FR2898910A1 - Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin - Google Patents

Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin Download PDF

Info

Publication number
FR2898910A1
FR2898910A1 FR0602539A FR0602539A FR2898910A1 FR 2898910 A1 FR2898910 A1 FR 2898910A1 FR 0602539 A FR0602539 A FR 0602539A FR 0602539 A FR0602539 A FR 0602539A FR 2898910 A1 FR2898910 A1 FR 2898910A1
Authority
FR
France
Prior art keywords
spin
substrate
layer
transition
transition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0602539A
Other languages
English (en)
Other versions
FR2898910B1 (fr
Inventor
Azzedine Bousseksou
Gabor Molnar
Saioa Cobo
Lionel Salmon
Cabezos Jose Antonio Real
Christophe Jean Francois Vieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR0602539A priority Critical patent/FR2898910B1/fr
Priority to PCT/FR2007/000297 priority patent/WO2007107644A1/fr
Priority to US12/294,090 priority patent/US8247038B2/en
Publication of FR2898910A1 publication Critical patent/FR2898910A1/fr
Application granted granted Critical
Publication of FR2898910B1 publication Critical patent/FR2898910B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/005Thin magnetic films, e.g. of one-domain structure organic or organo-metallic films, e.g. monomolecular films obtained by Langmuir-Blodgett technique, graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/32Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film
    • H01F41/34Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying conductive, insulating or magnetic material on a magnetic film, specially adapted for a thin magnetic film in patterns, e.g. by lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

La présente demande concerne un nouveau procédé d'application de couches minces de matériaux moléculaires à transition de spin, substantiellement purs avec maintien des propriétés d'hystérésis du matériau. Ledit procédé permet l'obtention d'une surface dense, homogène et de très faible rugosité.

