FR2888950A1 - Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent - Google Patents
Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent Download PDFInfo
- Publication number
- FR2888950A1 FR2888950A1 FR0507722A FR0507722A FR2888950A1 FR 2888950 A1 FR2888950 A1 FR 2888950A1 FR 0507722 A FR0507722 A FR 0507722A FR 0507722 A FR0507722 A FR 0507722A FR 2888950 A1 FR2888950 A1 FR 2888950A1
- Authority
- FR
- France
- Prior art keywords
- cells
- optical component
- absorbent
- optical
- walls
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 118
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000000126 substance Substances 0.000 title claims abstract description 34
- 238000005520 cutting process Methods 0.000 claims abstract description 9
- 230000002745 absorbent Effects 0.000 claims description 45
- 239000002250 absorbent Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 35
- 238000010521 absorption reaction Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 238000001429 visible spectrum Methods 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 7
- 239000002923 metal particle Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000013543 active substance Substances 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 230000010287 polarization Effects 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000000975 dye Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 239000000049 pigment Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000006229 carbon black Substances 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 239000000084 colloidal system Substances 0.000 claims description 3
- 238000004040 coloring Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000000976 ink Substances 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 22
- 230000006870 function Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920006243 acrylic copolymer Polymers 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013335 mesoporous material Substances 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- JHQVCQDWGSXTFE-UHFFFAOYSA-N 2-(2-prop-2-enoxycarbonyloxyethoxy)ethyl prop-2-enyl carbonate Chemical compound C=CCOC(=O)OCCOCCOC(=O)OCC=C JHQVCQDWGSXTFE-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- WIFWCSTVYGGLAE-UHFFFAOYSA-N 4ah-benzo[f]chromene Chemical compound C1=CC=C2C3=CC=COC3C=CC2=C1 WIFWCSTVYGGLAE-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- KYNSBQPICQTCGU-UHFFFAOYSA-N Benzopyrane Chemical compound C1=CC=C2C=CCOC2=C1 KYNSBQPICQTCGU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 208000029091 Refraction disease Diseases 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004430 ametropia Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229940106691 bisphenol a Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000001053 micromoulding Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 208000014733 refractive error Diseases 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/102—Photochromic filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/08—Auxiliary lenses; Arrangements for varying focal length
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/02—Lenses; Lens systems ; Methods of designing lenses
- G02C7/08—Auxiliary lenses; Arrangements for varying focal length
- G02C7/081—Ophthalmic lenses with variable focal length
- G02C7/083—Electrooptic lenses
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/101—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having an electro-optical light valve
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/12—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C2202/00—Generic optical aspects applicable to one or more of the subgroups of G02C7/00
- G02C2202/18—Cellular lens surfaces
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Eyeglasses (AREA)
Abstract
Un composant optique (10) transparent comprend au moins un ensemble transparent de cellules (15) juxtaposées parallèlement à une surface du composant, chaque cellule étant séparée par des parois (18) absorbantes parallèlement à la surface du composant, et chaque cellule étant hermétiquement fermée et contenant au moins une substance à propriété optique. Le composant optique peut être découpé selon un contour prédéfini et éventuellement percé. L'invention comprend également un procédé de réalisation d'un tel composant optique ainsi que son utilisation pour l'élaboration d'un élément optique. L'élément optique peut notamment être un verre de lunettes.
Description
Composant Optique Transparent Pixellisé à parois absorbantes, son procédé
de fabrication et son utilisation dans la fabrication d'un élément optique transparent La présente invention concerne la réalisation d'éléments transparents incorporant des fonctions optiques. Elle s'applique notamment à la réalisation de verres ophtalmiques ayant diverses propriétés optiques.
Les verres correcteurs d'amétropie sont traditionnellement fabriqués en mettant en forme un matériau transparent d'indice de réfraction plus élevé que l'air.
La forme des verres est choisie de façon que la réfraction aux interfaces entre le matériau et l'air provoque une focalisation appropriée sur la rétine du porteur. Le verre est généralement découpé pour être adapté à une monture, avec un positionnement approprié par rapport à la pupille de l'oeil corrigé.
Parmi les différents types de verres, ou d'autres non nécessairement limités à l'optique ophtalmique, il serait souhaitable de pouvoir proposer une structure qui permette de mettre en place une ou plusieurs fonction(s) optique(s) de façon souple et modulaire, tout en conservant la possibilité de découper l'élément optique obtenu en vue de l'intégrer à une monture imposée ou choisie par ailleurs, ou à tout autre moyen de maintien dudit élément optique.
Un but de la présente invention est de répondre à ce besoin. Un autre but est que l'élément optique soit industrialisable dans de bonnes conditions.
L'invention propose ainsi un procédé de réalisation d'un élément optique transparent, comprenant la production d'un composant optique transparent ayant au moins un ensemble de cellules juxtaposées parallèlement à une surface du composant, chaque cellule étant hermétiquement fermée et contenant une substance à propriété optique, lesdites cellules étant séparées par des parois absorbantes.
L'invention propose également un procédé de réalisation d'un élément optique transparent tel que défini précédemment comprenant en plus une étape de découpe du composant optique le long d'un contour défini sur ladite surface, correspondant à une forme déterminée pour l'élément optique.
Les cellules peuvent être remplies avec des substances diverses choisies pour leurs propriétés optiques, par exemple liées à leur indice de réfraction, à leur capacité d'absorption lumineuse ou de polarisation, à leur réponse à des stimuli électriques ou lumineux, etc. La structure se prête donc à de nombreuses applications, particulièrement celles faisant appel à des fonctions optiques évoluées. Elle implique une discrétisation par pixels de la surface de l'élément optique, ce qui offre une grande souplesse dans la conception mais aussi dans la mise en oeuvre de l'élément. La structure comprend ainsi un réseau de cellules délimitées par des parois, lesdites parois étant absorbantes dans le spectre visible. Ainsi les parois ne permettent pas la propagation de la lumière, sur tout ou partie du spectre visible.
Il est possible de réaliser des structures pixélisées par discrétisation qui consistent en une succession de cellules adjacentes dans le plan. Ces cellules sont séparées par des parois. Ces parois sont à l'origine d'un défaut de transparence du composant optique et de ce fait elles peuvent entraîner un défaut de transparence de l'élément optique comprenant un tel composant. Au sens de l'invention on entend qu'un composant optique est transparent lorsque l'observation d'une image au travers dudit composant optique est perçue sans perte significative de contraste, c'est- à-dire lorsque la formation d'une image au travers dudit composant optique est obtenue sans nuisance de la qualité de l'image. Cette définition du terme transparent est applicable, au sens de l'invention, à l'ensemble des objets qualifiés en tant que tel dans la description.
Les parois séparant les cellules du composant optique interagissent avec la lumière en la diffractant. La diffraction est définit comme le phénomène d'éparpillement de la lumière que l'on observe lorsqu'une onde lumineuse est matériellement limitée (J-P. PEREZ Optique, Fondements et applications 7ème édition DUNOD - octobre 2004, p. 262). Ainsi un composant optique comprenant de telles parois transmet une image dégradée du fait de cet éparpillement de la lumière induit par lesdites parois. La diffraction microscopique se traduit macroscopiquement par de la diffusion. Cette diffusion macroscopique ou diffusion incohérente se traduit par un halo diffusant de la structure pixellisée du composant optique et donc par une perte de contraste de l'image observée au travers de ladite structure. Cette perte de contraste est assimilable à une perte de transparence, telle que définie précédemment. Cet effet de diffusion macroscopique n'est pas acceptable pour la réalisation d'un élément optique comprenant un composant optique pixellisée tel que compris au sens de l'invention. Ceci est d'autant plus vrai dans le cas où ledit élément optique est une lentille ophtalmique, laquelle doit d'une part être transparente au sens défini précédemment, et d'autre part ne comporter aucun défaut cosmétique pouvant gêner la vision du porteur d'un tel élément optique.
