FR2855411A1 - Procede et installation d'encapsulation de composes actifs au sein d'un excipient - Google Patents

Procede et installation d'encapsulation de composes actifs au sein d'un excipient Download PDF

Info

Publication number
FR2855411A1
FR2855411A1 FR0304448A FR0304448A FR2855411A1 FR 2855411 A1 FR2855411 A1 FR 2855411A1 FR 0304448 A FR0304448 A FR 0304448A FR 0304448 A FR0304448 A FR 0304448A FR 2855411 A1 FR2855411 A1 FR 2855411A1
Authority
FR
France
Prior art keywords
excipient
favorably
particles
liquefied gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0304448A
Other languages
English (en)
Other versions
FR2855411B1 (fr
Inventor
Michel Perrut
Jennifer Jung
Fabrice Leboeuf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Separex SA
Original Assignee
Separex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Separex SA filed Critical Separex SA
Priority to FR0304448A priority Critical patent/FR2855411B1/fr
Priority to EP04742471A priority patent/EP1610891A2/fr
Priority to PCT/FR2004/000885 priority patent/WO2004091769A2/fr
Publication of FR2855411A1 publication Critical patent/FR2855411A1/fr
Application granted granted Critical
Publication of FR2855411B1 publication Critical patent/FR2855411B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne un procédé de préparation de micro-capsules formées d'un coeur constitué d'un principe actif et d'une écorce constituée d'un excipientCe procédé est caractérisé en ce qu'il comporte les étapes consistant à :- dissoudre l'excipient dans un courant d'un fluide comprimé sous forme d'un gaz liquéfié ou d'un liquide subcritique à une pression et une température favorables à cette mise en solution, le principe actif étant insoluble dans ledit gaz liquéfié et l'excipient étant soluble dans celui-ci,- introduire en continu cette solution dans un récipient (9) contenant des particules du principe actif en suspension au sein dudit fluide comprimé sous forme d'un gaz liquéfié,- maintenir le niveau du gaz liquéfié dans le récipient (9) à une valeur constante par apport d'enthalpie afin de vaporiser une quantité de fluide égale à celle introduite, de façon à générer une sursaturation du gaz liquéfié en excipient et provoquer sa déposition principalement sur les particules d'excipient maintenues en suspension,- récupérer les micro-capsules ainsi formées par filtration du fluide comprimé contenu dans le récipient sous pression lors de la vidange de ce dernier