Description

Les complexes moléculaires présentant un phénomène de transition de spin
ont été étudiés sur le plan fondamental depuis leur découverte en 1931. Depuis, environ trois cents complexes ont été synthétisés et étudiés par différentes techniques physico-chimiques. Le phénomène de transition de spin peut être déclenché par la température, la pression (G. Molnar et al., J. Phys., B. 107, 2003, p. 3149 ; A. Bousseksou et al., C.R. Chimie 6, 2003, p. 329), un champ magnétique intense (Bousseksou et al., Top. Curr. Chem. 235, 2004, p. 65) ou encore par la lumière (N. Ould Moussa et al., Phys. Rev. Lett., 94 2005, p. 107205 ; S. Bonhommeau et al., Angew. Chem. Int., Ed. 44, 2005, p. 2) et s'accompagne d'un changement de propriétés magnétiques, optiques et/ou électriques. Ce phénomène a été physiquement modélisé et bien compris (A. Bousseksou et al., Eur. J. Inorg. Chem., 2004, p. 4353). Sur le plan des applications, plusieurs perspectives intéressantes ont été proposées (O. Kahn et al., Science 279, 1998, p.44 ; O. Kahn et al., Chem. Mater. 9, 1997, p.3199 ; O. Kahn et al., Adv. Mater. 4, 1992, p. 718). Il a notamment été découvert une hystérésis thermique de la constante diélectrique au cours de la transition de spin (FR 0111328, EP1430552, A. Bousseksou et al., J. Mater. Chem. 13, 2003, p.2069), permettant ainsi la conception de micro-nano-condensateurs ayant pour propriété de mémoriser l'information à l'échelle d'agrégats moléculaires. L'utilisation des propriétés physiques des complexes inorganiques et métallo-organiques exige généralemement la mise en couche mince de ces composés sur un substrat et, éventuellement, leur micro- ou nano-structuration en éléments de taille submicronique. La difficulté de ce travail réside dans la compatibilité du produit et du procédé de dépôt car la transition de spin est un phénomène très sensible aux différentes perturbations du réseau cristallin. Jusqu'à présent, deux méthodes de dépôt ont été proposées : - la méthode dite de Langmuir Blodgett, qui consiste en la préparation d'un film par transfert d'une monocouche flottant sur un liquide sur un support solide.
Néanmoins, cette méthode ne permet que d'obtenir une monocouche bidimensionnelle ; ceci est insuffisant pour la plupart des applications car (1) il est difficile de détecter des cycles d'hystérésis dans une monocouche (surtout s'il s'agit d'un dépôt sur une petite surface) et (2) la maintien du cycle d'hystérésis n'est pas assuré avec une seule monocouche. - la méthode dite de "spin coating", qui consiste en le dépôt d'un fluide sur un support par centrifugation (ou tournette), puis éventuellement évaporation du solvant. Néanmoins, le matériau à transition de spin est déposé sous forme de mélange avec une matrice inactive, généralement un polymère. Le mélange du matériau actif dans la matrice peut être discontinu et entraîne en général un dépôt inhomogène. Par ailleurs, la dissolution du matériau dans la matrice provoque la perte du réseau cristallin. Ces inconvénients limitent donc l'utilisation de ce procédé Il n'existe donc à ce jour aucune méthode permettant le dépôt en couche mince de complexes à transition de spin avec maintien de la propriété de transition de spin, hystérésis et un état de surface de qualité acceptable. Il est donc particulièrement désirable de mettre à disposition un procédé de dépôt de complexes à transition de spin en couche mince, permettant de remplir ces exigences. Les présents inventeurs ont découvert un nouveau procédé d'application en couche mince permettant de remplir ces exigences. Notamment, le procédé selon l'invention permet de maintenir les propriétés telles que l'hystérésis, la température de transition, etc., du matériau massif lorsqu'il est déposé en couche mince. Par ailleurs, la couche mince est constituée uniquement du composé à transition de spin de sorte qu'il n'est pas nécessaire d'utiliser de mélange, comme cela est le cas pour le "spin coating" où un mélange polymère d'adhésion/matériau est requis.
Le procédé selon l'invention permet également de contrôler l'épaisseur des couches déposées dans une échelle très large : de quelques nanomètres à quelques micromètres. Par ailleurs, les couches minces obtenues sont denses, homogènes, de très faible rugosité, généralement comprise entre 1 et 20nm. Enfin, la micro- et nano-structuration des dépôts est possible : le procédé selon l'invention permet de réaliser des dépôts parfaitement localisés. Les présents inventeurs ont donc préparé pour la première fois une couche mince bistable constituée d'un matériau à transition de spin substantiellement pur. Bien entendu, ladite couche peut être éventuellement micro/nano-structurée ultérieurement. Lesdites couches sont un objet de la présente invention.
Selon un premier objet, la présente invention concerne donc un procédé de dépôt en couche mince d'un matériau à transition de spin sur un substrat, caractérisé en ce que ledit procédé comprend l'étape d'application d'une couche mince bistable dudit matériau substantiellement pur. Le procédé est particulièrement avantageux en ce que les propriétés de transition de spin et d'hystérésis dudit matériau sont conservées. Par matériau à transition de spin, on entend tout matériau siège du phénomène de transition de spin, bistable et présentant préférentiellement une hystérésis à température ambiante. On entend par dépôt "en couche mince" l'application sur ledit substrat d'une couche de matériau dont l'épaisseur est comprise entre 1 nm et 10 micromètres. Par substrat, on entend tout type de substrat habituellement utilisé comme support pour y déposer des matériaux. Le type de substrat peut dépendre de l'application envisagée ou du matériau à déposer. Le substrat peut être métallisé ou non, conducteur ou isolant, cristallin ou amorphe. Préférentiellement, le substrat est constitué d'un matériau inerte, c'est-à-dire n'engageant pas d'interactions au niveau des propriétés recherchées du matériau à transition de spin. En particulier, le substrat peut être constitué de Si ou SiO2, éventuellement recouvert d'une ou plusieurs couches de métal, tel que le titane ou l'or. Le choix du substrat fait partie des connaissances et des aptitudes de routine de l'homme du métier. Par