WO2011009802A1 - Composant optique transparent a microcuves - Google Patents

Composant optique transparent a microcuves Download PDF

Info

Publication number
WO2011009802A1
WO2011009802A1 PCT/EP2010/060234 EP2010060234W WO2011009802A1 WO 2011009802 A1 WO2011009802 A1 WO 2011009802A1 EP 2010060234 W EP2010060234 W EP 2010060234W WO 2011009802 A1 WO2011009802 A1 WO 2011009802A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical component
microcuvettes
optical
walls
component according
Prior art date
Application number
PCT/EP2010/060234
Other languages
English (en)
Inventor
Umberto Rossini
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2011009802A1 publication Critical patent/WO2011009802A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/18Cellular lens surfaces

Definitions

  • the field of the invention is that of transparent optical components microcuvettes.
  • the transparent qualifier means that an observer sees an image through this component without significant loss of contrast, in any direction.
  • Transparent optical components with microcups are used in particular to inexpensively supplement the properties of transparent optical elements such as, for example, lenses or ophthalmic lenses, or portholes, helmet visors .... If we take the example of a corrective eyeglass frame, the lenses of the frame have the optical correction, and a corresponding shape cut in an optical microcell component, carried on each of the glasses, provides an additional optical function, for example a photochromic function (capacity to lighten or darken depending on the UV radiation received), performed by the optical substance (s) contained in the microcups.
  • a photochromic function Capacity to lighten or darken depending on the UV radiation received
  • these components are made of deformable optical plastic materials, which can be easily cut and deformed to obtain a suitable shape for their transfer to the surface of the desired optical element, for example on a glass that has optical corrections.
  • These materials are, for example, polyesters, such as polyethylene terephthalate or PET, polycarbonate, or else polyethylene naphthalate (PEN), or cellulose triacetate TAC, or even olefinic polymers such as CO C (cycloolefin copolymer). ), substrates that can be coated with additional optical films, such as anti-reflection layers.
  • an optical microcell component comprises in its thickness and parallel to the surface, a network of microcuvettes which are formed by a mesh of very thin walls, and which each contain at least one optical substance in the form of liquid or gel, which has special optical characteristics.
  • Each microcuvette corresponds to the volume defined by a mesh of the network of walls.
  • the walls are very thin, typically 1 to 3 microns thick, with a height typically between 10 and 30 microns.
  • the network of microcuvette walls are mechanical wedges to ensure that the optical path through the component is the same everywhere, which allows to achieve cheaply large area components with a uniform thickness, without any machining.
  • the walls also make it possible to calibrate the height of the microcups precisely, depending on the amount of active ingredient sought in the microcups.
  • the fineness of the walls of the order of 1 to 3 microns thick, allows not to alter the optical quality of the component. In other words the walls are the finest possible not to be perceived by the eye.
  • microcuvettes typically the manufacture of these components uses a large transparent support formed of a transparent plastic substrate, optionally coated with other additional transparent layers.
  • This support is structured in microcuvettes, by the realization on its surface of a network of walls in the form of mesh, which defines isolated microcuvettes contiguous walls: two juxtaposed microcuvettes share at least one wall.
  • This network of walls is typically made of resin, by photolithography techniques.
  • the structured support can then be personalized, by filling the microcups, individually and differentially, for example using inkjet printing techniques, by which we just deposit one or more drops of optical material in each microcuvette , or in a collective and uniform way.
  • a uniform collective filling can be obtained by immersing the structured support in a suitable bath, in particular when the optical filling substance is in liquid form. Then, a cover layer is laminated on top, the adhesion being made with the top of the walls.
  • Another example of a uniform filling technique uses a standard step of rolling a polymer film with progression of a solvent front containing a certain density of the molecules having the desired optical properties, for example photochromic molecules, followed by a step polymerization, that is to say cooking, during which the polymer mixes with the solvent and forms the optical gel.
  • a transparent plastic film 1 on one side of which a polymer 2 has been whitewashed.
  • a bead of the product optical filling 3 solvent + molecules with optical property
  • the plastic film 1 coated with the polymer 2 is laminated on the structured support 4, with the polymer 2 facing the structured support, by progressing the bead of product 3.
  • the component illustrated in FIG. After firing the polymer dissolves in the solvent and forms a gel 5.
  • the component shown in FIG. Cooking does not result in little or no shrinkage of material, the gel height exceeds the height of the walls p forming the microcuvettes 6: this gel height substantially corresponds to the height of the walls p plus the thickness of the polymer 2 starting.
  • the consistency of the gel is typically a function of the polymer thickness and the amount of solvent that is calibrated by the height of the walls.
  • Additional coatings on the plastic film 1 may be provided to complete the manufacturing process of the microcup optical component.
  • optical component thus produced is then ready to be cut.
  • a form F is cut out in the component C and transferred to the surface of an optical element E, for example a corrective glass, a porthole, a visor ...
  • the cutting profile corresponds to the use. Cutting is performed by simultaneously making a weld on the cutting edges, to obtain the desired shape. For optimum use of the optical component thus produced, with the minimum of losses, the cutting must be done anywhere. This assumes that the optical component is free of manufacturing defects.
  • the walls are typically made by depositing a photosensitive resin on the support to be pixellated, which resin is then etched to obtain the desired network of walls, by a photolithography equipment, generally called a stepper, which ensures the insolation of the resin by through a UV light source, reticles (or masks) corresponding to the design of the network to be produced and a lens optics.
  • a photolithography equipment generally called a stepper
  • the optics of the stepper must be very resolute. It must also be set so as not to introduce pattern distortion. As the component to be made is large, and the patterns (the walls) very thin, it takes several insolations to cover the entire surface of the component.
  • FIG. 4 shows schematically an example of a pattern obtained in two successive insolation fields A and B.
  • the dashed lines represent what is obtained with a setting optimal R1 optics for optical magnification without distortion: in this case, a rectangle pattern will be reproduced without distortion, but the resolution will not be homogeneous over the entire field. For example, in the upper part of each field of insolation, the line will be fine, and in the lower part it will be thicker. This results in a lack of homogeneity of resolution at the junction j between the two fields A and B.
  • the continuous lines represent what is obtained with the same mask, with an adjustment of the optimal optics R2 in resolution: in this case, the resolution is fine and homogeneous over the whole field, but there is distortion: the motive rectangle of the mask is reproduced with distortion, like a trapezium and the walls at the junction, do not join: This results in a resolution defect at the junction j between the two fields A and B.