Description

La présente invention concerne un procédé et une
installation permettant d'assurer une encapsulation de certains composés actifs au sein d'un excipient. Plus 5 précisément, ce procédé sera mis en oeuvre après une mise en solution de l'excipient dans un gaz comprimé, un gaz liquéfié ou un liquide subcritique, suivie par la déposition de l'excipient sur des particules solides contenant les composés actifs.
De nombreuses industries utilisent des solides sous forme pulvérulente et certaines de ces poudres se présentent sous forme de particules complexes comprenant un coeur en une certaine matière et un revêtement, ou écorce, en une matière différente. On utilise ce genre de capsules, 15 appelées aussi micro-capsules lorsque leur diamètre est inférieur à 100 pm environ, quand un produit actif doit être protégé de l'environnement en vue de sa conservation ou de sa mise en oeuvre. Ainsi, elles sont utilisées dans les encres de reprographie, dans de nombreuses préparations 20 cosmétiques et dermatologiques, et dans les produits pharmaceutiques.
L'industrie pharmaceutique, mais également l'industrie des cosmétiques, requiert en effet de nouvelles formes galéniques afin d'améliorer le service rendu par 25 certaines molécules d'intérêt thérapeutique ou dermatologique. En particulier, elle recherche les moyens de réaliser une protection efficace de certaines molécules qui seraient détruites dès leur absorption par les enzymes digestifs ou qui ne seraient pas stables à la conservation 30 en présence de l'oxygène ou de l'humidité de l'air ou de la lumière. Les micro-capsules ainsi constituées d'un " coeur " et d'une " écorce " répondent bien à ce besoin.
De même, il est parfois intéressant d'obtenir une dissolution lente au sein des tissus ou des fluides 5 biologique tels que le sang ou la lymphe. Pour ce faire, il est nécessaire de choisir un revêtement adapté permettant une diffusion appropriée du principe actif à l'endroit souhaité.
L'intérêt de ces structures est tel que de nombreux 10 procédés d'obtention ont été décrits et sont, pour certains, en exploitation industrielle. Toutefois, on notera qu'il est particulièrement difficile de fabriquer de telles micro-sphères ou micro-capsules incluant des protéines d'intérêt thérapeutique au sein d'un excipient, 15 en raison de la grande fragilité de ces composés dont la dénaturation est irréversible lorsqu'ils sont portés à une température trop élevée, ou lorsqu'ils sont mis en contact avec un milieu organique, ou un milieu aqueux dont le pH est hors de la zone de stabilité de la protéine, ou encore 20 avec certains fluides, comme le dioxyde de carbone, lorsqu'ils sont portés à haute pression comme le dioxyde de carbone. On sait, en effet, qu'à la différence des produits chimiques ou biologiques classiques, les protéines sont des édifices complexes et fragiles dont l'activité biologique 25 est étroitement liée à la conformation tridimensionnelle qui peut être affectée par l'environnement de la molécule, ce qui entraîne une destruction généralement irréversible de son activité biologique. Cette fragilité est particulièrement grande pour de nombreuses protéines de 30 haut intérêt thérapeutique dont la production commence à être mise en oeuvre selon les nouvelles biotechnologies, mais dont la mise en oeuvre thérapeutique s'avère extrêmement délicate.
La présente invention a précisément pour but de proposer un procédé d'obtention de micro-capsules à 5 structure coeur-écorce incluant des principes actifs, et plus particulièrement des protéines, au sein d'un excipient. Elle a également pour but de proposer une installation spécifique de mise en oeuvre de ce procédé.
Dans la suite, et par commodité de langage, on 10 appellera fluide comprimé tout fluide porté à une pression sensiblement supérieure à la pression atmosphérique. On appellera fluide à pression supercritique un fluide porté à une pression supérieure à sa pression critique, c'estàdire soit un fluide supercritique proprement dit, soit un 15 liquide dit sub-critique. On appellera gaz liquéfié un liquide, constitué d'un composé qui se trouve à l'état gazeux à pression atmosphérique et à température ambiante, porté à une pression et à une température inférieure à sa pression et sa température critiques respectivement.
D'après des dizaines de publications scientifiques et de brevets, comme on pourra en trouver une liste dans une publication récente de J. JUNG et M. PERRUT dans The Journal of Supercritical Fluids, 20, 2001, p. 179 à 219, on sait qu'on peut obtenir des micro-particules, d'une 25 granulométrie généralement comprise entre 1 et 10 tm, et des nano- particules d'une granulométrie généralement comprise entre 0,1 et 1 gm, en utilisant des procédés mettant en ouvre les fluides à pression supercritique et les gaz liquéfiés. Ainsi, le procédé connu sous l'acronyme 30 RESS (en français: Rapide Décompression d'une Solution Supercritique), décrit par exemple dans le brevet US 4 2855411 4,582,731, consiste à détendre très rapidement à basse pression une solution du produit à atomiser dans un fluide comprimé. Le procédé anti- solvant connu sous différents acronymes SAS, SEDS, PCA, ASES, etc... consiste à pulvériser 5 une solution du produit à atomiser dans un solvant organique ou aqueux au sein d'un courant de fluide en état supercritique, décrit par exemple dans les brevets US 5,707,634, EP 0 322 687 et US 5,043,280.
Plusieurs procédés utilisant un fluide à pression 10 supercritique, un gaz comprimé ou un gaz liquéfié visent à générer des particules composites: micro-sphères selon le principe anti-solvant, particulièrement décrits dans les brevets EP 0 322 687 et US 5,043,280, ou micro-capsules, selon des procédés décrits dans les brevets EP-0 322 687, 15 WO-95/01221, WO-96/00610, EP-0 706 821, FR-2 753 639, FR-2 803 539, EP-0 744 992, WO-98/15348 et FR-2 811 913.
On pourra classer ces différentes méthodes d'obtention de particules composites selon que le principe actif est initialement dissous ou non dans le fluide 20 comprimé, l'agent de revêtement ou l'excipient est initialement dissous ou non dans le fluide comprimé : - Lorsqu'à la fois le principe actif et l'excipient sont initialement dissous dans le fluide comprimé, le procédé décrit dans plusieurs articles de l'équipe de P. 25 Debenedetti, (dont par exemple on citera: P. Debenedetti, J.W. Tom, S.D. Yeo, G.B. Lim "Application of Supercritical Fluids for the Production of Sustained Delivery Devices", Journal of Controlled Release, 24, 1993, 27-44), consiste à pulvériser une solution de l'excipient et du principe 30 actif dans le fluide à pression supercritique selon le concept connu sous l'acronyme RESS et conduit à la formation de micro-sphères.