ailleurs, le substrat peut être micro- ou nano-structuré, au moyen des techniques habituelles. La fabrication des micro- ou nano-structures des couches minces des composés à transition de spin peut être réalisée par une technique de la microtechnologie appelée " lift-off ". Une condition importante pour l'utilisation de ce procédé est que la couche mince doit être insoluble dans le solvant utilisé pour lifter la résine (acétone par exemple). Cette condition est remplie par les systèmes tridimensionnels, notamment ceux décrits ci-après, qui sont très peu solubles dans des solvants usuels. Dans le cas des dépôts réalisés par la technique couche par couche, une condition supplémentaire doit être remplie : la résine utilisée pour masquer la surface doit être insoluble dans le solvant utilisé lors du dépôt. Pour le procédé dépôt par évaporation, ce dernier problème ne se pose pas. Pour la fabrication des dépôts moléculaires micro/nano-structurés, le substrat est d'abord recouvert par une résine photosensible, puis les différents motifs de résine sont obtenus par photolithographie ou lithographie électronique standards. Le composé à transition de spin est ensuite déposé couche par couche ou par évaporation thermique. Dans la dernière étape (lift-off), les motifs de résine (image négative) sont dissous dans l'acétone, laissant sur le substrat des motifs constitués par le complexe moléculaire (image positive) insolubles dans l'acétone.
Cette méthode permet de déposer le composé en petits éléments de taille contrôlée (dimensions microniques et nanométriques) et de morphologie très favorable (dense et peu rugueuses) pour des différentes applications envisagées avec des composés moléculaires à transition de spin. Par matériau à transition de spin substantiellement pur, on entend ledit 20 matériau seul, notamment à l'exclusion de toute matrice, notamment polymérique. Les propriétés de transition de spin et d'hystérésis sont conservées dans le matériau déposé en couche mince, c'est-à-dire qu'elles sont similaires à celles du matériau à l'état massif. 25 Selon un premier aspect, la présente invention concerne un procédé de dépôt en couche mince d'un matériau à transition de spin selon la technique dite de couche par couche. Ledit procédé comprend : 30 1. l'application d'une monocouche d'accrochage ; 2. l'application d'une ou plusieurs couche(s) dudit matériau par immersion successive dudit substrat recouvert de la monocouche d'accrochage dans chacune des solutions S(i) contenant respectivement le constituant (i) dudit matériau ; et 3. le recuit/évaporation des solvants. Ce procédé repose sur l'assemblage successif des constituants (i) du matériau à transition de spin. Généralement, le matériau à transition de spin se présente sous forme d'un réseau tridimensionnel. Préférentiellement, le matériau à transition de spin est un complexe métallo-inorganique ou métallo-organique de coordination.
Selon un autre aspect préféré, le matériau à transition de spin est un système ionique. Selon un autre aspect préféré, le matériau à transition de spin est un complexes métallique à base d'azopyridine, notamment ceux de formule M(4-4'-azopyridine)M'(CN)4, ou M(pyrazine)[M'(CN)4], où M et M' sont des métaux de transition, identiques ou différents. Selon un autre aspect préféré, le matériau à transition de spin est un analogue de bleu de Prusse, de formule AM[M'(CN)6], dans laquelle A est un élément du groupe IA et M et M' sont des métaux de transition, identiques ou différents.
Encore plus préférentiellement, ledit matériau peut être choisi parmi Fe(pyrazine)[Pt(CN)4], Fe(pyrazine)Ni(CN)4, Fe(pyrazine)[Pd(CN)4], Fe(4-4'-azopyridine)Pd(CN)4, Fe(4-4'-azopyridine)Ni(CN)4, Fe(4-4'-azopyridine)Pt(CN)4, NaCo[Fe(CN)6] , RbMn[Fe(CN)6], ou encore [Fe(NH2trz)3](NO3)2, [Fe(Htrz)2(trz)](NO3)2, [Fe(NH2trz)3](Br)2, [Fe(Htrz)3_3x(NH2trz)3x](CIO4).H2O, [Fe(NH2trz)3](NO3)1,7(BF4)o,4. De manière générale, la force motrice de l'assemblage du matériau est la formation exothermique des liaisons covalentes entre le métal et les ligands ou l'attraction électrostatique entre les cations et les anions. Les vitesses de dépôt sont généralement comprises entre une heure et dix heures par 100 nm d'épaisseur. Le procédé couche par couche selon l'invention comprend l'étape préliminaire consistant en l'application d'une couche d'accrochage, de préférence une monocouche, à base d'un matériau comportant des fonctions permettant l'encrage dudit matériau à transition de spin au dit substrat. Préférentiellement, le matériau d'accrochage comprend des fonctions thiol, silane, ou des structures dendrimères. Plus préférentiellement, la monocouche est constituée de cystamine ou de 4-mercaptopyridine. Généralement, l'application de la monocouche est réalisée par trempage dudit substrat dans une solution du matériau. De préférence, ladite solution est une solution alcoolique, par exemple l'éthanol, à concentration comprise entre 1 et 20 mM, plus préférentiellement entre 1 et 10 mM.
Généralement, l'étape 2 du procédé selon l'invention comprend une étape de rinçage entre chaque immersion dans chaque solution S(i). Les solutions S(i) comprennent respectivement ledit constituant (i), éventuellement coordiné, en solution alcoolique, par exemple l'éthanol, à des concentrations comprises entre 10 et 500 mM, de préférence entre 50 mM et 100 mM. Généralement, l'étape 2 est conduite à température comprise entre -80 C et 30 C, préférentiellement environ -60 C. L'étape 2 peut être répétée autant de fois (n) que nécessaire de façon à obtenir (n) couches désirées et/ou l'épaisseur voulue.
A l'issue des étapes d'immersion et éventuellement de rinçage, le procédé comprend l'étape de recuit pour éliminer les traces de solvant. Cette étape est généralement conduite à température comprise entre 100 et 200 C pendant une durée nécessaire à l'élimination satisfaisante du solvant. Généralement, les temps de recuit sont compris entre quelques minutes et quelques heures.
La présence de la couche d'accrochage identifiée par analyse chimique, par exemple à l'aide d'un SIMS est caractéristique du procédé selon l'invention.