  • the invention relates to an optical component comprising in its thickness an array of microcuvettes juxtaposed on a support plane parallel to a surface of said component and which forms the bottom of the microcuvettes, characterized in that said microcuvettes are spaced from each other and each delimited in the plane by a wall formed in a closed cylinder whose base rests on said support plane, and in that the microcups and the spaces between the microcuvettes are each filled with an optical material.
  • the cylinder is of substantially circular cross section.
  • the substantially circular section of the cylinder is more favorable because it does not favor any direction of diffraction.
  • FIGS. 1a and 1b illustrate the filling of a support structured in microcups by an optical gel
  • FIG. 2 is a diagrammatic view of the cutting of a form of a microcell optical component and its transfer to an optical element;
  • FIG. 3 is an example of a random mesh design used to structure a surface of an optical component
  • FIG. 4 illustrates the problems of distortion or loss of resolution according to the stepper adjustment
  • FIG. 5 illustrates a structured support according to the invention
  • FIG 6 is a detailed perspective view of a microcuvette according to the invention.
  • FIGS. 7 and 8 show in cross section two examples of optical component comprising in its thickness a network of microcuvettes according to the invention.
  • FIG. 5 illustrates a partial top view of a structured support of a transparent optical component with microcups according to the invention: the microcups are spaced from each other and of substantially round shape.
  • microcuvettes being completely disjointed, there is a relaxation of the constraints on the photolithography equipment, without yielding to the mechanical strength and the optical quality of the component. In particular one can benefit from the optimal resolution of the photolithography optics. We can also release the mechanical constraints, and use a cheaper photolithography equipment: no climatic chamber, no interferometers ...
  • the so-called fuzzy or "fuzzy" photolithography technique can be used at insolation field junctions, using a suitable mask pattern.
  • This is shown in FIG. 5: in continuous lines are represented the microcups ⁇ A formed with the insolation field A, and in dotted lines, the microcells ⁇ B which were formed with the insolation field B.
  • the technique fuzzy results in a penetration of the field A in the field B and conversely to a certain depth, so that it is not possible to find the boundary between two fields. And each microcuvette is formed in a single field of insolation.
  • FIG. 5 in continuous lines are represented the microcups ⁇ A formed with the insolation field A, and in dotted lines, the microcells ⁇ B which were formed with the insolation field B.
  • the technique fuzzy results in a penetration of the field A in the field B and conversely to a certain depth, so that it is not possible to find the boundary between two fields.
  • each microcuvette is formed in a single field of insol
  • the combination of the arrangement and / or the random dimensions of the microcuvettes in the plane of the support and a mask design with zones of field interpenetration makes it possible to obtain a structured support on which the microcuvettes are arranged in such a way that it is not possible to draw a rectilinear straight line without cutting a microchip, and this over the entire structured surface, including in field junction areas such as zone zi.
  • zone zi it is not possible to draw a rectilinear line which separates microcells ⁇ B ', brought by the field B (in dashed lines) ⁇ A microcells', brought by the field A (in solid line).
  • the arrangement and / or the dimensions of the microcuvettes on the entire surface is random and such that it is not possible to draw a rectilinear line that does not cut any microcuvette.
  • the optical quality of the component that incorporates such structured support according to the invention is optimal.
  • FIG. 6 is a perspective view of a ⁇ i microstructure formed according to the invention: it is formed in a wall pi formed in a closed cylinder.
  • the cylinder is preferably of substantially circular cross-section, which is an optically favorable form, since it favors no direction of diffraction, as well as mechanically: it is the most resistant form to crushing, as well as to detachment. since there is no angle by definition.
  • FIG. 7 shows in cross-section a transparent optical component with microcups according to the invention.
  • the structured support according to the invention forming the network of microcups is included in its thickness. It comprises a support 4, formed of a transparent plastic substrate, optionally coated with one or more other transparent layers, and walls, in example p1, p7, each formed in a closed cylinder. These walls form a network of microcells ⁇ 1 to ⁇ 7 juxtaposed in the surface plane of the support 4, and spaced apart from each other.
  • the entire structured space that is to say the microcuvettes and the spaces between the microcuvettes, is filled with an optical material.
  • the optical material is a gel 5, for example formed as explained previously with reference to FIGS. 1a and 1b. Using the same notations as in FIGS. 1a, 1b and 2, above the gel 5, there is found the transparent plastic film 1 on which the polymer 2 was laminated.
  • the optical component may optionally comprise one or more other layers. formed over the plastic film 1.
  • a top plastic film is laminated over the structured support and filled with liquid, and which adheres on the top walls.
  • a sectional view of a corresponding optical component is shown in FIG.
  • the structured space can also be filled with one or more optical materials, for example using an ink jet technique suitably adapted to the design of the structure, for injecting one or more drops of optical material into each of the microcups. and in the spaces between the microcups.
  • one or more optical materials for example using an ink jet technique suitably adapted to the design of the structure, for injecting one or more drops of optical material into each of the microcups. and in the spaces between the microcups.
  • the height h and the thickness e of the walls is uniform over the entire component.
  • the wall thickness is chosen in the range of about 1 and 3 microns, and the height in the range of about 10 to 30 microns.
  • the arrangement of the microcuvettes in the plane of the support is defined according to a random distribution law.
  • the size of the microcuvettes in the plane of the support is variable, preferably randomly defined.
  • the walls are such that the total area occupied by the base of the walls is of the order of 1 to 3% of the total surface of the support plane. It has been possible to determine that a good compromise is thus obtained between the objectives of homogeneity of thickness of the optical component and of resistance to crushing of the walls.
  • the walls are such that the spacing between two microcuvettes is at least of the order of ten microns, for a wall thickness of between 1 and 3 microns.
  • An optical microcell component according to the invention which has just been described has the advantage of being able to be produced cheaply with high reliability and is of good optical quality, that is to say in particular, that it offers good transparency regardless of the direction of observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Un composant optique transparent à microcuves, destiné à être découpé et rapporté sur un verre optique, comprend dans son épaisseur un réseau de microcuves μ1 à μ7 juxtaposées dans le plan d'un support 4. Les microcuves sont espacées les unes des autres et sont chacune délimitée dans le plan par une paroi respective p1 à p7, chaque paroi étant formée en un cylindre fermé. Les microcuves et les espaces entre les microcuves sont remplies d'un matériau optique 5.

