est fait d'une matière transparente et parcouru par un liquide caloporteur. Il est à noter que le nombre d'opérations requises pour fabriquer ce collecteur est indépendant de sa longueur. Dans la suite de ce document les deux modes particuliers de réalisation de transfert du fluide entre canaux, mentionnées précédemment, sont illustrées par la description de deux (parmi plusieurs) des prototypes qui ont été construits et testés. Pour des raisons de facilité d'exécution par un amateur, ils ont été réalisés à partir de panneaux de polycarbonate (lm*1m*1cm), 30 cloisonnés tous les cm. Chaque panneau est ainsi constitué d'un ensemble de 100 canaux contigus, obturés en leurs extrémités, longs de 1m chacun et d'une section de 1cm2. L'obturation de l'extrémité des canaux est réalisée en enfichant, dans chacune des deux extrémités du panneau, un profilé en U, préalablement rempli de colle-mastic. En amont des obturations, le système de guidage du fluide caloporteur (de l'eau en l'occurrence) l'oblige à traverser 35 successivement tous les 100 canaux. Le fluide parcourt ainsi 100 mètres à l'intérieur même du panneau (carré, surface 1m2, épaisseur 1cm). La face du collecteur qui est exposée au soleil est noircie, pour absorber au mieux le rayonnement solaire; l'autre face, qui est à l'ombre, est recouverte d'un isolant thermique pour minimiser les déperditions de chaleur. 10 15 20 25 -3- Les figures annexées illustrent les deux modes particuliers de réalisation des deux prototypes décrits ici : • Prototype I (figure 1) : Transfert interne entre canaux (5) contigus. Rappelons qu'il s'agit de transférer le fluide caloporteur entre canaux contigus, en rognant alternativement l'extrémité d'une cloison sur deux (6), avant que les canaux ne soient ensuite obturés (1) et (2), selon la technique indiquée précédemment. Le fluide caloporteur (de l'eau dans ce prototype) est ainsi injecté (3) dans le canal 1 puis, après l'avoir parcouru sur une longueur de lm, passe dans le canal 2 par une lumière (6) ménagée dans l'extrémité de la cloison entre les canaux 1 et 2. Le fluide parcourt le canal 2 (sur lm), en sens opposé puis, à l'autre extrémité du collecteur, passe par une lumière entre les canaux 2 et 3... etc. Arrivé dans le dernier canal le fluide est extrait du panneau (4), après avoir parcouru une distance de 100 mètres à l'intérieur du panneau de 1 m2 et avoir complètement baigné sa face exposée au soleil, qui a été préalablement noircie pour absorber le rayonnement solaire. • Prototype H (figure 2) : Transfert externe entre canaux (8), (9) distants. Cette technique permet de transférer le fluide caloporteur entre canaux distants, grâce à des perforations (10) pratiquées dans la façade du panneau. Grâce à ces perforations, le fluide est extrait d'un canal, puis réinjecté dans un autre canal, par l'intermédiaire de goulottes (11), (12), (13), (14). Pour illustrer la flexibilité de ce procédé nous avons imaginé de faire faire au fluide caloporteur, en l'occurrence de l'eau, un aller retour à travers les 100 canaux du collecteur. Ce cheminement n'est qu'une illustration de la variété de cheminements qu'il est possible de mettre en oeuvre grâce à cette technique. La figure 2 représente le cheminement du liquide, dans un sens, à travers les canaux impairs (1 à 99) et les goulottes (11) et (14) puis le cheminement retour du liquide, en sens contraire, à travers les canaux pairs (98 à 2) et les deux autres goulottes (12) et (13). Cette figure représente la face du collecteur (la face à l'ombre), qui porte les quatre goulottes, qui sont disposées deux par deux et côte à côte, à chaque extrémité du collecteur. La face du collecteur qui est exposée au rayonnement solaire est noircie et libre de tout dispositif. L'eau est ainsi injectée (3) dans le canal 1 puis, après l'avoir parcouru passe, grâce à la goulotte (14), dans le canal 3, le parcourt en sens opposé, puis passe dans le canal 5 par la goulotte (11)... etc. Arrivé dans le dernier canal impair (en l'occurrence le canal 99), par la goulotte (14), le liquide est, cette fois-ci, guidé dans le canal mitoyen (qui est le dernier canal pair, soit ici le 98ème), par la goulotte (12) puis dans le canal pair précédent (en sens opposé) par la goulotte 13, jusqu'à atteindre le canal 2, d'où le liquide est extrait du panneau (4). La connexion entre les canaux est donc réalisée par 4 goulottes étanches (2 par extrémité), plaquées sur la face arrière (face à l'ombre) du panneau. 5 -4 - Cette invention peut donner lieu à d'importantes applications industrielles, car elle rend possible la réalisation de collecteurs solaires monoblocs, autoporteurs, simples à fabriquer, faits de matériaux peu couteux et donc d'un coût modéré. A titre d'exemple non limitatif le collecteur aura des dimensions pouvant facilement aller jusqu'à 2m*6m, et au-delà, avec une épaisseur de 1 ou 2cm. Le dispositif selon l'invention est destiné à la fourniture d'eau chaude, aussi bien pour des usages domestiques individuels/collectifs ou industriels. This FIG. 2 distinguishes: - on the one hand four chutes (11), (12), (13), (14), previously partitioned (15) -, on the other hand, the channels (8), (9) ), all closed at their ends (1) and (2), delimited by partitions (7) and finally the perforations (10) through which the fluid is transferred from the troughs to the channels, and vice versa. The heat transfer fluid thus enters the manifold (3) through the chute (11) to be injected into the first channel, then passes through the chute (14) to be transferred into the third channel ... and so on. Arrived in the last odd channel (the channel 