FR2795363A1 - Procede et emballage a haute performance de thermo isolation - Google Patents

Procede et emballage a haute performance de thermo isolation Download PDF

Info

Publication number
FR2795363A1
FR2795363A1 FR9908420A FR9908420A FR2795363A1 FR 2795363 A1 FR2795363 A1 FR 2795363A1 FR 9908420 A FR9908420 A FR 9908420A FR 9908420 A FR9908420 A FR 9908420A FR 2795363 A1 FR2795363 A1 FR 2795363A1
Authority
FR
France
Prior art keywords
panels
bag
press
punches
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9908420A
Other languages
English (en)
Other versions
FR2795363B1 (fr
Inventor
Jean Jacques Thibault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR9908420A priority Critical patent/FR2795363B1/fr
Publication of FR2795363A1 publication Critical patent/FR2795363A1/fr
Application granted granted Critical
Publication of FR2795363B1 publication Critical patent/FR2795363B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/0004Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making inserts, e.g. partitions, for boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/0039Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads
    • B31D5/0069Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including forming or transforming three-dimensional material, e.g. corrugated webs or material of cellular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31DMAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER, NOT PROVIDED FOR IN SUBCLASSES B31B OR B31C
    • B31D5/00Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles
    • B31D5/0039Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads
    • B31D5/0073Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including pillow forming
    • B31D5/0078Multiple-step processes for making three-dimensional articles ; Making three-dimensional articles for making dunnage or cushion pads including pillow forming and filling with a material other than air or gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3823Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of different materials, e.g. laminated or foam filling between walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Packages (AREA)

Abstract

Procédé d'emballage pour le transport de produits biologiques, pharmaceutiques et alimentaires à basse température et pendant plusieurs jours.L'invention concerne la réalisation de panneaux à très faible conductivité thermique constitués de micropoudres de silice comprimées et mises sous vide peu poussé. Un ensemble de panneaux (8) contenant des micropoudres de silice est réalisable d'un seul coup de presse (3), les bords des panneaux étant biseautés à 45degre pour éviter les ponts thermiques et les jonctions (7) entre panneaux permettant le stockage à plat et le montage facile de l'emballage sans solution de continuité thermique. La presse comporte un poinçon spécial (6) et le plateau inférieur de la presse est équipé d'une sorte de moule dont les bords sont inclinés à 45degre. Pendant la compression, les panneaux sont reliés en permanence à une pompe à vide puis une thermosoudure les scelle définitivement.