Description

COMPOSANT OPTIQUE TRANSPARENT A MICROCUVES
Le domaine de l'invention est celui des composants optiques transparents à microcuves.
Dans le contexte de l'invention, le qualificatif transparent signifie qu'un observateur voit une image à travers ce composant sans perte significative de contraste, dans aucune direction.
Les composants optiques transparents à microcuves sont notamment utilisés pour compléter à moindre coût les propriétés d'éléments optiques transparents tel que, par exemple, des verres ou des lentilles ophtalmiques, ou encore des hublots, des visières de casques .... Si on prend l'exemple d'une monture de lunettes correctrices, les verres de la monture ont la correction optique, et une forme correspondante découpée dans un composant optique à microcuves, reportée sur chacun des verres, apporte une fonction optique supplémentaire, par exemple une fonction photochromique (capacité à s'éclaircir ou s'assombrir en fonction du rayonnement UV reçu), réalisée par la ou les substance(s) optique(s) contenue(s) dans les microcuves.
Typiquement, ces composants sont réalisés dans des matériaux plastiques optiques déformables, qui peuvent être facilement découpés et déformés pour obtenir une forme adaptée permettant leur report sur la surface de l'élément optique souhaité, par exemple sur un verre qui a les corrections optiques. Ces matériaux sont par exemple des polyesters, tel que du polyéthylène téréphtalate ou PET, du polycarbonate ou bien encore du polyéthylène naphtalate (PEN), ou du tri acétate de cellulose TAC, ou bien encore polymères oléfiniques tels que le C. O. C (copolymère cyclo oléfinique), substrats qui peuvent être revêtus de films optiques supplémentaires, tel que des couches anti-reflet....
Selon l'état de l'art, un composant optique à microcuves comprend dans son épaisseur et parallèlement à la surface, un réseau de microcuves qui sont formées par un maillage de parois très fines, et qui contiennent chacune au moins une substance optique sous forme de liquide ou de gel, qui a des caractéristiques optiques particulières. Chaque microcuve correspond au volume défini par une maille du réseau de parois. Les parois sont très fines, typiquement épaisseur 1 à 3 microns d'épaisseur, avec une hauteur typiquement comprise entre 10 et 30 microns. Le réseau de parois des microcuves sont autant de cales mécaniques permettant de garantir que le chemin optique au travers du composant est le même partout, ce qui permet de réaliser à moindre coût des composants de grande surface avec une épaisseur homogène, sans aucun usinage. Les parois permettent aussi de calibrer la hauteur des microcuves de manière précise, en fonction de la quantité de principe actif recherché dans les microcuves. Enfin la finesse des parois, de l'ordre de 1 à 3 microns d'épaisseur, permet de ne pas altérer la qualité optique du composant. En d'autres termes les parois sont les plus fines possibles pour ne pas être perçues par l'œil.
Typiquement la fabrication de ces composants utilise un support transparent de grande dimension, formé d'un substrat plastique transparent, éventuellement revêtu d'autres couches transparentes additionnelles. Ce support est structuré en microcuves, par la réalisation sur sa surface d'un réseau de parois en forme de maillage, qui définit des microcuves isolées à parois jointives : deux microcuves juxtaposées partagent au moins une paroi.
Ce réseau de parois est typiquement réalisé en résine, par des techniques de photolithographie. Le support structuré peut ensuite être personnalisé, par remplissage des microcuves, de façon individuelle et différenciée, par exemple en utilisant des techniques d'impression à jet d'encre, par lesquelles on vient déposer une ou des gouttes de matériau optique dans chacune des microcuves, ou de façon collective et uniforme.
Par exemple, un remplissage collectif uniforme peut être obtenu par immersion du support structuré dans un bain approprié, en particulier, lorsque la substance optique de remplissage se présente sous forme liquide. Ensuite, une couche formant couvercle est laminée par-dessus, l'adhésion se faisant avec le haut des parois.
Un autre exemple de technique de remplissage uniforme utilise une étape standard de laminage d'un film polymère avec progression d'un front de solvant contenant une certaine densité des molécules ayant les propriétés optiques voulues, par exemple des molécules photochromiques, suivie d'une étape de polymérisation, c'est-à-dire de cuisson, lors de laquelle le polymère se mélange au solvant et forme le gel optique. Typiquement, et en référence à la figure 1 a, on part d'un film plastique transparent 1 sur une face de laquelle on a badigeonné un polymère 2. Un bourrelet du produit optique 3 de remplissage (solvant + molécules à propriété optique) est déposé sur un bord du support structuré 4, c'est-à-dire avec son réseau de parois p. Le film plastique 1 badigeonné du polymère 2 est laminé sur le support structuré 4, avec le polymère 2 face au support structuré, en faisant progresser le bourrelet de produit 3. A la fin de cette opération, on obtient le composant illustré sur la figure 1. Après cuisson, le polymère s'est dissout dans le solvant et forme un gel 5. On obtient le composant illustré sur la figure 1 b. La cuisson n'entraînant pas ou peu de rétractation de matière, la hauteur de gel dépasse la hauteur des parois p formant les microcuves 6 : cette hauteur de gel correspond sensiblement à la hauteur des parois p plus l'épaisseur du polymère 2 de départ. La consistance du gel est typiquement fonction de l'épaisseur de polymère et de la quantité de solvant qui est calibrée par la hauteur des parois.