- Lorsque l'agent de revêtement est initialement dissous dans le fluide comprimé et que le principe actif 5 n'y est pas dissous, les procédés sont de type déposition tels que revendiqués dans le brevet EP-0 706 821 et dans certaines revendications de la demande de brevet WO 98/15348, la déposition résultant d'un abaissement de la solubilité de l'agent de revêtement provoqué par une 10 modification des conditions de pression et de température régnant dans le récipient o sont mis en contact le fluide à pression supercritique contenant l'agent de revêtement et les particules à encapsuler. On citera également les brevets US-6,426,116 et EP-0 865 819 mettant en ouvre la 15 déposition d'un agent de revêtement initialement dissous dans un fluide comprimé sur des particules de principe actif maintenues en lit fluidisé.
- Lorsque le principe actif est dissous dans le fluide comprimé et que l'agent au sein duquel l'excipient 20 n'est pas du tout soluble, le procédé est du type imprégnation, le fluide servant comme vecteur à la pénétration du principe actif au sein de l'excipient ainsi qu'il est par exemple décrit dans le brevet français FR 2 798 863.
- Lorsque ni le principe actif ni l'excipient ne sont dissous dans le fluide comprimé, plusieurs familles de procédés ont été proposées en vue d'obtenir des particules composites: 0 Le fluide comprimé peut être utilisé comme anti30 solvant et conduire à la précipitation de micro-sphères composées du principe actif et de l'excipient au sein d'une solution dans un solvant organique liquide o ils ont été préalablement dissous. Ce concept anti-solvant est utilisé dans de nombreux brevets et publications décrivant la formation de micro- sphères, parmi lesquels on citera les 5 brevets EP-0 322 687, US-5,043, 280, WO 95/01221 et WO 96/00610. Ce concept anti-solvant est également utilisé pour revêtir des particules de principe actif ainsi qu'il est revendiqué dans le brevet FR-2 753 639, selon lequel on réalise la coacervation de l'agent de revêtement 10 initialement dissous dans un solvant organique au sein duquel sont maintenues en dispersion les particules à revêtir, ladite coacervation étant provoquée par un effet anti-solvant causé par la dissolution d'un fluide supercritique ou d'un gaz liquéfié dans ledit solvant 15 organique. La récupération des capsules obtenues est effectuée après extraction complète du solvant organique par un courant de fluide supercritique ou de gaz liquéfié, puis décompression du récipient dans lequel a été effectuée l'encapsulation. De même, certaines revendications de la 20 demande de brevet FR- 2 803 539 décrivent un procédé de captation et d'encapsulation de particules fines générées par un procédé mettant en oeuvre un fluide à pression supercritique, selon lequel on capte les dites particules en lavant le fluide au sein duquel elles ont été générées 25 par une solution d'un agent de revêtement qui va précipiter sur les particules et constituer des micro-capsules du fait de la sursaturation en agent de revêtement de la dite solution, causée par l'interaction entre celle-ci et le fluide transportant les particules. Tous ces procédés 30 présentent l'inconvénient de nécessiter la mise en oeuvre d'un solvant organique au sein duquel les particules d'agent actif sont dispersées, ce qui est particulièrement gênant lorsque ces particules sont constituées de protéines thérapeutiques dont la structure tridimensionnelle est le plus souvent irrémédiablement altérée par le contact prolongé avec un solvant organique, sauf pour certaines revendications de la demande de brevet déjà citée FR-2 803 539 lorsque l'agent de revêtement est dissous dans l'eau, ce qui est toutefois rarement possible à mettre en oeuvre.
0 Un procédé très différent est décrit dans le brevet européen EP-0 744 992, selon un concept généralement 10 dénommé par l'acronyme PGSS (en anglais "Particle from GasSaturated Solutions"). Ce procédé consiste à dissoudre un fluide compressible dans la substance à pulvériser jusqu'à la formation d'une solution saturée en fluide, puis à décomprimer cette solution de telle façon que, d'une part 15 elle soit pulvérisée en fines gouttelettes, et, d'autre part, le refroidissement résultant de cette décompression induise la solidification de la substance initiale sous forme de fines particules solides. Ce brevet revendique également la production de micro-sphères constituées d'un 20 mélange homogène de deux ou plusieurs composés qui sont initialement mélangés sous forme d'une solution homogène.
De façon très voisine, certaines revendications de la demande de brevet WO-98/15348, déjà cité, décrivent l'application du concept précédent à la fabrication de 25 micro-capsules constituées de particules d'un agent actif encapsulées dans un polymère, en utilisant un fluide supercritique qui, en se dissolvant dans le polymère, le liquéfie à une température inférieure à la température de fusion du polymère et permet la mise en suspension des 30 particules de l'agent actif au sein de cette phase liquide saturée elle-même en fluide supercritique, laquelle suspension est ensuite détendue à pression atmosphérique avec formation de microcapsules du fait de la solidification du polymère autour des particules d'agent actif.
Il convient également de faire référence au brevet 5 américain US 5,399, 597, qui décrit un procédé de production de peinture en poudre selon lequel on réalise, dans un premier récipient agité mécaniquement, un mélange comprenant un polymère, un agent de réticulation et éventuellement d'autres composants entrant dans la 10 composition habituelle d'une peinture (pigments, charges,...) avec du dioxyde de carbone à l'état supercritique, ce mélange étant porté à une température et une pression adéquates afin que l'on obtienne, après détente partielle ou totale de ce mélange dans un second récipient maintenu à 15 une pression nettement inférieure à celle du premier, une poudre solide constituée d'un mélange intime des différents constituants solides initiaux. Ces particules sont donc d'une structure voisine de celle des micro-sphères définies ci-dessus. On notera que ce procédé utilise du dioxyde de 20 carbone à pression supercritique et que la température de mise en oeuvre du mélange dans le premier récipient est généralement voisine de celle de fusion ou de transition vitreuse du polymère.