Selon un second aspect, la présente invention concerne un procédé de dépôt d'un matériau à transition de spin en couche mince caractérisé en ce que ledit procédé comprend l'étape de la sublimation thermique dudit matériau, sous vide. 25 Généralement, l'étape de sublimation est conduite à pression comprise entre 10-5-10-6 Torr, à température comprise entre 100 et 300 C. Dans le cadre de cet aspect du procédé, ledit matériau à transition de spin est sublimable. Préférentiellement, ledit matériau à transition de spin est un 5 complexe métallique, tel que Fe[tris(1-pyrazolyl)borate]2. Cette méthode n'est pas limitée ni en substrat ni en forme. Le procédé d'évaporation thermique présente l'avantage que le dépôt est réalisé sous vide poussé (typiquement 10-5-10"6 Torr) ; ainsi le produit est généralement très pur de toute contamination. Par conséquent, une analyse 10 chimique, par exemple au moyen de la spectrométrie de masse des ions secondaires, permet de vérifier l'absence des impuretés (solvant, etc.) à l'intérieur du dépôt, caractéristique du procédé par évaporation thermique selon l'invention. Selon un aspect préféré, le matériau à transition de spin est préalablement 15 purifié par sublimation, par exemple à l'aide d'un sublimateur chimique. Pour des applications en microélectronique, le substrat peut être préalablement micro- ou nano-structuré avant dépôt. Ceci est particulièrement avantageux car ainsi les manipulations ultérieures de structuration du matériau une fois déposé ne sont plus nécessaires. 20 Le procédé selon l'invention peut être très généralement utilisé pour toute fabrication de tout composant électrique, électronique, optique ou photographique dans lequel il est nécessaire d'obtenir un dépôt de matériau à transition de spin ayant conservé ses propriétés d'hystérésis. La présente invention concerne également toute couche mince bistable constituée d'un matériau à transition de spin substantiellement pur, susceptible d'être obtenue par le procédé selon la présente invention.
30 Selon un autre objet, la présente invention concerne également un composant comprenant un substrat sur lequel est déposé une couche simple d'un matériau à transition de spin caractérisé en ce que la couche mince est susceptible d'être obtenu par le procédé selon l'invention. On peut notamment citer un composant constitué d'électrodes entre lesquelles est appliqué un matériau à transition de spin par le procédé selon l'invention, comme par exemple une mémoire moléculaire comprenant un condensateur constitué d'armatures entre lesquelles est appliqué un matériau à transition de spin par le procédé selon l'invention. Un exemple de telles mémoires moléculaires est décrit dans WO 03/019695. On peut également citer les composants photochromes, thermochromes, électrochromes ou piézochromes comprenant un substrat, par exemple du verre, sur lequel est appliqué un matériau à transition de spin par le procédé selon l'invention. Selon un autre objet, la présente invention concerne également un procédé de micro/nano-structuration de matériau à transition de spin en couche mince comprenant : i. l'application d'une résine photosensible sur un substrat ; ii. l'obtention des motifs désirés de résine ; iii. l'application d'un matériau à transition de spin en couche simple selon le procédé selon l'invention ; et iv. le lift-off de la résine. L'étape ii est généralement réalisée par toute technique de lithographie 20 habituellement utilisée, telle que la photolithographie ou lithographie électronique. L'étape iv est généralement réalisée par dissolution de la résine dans un solvant. La présente demande concerne donc également les composants 25 comprenant un matériau à transition de spin en couche mince micro/nanostructuré susceptible d'être obtenus par le procédé selon l'invention. Légende des figures : Figure 1 : Structure du composé Fe[HB(pz)3]2 à transition de spin. 30 Figure 2 : Spectres Raman (enregistrés à 293 K) du composé Fe[HB(pz)3]2 à transition de spin à l'état massif (poudre) et en couche mince obtenu par évaporation thermique.
Figure 3 : Hystérésis thermique de la susceptibilité magnétique du composé Fe[HB(pz)3]2 sous forme de couche mince (courbe non corrigée pour la contribution diamagnétique du substrat). Figure 4 : Structure du composé Fe(pz)[Pt(CN)4] à transition de spin.
Figures 5a, 5b et 5c : Schémas du dépôt couche par couche du composé Fe(pz)[Pt(CN)4] à transition de spin. Figure 6 : Spectres Raman (enregistrés à 293 K) du composé Fe(pz)[Pt(CN)4] à transition de spin à l'état massif (poudre) et en couche mince obtenu par dépôt couche par couche. (La montée autour de 1000 cm-1 dans le spectre de la couche mince est due à la diffusion Raman du substrat Si.) Figure 7 : Spectres Raman (enregistrés à 120 K et 320 K) du composé Fe(pz)[Pt(CN)4] à transition de spin en couche mince obtenu par dépôt couche par couche. Une des fréquences caractéristiques à l'état de spin HS ou LS est signalée par une flèche.
Figure 8 : Cycle d'hystérésis du composé Fe(pz)[Pt(CN)4] à transition de spin en couche mince obtenu par dépôt couche par couche. Figure 9 : Présentation schématique du procédé de microstructuration des couches minces du complexe Fe[HB(pz)3]2 à transition de spin. Figure 10 : Photos des microstructures du composé Fe[HB(pz)3]2. Les zones 20 métalliques non couvertes par le produit correspondent à des endroits protégés par la résine photolithographique.
Les exemples suivants sont donnés à titre représentatif et non limitatif de la présente invention. 