Des revêtements supplémentaires sur le film plastique 1 peuvent être prévus pour terminer le processus de fabrication du composant optique à microcuves.
Le composant optique ainsi réalisé est alors prêt à être découpé. Schématiquement, comme illustré sur la figure 2, une forme F est découpée dans le composant C, et reportée sur la surface d'un élément d'optique E, par exemple un verre correcteur, un hublot, une visière ...
Le profil de découpe correspond à l'utilisation. La découpe est effectuée en réalisant simultanément une soudure sur les bords de découpe, pour obtenir la forme désirée. Pour une utilisation optimale du composant optique ainsi produit, avec le minimum de pertes, la découpe doit pouvoir se faire n'importe où. Ceci suppose que le composant optique soit exempt de défauts de fabrication.
La fabrication de tels composants nécessite quelques précautions particulières. En particulier et de manière connue, une attention particulière doit être portée au dessin du réseau des parois qui définissent les microcuves. En effet, ce dessin doit être conçu de manière à préserver la transparence des composants optiques ainsi réalisés, quel que soit l'angle sous lequel un observateur regarde une image à travers ce composant. Suivant une définition communément retenue, un composant optique est dit transparent lorsque l'observation d'une image au travers de ce composant est perçue sans perte significative de contraste. Pour ces raisons, le dessin du maillage est l'objet d'une grande attention, pour limiter les effets de diffraction des parois, qui se traduisent à l'échelle du composant par une perte de qualité optique du composant. Notamment, on choisit de préférence un dessin du maillage qui intègre au moins des portions courbes, et/ou des dessins définissant des motifs et/ou des tailles de mailles aléatoires. Un exemple d'un tel dessin est illustré sur la figure 3. On pourra aussi se référer aux dessins donnés en exemples dans la demande de brevet français publiée le 26 janvier 2005 sous le numéro FR2888954, aux figures 4 à 7.
Mais ces dessins de réseau de parois posent en pratique d'autres problèmes. Les parois sont typiquement réalisées par dépôt d'une résine photosensible sur le support à pixelliser, résine qui est ensuite gravée pour obtenir le réseau de parois voulu, par un équipement de photolithographie, généralement appelé stepper, qui assure l'insolation de la résine par le biais d'une source de lumière UV, de réticules (ou masques) correspondant au dessin du réseau à réaliser et d'une optique de lentilles. Comme les parois du réseau à réaliser doivent être très fines, l'optique du stepper doit être très résolue. Elle doit aussi être réglée pour ne pas introduire de distorsion des motifs. Comme le composant à réaliser est grand, et les motifs (les parois) très fins, il faut plusieurs insolations pour couvrir toute la surface du composant. Il faut qu'au final, les jonctions de champ, entre les insolations successives, ne soient pas visibles. Or l'œil est sensible aux défauts d'alignement localisés. Il faut donc un positionnement très précis du support par rapport à l'optique, à chaque nouvelle insolation. Ceci impose d'une part de réaliser la photolithographie en enceinte climatique, pour travailler à température et pression stables, sans contraintes sur l'optique, ainsi que d'utiliser un système de positionnement en X et Y très précis, à interféromètre(s) laser, pour positionner très précisément la platine supportant le support à pixelliser, par rapport à l'optique, pour assurer au mieux les jonctions de champ. On sait en outre utiliser une définition floue ("fuzzy") des motifs au niveau des bords entre deux insolations successives, par exemple avec un dessin flou sur les bords du masque, de manière à ce que les défauts de jonction entre deux champs successifs ne soient pas localisés sur une même ligne, mais répartis de manière un peu aléatoire sur 1 ou 2 millimètres de façon à ce que l'œil ne voit pas cette jonction de manière précise.
En pratique la très forte contrainte mécanique de positionnement sur le stepper, de l'ordre du dixième de micron, et la finesse des parois à obtenir nécessite un réglage du stepper qui est un compromis entre résolution et distorsion. Ce compromis à faire entre résolution et distorsion est illustré sur la figure 4, qui montre de façon schématique, un exemple d'un motif obtenu dans deux champs d'insolation successifs A et B. Les traits pointillés représentent ce qui est obtenu avec un réglage de l'optique R1 optimal pour un grandissement optique sans distorsion: dans ce cas, un motif rectangle sera reproduit sans distorsion, mais la résolution ne sera pas homogène sur tout le champ. Par exemple, en partie haute de chaque champ d'insolation, le trait sera fin, et en partie basse il sera plus épais. Il en résulte un défaut d'homogénéité de résolution à la jonction j entre les deux champs A et B.
Les traits continus représentent ce qui est obtenu avec le même masque, avec un réglage de l'optique R2 optimal en résolution : dans ce cas, la résolution est fine et homogène sur tout le champ, mais il y a de la distorsion : le motif rectangle du masque est reproduit avec distorsion, comme un trapèze et les parois à la jonction, ne se joignent pas : II en résulte un défaut de résolution à la jonction j entre les deux champs A et B.