Un moyen d'atténuer cette diffusion macroscopique consiste à réduire la diffraction au niveau des parois en empêchant la lumière de se propager dans les parois séparant les cellules. En effet la partie de la lumière qui est absorbée ou réfléchie n'est pas diffractée. Ainsi une paroi pour laquelle l'interaction avec la lumière est limitée diffractera moins qu'une paroi laissant la lumière se propager. Si on considère à présent, un ensemble de parois, la diminution de la diffraction par chacune des parois entraîne au niveau macroscopique la réduction de l'aspect diffusant de l'ensemble.
Un objet de la présente invention est donc de produire un composant optique transparent comprenant un ensemble de cellules juxtaposées parallèlement à la surface d'un substrat dans lequel les cellules sont séparées les unes des autres par des parois absorbantes. Dans un tel composant optique, les parois absorbent tout ou partie de la lumière les atteignant, atténuant ainsi la diffusion macroscopique de l'objet et de ce fait permet la réalisation d'un élément optique transparent comprenant un composant optique tel que décrit.
L'invention comprend donc un procédé d'obtention d'un composant optique transparent comprenant un ensemble de cellules juxtaposées parallèlement à la surface dudit composant, chaque cellule étant séparées les unes des autres par des parois absorbantes dans tout ou partie du spectre visible, lesdites parois comprenant un ou plusieurs matériaux choisis parmi les matériaux réticulables absorbants et les matériaux polymérisables absorbants. D'autres matériaux peuvent être utilisés pour réaliser les parois absorbantes. On peut citer par exemple, les matériaux hybrides tels que les résines sol-gel ou les matériaux composites tels que les mélanges de céramiques/métaux ou silice/métaux. Les parois peuvent également être absorbantes si elles sont constituées ou revêtues par un métal choisi notamment parmi l'argent, le chrome, le titane, le platine, le nickel, le cuivre, le fer, le zinc, l'étain, le palladium et l'or. Dans ce cas, les parois sont à la fois absorbantes et réfléchissantes. Au sens de l'invention on entend par matériau absorbant un matériau absorbant au moins une partie du spectre visible, c'est-à-dire présentant au moins un bande d'absorption de longueur d'onde comprise entre 400 nm et 700 nm. D'une façon avantageuse selon l'invention, on choisira de préférence des matériaux présentant une bande d'absorption sur l'ensemble du spectre visible. Les matériaux utilisés pour la réalisation des parois pourront éventuellement comprendre une bande d'absorption spectrale dans le proche infrarouge, soit supérieure à 700 nm, et/ou dans le proche ultraviolet, soit inférieure à 400 nm.
Dans ce mode de réalisation de l'invention, le matériau constitutif des parois peut être absorbant intrinsèquement ou être rendu absorbant par dopage, par diffusion, ou par absorption de particules absorbantes. Parmi les particules absorbantes aptes à conférer une propriété d'absorption de la lumière visible à un matériau réticulable ou polymérisable, on peut notamment citer les colorants, les encres, les pigments, les colloïdes, les nanotubes de carbone, le noir de carbone, les particules métalliques ou d'alliage. Ces particules peuvent aisément être incorporées au sein de polymères de type sol-gel, polyuréthane, acrylate, ou époxy selon des procédés bien connus par l'homme du métier. Les polymères ainsi obtenus présentent au moins une bande d'absorption comprise entre 400 nm et 700 nm, et préférentiellement, absorbent sur l'ensemble du spectre visible compris entre 400 nm et 700 nm. Parmi les particules métalliques on peut citer notamment les métaux tels que l'argent, le chrome, le titane, le platine, le nickel, le cuivre, le fer, le zinc, l'étain, le palladium et l'or. Préférentiellement, le matériau absorbant est choisi parmi l'argent, l'aluminium, le titane, le chrome et l'or.
Le réseau de cellules, et de ce fait la construction des parois du réseau, est réalisable en utilisant des procédés de fabrication, issus de la microélectronique, bien connu par l'homme du métier. On peut citer à titre illustratif et non limitatif, les procédés tels que l'impression à chaud, l'embossage à chaud, le micromoulage, la photolitographie (hard, soft, positive, négative), la microdéposition telle que l'impression par micro-contact, la sérigraphie, ou encore l'impression par jet de matière.
L'ensemble des parois absorbantes (et par conséquent l'ensemble des cellules du composant optique) peut être formé directement sur un support transparent rigide, ou au sein d'un film transparent souple reporté ensuite sur un support transparent rigide. Ledit support transparent rigide peut être convexe, concave, ou plan sur le côté recevant l'ensemble des cellules.
La géométrie du réseau de cellules se caractérise par des paramètres dimensionnels qui peuvent généralement se ramener aux dimensions (D) des cellules parallèlement à la surface du composant optique, à leur hauteur correspondant à la hauteur (h) des parois absorbantes qui les séparent, et à l'épaisseur (e) de ces parois (mesurée parallèlement à la surface du composant).
Parallèlement à la surface du composant, les cellules sont de préférence séparées par des parois d'épaisseur (e) comprise entre 0,10 pm et 5 pm et de hauteur (h) inférieure à 100 pm, et préférentiellement comprise 1 pm et 50 pm inclus.
Avec un dimensionnement des parois tel que défini précédemment il est possible de réaliser un ensemble de cellules juxtaposées à la surface du composant optique présentant un facteur de remplissage i supérieur à 90%. Dans le cadre de l'invention, le facteur de remplissage est défini comme la surface occupée par les cellules remplies par la substance, par unité de surface du composant optique. En d'autres termes, l'ensemble des cellules occupent au moins 90 % de la surface du composant, du moins dans une région du composant pourvue de l'ensemble de cellules. D'une façon avantageuse le facteur de remplissage est compris entre 90 % et 99,5 % inclus.
Dans un mode de réalisation du procédé, la substance à propriété optique contenue dans certaines au moins des cellules est sous forme de liquide ou de gel. Ladite substance peut notamment présenter au moins une des propriétés optiques choisies parmi la coloration, le photochromisme, la polarisation et l'indice de réfraction.
Un objet de la présente invention est également un procédé de production d'un composant optique transparent tel que défini précédemment, qui comprend la formation sur un substrat d'un réseau de parois absorbantes pour délimiter les cellules parallèlement à ladite surface du composant, un remplissage collectif ou individuel des cellules avec la substance à propriété optique sous forme de liquide ou de gel, et la fermeture des cellules sur leur côté opposé au substrat.
L'ensemble de cellules du composant optique peut inclure plusieurs groupes de cellules contenant des substances différentes. De même chaque cellule peut être remplie avec une substance présentant une ou plusieurs propriétés optiques telles que décrites précédemment. Il est également possible d'empiler plusieurs ensembles de cellules sur l'épaisseur du composant. Dans ce mode de réalisation les ensembles de cellules peuvent avoir des propriétés identiques ou différentes au sein de chaque couche, ou les cellules au sein de chaque ensemble de cellules peuvent également présenter des propriétés optiques différentes. Ainsi il est possible d'envisager d'avoir une couche dans laquelle l'ensemble de cellules contient une substance permettant d'obtenir une variation de l'indice de réfraction et une autre couche ou l'ensemble de cellules contient une substance à propriété photochromique.
Un autre aspect de l'invention se rapporte à un composant optique transparent, utilisé dans le procédé ci-dessus. Ce composant optique comprend au moins un ensemble transparent de cellules juxtaposées parallèlement à une surface du composant, chaque cellules étant séparées par des parois absorbantes. Chaque cellule est hermétiquement fermée et contient au moins une substance à propriété optique.