25 1 . Exemple du procédé couche par couche Le travail de dépôt couche par couche a été réalisé comme suit. Le substrat est à base de silicium monocristallin couvert par une couche de titane (2 nm) et d'or (15 nm). Il faut noter que ce substrat de surface métallisée peut 30 être également remplacé par des substrats de surface oxydée (SiO2 par exemple). Le substrat est ensuite recouvert par une monocouche de cystamine (ou d'autres thiols tels que le 4-mercaptopyridine) en le trempant dans une solution de cystamine/éthanol (1-10 mM) pendant une nuit. Par la suite, le complexe Fe(pz)[Pt(CN)4] est déposé à -60 C (bain CO2/acétone) par immersions successives du substrat (couvert par la couche d'accrochage) dans (1) une solution de 50 mM-100 mM de Fe(BF4)2 en éthanol, (2) dans une solution de 50 mM-100mM de (TBA)2[Pt(CN)4] en éthanol et (3) une solution de 50 mM -100 mM de pyrazine en éthanol. Entre chaque étape, le substrat est rincé dans l'éthanol pur. La répétition successive de ces trois étapes (+ rinçages) permet de déposer plusieurs couches du complexe sur le substrat (Figures 5a et 5b). A la fin du procédé, le dépôt est recuit à 150 C pendant 30 min pour éliminer les traces du solvant. Le spectre Raman du produit déposé a été enregistré à 293 K à l'aide d'un micro-spectromètre Raman LABRAM-HR (excitatrice : Laser HeNe à 632.8 nm, 9 mW) dans les mêmes conditions que celui de la poudre. La figure 6 représente les deux spectres dans la plage de fréquences 1000-2250 cm-1. (A plus basses fréquences, le spectre du dépôt est noyé dans le spectre du substrat Si.) On observe que ces deux spectres ont les mêmes fréquences caractéristiques du produit. Lors du refroidissement de la couche mince du Fe(pz)[Pt(CN)4], un phénomène de thermochromisme a été observé: Le dépôt est jaune à température ambiante et devient rouge à plus basses températures. Ce phénomène est la conséquence de la transition de spin thermo-induite et a déjà été reporté pour le produit massif par certains des inventeurs de la présente demande (S. Bonhommeau et al., Angew. Chem. Int., Ed. 44, 2005, 2-5). Des spectres Raman des couches minces du composé Fe(pz)[Pt(CN)4] ont été également enregistrés en fonction de la température entre 80 et 380 K. Cette étude en température démontre clairement l'établissement de la transition de spin dans la couche mince. A titre d'exemple, la figure 8 montre deux spectres enregistrés à 120 K et 320 K. Ces deux spectres peuvent être identifiés comme étant des spectres des formes bas-spin (120 K) et haut-spin (320 K) : on observe tous les modes de vibrations caractéristiques des deux états de spin reportées précédemment pour le produit massif (G. Molnar et al., J. Phys. Chem. B 106, 2002, 9701-9707). On remarque notamment l'apparition à basse température d'un mode très intense autour de 675 cm-1 qui est caractéristique à l'état bas spin. L'évolution de l'intensité de ce mode intense autour de 675 cm-1 est utilisée comme marqueur pour suivre de façon quantitative la transition de spin dans la couche mince. La figure 8 représente l'intensité (normalisée) de ce mode de vibration en fonction de la température lors du chauffage et refroidissement de la couche mince. Cette figure met en évidence un cycle d'hystérésis centrée autour de la température ambiante (295 K) démontrant ainsi, pour la première fois, la conservation des propriétés du matériau en couche mince.
2. Exemple du procédé par sublimation thermique Le composé moléculaire Fe[HB(pz)3]2 à transition de spin a été synthétisé selon l'article de S. Trofimenko (J. Am. Chem. Soc., 1967, 89, 3170).
La poudre obtenue a été ensuite purifiée à l'aide d'un sublimateur chimique classique sous vide primaire. Le produit a été identifié par son cliché de diffraction des rayons X et la transition de spin du produit massif a été observée par rnesure magnétique. Cette transition s'est avérée comparable avec celle observée par F. Grandjean et al. dans leur article (Inorg. Chem., 1989, 28, 4406). Le dépôt de la couche mince du complexe Fe[HB(pz)3]2 a été réalisé à 200 C sous vide secondaire (10"5 mbar) à l'aide d'un évaporateur Edwards Auto306. Le substrat est une plaquette de silicium recouvert d'une couche de 2 nm titane et 15 nm d'or (évaporées préalablement sur la surface de Si). Il faut noter que ce substrat de surface métallisée peut être remplacé par des substrats non-conducteurs (SiO2 par exemple). Le spectre Raman du produit déposé a été enregistré à 293 K à l'aide d'un micro-spectromètre Raman Labram-HR (excitatrice : Laser HeNe à 632.8 nm, 9 mW) dans les mêmes conditions que celui de la poudre. Sur la figure 2, sont donnés deux spectres dans la plage de fréquence 1020-1550 cm-1. (A plus basses fréquences, le spectre du dépôt est noyé dans le spectre du substrat Si.) On note que ces deux spectres de couche mince et du massif sont comparables du point de vue fréquences de vibration caractéristiques. Une mesure magnétique a été réalisée à l'aide d'un magnétomètre MPMS5 (Quantum Design) sous un champ magnétique de 2 T (champ parallèle au plan du substrat). La figure 3 représente la variation thermique de la susceptibilité magnétique de la couche mince du composé Fe[HB(pz)3]2. On observe une large hystérésis autour de 330 K démontrant ainsi la conservation des propriétés du matériau en couche mince. Par ailleurs, lors du chauffage/refroidissement de la couche mince, on a observé un phénomène de thermochromisme : Le produit est rose à température ambiante et devient progressivement incolore à plus hautes températures. Ce phénomène est également la conséquence de la transition de spin thermo-induite. 3. Exemple de la micro et nano-structuration des couches minces Des motifs de résine sont obtenus par les méthodes standard de la photolithographie. Le substrat est à base de silicium monocristallin couvert par une couche d'or. Ce substrat de surface métallisée peut être également remplacé par des substrats de surface oxydée (SiO2 par exemple). Le substrat est couvert par une résine photosensible réversible (AZ5214E) à l'aide d'une tournette (spin-coating). Les motifs sont réalisés dans la résine par un rayonnement UV (365 nm) à l'aide d'un masque, ce qui permet de faire apparaître les motifs en creux ou en relief au choix. Le complexe Fe[HB(pz)3]2 est déposé par la méthode d'évaporation thermique décrite auparavant. Par la suite, les motifs de résine sont enlevés par rinçage dans l'acétone (lift-off), laissant sur le substrat le dépôt du produit avec des motifs en creux (voir schéma du procédé dans la figure 9). La figure 10 présente quelques photos des couches minces microstructurées obtenues suite à l'évaporation thermique du complexe Fe[HB(pz)3]2. L'efficacité de cette méthode a donc été démontrée sur l'exemple du complexe Fe[HB(pz)3]2. De plus, ce complexe peut être remplacé par tout autre complexe insoluble dans le solvant utilisé pour le lift-off de la résine et qui peut être déposé en couche mince (par exemple, les complexes Fe(pyrazine)[Pt(CN)4], Fe(pyrazine)Ni(CN)4, NaCo[Fe(CN)6], Fe(4-4'-azopyridine)Pt(CN)4, ou RbMn [Fe(CN)6]). 20