Fondé sur un concept analogue, le brevet FR-2 811 913 25 décrit un procédé d'encapsulation de particules solides très fines, comprenant plusieurs étapes successives consistant à : a) mettre en suspension ces particules au sein d'un liquide constitué d'un agent de revêtement en contact intime avec un fluide liquide ou gazeux à une 30 pression inférieure à sa pression critique de façon à provoquer la saturation en ledit fluide de ladite suspension aux conditions de pression et de température considérées; b) pulvériser la suspension ainsi saturée en fluide à travers une buse ou un orifice afin d'obtenir des micro-capsules solides constituées d'un mélange des 5 particules initiales au sein de l'agent de revêtement qui se solidifie quasi instantanément du fait du refroidissement induit par la dépressurisation du milieu et la gazéification du fluide dissous dans la suspension; c) collecter les micro-capsules dans le flux gazeux résultant 10 de la décompression; lesquelles micro-capsules sont plus particulièrement destinées à des préparations à usage thérapeutique en pharmacie humaine ou vétérinaire, cosmétique ou phytosanitaire.
La présente invention a ainsi pour objet un procédé 15 de préparation de micro-capsules formées d'un coeur constitué d'un principe actif et d'une écorce constituée d'un excipient, caractérisé en ce qu'il comporte les étapes consistant à : - dissoudre l'excipient dans un courant d'un fluide 20 comprimé sous forme d'un gaz liquéfié ou d'un liquide subcritique à une pression et une température favorables à cette mise en solution, le principe actif étant insoluble dans ledit gaz liquéfié et l'excipient étant soluble dans celui- ci, - introduire en continu cette solution dans un récipient contenant des particules du principe actif en suspension au sein dudit fluide comprimé sous forme d'un gaz liquéfié, - maintenir le niveau du gaz liquéfié dans le récipient à une valeur constante par apport d'enthalpie, afin de vaporiser une quantité de fluide égale à celle introduite, de façon à générer une sursaturation du gaz liquéfié en excipient et provoquer sa déposition principalement sur les particules d'excipient maintenues en suspension, - récupérer les micro-capsules ainsi formées par filtration du fluide comprimé contenu dans le récipient sous pression lors de la vidange de ce dernier.
Suivant l'invention on pourra réaliser la déposition de l'excipient à une pression et à une température très 10 voisines de celles mises en oeuvre pour la dissolution de celui-ci dans le gaz liquéfié. Dans un mode de mise en oeuvre, la pression lors de la déposition pourra être substantiellement inférieure à celle adaptée pour la dissolution de l'excipient, ces deux opérations étant 15 conduites à des températures voisines.
Le fluide comprimé pourra être constitué de dioxyde de carbone, la mise en solution de l'excipient et la déposition de celui-ci sur les particules étant opérées à une pression comprise entre 1 et 8 MPa, et plus 20 favorablement entre 4 et 7 MPa, et à une température comprise entre - 40 C et 30 C, et plus favorablement entre 0 et 30 C.
Le fluide comprimé pourra également être constitué d'un hydrocarbure ayant entre 2 et 5 atomes de carbone, et 25 plus favorablement entre 2 et 4 atomes de carbone, la mise en solution de l'excipient et la déposition sur les particules étant opérées à une pression comprise entre 0,1 et 10 MPa, et plus favorablement entre 0,5 et 4 MPa, et à une température comprise entre - 10 C et 80 C, et plus 30 favorablement entre 0 et 40 C. il
Le fluide comprimé pourra enfin être constitué de diméthyl éther, la mise en solution de l'excipient et la déposition sur les particules étant opérées à une pression comprise entre 0,4 et 8 MPa, et plus favorablement entre 5 0,5 et 1 MPa, et à une température comprise entre - 10 C et 80 C, et plus favorablement entre 0 et 40 C.
Le fluide comprimé pourra être constitué d'un mélange, et notamment de dioxyde de carbone en mélange avec l'un des différents solvants constitués soit d'un 10 hydrocarbure léger comptant entre 2 et 4 atomes de carbone, un hydrocarbure halogéné et favorablement un hydrocarbure fluoré ayant un ou deux atomes de carbone, un éther et plus favorablement le diméthyl éther, la mise en solution de l'excipient et la déposition sur les particules étant 15 opérées à une pression comprise entre 1 et 20 MPa, et plus favorablement entre 4 et 7 MPa, et à une température comprise entre 40 C et 30 C, et plus favorablement entre 0 et 30 C.
Suivant l'invention le principe actif pourra être 20 constitué d'une molécule d'intérêt pharmaceutique, cosmétique ou phytosanitaire ou alimentaire. Il pourra également être constitué d'une bio-molécule d'intérêt thérapeutique en pharmacie humaine ou vétérinaire.
On pourra enfin ajouter à l'excipient un tensio-actif 25 soluble dans le fluide comprimé.
Ce procédé s'est révélé être particulièrement bien adapté à l'encapsulation de particules constituées de molécules très fragiles qui ne peuvent être portées à des températures supérieures à 35 ou 40 C, telles que les 30 protéines thérapeutiques.
La présente invention a également pour objet une installation destinée à la production de micro-capsules formées d'un coeur constitué d'un principe actif et d'une écorce constituée d'un excipient, caractérisée en ce qu'elle comprend: - une chambre d'extraction traversée par un flux d'un fluide comprimé par des moyens de compression sous forme d'un gaz liquéfié ou d'un liquide subcritique, dans lequel l'excipient se dissout, - une chambre d'encapsulation traversée par ledit fluide au sortir de la chambre d'extraction, et qui comporte des moyens d'apport d'enthalpie et dans laquelle le principe actif est en suspension dans ledit fluide, - un condenseur assurant, en sortie de la chambre 15 d'encapsulation, la condensation d'une phase gazeuse dudit fluide, - des moyens de recyclage dudit fluide avant son admission dans la chambre d'extraction.
Cette installation peut comporter une pompe annexe, 20 apte à introduire un co-solvant organique au sein du fluide solvant, et la chambre d'encapsulation peut comporter des moyens d'agitation mécanique.