Ainsi, outre que l'étape de photolithographie nécessite un équipement de photolithographie très contraint, donc très coûteux, elle ne permet pas d'atteindre de façon satisfaisante la qualité optique recherchée sur toute la surface du composant. Notamment des défauts sont visibles aux jonctions de champ.
Un autre problème de qualité de fabrication résulte du dessin dit "aléatoire" utilisé de préférence pour définir les réseaux de parois, tel que le dessin de la figure 3, ou ceux décrits dans la demande française précitée. En effet ces dessins de maillage aléatoire comportent des angles vifs ou aigus aux croisements, comme les angles référencés a sur la figure 3. La présence de ces angles vifs, combinée à la finesse des parois posent un problème pratique de décollement des parois au niveau de ces angles, car la zone d'adhérence des parois sur le support est faible. Or les angles aigus sont par nature des zones de forte contrainte mécanique. Aussi, si à l'endroit d'une zone de contrainte forte (angle aigu), la surface du support sur lequel sont réalisées les parois présente un défaut, le risque de décollement est très important.
Dans l'invention, on cherche à résoudre ces différents problèmes de fabrication dus aux caractéristiques des dessins de maillage à réaliser qui ont des répercussions négatives en termes de fabrication.
Ce problème technique a été résolu dans l'invention, par l'adoption d'un réseau de microcuves non maillé, en sorte que chaque microcuve est espacée ou disjointe des autres microcuves, combiné à un remplissage de l'ensemble de l'espace, à savoir des microcuves et des espaces entre microcuves.
L'invention concerne un composant optique comprenant dans son épaisseur un réseau de microcuves juxtaposées sur un plan support parallèle à une surface dudit composant et qui forme le fond des microcuves, caractérisé en ce que lesdites microcuves sont espacées les unes des autres et chacune délimitée dans le plan par une paroi formée en un cylindre fermé dont la base repose sur ledit plan support, et en ce que les microcuves et les espaces entre les microcuves sont chacun rempli d'un matériau optique.
De préférence le cylindre est à section droite sensiblement circulaire. La section sensiblement circulaire du cylindre est plus favorable car elle ne privilégie aucune direction de diffraction.
D'autres caractéristiques et avantages de l'invention sont présentés dans la description suivante, d'un exemple de réalisation d'un composant optique selon l'invention, et en référence aux dessins annexés dans lesquels :
-les figures 1 a et 1 b illustrent le remplissage d'un support structuré en microcuves, par un gel optique;
-la figure 2 est une vue schématique du découpage d'une forme d'un composant optique à microcuves et son report sur un élément d'optique;
-la figure 3 est un exemple de dessin de maillage aléatoire utilisé pour structurer une surface d'un composant optique;
-la figure 4 illustre les problèmes de distorsion ou de perte de résolution suivant le réglage du stepper;
-la figure 5 illustre un support structuré suivant l'invention; -la figure 6 est une vue détaillée en perspective d'une microcuve selon l'invention; et
-les figures 7 et 8 montrent en coupe transversale deux exemples de composant optique comprenant dans son épaisseur un réseau de microcuves selon l'invention.
La figure 5 illustre une vue de dessus partielle d'un support structuré d'un composant optique transparent à microcuves suivant l'invention : les microcuves sont espacées les unes des autres, et de forme sensiblement ronde.
Une telle structuration est très avantageuse car elle peut être réalisée à moindre coût. Les microcuves étant complètement disjointes, on a une relâche des contraintes sur l'équipement de photolithographie, sans céder à la résistance mécanique et la qualité optique du composant. En particulier on peut bénéficier de la résolution optimale de l'optique de photolithographie. On peut aussi relâcher les contraintes mécaniques, et utiliser un équipement de photolithographie moins coûteux : pas d'enceinte climatique, pas d'interféromètres ...
Les dessins des masques peuvent être définis en sorte que chaque microcuve soit formée complètement dans un seul champ d'insolation. Il n'y a plus de problème de raboutement de parois aux jonctions de champ comme dans l'état de l'art.
Avantageusement, on peut utiliser la technique de photolithographie dite floue ou "fuzzy" aux jonctions de champ d'insolation, en utilisant un dessin de masque approprié. C'est ce qui est représenté sur la figure 5 : en traits continus sont représentées les microcuves μA formées avec le champ d'insolation A, et en pointillé, les microcuves μB qui ont été formées avec le champ d'insolation B. La technique floue se traduit par une pénétration du champ A dans le champ B et inversement sur une certaine profondeur, en sorte qu'il n'est pas possible trouver la limite entre deux champs. Et chaque microcuve est formée dans un seul champ d'insolation. Sur la figure 5, dans la zone zi de pénétration des champs A et B, on a ainsi des microcuves apportées par le champ A, en trait continu, et des microcuves apportées par le champ B, en traits pointillés. Au final, il n'est pas possible de distinguer sur le support les jonctions de champ. En pratique, les zones d'interpénétration sont prévues chaque fois que l'on a une jonction de champ. Dans l'exemple de la figure 5, on voit que pour chacun des champs A et B, il y a des microcuves qui "débordent" du cadre central sur chacun des côtés, correspondant aux différentes zones d'interpénétration avec un champ voisin. Ces microcuves sont notées respectivement μA', pour celles apportées par le champ A et μB', pour celles apportées par le champ B.