99) the fluid is injected into the previous channel of even rank (the channel 98) by the chute (12), to then travel through the collector, in the opposite direction, through the channels pegs and chutes (12) and (13), to finally be extracted from the panel (4). In both forms of transfer of the fluid (FIGS. 1 and 2), it is possible: to make the coolant flow in several contiguous channels, or even simultaneously in all the channels, which makes it easier to circulate the fluid, while retaining the mechanical rigidity of the panel - to isolate certain channels which, not being traversed by the coolant, can then be reserved for the fixing of the panel (through fasteners or cables passed in these channels). To absorb the sun's rays it is possible either to tint the collector (paint or coextrusion) or to stain the liquid, if it is made of a transparent material and traversed by a coolant. It should be noted that the number of operations required to manufacture this collector is independent of its length. In the remainder of this document, the two particular embodiments of transfer of the fluid between channels, mentioned above, are illustrated by the description of two (among several) of the prototypes that have been constructed and tested. For reasons of ease of execution by an amateur, they were made from polycarbonate panels (lm * 1m * 1cm), 30 cloisonné every cm. Each panel thus consists of a set of 100 contiguous channels, closed at their ends, 1m long each and a 1cm2 section. The closing of the end of the channels is achieved by plugging into each of the two ends of the panel, a U-section, previously filled with adhesive sealant. Upstream of the fillings, the guide system of the heat transfer fluid (water in this case) forces it to pass successively through all 100 channels. The fluid thus travels 100 meters inside the panel itself (square, surface 1m2, thickness 1cm). The face of the collector which is exposed to the sun is blackened, to absorb at best the solar radiation; the other side, which is in the shade, is covered with thermal insulation to minimize heat loss. The accompanying figures illustrate the two particular embodiments of the two prototypes described herein: Prototype I (FIG. 1): Internal transfer between adjacent channels (5). Recall that it is a question of transferring the coolant between contiguous channels, by alternately trimming the end of a partition on two (6), before the channels are then closed (1) and (2), according to the technique indicated previously. The coolant (water in this prototype) is thus injected (3) in the channel 1 and then, after having traveled over a length of 1m, passes in the channel 2 by a light (6) formed in the end of the partition between the channels 1 and 2. The fluid travels the channel 2 (on lm) in the opposite direction and then, at the other end of the collector, passes through a light between the channels 2 and 3 ... etc. Arrived in the last channel the fluid is extracted from the panel (4), after having traveled a distance of 100 meters inside the panel of 1 m2 and having completely bathed its face exposed to the sun, which was previously blackened to absorb the solar radiation. • Prototype H (Figure 2): External transfer between channels (8), (9) distant. This technique makes it possible to transfer the heat transfer fluid between remote channels, thanks to perforations (10) made in the facade of the panel. Thanks to these perforations, the fluid is extracted from a channel, then reinjected into another channel, through chutes (11), (12), (13), (14). To illustrate the flexibility of this process we imagined to make the coolant, in this case water, a round trip through the 100 channels of the collector. This path is only an illustration of the variety of pathways that can be implemented using this technique. FIG. 2 shows the flow of the liquid, in one direction, through the odd channels (1 to 99) and the troughs (11) and (14) and then the return path of the liquid, in opposite directions, through the even channels ( 98 to 2) and the other two chutes (12) and (13). This figure represents the face of the collector (the face to the shadow), which carries the four chutes, which are arranged two by two and side by side, at each end of the collector. The face of the collector that is exposed to solar radiation is blackened and free of any device. The water is thus injected (3) into the channel 1 and, after having passed through, through the channel (14) in the channel 3, the flow in the opposite direction, then passes in the channel 5 by the chute (11) ... etc. Arrived in the last odd channel (in this case the channel 99), by the chute (14), the liquid is, this time, guided in the adjoining channel (which is the last even channel, here the 98th) , by the chute (12) and then in the previous pair channel (in opposite directions) by the chute 13, until reaching the channel 2, from which the liquid is extracted from the panel (4). The connection between the channels is thus made by 4 watertight troughs (2 per end), plated on the back side (facing the shadow) of the panel. This invention can give rise to important industrial applications, because it makes possible the realization of monobloc solar collectors, self-supporting, simple to manufacture, made of inexpensive materials and therefore a moderate cost. By way of non-limiting example the collector will have dimensions easily up to 2m * 6m, and beyond, with a thickness of 1 or 2cm. The device according to the invention is intended for the supply of hot water, both for domestic individual / collective or industrial uses.