On décrira ci-après, à titre d'exemple non limitatif, une forme d'exécution de la présente invention en référence 25 au dessin annexé sur lequel la figure unique est une représentation schématique d'une installation suivant l'invention.
Cette installation comprend essentiellement un extracteur 1 contenant un panier 2 au sein duquel est 30 disposé l'excipient sous forme solide, et une pompe à membrane 3 amenant un fluide comprimé sous la forme d'un gaz liquéfié ou un liquide subcritique à la pression de travail souhaitée, un échangeur/réchauffeur 4 permettant de chauffer ou refroidir le fluide à la température de travail 5 et un échangeur/condenseur 5 permettant de le condenser pour permettre son recyclage.
Dans l'extracteur 1, les particules d'excipient se dissolvent dans le gaz liquéfié et, à la sortie de celuici, le fluide est envoyé via une vanne de régulation 8 dans 10 un récipient d'encapsulation 9 contenant les particules à encapsuler qui sont maintenues en suspension dans le gaz liquéfié. Ce récipient 9 qui comporte un panier 15 est chauffé par une double-enveloppe 11 dans laquelle circule un fluide caloporteur, afin de permettre d'apporter 15 l'enthalpie requise à la régulation du niveau de gaz liquéfié au sein de ce récipient, de façon que la quantité de liquide arrivant dans celui-ci et la quantité de gaz en ressortant soient telles que le niveau de liquide dans le récipient 9 soit maintenu constant. La pression régnant 20 dans le récipient 9 est maintenue par une vanne 10 à travers laquelle s'écoule le fluide sortant qui est ensuite recyclé via l'échangeur/condenseur 5 et la pompe 3. Afin de maintenir les particules à encapsuler en suspension homogène au sein du liquide, une mise en oeuvre 25 particulièrement avantageuse consiste à agiter le contenu du récipient 9 par tout moyen adéquat, par exemple un agitateur 12 mû par un moteur électrique 13 et un système d'entraînement magnétique 14.
Dans une variante de mise en oeuvre de la présente 30 invention, on utilise une pompe annexe pour introduire un co-solvant organique permettant de modifier le pouvoir solvant et la polarité du fluide solvant. On peut faire appel à des co-solvants volatils comprenant un hydrocarbure léger ayant entre 2 et 4 atomes de carbone, un hydrocarbure halogéné et favorablement un hydrocarbure fluoré ayant un 5 ou deux atomes de carbone, ou un éther et favorablement le diméthyl éther. Dans le cas o l'on utilise un co-solvant, on choisira naturellement un co- solvant qui n'altère pas le principe actif et son activité biologique.
En fin d'opération d'encapsulation, si le fluide 10 comprimé utilisé est autre que le dioxyde de carbone ou s'il est constitué de dioxyde de carbone additionné d'un co-solvant organique, il est préférable de balayer le récipient d'encapsulation 9 avec du dioxyde de carbone pur comprimé ou de l'azote, ou tout autre gaz inerte, afin 15 d'éliminer les composés gazeux inflammables présents dans le récipient et d'évacuer les composés organiques volatils adsorbés sur les micro-capsules.
On comprend que la concentration en excipient dans le gaz liquéfié augmente régulièrement au cours du processus 20 jusqu'à atteindre la saturation au-delà de laquelle l'excipient précipite plus spécifiquement sur les particules en suspension et les encapsule.
L'apport d'enthalpie peut être effectué par différents moyens dont le plus simple consiste à doter le 25 récipient d'une double-enveloppe au sein de laquelle on fait circuler un fluide caloporteur, ou par l'installation de résistances électriques dans les parois de ce récipient.
On comprend que cet apport d'enthalpie doit être soigneusement réglé afin d'éviter soit, s'il est 30 insuffisant, l'accumulation de fluide liquéfié dans le récipient d'imprégnation ce qui entraînerait la diminution de la sursaturation en excipient et altérerait le processus de déposition, soit, s'il est trop important, la vaporisation totale du fluide et la déposition non contrôlée de l'excipient. Le contrôle de l'apport correct 5 d'enthalpie peut être facilement effectué par le contrôle du niveau du liquide au sein de ce récipient.
Les conditions de pression et de température mises en ouvre dans l'opération de dissolution de l'excipient dans le fluide comprimé peuvent être très voisines de celles 10 mises en oeuvre dans l'opération de déposition du principe actif sur les particules d'excipient, afin de permettre une régulation simple du procédé. Mais on peut également conduire la dissolution de l'excipient à une pression substantiellement supérieure à celle mise en oeuvre dans 15 l'opération de déposition, ces deux opérations étant conduites préférentiellement à des températures voisines.
Dans ce cas, on peut réguler ces deux pressions de façon indépendante et, selon une mise en oeuvre particulièrement intéressante de l'invention, utiliser la décompression du 20 fluide à son entrée dans le récipient d'encapsulation pour provoquer une forte agitation du gaz liquéfié présent dans ce récipient, ce qui est très favorable à l'homogénéisation de la suspension et corrélativement, à l'obtention de micro-capsules très reproductibles.
Le procédé selon l'invention peut aisément être mis en ouvre ainsi qu'il a été décrit, mais il peut également être mis en ouvre de façon continue, avec addition en continu d'une suspension de particules à encapsuler dans le fluide comprimé sous forme de gaz liquéfié, et soutirage en 30 continu de la suspension présente dans ce récipient, le fluide comprimé chargé en excipient y étant admis en continu ainsi qu'il a été dit ci-dessus. Les micro-capsules sont alors récupérées par filtration de la suspension prélevée à la sortie de l'autoclave d'encapsulation.
Selon une variante particulièrement intéressante de 5 l'invention, on ajoute à l'excipient un tensio-actif soluble dans le fluide comprimé qui contribuera à une meilleure qualité de l'enrobage des particules par l'excipient en facilitant l'adhésion entre ces deux composants.