En pratique la combinaison de la disposition et/ou les dimensions aléatoires des microcuves dans le plan du support et un dessin de masque avec zones d'interpénétration de champ, permet d'obtenir un support structuré sur lequel les microcuves sont disposées de telle sorte qu'il n'est pas possible de tracer une droite rectiligne sans qu'elle ne coupe une microcuve, et ce sur l'ensemble de la surface structurée, y compris dans les zones de jonction de champ telle que la zone zi. Ainsi dans cette zone zi, il n'est pas possible de tracer une droite rectiligne qui sépare les microcuves μB', apportées par le champ B (en traits pointillés) des microcuves μA', apportées par le champ A (en trait continu). Plus généralement, la disposition et/ou les dimensions des microcuves sur l'ensemble de la surface est aléatoire et telle qu'il n'est pas possible de tracer une droite rectiligne qui ne coupe aucune microcuve. Ainsi la qualité optique du composant qui intègre un tel support structuré selon l'invention, est optimale.
La figure 6 est une vue en perspective d'une microstructure μi formée selon l'invention : elle est formée en une paroi pi formée en un cylindre fermé. Le cylindre est de préférence à section droite sensiblement circulaire, ce qui est une forme favorable optiquement, car elle ne privilégie aucune direction de diffraction, ainsi que mécaniquement : c'est la forme la plus résistante à l'écrasement, ainsi qu'au décollement puisqu'il n'y a par définition aucun angle.
La figure 7 montre en coupe transversale un composant optique transparent à microcuves selon l'invention. Le support structuré selon l'invention formant le réseau de microcuves est compris dans son épaisseur. Il comprend un support 4, formé d'un substrat plastique transparent, éventuellement revêtu d'une ou plusieurs autres couches transparentes, et des parois, dans l'exemple p1 , à p7, chacune formée en un cylindre fermé. Ces parois forment un réseau de microcuves μ1 à μ7 juxtaposées dans le plan de surface du support 4, et espacées les unes des autres. L'ensemble de l'espace structuré, c'est-à-dire les microcuves et les espaces entre les microcuves, est rempli d'un matériau optique. Dans l'exemple plus particulièrement représenté, le matériau optique est un gel 5, par exemple formé comme expliqué précédemment en relation avec les figures 1 a et 1 b. En reprenant les mêmes notations que dans les figures 1 a, 1 b et 2, au- dessus du gel 5, on trouve le film plastique transparent 1 sur lequel était laminé le polymère 2. Le composant optique peut comprendre éventuellement une ou plusieurs autres couches supplémentaires formées par-dessus le film plastique 1.
Si on choisit de remplir l'espace structuré par un matériau optique liquide, par une technique d'immersion par exemple comme expliqué précédemment, un film plastique supérieur est laminé par-dessus le support structuré et rempli de liquide, et qui adhère sur le haut des parois. Une vue en coupe d'un composant optique correspondant est représentée à la figure 8.
On peut encore remplir l'espace structuré avec un ou des matériaux optiques, en utilisant par exemple une technique à jet d'encre, adaptée de manière appropriée au dessin de la structure, pour injecter une ou des gouttes de matériau optique dans chacune des microcuves et dans les espaces entre les microcuves.
Dans tous les cas, la hauteur h et l'épaisseur e des parois est uniforme sur tout le composant. Typiquement l'épaisseur de parois est choisie dans la plage de 1 et 3 microns environ, et la hauteur dans la plage de 10 à 30 microns environ.
Avantageusement, comme expliqué précédemment, la disposition des microcuves dans le plan du support est définie suivant une loi de distribution aléatoire.
Avantageusement, la dimension des microcuves dans le plan du support, c'est-à-dire la surface délimitée dans le plan du support par chacune des parois, est variable, de préférence définie aléatoirement.
L'utilisation d'une loi aléatoire pour définir la position et/ou la dimension des microcuves contribue à la qualité optique, en évitant tout effet de périodicité spatiale. De préférence, les parois sont telles que la surface totale occupée par la base des parois est de l'ordre de 1 à 3 % de la surface totale du plan support. On a pu en effet déterminer que l'on obtient alors un bon compromis entre les objectifs d'homogénéité d'épaisseur du composant optique, et de résistance à l'écrasement des parois.
De préférence, les parois sont telles que l'espacement entre deux microcuves est au moins de l'ordre d'une dizaine de microns, pour une épaisseur de parois comprise entre 1 et 3 microns.
Un composant optique à microcuve selon l'invention qui vient d'être décrite a l'avantage de pouvoir être produit à moindre coût avec une grande fiabilité et est de bonne qualité optique, c'est-à-dire notamment, qu'il offre une bonne transparence quelle que soit la direction d'observation.