Claims (5)

REVENDICATIONS 1. Dispositif pour collecter le rayonnement solaire, afin de chauffer un fluide caloporteur, caractérisé en ce qu'il est constitué d'un panneau monobloc et autoportant de matière extrudée à l'intérieur duquel circule le fluide. 1. Device for collecting solar radiation, for heating a heat transfer fluid, characterized in that it consists of a monobloc panel and self-supporting extruded material within which the fluid flows. 2. Dispositif selon la revendication 1, caractérisé en ce que le panneau est 5 constitué de canaux contigus, obstrués en leur extrémité. 2. Device according to claim 1, characterized in that the panel consists of contiguous channels, obstructed at their end. 3. Dispositif selon les revendications 1 et 2, caractérisé en ce que le transfert du fluide d'un canal à l'autre est réalisé de manière interne au collecteur, en rognant les extrémités des cloisons séparant les canaux. 3. Device according to claims 1 and 2, characterized in that the transfer of the fluid from one channel to the other is made internally to the collector, by trimming the ends of the partitions separating the channels. 4. Dispositif selon les revendications 1 et 2, caractérisé en ce que le transfert 10 du fluide d'un canal à l'autre est réalisé de manière externe, par des goulottes et des trous percés dans les façades du panneau. 4. Device according to claims 1 and 2, characterized in that the transfer 10 of the fluid from one channel to the other is made externally, by chutes and holes drilled in the facades of the panel. 5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le transfert du fluide peut être réalisé à travers tous les canaux constituant le collecteur, ou seulement une partie d'entre eux. 5. Device according to any one of the preceding claims, characterized in that the transfer of the fluid can be achieved through all the channels constituting the collector, or only a part of them.
FR0707231A 2007-10-16 2007-10-16 Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel Withdrawn FR2922299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0707231A FR2922299A1 (en) 2007-10-16 2007-10-16 Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0707231A FR2922299A1 (en) 2007-10-16 2007-10-16 Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel

Publications (1)

Publication Number Publication Date
FR2922299A1 true FR2922299A1 (en) 2009-04-17

Family

ID=39496132

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0707231A Withdrawn FR2922299A1 (en) 2007-10-16 2007-10-16 Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel

Country Status (1)