On notera que, à la différence de certains procédés de l'état antérieur de la technique qui nécessitent l'utilisation d'un fluide à pression supercritique, l'utilisation de conditions de pression et de température sous-critiques pour réaliser la déposition de l'excipient 15 sur les particules de principe actif sont particulièrement favorables pour l'encapsulation de molécules très fragiles, au premier rang desquelles on citera les bio-molécules telles que les protéines ou les peptides La présente invention est particulièrement 20 intéressante en ce que, d'une part, l'encapsulation de particules de différents principes actifs ainsi réalisée est très homogène et, d'autre part, l'ensemble des opérations peut être conduite à une température voisine de la température ambiante.
On décrira ci-après deux exemples de mise en oeuvre de l'invention. Dans ces deux exemples on a fait appel à une installation telle que celle représentée de façon schématique sur la figure unique et qui a été décrite précédemment. Cette installation était constituée d'un 30 extracteur de volume intérieur 0,5 litre, la pompe à membrane 3 débitant entre 1 à 5 kg/h de gaz liquéfié à la 17 2855411 pression de travail pouvant atteindre 30 MPa.
L'échangeur/réchauffeur de chaleur 4 permettait de chauffer le fluide à une température de travail comprise entre 10 et 80 C, et l'échangeur/condenseur 5 permettait de le 5 condenser pour permettre son recyclage. Le fluide à l'état gazeux sortant de l'extracteur 1 était envoyé dans le récipient d'encapsulation 9 d'un volume de 4,5 litres muni d'un agitateur mécanique constitué une hélice effectuant 120 tours par minute sous l'action du moteur électrique 13. 10 Le récipient 9 était pourvu d'une vanne de vidange 16 et d'un panier 15, dont seul le fond était fermé par un disque en métal poreux à travers lequel percolait le fluide comprimé admis dans celui-ci.
EXEMPLE 1
On a utilisé dans cet exemple un fluide comprimé constitué de diméthyl éther liquéfié . L'excipient utilisé était un co-polymère d'acide lactique et d'acide glycolique, généralement connu sous le nom PLGA, et qui est largement utilisé dans l'industrie pharmaceutique pour 20 réaliser desformulations à libération contrôlée par voie parentérale. On a déposé initialement dans le panier 12 de l'extracteur 1 10g de poudre de PLGA. On a utilisé, en tant que principe actif, des particules de lactase d'un diamètre moyen de 18 pm, dont 5 g ont été déposés initialement dans 25 le récipient d'encapsulation 9. Le niveau de l'interface gaz-liquide dans le récipient d'encapsulation 9 a été maintenu au 2/3 de la hauteur environ par régulation de l'enthalpie apportée et ceci en jouant sur le débit d'eau chaude circulant dans la double-enveloppe 11 de ce 30 récipient et en maintenant une pression constante grâce à la vanne-déverseur 10.
18 2855411 Après 30 minutes de fonctionnement en régime établi, la pompe 3 a été stoppée, et l'extracteur 1 et le récipient 9 ont été isolés. Ce dernier a été lentement vidangé par ouverture progressive de la vanne 16, puis balayé par un 5 courant d'azote porté à une pression de 0,7 MPa et une température de 35 C, avec un débit de 4 kg/h pendant 30 minutes, sans recyclage de ce fluide qui a été entièrement rejeté à l'atmosphère à la sortie du récipient 9. Après vidange et ouverture de celui-ci, les particules ont été récupérées dans le panier.
On a constaté que ces particules étaient bien individualisées et non agglomérées. La mise en suspension dans un milieu aqueux à 37 C a révélé un " taux d'éclatement " des micro-capsules avec libération immédiate 15 du principe actif de l'ordre de 8% ce qui est remarquablement bas en comparaison avec les micro-capsules obtenues par les moyens traditionnels d'encapsulation.
La redissolution de l'excipient PLGA dans le dichlorométhane a permis d'évaluer les concentrations 20 respectives moyennes en excipient et en principe actif qui étaient de 58 et 42 % respectivement. Les activités enzymatiques de la lactase initiale et de celle présente dans les micro-capsules ont été mesurées par la méthode classiquement utilisée. La réaction mise en oeuvre était 25 l'hydrolyse de l'O-nitrophényl-galactopyranoside (ONPG) en O-nitrophénol et D-galactose, la production de 1' Onitrophénol suivie par spectrophotométrie à 420 nm. Elles se sont révélées quasiment identiques, démontrant ainsi que le procédé d'encapsulation n'a pas altéré la bio30 activité de la protéine.
EXEMPLE 2
On a fait appel à une installation identique à celle mise en oeuvre dans l'exemple 1. On a utilisé dans ce second exemple un fluide comprimé constitué de propane. 5 L'excipient utilisé était constitué de 20g d'un lipide obtenu par hydrogénation de l'huile de palme, commercialisé sous le nom de GV-60. Le principe actif était constitué de 6g de particules de trypsine d'origine bovine associée à un stabilisant, le maltose, d'un diamètre moyen de 14 pm. Le 10 niveau de l'interface gaz-liquide dans le récipient 9 a été maintenu au 2/3 de la hauteur environ par régulation du débit d'eau chaude dans la double-enveloppe 11 de ce récipient et maintien d'une pression constante grâce à la vanne-déverseur 10. Après 30 minutes de fonctionnement en 15 régime établi, la pompe de fluide 3 a été stoppée, et l'extracteur 1 et le récipient 9 ont été isolés. Ce dernier a été lentement vidangé par ouverture progressive de la vanne 16, puis balayé par un courant de dioxyde de carbone gazeux, porté à 2,0 MPa et 25 C, avec un débit de 20 4 kg/h pendant 30 minutes, sans recyclage de ce fluide qui a été entièrement rejeté à l'atmosphère à la sortie du récipient 9. Après vidange et ouverture de celui-ci, les particules ont été récupérées dans le panier 12.
On a constaté que les particules étaient bien 25 individualisées et non agglomérées. La mise en suspension dans un milieu aqueux à 37 C a révélé un " taux d'éclatement " des micro-capsules avec libération immédiate du principe actif de l'ordre de 5 % ce qui est remarquablement bas en comparaison avec les micro-capsules 30 obtenues par les moyens traditionnels d'encapsulation.
2855411 La redissolution de l'excipient lipidique dans l'hexane a permis d'évaluer les concentrations respectives moyennes en excipient et en principe actif qui sont de 48 et 52 % respectivement. Les activités enzymatiques de la 5 trypsine initiale et de celle présente dans les microcapsules ont été évaluées par la méthode classique consistant à suivre l'hydrolyse de l'ester éthylique de la N-benzoyl-L-arginine (BAEE) par spectrophotométrie à 253 nm, et se sont révélées quasiment identiques, démontrant 10 ainsi que le procédé d'encapsulation n'a pas altéré la bioactivité de la protéine.