Claims

REVENDICATIONS
1. Composant optique comprenant dans son épaisseur un réseau de microcuves (μ1 , μ2) juxtaposées sur un plan support parallèle à une surface dudit composant et qui forme le fond des microcuves, caractérisé en ce que lesdites microcuves sont espacées les unes des autres et chacune délimitée dans le plan par une paroi (p1 ) formée en un cylindre fermé dont la base repose sur ledit plan support, et en ce que les microcuves et les espaces entre les microcuves sont chacun rempli d'un matériau optique (5).
2. Composant optique selon la revendication 1 , dans lequel la disposition des microcuves dans le réseau est définie suivant une loi de distribution aléatoire.
3. Composant optique selon la revendication 1 ou 2, dans lequel la surface délimitée par chacune des parois sur ladite surface formant le fond des microcuves a une taille variable, de préférence définie aléatoirement.
4. Composant optique selon l'une quelconque des revendications précédentes, dans lequel la surface totale occupée par la base des parois est de l'ordre de 1 à 3 % de la surface totale du plan.
5. Composant optique selon l'une quelconque des revendications précédentes dans lequel l'espacement entre deux microcuves est au moins de l'ordre d'une dizaine de microns, et les parois formant les enceintes des microcuves, ont une épaisseur (e) comprise entre 1 et 3 microns.
6. Composant optique selon la revendication 4, dans lequel la hauteur (h) des parois est comprise entre environ 10 et 30 microns.
7. Composant optique selon l'une quelconque des revendications précédentes, dans lequel chaque enceinte de microcuve est formée complètement en une seule étape de photolithographie.
8. Composant optique selon l'une quelconque des revendications précédentes, dans lequel le cylindre est à section droite sensiblement circulaire.
9. Composant optique selon l'une quelconque des revendications précédentes, caractérisé en ce que la disposition des microcuves sur le plan support est telle qu'aucune droite rectiligne ne peut être tracée sans qu'elle ne coupe au moins une microcuve.
10. Elément d'optique (E) comprenant une forme (F) découpée d'un composant optique (C) selon l'une quelconque des revendications précédentes.
PCT/EP2010/060234 2009-07-24 2010-07-15 Composant optique transparent a microcuves WO2011009802A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0903658 2009-07-24
FR0903658A FR2948465B1 (fr) 2009-07-24 2009-07-24 Composant optique transparent a microcuves