Claims (21)

REVENDICATIONS
1. Procédé de dépôt en couche mince d'un matériau à transition de spin sur un substrat, caractérisé en ce que ledit procédé comprend l'étape d'application d'une couche mince bistable dudit matériau substantiellement pur.
2. Procédé selon la revendication 1, caractérisé en ce que ledit procédé comprend : 1. l'application d'une monocouche d'accrochage ; 2. l'application d'une ou plusieurs couche(s) dudit matériau par immersions successives dudit substrat recouvert de la monocouche d'accrochage dans chacune des solutions S(i) contenant respectivement le constituant (i) dudit matériau ; et
3. le recuit/évaporation du ou des solvants. 3. Procédé selon la revendication 2 tel que ledit matériau se présente sous forme d'un réseau tridimensionnel.
4. Procédé selon la revendication 2 ou 3 tel que le matériau de la couche d'accrochage comprend des fonctions thiol, silane ou une structure dendrimère.
5. Procédé selon la revendication 2, 3 ou 4 tel que l'étape 2 comprend une 25 étape de rinçage entre chaque immersion dans chaque solution S(i).
6. Procédé selon l'une quelconque des revendications 2 à 5 tel que les solutions S(i) comprennent respectivement ledit constituant (i), éventuellement coordiné, en solution alcoolique, à des concentrations comprises entre 10 et 30 500 mM.
7. Procédé selon l'une quelconque des revendications 2 à 6 tel que l'étape 2 est répétée autant de fois (n) que nécessaire de façon à obtenir (n) couches désirées et/ou l'épaisseur voulue. 1020
8. Procédé selon l'une quelconque des revendications 2 à 7 tel que l'étape 3 est généralement conduite à température comprise entre 100 et 200 C.
9. Procédé selon la revendication 1, caractérisé en ce que ledit procédé 5 comprend l'étape de sublimation thermique dudit matériau, sous vide.
10. Procédé selon la revendication 9 tel que l'étape de sublimation est conduite à pression comprise entre 10"5-10"6 Torr, à température comprise entre 100 et 300 C.
11. Procédé selon la revendication 9 ou 10 tel que ledit matériau est le Fe[tris(1-pyrazolyl)borate]2.
12. Procédé selon l'une quelconque des revendications 1 à 11, tel que 15 ledit substrat est constitué de Si ou SiO2, éventuellement recouvert d'une ou plusieurs couches de métal.
13. Procédé selon l'une quelconque des revendications 1 à 12, tel que ledit substrat est micro- ou nano-structuré.
14. Couche mince bistable d'un matériau à transition de spin substantiellement pur susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 13. 25
15. Composant comprenant un substrat sur lequel est déposé une couche mince selon la revendication 14.
16. Composant selon la revendication 15 choisi parmi les mémoires moléculaires, les composants photochromes, thermochromes, électrochromes 30 ou piézochromes.
17. Composant selon la revendication 16 tel que ledit composant comprend deux électrodes entre lesquelles est appliqué un matériau à transition de spin par le procédé de la revendication 2 à 13.
18. Composant selon la revendication 17 tel que ledit composant comprend un condensateur constitué d'armatures entre lesquelles est appliqué un matériau à transition de spin par le procédé de la revendication 2 à 13.
19. Procédé de micro/nano-structuration de matériau à transition de spin 10 en couche mince sur un substrat comprenant : l'application d'une résine photosensible sur un substrat ; ii. l'obtention des motifs désirés de résine ; iii. l'application d'un matériau à transition de spin en couche simple selon le procédé selon l'une quelconque des revendications 1 à 13 ; 15 et iv. le lift-off de la résine.
20. Couche mince bistable micro/nano-structurée d'un matériau à transition de spin substantiellement pur susceptible d'être obtenue par le 20 procédé selon la revendication 19.
21. Composant comprenant un matériau à transition de spin en couche mince micro/nano-structuré selon la revendication 20.
FR0602539A 2006-03-23 2006-03-23 Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin Active FR2898910B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0602539A FR2898910B1 (fr) 2006-03-23 2006-03-23 Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin
PCT/FR2007/000297 WO2007107644A1 (fr) 2006-03-23 2007-02-19 Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin
US12/294,090 US8247038B2 (en) 2006-03-23 2007-02-19 Process for the application of spin transition molecular materials in thin layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0602539A FR2898910B1 (fr) 2006-03-23 2006-03-23 Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin

Publications (2)

Publication Number Publication Date
FR2898910A1 true FR2898910A1 (fr) 2007-09-28
FR2898910B1 FR2898910B1 (fr) 2008-06-20

Family

ID=37617463

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0602539A Active FR2898910B1 (fr) 2006-03-23 2006-03-23 Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin

Country Status (3)

Country Link
US (1) US8247038B2 (fr)
FR (1) FR2898910B1 (fr)
WO (1) WO2007107644A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046593A2 (fr) * 2008-10-23 2010-04-29 Centre National De La Recherche Scientifique (C.N.R.S) Procédé de délimitation d'une aire de sport ou de jeu au moyen d'un matériau à transition de spin thermochrome
WO2017139821A1 (fr) * 2016-02-15 2017-08-24 Technische Universität Wien Procédé de recouvrement de surfaces métalliques avec des combinaisons de transition de spin

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829293B1 (fr) 2001-08-31 2003-11-14 Centre Nat Rech Scient Memoire moleculaire et son procede de fabrication
FR2952371B1 (fr) 2009-11-12 2012-08-10 Centre Nat Rech Scient Materiaux a transition de spin thermochromes dopes par un ou plusieurs agents fluorescents
US10224576B2 (en) * 2014-09-25 2019-03-05 Tdk Corporation Gas detection material, gas detection tape and lithium ion secondary battery
JP6645307B2 (ja) * 2016-03-28 2020-02-14 Tdk株式会社 ガス検知器およびガス検知器を備えた電気化学素子
CN110176254B (zh) * 2019-04-19 2020-12-29 北京大学(天津滨海)新一代信息技术研究院 一种基于分子自旋态的磁场调控存储器件及数据存储方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022008A1 (fr) * 2001-08-29 2003-03-13 The Trustees Of Princeton University Dispositfs luminescents organiques contenant des couches de transport de porteurs comprenant des complexes metalliques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO972803D0 (no) * 1997-06-17 1997-06-17 Opticom As Elektrisk adresserbar logisk innretning, fremgangsmåte til elektrisk adressering av samme og anvendelse av innretning og fremgangsmåte
US6828685B2 (en) * 2002-06-14 2004-12-07 Hewlett-Packard Development Company, L.P. Memory device having a semiconducting polymer film
JPWO2004073079A1 (ja) * 2003-02-14 2006-06-01 富士電機ホールディングス株式会社 スイッチング素子
AU2005302518A1 (en) * 2004-10-28 2006-05-11 The Regents Of The University Of California Organic-complex thin film for nonvolatile memory applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022008A1 (fr) * 2001-08-29 2003-03-13 The Trustees Of Princeton University Dispositfs luminescents organiques contenant des couches de transport de porteurs comprenant des complexes metalliques