Claims (11)

REVENDICATIONS
1. Procédé de préparation de micro-capsules formées d'un coeur constitué d'un principe actif et d'une écorce constituée d'un excipient, caractérisé en ce qu'il comporte les étapes consistant à : - dissoudre l'excipient dans un courant d'un fluide comprimé sous forme d'un gaz liquéfié ou d'un liquide subcritique à une pression et une température favorables à cette mise en solution, le principe actif étant insoluble 10 dans ledit gaz liquéfié et l'excipient étant soluble dans celui-ci, - introduire en continu cette solution dans un récipient (9) contenant des particules du principe actif en suspension au sein dudit fluide comprimé sous forme d'un 15 gaz liquéfié, - maintenir le niveau du gaz liquéfié dans le récipient (9) à une valeur constante par apport d'enthalpie afin de vaporiser une quantité de fluide égale à celle introduite, de façon à générer une sursaturation du gaz 20 liquéfié en excipient et provoquer sa déposition principalement sur les particules d'excipient maintenues en suspension, récupérer les micro-capsules ainsi formées par filtration du fluide comprimé contenu dans le récipient 25 sous pression lors de la vidange de ce dernier.
2. Procédé selon la revendication 1 caractérisé en ce que l'on réalise la déposition de l'excipient à une pression et à une température très voisines de celles mises en oeuvre pour la dissolution de celui-ci dans le gaz 30 liquéfié.
3. Procédé selon la revendication 1 caractérisé en ce que l'on réalise la déposition de l'excipient à une pression substantiellement inférieure à celle mise en oeuvre pour la dissolution de celui-ci, ces deux opérations étant conduites à des températures voisines.
4. Procédé selon la revendication 3, caractérisé en ce que qu'on fait se détendre le fluide dans lequel est dissous l'excipient dans le récipient (9) de façon à provoquer une agitation dans celui-ci.
5. Procédé selon l'une des revendications 1 à 4 caractérisé en ce que le fluide comprimé est constitué de dioxyde de carbone, la mise en solution de l'excipient et la déposition sur les particules de celui-ci étant opérée à une pression comprise entre 1 et 8 MPa, et plus 15 favorablement entre 4 et 7 MPa, et à une température comprise entre - 40 C et 30 C, et plus favorablement entre 0 et 30 C.
6. Procédé selon l'une des revendications 1 à 4
caractérisé en ce que le fluide comprimé est constitué d'un 20 hydrocarbure ayant entre 2 et 5 atomes de carbone, et plus favorablement entre 2 et 4 atomes de carbone, la mise en solution de l'excipient et la déposition sur les particules étant opérée à une pression comprise entre 0,1 et 10 MPa, et plus favorablement entre 0,5 et 4 MPa, et à une 25 température comprise entre - 10 C et 80 C, et plus favorablement entre 0 et 40 C.
7. Procédé selon l'une des revendications 1 à 4
caractérisé en ce que le fluide comprimé est constitué de diméthyl éther, la mise en solution de l'excipient et la 30 déposition sur les particules étant opérée à une pression comprise entre 0,4 et 8 MPa, et plus favorablement entre 0,5 et 1 MPa, et à une température comprise entre100 C et 80 C, et plus favorablement entre 0 et 40 C.
8. Procédé selon l'une des revendications 1 à 4
caractérisé en ce que le fluide comprimé est constitué de 5 dioxyde de carbone en mélange avec l'un des différents solvants constitués soit d'un hydrocarbure léger comptant entre 2 et 4 atomes de carbone, un hydrocarbure halogéné et favorablement un hydrocarbure fluoré ayant un ou deux atomes de carbone, un éther et plus favorablement le 10 diméthyl éther, la mise en solution de l'excipient et la déposition sur les particules étant opérée à une pression comprise entre 1 et 20 MPa, et plus favorablement entre 4 et 7 MPa, et à une température comprise entre - 40 C et 30 C, et plus favorablement entre 0 et 30 C.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le principe actif est constitué d'une molécule d'intérêt pharmaceutique, cosmétique ou phytosanitaire ou alimentaire.
10. Procédé selon l'une quelconque des revendications 20 1 à 8 caractérisé en ce que le principe actif est constitué d'une bio-molécule d'intérêt thérapeutique en pharmacie humaine ou vétérinaire.
11. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'on ajoute à l'excipient 25 un tensio-actif soluble dans le fluide comprimé.
FR0304448A 2003-04-10 2003-04-10 Procede et installation d'encapsulation de composes actifs au sein d'un excipient Expired - Fee Related FR2855411B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0304448A FR2855411B1 (fr) 2003-04-10 2003-04-10 Procede et installation d'encapsulation de composes actifs au sein d'un excipient
EP04742471A EP1610891A2 (fr) 2003-04-10 2004-04-09 PROCEDE ET INSTALLATION D’ENCAPSULATION DE COMPOSES ACTIFS AU SEIN D’UN EXCIPIENT
PCT/FR2004/000885 WO2004091769A2 (fr) 2003-04-10 2004-04-09 Procede et installation d’encapsulation de composes actifs au sein d’un excipient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0304448A FR2855411B1 (fr) 2003-04-10 2003-04-10 Procede et installation d'encapsulation de composes actifs au sein d'un excipient