Un autre aspect encore de l'invention se rapporte à un élément optique transparent, notamment un verre de lunette, réalisé en découpant un tel composant optique. Un verre de lunette comprend une lentille ophtalmique. Par lentille ophtalmique, on entend les lentilles s'adaptant à une monture de lunette pour protéger l'ceil et/ou corriger la vue, ces lentilles étant choisies parmi les lentilles afocales, unifocales, bifocales, trifocales et progressives. Si l'optique ophtalmique est un domaine d'application préféré de l'invention, on comprendra que cette invention est applicable à des éléments optiques transparents d'autres natures, comme par exemple des lentilles pour instruments d'optiques, des filtres notamment pour la photographie ou l'astronomie, des lentilles de visée optique, des visières oculaires, des optiques de dispositifs d'éclairage, etc... Au sein de l'invention, on inclut dans l'optique ophtalmique les lentilles ophtalmiques, mais aussi les lentilles de contact et les implants oculaires.
D'autres particularités et avantages de la présente invention apparaîtront dans la description ci-après d'exemples de réalisation non limitatifs, en référence aux dessins annexés, dans lesquels: - la figure 1 est une vue de face d'un composant optique selon l'invention; - la figure 2 est une vue de face d'un élément optique obtenu à partir de ce composant optique; - la figure 3 est une vue schématique en coupe d'un composant optique selon un premier mode de réalisation de l'invention.
Le composant optique 10 représenté sur la figure 1 est une ébauche pour verre de lunettes. Un verre de lunettes comprend une lentille ophtalmique, telle que définie précédemment. Naturellement si l'optique ophtalmique est un domaine d'application préféré de l'invention, on comprendra que cette invention est applicable à des éléments optiques transparents d'autres natures.
La figure 2 montre un verre de lunette 11 obtenu en découpant l'ébauche 10 suivant un contour prédéfini, représenté en trait interrompu sur la figure 1. Ce contour est a priori arbitraire, dès lors qu'il s'inscrit dans l'étendue de l'ébauche. Des ébauches fabriquées en série sont ainsi utilisables pour obtenir des verres adaptables à une grande variété de montures de lunettes. Le bord du verre découpé peut sans problème être détouré, de façon classique, pour lui conférer une forme adaptée à la monture et au mode de fixation du verre sur cette monture et/ou pour des raisons esthétiques. Il est possible d'y percer des trous 14, par exemples pour recevoir des vis servant à la fixation sur la monture.
La forme générale de l'ébauche 10 peut être conforma aux standards de l'industrie, avec par exemple un contour circulaire de diamètre 70 mm (millimètre), une face avant convexe 12, et une face arrière concave 13 (figure 3). Les outils traditionnels de découpe, de détourage et de perçage peuvent ainsi être utilisés pour obtenir le verre 11 à partir de l'ébauche 10.
Sur les figures 1 et 2, un arrachement partiel des couches superficielles fait apparaître la structure pixellisée de l'ébauche 10 et du verre 11. Cette structure consiste en un réseau de cellules ou microcuves 15 formées dans une couche 17 du composant, chaque cellules étant séparées par des parois 18 comprenant un matériaux absorbant (figure 3). Sur ces figures, les dimensions de la couche 17, des parois 18, et des cellules 15 ont été exagérées par rapport à celles de l'ébauche 10 et de son substrat 16 afin de faciliter la lecture du dessin.
Les dimensions latérales (D) des cellules 15 (parallèlement à la surface de l'ébauche 10) sont supérieures au micron et peuvent aller jusqu'à quelques millimètres. Ce réseau de cellules est ainsi réalisable avec des technologies bien maîtrisées dans le domaine de la microélectronique ou des dispositifs micromécaniques. La hauteur (h) de la couche 17 constitutives des parois absorbantes 18 est préférentiellement comprise entre 1 pm et 50 pm. Les parois absorbantes 18 ont une épaisseur (e) comprise entre 0,1 pm et 5,0 pm permettant notamment d'obtenir un facteur de remplissage élevé.
La couche 17 incorporant le réseau de cellules 15 peut être recouverte par un certain nombre de couches additionnelles 19, 20 (figure 1), comme il est usuel en optique ophtalmique. Ces couches ont par exemple des fonctions de résistance aux chocs, de résistance à la rayure, de coloration, d'anti-reflet, d'anti-salissure, etc. Dans l'exemple représenté, la couche 17 incorporant le réseau de cellules est placée immédiatement au-dessus du substrat transparent 16, mais on comprendra qu'une ou plusieurs couches intermédiaires peuvent se trouver entre eux, tels que des couches présentant des fonctions de résistance aux chocs, de résistance à la rayure, de coloration.
D'autre part, il est possible que plusieurs réseaux de cellules soient présents dans l'empilement de couches formé sur le substrat. Il est ainsi possible, par exemple, que l'empilement des couches comporte notamment une couche de réseaux de cellules contenant une substance permettant de conférer à l'élément des fonctions photochromiques, une autre couche permettant de conférer à l'élément des fonctions de variations d'indice de réfraction. Ces couches de réseaux de cellules peuvent également être alternées avec des couches additionnelles telles que décrites précédemment.
Les diverses combinaisons sont possibles grâce notamment à la grande souplesse du procédé de réalisation de l'élément optique transparent. Ainsi dans le cadre de l'invention le composant optique peut comprendre un réseau de cellules dans lequel chaque cellule est remplie avec une substance présentant une ou plusieurs propriétés optiques, ou bien dans lequel l'ensemble de cellules 15 inclut plusieurs groupes de cellules contenant des substances différentes. Le composant optique peut aussi être constitué d'un empilement comportant au moins deux couches d'ensemble de cellules, chaque ensemble de cellules présentant des propriétés optiques identiques, ou chaque ensemble de cellules présentant des propriétés optiques différentes, ou les cellules au sein de chaque ensemble de cellules présentant des propriétés optiques différentes.
Le substrat transparent 16 peut être en verre ou en différents matériaux polymères couramment utilisés en optique ophtalmique. Parmi les matériaux polymères utilisables, on peut citer à titre indicatif et non limitatif, les matériaux polycarbonates; polyamides; polyimides; polysulfones; copolymères de polyéthylènetérephtalate et polycarbonate; polyoléfines, notamment polynorbornènes; polymères et copolymères de diéthylène glycol bis(allylcarbonate); polymères et copolymères (méth)acryliques notamment polymères et copolymères (méth)acryliques dérivés de bisphenol-A; polymères et copolymères thio(méth)acryliques; polymères et copolymères uréthane et thiouréthane; polymères et copolymères époxy; et polymères et copolymères épisulfide.
La couche 17 incorporant le réseau de cellules est de préférence située sur sa face avant convexe 12, la face arrière concave 13 restant libre pour être éventuellement remise en forme par usinage et polissage si cela est nécessaire. Le composant optique peut également être situé sur la face concave d'une lentille. Bien évidemment, le composant optique peut aussi être intégré sur un élément optique plan.
Les microcuves 15 sont remplies avec la substance à propriété optique, à 30 l'état de liquide ou de gel. Un traitement préalable de la face avant du composant peut éventuellement être appliqué pour faciliter le mouillage en surface du matériau des parois et du fond des microcuves. La solution ou suspension formant la - 10- substance à propriété optique peut être la même pour toutes les microcuves du réseau, auquel cas elle peut être introduite simplement par immersion du composant dans un bain approprié, par un procédé de type sérigraphique, par un procédé de revêtement par centrifugation (spin process), par un procédé d'étalement de la substance à l'aide d'un rouleau ou d'une raclette, ou encore par un procédé de spray. Il est également possible de l'injecter localement dans les microcuves individuelles à l'aide d'une tête de projection de matière.