Publications (1)

Publication Number Publication Date
WO2011009802A1 true WO2011009802A1 (fr) 2011-01-27

Family

ID=41724936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060234 WO2011009802A1 (fr) 2009-07-24 2010-07-15 Composant optique transparent a microcuves

Country Status (2)

Country Link
FR (1) FR2948465B1 (fr)
WO (1) WO2011009802A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776405A (zh) * 2018-05-30 2018-11-09 东华大学 多状态智能窗、其制备方法及由其制得的多图案智能窗

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089118A2 (fr) * 1999-10-01 2001-04-04 Lucent Technologies Inc. Affichage électrophorétique et son procédé de fabrication
US20050007651A1 (en) * 2000-03-03 2005-01-13 Rong-Chang Liang Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
FR2888950A1 (fr) * 2005-07-20 2007-01-26 Essilor Int Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent
FR2888954A1 (fr) 2005-07-20 2007-01-26 Essilor Int Composant optique transporent a cellules separees par des parois
US20070222934A1 (en) * 2006-03-24 2007-09-27 Quanta Display Inc. Method for manufacturing LCD panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089118A2 (fr) * 1999-10-01 2001-04-04 Lucent Technologies Inc. Affichage électrophorétique et son procédé de fabrication
US20050007651A1 (en) * 2000-03-03 2005-01-13 Rong-Chang Liang Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
FR2888950A1 (fr) * 2005-07-20 2007-01-26 Essilor Int Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent
FR2888954A1 (fr) 2005-07-20 2007-01-26 Essilor Int Composant optique transporent a cellules separees par des parois
WO2007029117A2 (fr) * 2005-07-20 2007-03-15 Essilor International Composant optique transparent presentant des cellules separees par des parois
US20070222934A1 (en) * 2006-03-24 2007-09-27 Quanta Display Inc. Method for manufacturing LCD panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776405A (zh) * 2018-05-30 2018-11-09 东华大学 多状态智能窗、其制备方法及由其制得的多图案智能窗

Also Published As

Publication number Publication date
FR2948465A1 (fr) 2011-01-28
FR2948465B1 (fr) 2011-11-25

Similar Documents

Publication Publication Date Title
EP1904884B1 (fr) Composant optique transparent pixellise comprenant un revetement absorbant, son procede de realisation et son utilisation dans un element optique
CA2568421C (fr) Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu
WO2020016393A1 (fr) Systeme optique et son procede de fabrication
EP1904883B1 (fr) Composant optique pixellise a parois apodisees, son procede de fabrication et son utilisation dans la fabrication d'un element optique transparent
CH713843B1 (fr) Dispositif micro-optique avec élément de focalisation intégré et structure d'élément d'image.
FR2888950A1 (fr) Composant optique transparent pixellise a parois absordantes son procede de fabrication et son utilisation dans la farication d'un element optique transparent
WO2006067309A1 (fr) Procede de realisation d'un element optique transparent, composant optique intervenant dans ce procede et element optique ainsi obtenu
EP1957274A2 (fr) Procede de transfert d'un motif micronique sur un article optique et article optique ainsi obtenu
EP2140406A1 (fr) Carte incorporant un affichage electronique
EP2576229B1 (fr) Fabrication de structures en relief par procédés d'impression
FR2897164A1 (fr) Realisation de cavites pouvant etre remplies par un materiau fluidique dans un compose microtechnologique optique
EP3694725B1 (fr) Composant optique de securite visible en reflexion, fabrication d'un tel composant et document securise equipe d'un tel composant
EP2366124B1 (fr) Element optique transparent comprenant un ensemble de cellules.
FR3072053A1 (fr) Composant optique de securite a effet reflectif, fabrication d'un tel composant et document securise equipe d'un tel composant
FR2910642A1 (fr) Composant optique transparent a deux ensembles de cellules
FR2888949A1 (fr) Composant optique pixellise a nano parois
WO2011009802A1 (fr) Composant optique transparent a microcuves
EP2617058A1 (fr) Systeme optique d'imagerie a ftm amelioree
WO2009004265A2 (fr) Film transparent comprenant un film de base et un revêtement
FR2963114A1 (fr) Dispositif optique, boitier a l'echelle d'une tranche pour un tel dispositif optique et procede correspondant.
WO2020083938A1 (fr) Élément de sécurité pour un document-valeur, son procédé de fabrication et document-valeur qui le comporte
FR2901367A1 (fr) Realisation d'un element optique transparent comprenant une substance contenue dans des cellules
EP2260336B1 (fr) Procédé de réalisation de cavités microniques ou submicroniques
WO2020109475A1 (fr) Procede de depot sous vide d'un revetement sur la face frontale d'un support, support et document de securite correspondant
FR3082626A1 (fr) Dispositif d'affichage et procede de fabrication associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741922

Country of ref document: EP

Kind code of ref document: A1