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARRAUD A: "SUPERMOLECULAR ENGINEERING BY THE LANGMUIR-BLODGETT METHOD", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 175, no. 1, 1 August 1989 (1989-08-01), pages 73 - 80, XP000084277, ISSN: 0040-6090 *
KAWAKAMI H ET AL: "Electrical bistable behaviors of organic materials in a single-layer structure", PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, vol. 5217, no. 1, 3 August 2003 (2003-08-03), pages 71 - 79, XP002315200, ISSN: 0277-786X *
RUAUDEL-TEIXIER A ET AL: "SPIN TRANSITION IN A MAGNETIC LANGMUIR-BLODGETT FILM", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 160, no. 1 INDEX, 1 June 1988 (1988-06-01), pages 107 - 115, XP000098313, ISSN: 0040-6090 *
USHIJIMA ET AL: "Magnetic, optical, and electrochemical properties of spin transition metal complexes", SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 103, no. 1-3, June 1999 (1999-06-01), pages 2675 - 2678, XP005498286, ISSN: 0379-6779 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046593A2 (fr) * 2008-10-23 2010-04-29 Centre National De La Recherche Scientifique (C.N.R.S) Procédé de délimitation d'une aire de sport ou de jeu au moyen d'un matériau à transition de spin thermochrome
FR2937561A1 (fr) * 2008-10-23 2010-04-30 Centre Nat Rech Scient Procede de delimitation d'une aire de sport ou de jeu au moyen d'un materiau a transition de spin thermochrome
WO2010046593A3 (fr) * 2008-10-23 2010-06-17 Centre National De La Recherche Scientifique (C.N.R.S) Procédé de délimitation d'une aire de sport ou de jeu au moyen d'un matériau à transition de spin thermochrome
JP2012506276A (ja) * 2008-10-23 2012-03-15 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) 熱変色性スピン遷移材料による競技用または運動用の場所の境界画定の方法
RU2527118C2 (ru) * 2008-10-23 2014-08-27 Сантр Насьональ Де Ля Решерш Сьентифик (С.Н.Р.С.) Способ разграничения спортивной или игровой зоны посредством термохроматического материала со спиновым переходом
WO2017139821A1 (fr) * 2016-02-15 2017-08-24 Technische Universität Wien Procédé de recouvrement de surfaces métalliques avec des combinaisons de transition de spin

Also Published As

Publication number Publication date
US20090291328A1 (en) 2009-11-26
US8247038B2 (en) 2012-08-21
WO2007107644A1 (fr) 2007-09-27
FR2898910B1 (fr) 2008-06-20

Similar Documents

Publication Publication Date Title
FR2898910A1 (fr) Nouveau procede d'application en couche mince de materiaux moleculaires a transition de spin
KR100803186B1 (ko) 나노입자 함유 전구체를 사용한 금속의 패턴형성 방법
US8075956B2 (en) Metal-enhanced fluorescence from plastic substrates
EP2769405B1 (fr) Procede de croissance en epaisseur de nanofeuillets colloïdaux et materiaux composes desdits nanofeuillets
JP5136976B2 (ja) バナジウム酸化物薄膜パターン及びその作製方法
Li et al. Large-area well-ordered nanodot array pattern fabricated with self-assembled nanosphere template
EP2769404B1 (fr) Procede de croissance en epaisseur couche par couche de nanofeuillets colloidaux et materiaux composes desdits nanofeuillets
CN101973512A (zh) 紫外激光干涉灼蚀金属微纳结构直写方法
Novio et al. Robust spin crossover platforms with synchronized spin switch and polymer phase transition
Barcelo et al. Nanosphere lithography based technique for fabrication of large area well ordered metal particle arrays
De Villeneuve et al. Quantitative IR readout of fulgimide monolayer switching on Si (111) surfaces
FR3089981A1 (fr) Procédé de fabrication d’un copolymère à blocs contenant des ions métalliques
FR2970978A1 (fr) Procede de fabrication de nanoparticules metalliques
Lee et al. Effect of secondary substituent on the physical properties, crystal structures, and nanoparticle morphologies of (porphyrin) Sn (OH) 2: diversity enabled via synthetic manipulations
Wang et al. Light‐Induced Solid‐State Protrusion of Gold Nanowires and Their Derivatives for Sensing Applications
Vasilyuk et al. Photochromism of Diarylethene Composite Organometallic Nanostructures. I. Spectrophotometry and Scanning Probe Microscopy Studies
Bartosewicz et al. Chemical approach to fabrication of semicontinuous Au nanolayers for SERS applications
Karcher et al. Switching of nonfunctionalized spiropyran thin films on single crystalline MgO (100)
Larsen et al. Continuously tuning the spectral response of chiral plasmonic patchy particles through galvanic replacement reaction
Pliatsikas et al. Facile synthesis of tunable nanostructured plasmonic templates by electroless deposition
Nikolaou et al. Functionally graded poly (dimethylsiloxane)/silver nanocomposites with tailored broadband optical absorption
Pal et al. Photochemically prepared gold metal film in a carbohydrate-based polymer: A practical solid substrate for surfaceenhanced Raman scattering
KR20150044206A (ko) 나노홀 어레이를 포함하는 표면 강화 라만 분광용 기판 및 그 제조방법
Trapani et al. Nanohybrid Cluster Nanoparticles Assemblies of Porphyrin and Au10
Stranik et al. Optical properties of micro-patterned silver nanoparticle substrates

Legal Events

Date Code Title Description
AU Other action affecting the ownership or exploitation of an industrial property right
TQ Partial transmission of property
PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 15

PLFP Fee payment

Year of fee payment: 16

PLFP Fee payment

Year of fee payment: 17

PLFP Fee payment

Year of fee payment: 18

PLFP Fee payment

Year of fee payment: 19