Pour fermer hermétiquement un ensemble de microcuves remplies, on applique par exemple un film plastique collé, soudé thermiquement ou laminé à chaud sur le haut des parois 18. On peut aussi déposer sur la zone à obturer un matériau polymérisable en solution, non miscible avec la substance à propriété optique contenue dans les microcuves, puis faire polymériser ce matériau, par exemple à chaud ou sous irradiation.
Une fois que le réseau de microcuves 15 a été complété, le composant peut recevoir les couches ou revêtements supplémentaires 19, 20 pour terminer sa fabrication. Des composants de ce type sont fabriqués en série puis stockés pour être plus tard repris et découpés individuellement conformément aux besoins d'un client.
Si la substance à propriété optique n'est pas destinée à rester à l'état de liquide ou de gel, on peut lui appliquer un traitement de solidification, par exemple une séquence de chauffage et/ou d'irradiation, à un stade approprié à partir du moment où la substance a été déposée.
Dans une variante le composant optique constitué d'un réseau de microcuves est construit sous la forme d'un film transparent souple. Un tel film est réalisable par des techniques analogues à celles décrites précédemment. Dans ce cas le film est réalisable sur un support plan et non convexe ou concave.
Le film est par exemple fabriqué industriellement sur une étendue relativement grande, puis découpé aux dimensions appropriées pour être reporté sur le substrat 16 d'une ébauche. Ce report peut être effectué par collage du film souple, par thermoformage du film, voire par un phénomène physique d'adhérence sous vide. Le film peut ensuite recevoir divers revêtements, comme dans le cas précédent, ou bien être reporté sur le substrat 16 lui-même revêtu d'une ou plusieurs couches additionnelles telles que décrites précédemment.
Dans un domaine d'application de l'invention, la propriété optique de la substance introduite dans les microcuves 15 se rapporte à son indice de réfraction. On module l'indice de réfraction de la substance le long de la surface du composant pour obtenir une lentille correctrice. Dans une première variante de l'invention, la modulation peut être réalisée en introduisant des substances d'indices différents lors de la fabrication du réseau de microcuves 15.
Dans une autre variante de l'invention, la modulation peut être réalisée en introduisant dans les microcuves 15 une substance dont l'indice de réfraction peut être réglé ultérieurement sous irradiation. L'inscription de la fonction optique correctrice est alors effectuée en exposant l'ébauche 10 ou le verre 11 à de la lumière dont l'énergie varie le long de la surface pour obtenir le profil d'indice souhaité afin de corriger la vision d'un patient. Cette lumière est typiquement celle produite par un laser, l'équipement d'écriture étant semblable à celui utilisé pour graver des CDROM ou autres supports optiques de mémoire. L'exposition plus ou moins grande de la substance photosensible peut résulter d'une modulation de la puissance du laser et/ou du choix du temps d'exposition.
Parmi les substances utilisables dans cette application, on peut citer, par exemple, les matériaux mésoporeux ou les cristaux liquides. Ces cristaux liquides peuvent être figés par une réaction de polymérisation, par exemple induite par irradiation. On peut ainsi les figer dans un état choisi pour introduire un retard optique déterminé dans les ondes lumineuses qui les traversent. Dans le cas d'un matériau mésoporeux le contrôle de l'indice de réfraction du matériau se fait au travers de la variation de sa porosité. Une autre possibilité est d'utiliser des photopolymères dont une propriété bien connue est de changer d'indice de réfraction au cours de la réaction de polymérisation induite par irradiation. Ces changements d'indice sont dus à une modification de la densité du matériau et à un changement de la structure chimique. On utilisera de préférence des photopolymères qui ne subissent qu'une très faible variation de volume lors de la -12-réaction de polymérisation.
La polymérisation sélective de la solution ou suspension est réalisée en présence d'un rayonnement différencié spatialement par rapport à la surface du composant, afin d'obtenir la modulation d'indice souhaitée. Cette modulation est déterminée préalablement en fonction de l'amétropie estimée de l'ceil d'un patient à corriger.
Dans une autre application de l'invention, la substance introduite sous forme de gel ou de liquide dans les microcuves a une propriété de polarisation. Parmi les substances utilisées dans cette application on peut notamment citer les cristaux liquides.
Dans une autre application de l'invention, la substance introduite sous forme de liquide ou de gel dans les microcuves a une propriété photochromique. Parmi les substances utilisés dans cette application on peut citer à titre d'exemples les composés photochromiques contenant un motif central tel qu'un noyau spirooxazine, spiro-indoline[2,3'] benzoxazine, chromène, spiroxazine homoazaadamantane, spirofluorène-(2H)benzopyrane, naphto[2,1-b]pyrane.
Dans le cadre de l'invention la substance à propriété optique peut être un colorant, ou un pigment apte à apporter une modification du taux de transmission.
Claims (37)
1. Procédé de réalisation d'un élément optique transparent, comprenant la production d'un composant optique transparent ayant au moins un ensemble de cellules juxtaposées parallèlement à une surface du composant, chaque cellule étant hermétiquement fermée et contenant une substance à propriété optique, les cellules étant séparées par des parois absorbantes.
2. Procédé de réalisation d'un élément optique transparent selon la revendication 1, comprenant en plus une étape de découpe du composant optique le long d'un contour défini sur ladite surface, correspondant à une forme déterminée pour l'élément optique.
3. Procédé selon la revendication 1 dans lequel les parois absorbantes présentent au moins un bande d'absorption de longueur d'onde comprise entre 400 nm et 700 nm.
4. Procédé selon la revendication 1 dans lequel les parois absorbantes présentent une bande d'absorption sur l'ensemble du spectre visible.
5. Procédé selon l'une quelconque des revendications 3 ou 4 dans lequel les parois absorbantes présentent en plus une bande d'absorption spectrale dans le proche infrarouge, soit supérieure à 700 nm, et/ou dans le proche ultraviolet, soit inférieure à 400 nm.
6. Procédé selon l'une des revendications précédentes dans lequel les parois comprennent un ou plusieurs matériaux choisis parmi les matériaux réticulables absorbants, les matériaux polymérisables absorbants, les matériaux hybrides, les matériaux composites et les métaux.
7. Procédé selon la revendication 6, dans lequel le ou les matériaux absorbants constitutifs des parois sont choisis parmi des matériaux intrinsèquement absorbants ou rendu absorbants par dopage, par diffusion, ou par absorption de particules absorbantes.
8. Procédé selon la revendication 6, dans lequel les particules absorbantes sont choisies parmi les colorants, les encres, les pigments, les colloïdes, les nanotubes de carbone, le noir de carbone, les particules métalliques, et les particules d'alliages.
9. Procédé selon la revendication 8 dans lequel les particules métalliques ou les métaux en tant que tels sont choisies parmi l'argent, le chrome, le titane, le platine, le nickel, le cuivre, le fer, le zinc, l'étain, le palladium et l'or.
10. Procédé selon la revendication 1 ou 2, comprenant en outre une étape de perçage à travers le composant optique transparent, pour la fixation de l'élément optique sur un support de maintien.
11. Procédé selon l'une quelconque des revendications précédentes dans lequel, l'ensemble des cellules du composant optique est formé directement sur un support transparent rigide, ou au sein d'un film transparent souple reporté ensuite sur un support transparent rigide.
12. Procédé selon la revendication 11, dans lequel la production du composant optique transparent comprend la formation de l'ensemble de cellules et des parois absorbantes au sein d'un film transparent souple puis le report dudit film sur un support transparent rigide.
13. Procédé selon l'une quelconque des revendications 11 ou 12, dans lequel le support transparent rigide est choisi parmi convexe, concave et plan, sur le côté recevant l'ensemble de cellules.
14. Procédé selon l'une quelconque des revendications précédentes, dans lequel la substance à propriété optique contenue dans l'ensemble des cellules est sous forme de liquide ou de gel.