Publications (2)

Publication Number Publication Date
FR2855411A1 true FR2855411A1 (fr) 2004-12-03
FR2855411B1 FR2855411B1 (fr) 2005-08-19

Family

ID=33186444

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0304448A Expired - Fee Related FR2855411B1 (fr) 2003-04-10 2003-04-10 Procede et installation d'encapsulation de composes actifs au sein d'un excipient

Country Status (3)

Country Link
EP (1) EP1610891A2 (fr)
FR (1) FR2855411B1 (fr)
WO (1) WO2004091769A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875923B (zh) * 2014-04-04 2015-08-19 王宏雁 脂肪包膜的生物酶或微生态制剂
JP2022027148A (ja) * 2020-07-31 2022-02-10 株式会社リコー 組成物、製造物、及び組成物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049407A1 (fr) * 2000-01-07 2001-07-12 Separex (Societe Anonyme) Procede de captage et d"encapsulation de fines particules
WO2002005944A1 (fr) * 2000-07-19 2002-01-24 Separex Procede d'encapsulation sous forme de micro-capsules de fines particules solides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706821A1 (fr) * 1994-10-06 1996-04-17 Centre De Microencapsulation Procédé pour l'enrobage de particules
FR2798863B1 (fr) * 1999-09-27 2001-12-28 Separex Sa Procede et installation de mise a l'etat adsorbe sur un support poreux de composes actifs contenus dans un produit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049407A1 (fr) * 2000-01-07 2001-07-12 Separex (Societe Anonyme) Procede de captage et d"encapsulation de fines particules
WO2002005944A1 (fr) * 2000-07-19 2002-01-24 Separex Procede d'encapsulation sous forme de micro-capsules de fines particules solides

Also Published As

Publication number Publication date
FR2855411B1 (fr) 2005-08-19
WO2004091769A2 (fr) 2004-10-28
EP1610891A2 (fr) 2006-01-04
WO2004091769A3 (fr) 2004-11-25

Similar Documents

Publication Publication Date Title
EP1330266B1 (fr) Procede de fabrication de tres fines particules constituees d'un principe insere dans une molecule hote
JP3839042B2 (ja) 大きさが調整された粒子を有するサルメテロールキシナフォエート
CA2462338C (fr) Traitement de poudre avec des fluides gazeux sous pression
EP1390136A1 (fr) Procede d'obtention de particules solides a partir d'au moins un produit hydrosoluble
EP1807187B1 (fr) Procede d'enrobage de poudres
FR2811913A1 (fr) Procede d'encapsulation sous forme de micro-capsules de fines particules solides
CH654207A5 (fr) Procede de preparation de formes galeniques utiles notamment en therapeutique, dietetique, cosmetique et diagnostic.
Zhong et al. Application of supercritical anti-solvent technologies for the synthesis of delivery systems of bioactive food components
EP1242153B1 (fr) Procede et dispositif de captage de fines particules par piegeage au sein d'un melange solide de type neige carbonique
FR2641188A1 (fr) Procede pour preparer des microcapsules assurant la liberation rapide d'un medicament en tant qu'ingredient actif
FR2803539A1 (fr) Procede de captage et d'encapsulation de fines particules
FR2945449A1 (fr) Procede d'impregnation par co2 supercritique
FR2830760A1 (fr) Procede de preparation d'un compose d'interaction de substances actives avec un support poreux par fluide supercritique
FR2855411A1 (fr) Procede et installation d'encapsulation de composes actifs au sein d'un excipient
EP1409102B1 (fr) Procede et installation de mise a l'etat adsorbe sur un support poreux de composes actifs contenus dans un produit
EP1239938B1 (fr) Procede et dispositif de captage de fines particules par percolation dans un lit de granules
EP2419088B1 (fr) Procédé de préparation de compositions pharmaceutiques comprenant des particules fines de substance active
KR101359581B1 (ko) 초임계 유체와 반용매를 이용한 천연 추출물의 수용성 미립자 제조 방법
FR2830761A1 (fr) Procede de preparation d'un compose d'interaction d'un derive anilide avec un support poreux par fluide supercritique
WO2003086610A2 (fr) Procede d'obtention d'une suspension stable de particules dans un liquide
EP1231902B1 (fr) Procede pour le pelliculage de comprimes
FR2838654A1 (fr) Procede d'obtention de particules solides amorphes
Bishala et al. SUPER CRITICAL FLUID TECHNOLOGY AND ITS APPLICATION IN THE PHARMACEUTICAL INDUSTRY

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20081231