Country Link
FR (1) FR2922299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVE20100042A1 (en) * 2010-07-16 2012-01-17 Mind S R L SOLAR THERMAL COLLECTOR.-
WO2017137509A1 (en) * 2016-02-10 2017-08-17 Solable Sas Solar panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2531907A1 (en) * 1975-07-17 1977-02-10 Gerhard Prof Dr Ing Schenkel Solar energy collector with plastic water pipes - has single thin wall pipe coiled between inlet and outlet
DE2742659A1 (en) * 1977-09-22 1979-03-29 Imchemie Kunststoff Gmbh Transparent solar heat conserving double panel - with cross-arms between cover layers forming interconnected chambers through which fluid circulates
DE9105184U1 (en) * 1991-04-26 1991-08-22 Krämer, Robert Transparent solar collector
DE9200598U1 (en) * 1992-01-20 1992-06-11 Koslowski, Ernst, 4130 Moers Solar collector made of polycarbonate hollow chamber sheet
EP0738686A1 (en) * 1995-04-18 1996-10-23 Röhm Gmbh Reactors for photocatalytic waste-water purification with the use of multi-layered cross-braced plates as solar elements
DE19644992C1 (en) * 1996-10-30 1998-03-12 Roehm Gmbh Solar cell with temperature control for optimum photochemical reaction or photosynthesis conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2531907A1 (en) * 1975-07-17 1977-02-10 Gerhard Prof Dr Ing Schenkel Solar energy collector with plastic water pipes - has single thin wall pipe coiled between inlet and outlet
DE2742659A1 (en) * 1977-09-22 1979-03-29 Imchemie Kunststoff Gmbh Transparent solar heat conserving double panel - with cross-arms between cover layers forming interconnected chambers through which fluid circulates
DE9105184U1 (en) * 1991-04-26 1991-08-22 Krämer, Robert Transparent solar collector
DE9200598U1 (en) * 1992-01-20 1992-06-11 Koslowski, Ernst, 4130 Moers Solar collector made of polycarbonate hollow chamber sheet
EP0738686A1 (en) * 1995-04-18 1996-10-23 Röhm Gmbh Reactors for photocatalytic waste-water purification with the use of multi-layered cross-braced plates as solar elements
DE19644992C1 (en) * 1996-10-30 1998-03-12 Roehm Gmbh Solar cell with temperature control for optimum photochemical reaction or photosynthesis conditions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVE20100042A1 (en) * 2010-07-16 2012-01-17 Mind S R L SOLAR THERMAL COLLECTOR.-
WO2017137509A1 (en) * 2016-02-10 2017-08-17 Solable Sas Solar panel

Similar Documents

Publication Publication Date Title
EP2577181B1 (en) Module for a thermal absorber of a solar receiver, absorber comprising at least one such module and receiver comprising at least one such absorber
EP2115363B1 (en) Carrier structure for partitioning and/or inner partitioning with integrated heating and/or cooling
EP2681493B1 (en) Modular heating structure adaptable for building inside walls
ES2527969B1 (en) Three-dimensional thermal or photovoltaic solar panel with built-in holography
EP0122274B1 (en) Improvements to solar collectors
WO2017162993A1 (en) Hybrid solar panel equipped with a device for attachment of a heat exchanger
FR2922299A1 (en) Solar radiation collecting device for e.g. industrial application, has monoblock and self-supporting panel made of extruded material and including distant channels blocked at their ends, where coolant is circulated at interior of panel
CA2800715A1 (en) Air-air heat exchanger
EP2623909B1 (en) Photovoltaic panel with heat recovery
EP1709370B1 (en) Air heat solar collector
CA2917539C (en) Heat exchange device and method for making such a device
FR2469684A1 (en) Heat exchanger for two fluids - has modular construction of stacked flat plastics sheets with interposed partitions to form passages
FR2978815A1 (en) PHOTOVOLTAIC MODULE WITH THERMAL EXCHANGER
FR2937662A1 (en) UNIT AND ELEMENT OF HEAT EXCHANGE, CLADDING AND OCCULTATION OF A BUILDING STRUCTURE
FR2979714A1 (en) LIGHT GUIDE FOR SOLAR DEVICE
FR2875292A1 (en) Solar collector for building, has absorber made or thermoplastic or rubber and integrated with thermoplastic pipe by insulating material layer, and metallic sheet and adhesive layer plated on outer wall of building surface by gluing/flange
FR2831247A1 (en) Solar panel for heating building with warmed air has housing divided by intermediate partition into compartments connected to inlet and outlet pipes
FR2530322A1 (en) Individual room heating unit
FR2493484A1 (en) Modular construction solar panel - has simulated tile exterior for incorporation into roofed areas and has acrylic resin body with corrugated surface
FR2468708A1 (en) PLATES FOR RUNWAY RUNWAY
EP3800408A1 (en) Modular thermal solar sensor
FR2958731A1 (en) Roof covering panel and solar energy sensor forming device for use in Roman tile of house, has upper wall whose shape occupying assembling configuration of tiles to relief is doubled to create space between upper and lower walls
FR2935786A1 (en) Thermal solar collector, has absorber arranged in dihedral formed by walls of body, where walls are made of heat conducting material with thermal conductivity greater than specific watts per meter-Kelvin at room temperature
FR2911388A1 (en) Solar panel for heating installation in e.g. commercial building, has tubes arranged in casing, and fins slide in volume of tube and increase contact surface between wall of tube and heat transfer liquid circulating in volume of tube
FR3037744A1 (en) COVER ASSEMBLY FOR A BUILDING EQUIPPED WITH PHOTOVOLTAIC PANELS, SUPPORT STRUCTURE FOR A PHOTOVOLTAIC PANEL, INSTALLATION AND METHOD OF MAKING THE SAME

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20130628