15. Procédé selon l'une quelconque des revendications précédentes, dans lequel la production du composant optique transparent comprend la formation sur un substrat d'un réseau de parois absorbantes pour délimiter les cellules parallèlement à ladite surface du composant, un remplissage collectif ou individuel des cellules avec la substance à propriété optique sous forme de liquide ou de gel, et la fermeture des cellules sur leur côté opposé au substrat.
16. Procédé selon l'une quelconque des revendications précédentes, dans lequel la propriété optique est choisie parmi une propriété de coloration, de photochromisme, de polarisation, et d'indice de réfraction.
17. Procédé selon l'une quelconque des revendications précédentes, 5 dans lequel l'ensemble de cellules présente un facteur de remplissage compris entre 90 % et 99,5 % inclus parallèlement à ladite surface du composant.
18. Procédé selon l'une quelconque des revendications précédentes, dans lequel les cellules sont séparées par des parois absorbantes d'épaisseur comprise entre 0,10 pm et 5 pm, parallèlement à la surface du composant.
19. Procédé selon l'une quelconque des revendications précédentes dans lequel l'ensemble de cellules constitue une couche d'épaisseur comprise entre 1 pm et 50 pm inclus.
20. Composant optique transparent, comprenant au moins un ensemble transparent de cellules juxtaposées parallèlement à une surface du composant, chaque cellule étant séparée par des parois absorbantes parallèlement à la surface du composant, chaque cellule étant hermétiquement fermée et contenant au moins une substance à propriété optique.
21. Composant optique selon la revendication 20, comprenant un support transparent rigide sur lequel est formé l'ensemble de cellules et l'ensemble des 20 parois absorbantes.
22. Composant optique selon la revendication 21, comprenant un support transparent rigide sur lequel est reporté un film transparent incorporant l'ensemble de cellules et l'ensemble des parois absorbantes.
23. Composant optique l'une des revendications 20 à 22 dans lequel les 25 parois absorbantes présentent au moins un bande d'absorption de longueur d'onde comprise entre 400 nm et 700 nm.
24. Composant optique la revendication 23 dans lequel les parois absorbantes présentent une bande d'absorption sur l'ensemble du spectre visible.
25. Composant optique l'une quelconque des revendications 23 ou 24 30 dans lequel les parois absorbantes présentent en plus une bande d'absorption spectrale dans le proche infrarouge, soit supérieure à 700 nm, et/ou dans le proche ultraviolet, soit inférieure à 400 nm.
26. Composant optique selon l'une des revendications 20 à 25 dans lequel les parois comprennent un ou plusieurs matériaux choisis parmi les matériaux réticulables absorbants, les matériaux polymérisables absorbants, les matériaux hybrides, les matériaux composites et les métaux.
27. Composant optique selon l'une des revendications 20 à 26, dans lequel le ou les matériaux absorbants constitutifs des parois sont choisis parmi des matériaux intrinsèquement absorbants ou rendu absorbants par dopage, par diffusion, ou par absorption de particules absorbantes.
28. Composant optique selon la revendication 27, dans lequel les particules absorbantes sont choisies parmi les colorants, les encres, les pigments, les colloïdes, les nanotubes de carbone, le noir de carbone, les particules métalliques, et les particules d'alliages.
29. Composant optique selon la revendication 28 dans lequel les particules métalliques ou les métaux en tant que tels sont choisies parmi l'argent, le chrome, le titane, le platine, le nickel, le cuivre, le fer, le zinc, l'étain, le palladium et l'or.
30. Composant optique selon l'une des revendications 20 à 29, dans lequel la substance à propriété optique contenue dans certaines au moins des cellules est sous forme de liquide ou de gel.
31. Composant optique selon l'une des revendications 20 à 29, dans lequel la propriété optique est choisie parmi une propriété de coloration, de photochromisme, de polarisation, d'indice de réfraction.
32. Composant optique selon l'une des revendications 20 à 31, dans lequel l'ensemble de cellules présente un facteur de remplissage compris entre 90 et 99,5 % inclus parallèlement à ladite surface du composant.
33. Composant optique selon l'une quelconque des revendications 20 à 32, dans lequel les cellules sont séparées par des parois absorbantes d'épaisseur comprise entre 0,10 pm et 5 pm, parallèlement à la surface du composant.
34. Composant optique selon l'une quelconque des revendications 20 à 33, dans lequel l'ensemble de cellules constitue une couche d'épaisseur comprise entre 1 pm et 50 pm inclus.
35. Utilisation d'un composant optique transparent selon l'une quelconque des revendications 20 à 34 dans la fabrication d'un élément optique transparent choisi parmi les lentilles ophtalmiques, les lentilles de contact, les implants oculaires, les lentilles pour instruments d'optique, les filtres, les lentilles de visée optique, les visières oculaires, et les optiques de dispositifs d'éclairage.
36. Verre de lunettes, réalisé en découpant un composant optique selon
l'une quelconque des revendications 20 à 34.
37. Verre de lunettes selon la revendication 36, dans lequel au moins un perçage est réalisé à travers le composant pour la fixation du verre sur une monture.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0507722A FR2888950B1 (fr) | 2005-07-20 | 2005-07-20 | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent |
AU2006307598A AU2006307598B2 (en) | 2005-07-20 | 2006-07-13 | Transparent pixelized optical component with absorbing walls, its method of manufacture and its use in the manufacture of a transparent optical element |
US11/996,101 US8172397B2 (en) | 2005-07-20 | 2006-07-13 | Transparent pixelized optical component with absorbing walls, its method of manufacture and its use in the manufacture of a transparent optical element |
JP2008522101A JP5058996B2 (ja) | 2005-07-20 | 2006-07-13 | 吸収壁を有する透明でピクセル化された光学部品、その製造方法及び透明な光学要素の製造における使用 |
EP06820979.0A EP1904888B1 (fr) | 2005-07-20 | 2006-07-13 | Composant optique pixellise transparent dote de parois absorbantes, son procede de fabrication et son utilisation dans la fabrication d un element optique transparent |
PCT/IB2006/003361 WO2007049151A1 (fr) | 2005-07-20 | 2006-07-13 | Composant optique pixellise transparent dote de parois absorbantes, son procede de fabrication et son utilisation dans la fabrication d’un element optique transparent |
KR1020087003922A KR101293765B1 (ko) | 2005-07-20 | 2006-07-13 | 흡수성 벽을 가진 픽셀화된 투명 광학 부품, 이의 제조방법 및 투명 광학 소자의 제조에서의 이의 용도 |
CNA2006800341300A CN101268403A (zh) | 2005-07-20 | 2006-07-13 | 具有吸收壁的像素化的透明光学构件、其制造方法和其在制造透明光学元件中的用途 |
ES06820979.0T ES2661880T3 (es) | 2005-07-20 | 2006-07-13 | Componente óptico pixelado transparente con paredes absorbentes, su método de fabricación y su uso en la fabricación de un elemento óptico transparente |
CA002615476A CA2615476A1 (fr) | 2005-07-20 | 2006-07-13 | Composant optique pixellise transparent dote de parois absorbantes, son procede de fabrication et son utilisation dans la fabrication d'un element optique transparent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0507722A FR2888950B1 (fr) | 2005-07-20 | 2005-07-20 | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2888950A1 true FR2888950A1 (fr) | 2007-01-26 |
FR2888950B1 FR2888950B1 (fr) | 2007-10-12 |
Family
ID=36123429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0507722A Expired - Fee Related FR2888950B1 (fr) | 2005-07-20 | 2005-07-20 | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent |
Country Status (10)
Country | Link |
---|---|
US (1) | US8172397B2 (fr) |
EP (1) | EP1904888B1 (fr) |
JP (1) | JP5058996B2 (fr) |
KR (1) | KR101293765B1 (fr) |
CN (1) | CN101268403A (fr) |
AU (1) | AU2006307598B2 (fr) |
CA (1) | CA2615476A1 (fr) |
ES (1) | ES2661880T3 (fr) |
FR (1) | FR2888950B1 (fr) |
WO (1) | WO2007049151A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011009802A1 (fr) * | 2009-07-24 | 2011-01-27 | Thales | Composant optique transparent a microcuves |
WO2012080658A1 (fr) * | 2010-12-16 | 2012-06-21 | Essilor International (Compagnie Generale D'optique) | Element optique comprenant un aerogel sans fissure |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2872590B1 (fr) * | 2004-07-02 | 2006-10-27 | Essilor Int | Procede de realisation d'un verre ophtalmique et composant optique adapte pour la mise en oeuvre de ce procede |
FR2879757B1 (fr) * | 2004-12-17 | 2007-07-13 | Essilor Int | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu |
FR2888950B1 (fr) | 2005-07-20 | 2007-10-12 | Essilor Int | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent |
FR2888948B1 (fr) * | 2005-07-20 | 2007-10-12 | Essilor Int | Composant optique transparent pixellise comprenant un revetement absorbant, son procede de realisation et son utilisation dans un element optique |
FR2888951B1 (fr) * | 2005-07-20 | 2008-02-08 | Essilor Int | Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent |
FR2888947B1 (fr) * | 2005-07-20 | 2007-10-12 | Essilor Int | Composant optique a cellules |
FR2907559B1 (fr) * | 2006-10-19 | 2009-02-13 | Essilor Int | Composant optique elecro-commandable comprenant un ensemble de cellules |
FR2910642B1 (fr) * | 2006-12-26 | 2009-03-06 | Essilor Int | Composant optique transparent a deux ensembles de cellules |
FR2911404B1 (fr) * | 2007-01-17 | 2009-04-10 | Essilor Int | Composant optique transparent a cellules remplies de materiau optique |
JP4935627B2 (ja) * | 2007-10-30 | 2012-05-23 | ソニー株式会社 | 光学素子および光学素子作製用原盤の製造方法 |
FR2951388B1 (fr) | 2009-10-21 | 2011-12-16 | Essilor Int | Procede de coloration selective |
FR2972814B1 (fr) | 2011-03-16 | 2014-04-18 | Essilor Int | Element optique transparent a plusieurs couches constituees de pavages cellulaires |
KR101306895B1 (ko) * | 2013-02-21 | 2013-09-10 | 송연희 | 패턴을 갖는 렌즈의 제조방법 |
US10859868B2 (en) | 2017-08-11 | 2020-12-08 | Coopervision International Limited | Flexible liquid crystal cells and lenses |
WO2019145782A2 (fr) | 2018-01-23 | 2019-08-01 | Clear and Dark Ltd. | Systèmes, procédés et appareil permettant de former des articles optiques, et articles optiques formés par ceux-ci |
US11003016B2 (en) | 2018-09-21 | 2021-05-11 | Coopervision International Limited | Flexible, adjustable lens power liquid crystal cells and lenses |
US11529230B2 (en) | 2019-04-05 | 2022-12-20 | Amo Groningen B.V. | Systems and methods for correcting power of an intraocular lens using refractive index writing |
US11564839B2 (en) | 2019-04-05 | 2023-01-31 | Amo Groningen B.V. | Systems and methods for vergence matching of an intraocular lens with refractive index writing |
US11678975B2 (en) | 2019-04-05 | 2023-06-20 | Amo Groningen B.V. | Systems and methods for treating ocular disease with an intraocular lens and refractive index writing |
US11944574B2 (en) | 2019-04-05 | 2024-04-02 | Amo Groningen B.V. | Systems and methods for multiple layer intraocular lens and using refractive index writing |
US11583389B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing |
US11583388B2 (en) | 2019-04-05 | 2023-02-21 | Amo Groningen B.V. | Systems and methods for spectacle independence using refractive index writing with an intraocular lens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19714434A1 (de) * | 1997-04-08 | 1998-10-15 | Armin Schaeuble | Selektive elektronische Lichtschutzbrille |
US20020008898A1 (en) * | 2000-05-30 | 2002-01-24 | Seiko Epson Corporation | Electrophoretic display and method for producing same |
US20020140899A1 (en) * | 2000-06-23 | 2002-10-03 | Blum Ronald D. | Electro-optic lens with integrated components |
US20040165252A1 (en) * | 2000-03-03 | 2004-08-26 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2196066A (en) | 1938-03-02 | 1940-04-02 | Feinbloom William | Contact lens |
US2511329A (en) | 1946-12-26 | 1950-06-13 | Craig Edward | Lens shield |
US3532038A (en) * | 1967-06-05 | 1970-10-06 | Ibm | Multi-lens devices for the fabrication of semiconductor devices |
US3628854A (en) | 1969-12-08 | 1971-12-21 | Optical Sciences Group Inc | Flexible fresnel refracting membrane adhered to ophthalmic lens |
US3978580A (en) | 1973-06-28 | 1976-09-07 | Hughes Aircraft Company | Method of fabricating a liquid crystal display |
US4150878A (en) * | 1974-04-05 | 1979-04-24 | Giorgio Barzilai | Hollow-space cell and method for its manufacture |
US4268132A (en) | 1979-09-24 | 1981-05-19 | Neefe Charles W | Oxygen generating contact lens |
CH666560A5 (de) | 1983-03-01 | 1988-07-29 | Tadeusz Bobak | Anzeigevorrichtung. |
JPS60188925A (ja) | 1984-03-09 | 1985-09-26 | Canon Inc | 光学変調素子の製造法 |
US4601545A (en) | 1984-05-16 | 1986-07-22 | Kern Seymour P | Variable power lens system |
US4621912A (en) | 1985-02-14 | 1986-11-11 | Meyer Donald R | Foraminated optical contact lens |
IT1190508B (it) * | 1986-03-24 | 1988-02-16 | Daniele Senatore | Occhiali a trasparenza regolabile |
IL85860A (en) | 1988-03-24 | 1992-06-21 | Amir Cohen | Contact lens |
US4994664A (en) | 1989-03-27 | 1991-02-19 | Massachusetts Institute Of Technology | Optically coupled focal plane arrays using lenslets and multiplexers |
FR2647789B1 (fr) | 1989-06-05 | 1994-07-22 | Essilor Int | Composes photochromiques de type indolino-spiro-oxazine, leur procede de preparation, compositions et articles photochromiques contenant de tels composes |
FR2670210A1 (fr) | 1990-12-06 | 1992-06-12 | Essilor Int | Nouveaux composes photochromiques de type indolino-spiro-benzoxazine et leur procede de preparation. |
US5359444A (en) * | 1992-12-24 | 1994-10-25 | Motorola, Inc. | Auto-focusing optical apparatus |
US5576870A (en) | 1993-04-23 | 1996-11-19 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display panel having a phase grating formed of liquid crystal molecules |
FR2712593B1 (fr) | 1993-11-17 | 1996-01-05 | Essilor Int | Nouvelles spirooxazines et leur utilisation dans le domaine de l'optique ophtalmique. |
FR2718447B1 (fr) | 1994-04-06 | 1996-05-24 | Essilor Int | Chromènes du type 2,2-diphényl hétéroannélés en 6,7 et leur utilisation dans le domaine de l'optique ophtalmique. |
FR2718446B1 (fr) | 1994-04-06 | 1997-01-03 | Essilor Int | Spiro [fluorène-[2H]-benzopyranes] hétéroannélés et leur utilisation dans le domaine de l'optique ophtalmique. |
US5699142A (en) | 1994-09-01 | 1997-12-16 | Alcon Laboratories, Inc. | Diffractive multifocal ophthalmic lens |
FR2731081B1 (fr) | 1995-02-27 | 1997-04-11 | Essilor Int | Procede d'obtention d'un article transparent a gradient d'indice de refraction |
US6707516B1 (en) | 1995-05-23 | 2004-03-16 | Colorlink, Inc. | Single-panel field-sequential color display systems |
FR2740231B1 (fr) * | 1995-10-20 | 1998-03-06 | Christian Dalloz Sa | Ebauche pour oculaire non-correcteur |
US5905561A (en) | 1996-06-14 | 1999-05-18 | Pbh, Inc. | Annular mask lens having diffraction reducing edges |
US5733077A (en) | 1996-07-02 | 1998-03-31 | The Hilsinger Company Lp | Lens drill guide |
GB2347006B (en) | 1996-07-26 | 2000-10-04 | Sharp Kk | Liquid crystal device |
US5774273A (en) | 1996-08-23 | 1998-06-30 | Vari-Lite, Inc. | Variable-geometry liquid-filled lens apparatus and method for controlling the energy distribution of a light beam |
US5812235A (en) | 1996-09-04 | 1998-09-22 | Pemrable Technologies Inc. | Multifocal corneal contact lenses |
US5763054A (en) | 1996-09-13 | 1998-06-09 | Trw Inc. | Anti-reflection treatment for optical elements |
US5764333A (en) | 1997-02-27 | 1998-06-09 | Somsel; John R. | Sunshields for eyeglasses |
FR2763070B1 (fr) | 1997-05-06 | 1999-07-02 | Essilor Int | Nouveaux composes photochromiques spirooxazines, leur utilisation dans le domaine de l'optique ophtalmique |
US5914802A (en) | 1997-07-18 | 1999-06-22 | Northrop Grumman Corporation | Combined spatial light modulator and phase mask for holographic storage system |
US6262789B1 (en) | 1998-11-27 | 2001-07-17 | Zvi Yaniv | Liquid display and method of making same |
US6554424B1 (en) | 1999-03-01 | 2003-04-29 | Boston Innovative Optices, Inc. | System and method for increasing the depth of focus of the human eye |
AU2830200A (en) | 1999-03-05 | 2000-09-28 | Seiko Epson Corporation | Electrophoresis display and its production method |
US6327072B1 (en) | 1999-04-06 | 2001-12-04 | E Ink Corporation | Microcell electrophoretic displays |
DE19927361A1 (de) | 1999-06-16 | 2000-12-21 | Creavis Tech & Innovation Gmbh | Elektrophoretische Displays |
FR2795361B1 (fr) | 1999-06-22 | 2001-09-07 | Essilor Int | Procede de moulage de lentilles ophtalmiques |
DE60007996T2 (de) | 1999-07-08 | 2004-12-23 | Essilor International Compagnie Générale d'Optique | BI- ODER TERTHIENYL-SUBSTITUIERTE PHOTOCHROMISCHE NAPHTHO[2,1 -b]PYRANE-VERBINDUNGEN |
US6781666B2 (en) | 1999-07-16 | 2004-08-24 | Minolta Co., Ltd. | Liquid crystal display and method to manufacture the same |
US6307243B1 (en) | 1999-07-19 | 2001-10-23 | Micron Technology, Inc. | Microlens array with improved fill factor |
US6672921B1 (en) | 2000-03-03 | 2004-01-06 | Sipix Imaging, Inc. | Manufacturing process for electrophoretic display |
US6930818B1 (en) * | 2000-03-03 | 2005-08-16 | Sipix Imaging, Inc. | Electrophoretic display and novel process for its manufacture |
US6577434B2 (en) * | 2000-01-14 | 2003-06-10 | Minolta Co., Ltd. | Variable focal position spatial modulation device |
US6281366B1 (en) | 2000-02-29 | 2001-08-28 | Essilor International Compagnie Generale D'optique | Photochromic [3H]naphtho[2,1-b]pyran compounds containing an acetylenic substituent, process for their manufacture, and photochromic materials and articles obtained |
US6301051B1 (en) | 2000-04-05 | 2001-10-09 | Rockwell Technologies, Llc | High fill-factor microlens array and fabrication method |
JP2002014208A (ja) * | 2000-04-26 | 2002-01-18 | Sharp Corp | 光学フィルム、光反射フィルム、液晶表示パネル、光学フィルム製造方法および装置、型ローラ製造方法、ならびに光学フィルム貼付方法および装置 |
US6485599B1 (en) | 2000-07-11 | 2002-11-26 | International Business Machines Corporation | Curing of sealants using multiple frequencies of radiation |
WO2002077672A2 (fr) | 2001-02-07 | 2002-10-03 | Corning Incorporated | Ecran a contraste eleve a reseau aleatoire de microlentilles |
TW556044B (en) | 2001-02-15 | 2003-10-01 | Sipix Imaging Inc | Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web |
WO2002067020A2 (fr) | 2001-02-19 | 2002-08-29 | Koninklijke Philips Electronics N.V. | Element optique et son procede de fabrication |
US6753067B2 (en) | 2001-04-23 | 2004-06-22 | Sipix Imaging, Inc. | Microcup compositions having improved flexure resistance and release properties |
US7184066B2 (en) | 2001-05-09 | 2007-02-27 | Clairvoyante, Inc | Methods and systems for sub-pixel rendering with adaptive filtering |
KR100701442B1 (ko) | 2001-05-10 | 2007-03-30 | 엘지.필립스 엘시디 주식회사 | 잉크젯 방식 액정 도포방법 |
US7205355B2 (en) | 2001-06-04 | 2007-04-17 | Sipix Imaging, Inc. | Composition and process for the manufacture of an improved electrophoretic display |
US6788452B2 (en) | 2001-06-11 | 2004-09-07 | Sipix Imaging, Inc. | Process for manufacture of improved color displays |
US6982178B2 (en) | 2002-06-10 | 2006-01-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
TW527529B (en) | 2001-07-27 | 2003-04-11 | Sipix Imaging Inc | An improved electrophoretic display with color filters |
CN1539092A (zh) * | 2001-08-07 | 2004-10-20 | 金炯植 | 用于无边框眼镜的镜片固定装置 |
TW539928B (en) | 2001-08-20 | 2003-07-01 | Sipix Imaging Inc | An improved transflective electrophoretic display |
US6712466B2 (en) * | 2001-10-25 | 2004-03-30 | Ophthonix, Inc. | Eyeglass manufacturing method using variable index layer |
TW574566B (en) | 2001-10-31 | 2004-02-01 | Optrex Kk | Liquid crystal display element |
KR100954016B1 (ko) | 2002-01-23 | 2010-04-20 | 소니 주식회사 | 화상 표시 소자 및 화상 프로젝터 장치 |
US6860601B2 (en) | 2002-02-06 | 2005-03-01 | John H. Shadduck | Adaptive optic lens system and method of use |
EP1485749A4 (fr) | 2002-03-13 | 2006-02-08 | E Vision Llc | Lentille electro-optique a composants integres |
AU2003224809A1 (en) | 2002-03-27 | 2003-10-13 | Avery Dennison Corporation | Switchable electro-optical laminates |
TW583497B (en) | 2002-05-29 | 2004-04-11 | Sipix Imaging Inc | Electrode and connecting designs for roll-to-roll format flexible display manufacturing |
US7277692B1 (en) * | 2002-07-10 | 2007-10-02 | Sprint Spectrum L.P. | System and method of collecting audio data for use in establishing surround sound recording |
US6836371B2 (en) | 2002-07-11 | 2004-12-28 | Ophthonix, Inc. | Optical elements and methods for making thereof |
US6966649B2 (en) | 2002-08-12 | 2005-11-22 | John H Shadduck | Adaptive optic lens system and method of use |
US7036932B2 (en) | 2002-10-04 | 2006-05-02 | Vision-Ease Lens | Laminated functional wafer for plastic optical elements |
EP1563337A4 (fr) | 2002-11-20 | 2006-05-24 | Powervision | Systeme de lentille et procede de reglage de puissance |
US20040120667A1 (en) | 2002-12-23 | 2004-06-24 | Eastman Kodak Company | Walled network optical component |
US6914658B2 (en) | 2002-12-26 | 2005-07-05 | Intel Corporation | Method for fabricating a moat around an active pixel area of a microelectronic image projection device |
KR100510988B1 (ko) * | 2003-01-21 | 2005-08-30 | 한독옵텍 주식회사 | 광흡수성 물질을 사용하여 선택성 칼라를 형성하는 저반사 다층 박막 안경렌즈 및 그 제조방법 |
US7286223B2 (en) * | 2003-03-18 | 2007-10-23 | Loma Linda University Medical Center | Method and apparatus for detecting embedded rebar within an interaction region of a structure irradiated with laser light |
KR20060034700A (ko) | 2003-07-14 | 2006-04-24 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 가변렌즈 |
DE602004004415T2 (de) | 2003-10-03 | 2007-10-18 | Invisia Ltd. | Multifocal-linse |
US7227692B2 (en) | 2003-10-09 | 2007-06-05 | Micron Technology, Inc | Method and apparatus for balancing color response of imagers |
US20070152560A1 (en) | 2004-01-21 | 2007-07-05 | Dai Nippon Printing Co., Ltd. | Display front panel, and method for producing the same |
US7036929B1 (en) | 2004-04-12 | 2006-05-02 | William Rolf Harvey | Method and device for the application and removal of disposable corrective optical film to an eyeglass lens |
FR2872589B1 (fr) | 2004-07-02 | 2006-10-27 | Essilor Int | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu |
EP2312376B1 (fr) | 2004-07-02 | 2015-08-26 | ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) | Composant optique photochromique |
AU2005302202B2 (en) | 2004-11-02 | 2012-04-05 | E-Vision, Llc | Electro-active spectacles and method of fabricating same |
FR2879757B1 (fr) | 2004-12-17 | 2007-07-13 | Essilor Int | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu |
US7533453B2 (en) | 2005-01-24 | 2009-05-19 | Yancy Virgil T | E-facet optical lens |
FR2883984B1 (fr) | 2005-04-04 | 2007-06-22 | Essilor Int | Appareil pour conformer un film plan sur une lentille optique, procedes de fonctionnalisation d'une lentille optique au moyen dudit appareil, et lentille ainsi obtenue |
DE102005017491B4 (de) * | 2005-04-15 | 2007-03-15 | Siemens Ag | Verfahren zum Erzeugen eines gainkorrigierten Röntgenbildes |
FR2888951B1 (fr) | 2005-07-20 | 2008-02-08 | Essilor Int | Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent |
FR2888947B1 (fr) | 2005-07-20 | 2007-10-12 | Essilor Int | Composant optique a cellules |
FR2888950B1 (fr) | 2005-07-20 | 2007-10-12 | Essilor Int | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent |
US7715107B2 (en) | 2006-04-25 | 2010-05-11 | Asml Netherlands B.V. | Optical element for correction of aberration, and a lithographic apparatus comprising same |
FR2902105B1 (fr) | 2006-06-13 | 2008-09-12 | Essilor Int | Procede de collage d'un film sur un substrat courbe |
-
2005
- 2005-07-20 FR FR0507722A patent/FR2888950B1/fr not_active Expired - Fee Related
-
2006
- 2006-07-13 US US11/996,101 patent/US8172397B2/en active Active
- 2006-07-13 CN CNA2006800341300A patent/CN101268403A/zh active Pending
- 2006-07-13 WO PCT/IB2006/003361 patent/WO2007049151A1/fr active Application Filing
- 2006-07-13 AU AU2006307598A patent/AU2006307598B2/en not_active Ceased
- 2006-07-13 KR KR1020087003922A patent/KR101293765B1/ko active IP Right Grant
- 2006-07-13 CA CA002615476A patent/CA2615476A1/fr not_active Abandoned
- 2006-07-13 ES ES06820979.0T patent/ES2661880T3/es active Active
- 2006-07-13 JP JP2008522101A patent/JP5058996B2/ja not_active Expired - Fee Related
- 2006-07-13 EP EP06820979.0A patent/EP1904888B1/fr active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19714434A1 (de) * | 1997-04-08 | 1998-10-15 | Armin Schaeuble | Selektive elektronische Lichtschutzbrille |
US20040165252A1 (en) * | 2000-03-03 | 2004-08-26 | Rong-Chang Liang | Electrophoretic display and novel process for its manufacture |
US20020008898A1 (en) * | 2000-05-30 | 2002-01-24 | Seiko Epson Corporation | Electrophoretic display and method for producing same |
US20020140899A1 (en) * | 2000-06-23 | 2002-10-03 | Blum Ronald D. | Electro-optic lens with integrated components |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011009802A1 (fr) * | 2009-07-24 | 2011-01-27 | Thales | Composant optique transparent a microcuves |
WO2012080658A1 (fr) * | 2010-12-16 | 2012-06-21 | Essilor International (Compagnie Generale D'optique) | Element optique comprenant un aerogel sans fissure |
FR2969313A1 (fr) * | 2010-12-16 | 2012-06-22 | Essilor Int | Element optique comprenant un aerogel sans fissure |
CN103261923A (zh) * | 2010-12-16 | 2013-08-21 | 埃西勒国际通用光学公司 | 包含无裂缝气溶胶的光学元件 |
Also Published As
Publication number | Publication date |
---|---|
FR2888950B1 (fr) | 2007-10-12 |
AU2006307598A1 (en) | 2007-05-03 |
CA2615476A1 (fr) | 2007-05-03 |
JP2009501955A (ja) | 2009-01-22 |
WO2007049151A1 (fr) | 2007-05-03 |
US8172397B2 (en) | 2012-05-08 |
ES2661880T3 (es) | 2018-04-04 |
US20080212018A1 (en) | 2008-09-04 |
JP5058996B2 (ja) | 2012-10-24 |
AU2006307598B2 (en) | 2012-01-19 |
KR101293765B1 (ko) | 2013-08-05 |
EP1904888A1 (fr) | 2008-04-02 |
KR20080040719A (ko) | 2008-05-08 |
EP1904888B1 (fr) | 2017-12-06 |
CN101268403A (zh) | 2008-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1904884B1 (fr) | Composant optique transparent pixellise comprenant un revetement absorbant, son procede de realisation et son utilisation dans un element optique | |
FR2888950A1 (fr) | Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent | |
CA2568421C (fr) | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu | |
EP1825319B1 (fr) | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu | |
EP1904883B1 (fr) | Composant optique pixellise a parois apodisees, son procede de fabrication et son utilisation dans la fabrication d'un element optique transparent | |
FR2888947A1 (fr) | Composant optique a cellules | |
FR2888951A1 (fr) | Composant optique pixellise aleatoirement, son procede de fabrication, et son utilisation dans la fabrication d'un element optique transparent | |
FR2872589A1 (fr) | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu | |
FR2888949A1 (fr) | Composant optique pixellise a nano parois | |
FR2910642A1 (fr) | Composant optique transparent a deux ensembles de cellules | |
FR2879758A1 (fr) | Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |
|
PLFP | Fee payment |
Year of fee payment: 13 |
|
TP | Transmission of property |
Owner name: ESSILOR INTERNATIONAL, FR Effective date: 20180601 |
|
PLFP | Fee payment |
Year of fee payment: 14 |
|
ST | Notification of lapse |
Effective date: 20200306 |