Description

La présente invention concerne un procédé d'emballage pour le transport de produits biologiques, pharmaceutiques et de certains produits alimentaires sur de longues distances, problème se posant à de nombreux industriels.
De tels produits doivent être maintenus à des températures froides (généralement entre +2 et +8 C) ou fraiches (15 à 20 C) pour des durées de plusieurs jours, la température extérieure pouvant atteindre parfois 40 C ou plus. Lorsque les transports réfrigérés sont éliminés en raison du coût, des colis thermoisolés doivent être utilisés.
Ces colis sont généralement constitués d'un emballage thermoisolant en matériau cellulaire tel que polystyrène, polyuréthane ou équivalent contenant les produits à transporter ainsi que des éléments auxiliaires de stockage de froid (généralement des briquettes en plastique emplies d'eau congelée au départ). A destination, les emballages et les masses de stockage ne sont pas réutilisées en raison d'un coût logistique rédhibitoire : il s'agit donc d'un emballage perdu à utilisation unique. A titre d'exemple, pour transporter un produit de diamètre 9cm et hauteur 12,Scm à 6 C pendant 3 jours, on peut utiliser un emballage thermoisolé en polystyrène expansé extrudé ou en mousse de polyuréthane expansé de 2cm d'épaisseur avec 4 briquettes de 400g de glace chacune ou 3,5cm d'épaisseur avec 2 briquettes. De telles épaisseurs sont volumineuses et les briquettes sont lourdes et volumineuses vis-à-vis du produit à transporter. En utilisant un emballage thermoisolant à haute performance objet de l'invention, il suffit d'une épaisseur d'isolant de lem avec 2 briquettes seulement, soit une économie en volume de 2,85 litres sur un colis initial de 8,8 litres de contenance, soit un tiers en Le brevet français N 76 23899 du 5/08/1976 décrit une méthode de réalisation de panneaux thermoisolants à haute performance par compactage de poudres de silice constituées de particules primaires de très faible diamètre (5 à 10 manomètres). La conductibilité thermique k, de tels matériaux est de l'ordre de 6 milliwatt /m I C pour une pression intergranulaire de 40000 Pascal - ou 0,4 bar - . Un tel matériau est 3 à 4 fois plus performant qu'un matériau cellulaire classique. Le brevet U.S.A. N 5236758 du 17/08/1993 décrit une méthode de réalisation de panneaux thermoisolants à haute performance pour des poudres de plus forte granulométrie (3000 manomètres) et une pression intergranulaire plus basse (400 Pascal ou 0,004 bar).La caractéristique principale recherchée est le maintien des performances donc du vide poussé pendant une quinzaine d'années grâce à un matériau d'ensachage très sophistiqué.
La réalisation des dispositifs précédents s'est avérée difficile et coûteuse : en tout cas, ils n'ont été que très peu utilisés et seulement dans des applications de type haute technologie ou matériel haut de gamme (par exemple réfrigérateurs ou congélateurs dans lesquels des ,panneaux sous vide sont noyés dans les parois elles-mêmes constituées de mousse de polyuréthane expansé). Il serait hors de propos de les utiliser dans l'application qui nous concerne où le matériel est à usage unique.
Dans le cas qui nous occupe, nous avons à choisir les matériaux et le procédé de fabrication les moins onéreux et à tenir compte des conditions pratiques d'utilisation des colis telles que : livraison à plat d'emballages préimprimés aux industriels utilisateurs nécessitant le minimum de manipulations au moment d'emballer les produits à transporter, respect de l'environnement, etc... En ce qui concerne ce dernier aspect, l'utilisation de la silice comme composant principal d'un emballage jetable après réception du colis constitue un avantage écologique fondamental.
On s'aperçoit alors que la réalisation d'une caisse parallélépipédique composée de panneaux thermoisolants en micropoudres sous vide pose de sérieux problèmes pratiques : résistance mécanique aux agressions extérieures durant la transport (chocs, vibrations, contact avec objet contondant,... ), jonction et montage des six panneaux de la caisse en évitant les ponts thermiques, livraison de la caisse à plat, impression sur la face extérieure, etc ...
En analysant dans le détail les conditions pratiques d'utilisation des emballages thermoisolants pour produits biologiques, pharmaceutiques et alimentaires et en cherchant à réaliser des emballages à haute performance de thermoisolation, nous sommes parvenus à une<I>solution globale</I> originale qui peut avoir des retombées importantes dans d'autres applications telles que : glacières, réfrigérateurs, congélateurs, matériel de stockage et de transport frigorifique, matériel cryogénique.
La solution suivante est proposée 1. Les panneaux à haute performance sont placés à l'intérieur d'une caisse classique.La caisse classique peut être en polystyrène expansé extrudé, en mousse de polyuréthane ou même en carton. Cette caisse est préférentiellement livrable à plat et peut être montée en quelques secondes par une personne non qualifiée.
Cette solution présente plusieurs avantages <B>*</B>les panneaux en micropoudres sous vide sont protégés mécaniquement par la caisse extérieure. II ne sera pas indispensable de les munir d'un revêtement en plastique épais ce qui réduit le coût. # la présentation du colis (préimpression par exemple) est faite sur la caisse classique.
<B>--></B> Les panneaux thermoisolants à haute performance deviennent en quelque sorte la doublure de la caisse classique à laquelle ils confèrent de hautes performances thermiques. 2. Les panneaux sont assemblés en réduisant les ponts thermiques. Dans les conditions du 1 ci-dessus, l'assemblage des panneaux à micropoudres sous vide entre eux est beaucoup plus simple que s'ils devaient constituer la caisse extérieure. Ce dernier point mérite néanmoins beaucoup d'attention car ces nouveaux panneaux doivent être joints de manière à éviter les ponts thermiques : plus un panneau est isolant, et plus le risque de pont thermique entre panneaux est élevé. En effet, à isolation constante, la longueur d'un pont thermique de section donnée sera environ trois fois plus faible et le flux de chaleur à travers le pont trois fois plus grand. Les panneaux comporteront des bords biseautés par exemple à 45 qui seront joints deux à deux en allongeant les éventuels ponts thermiques.
Ils seront réalisés avec soin, en bridant le sachet de poudre avant mise sous vide et tassement à la presse, les brides étant droites ou à 45 selon la forme finale désirée. 3. Les panneaux sont préassemblés en fabrication.
L'assemblage de deux ou plusieurs panneaux peut encore être amélioré en réalisant directement par compression sous vide un ensemble de panneaux à partir d'un même sachet de poudre prévu au départ pour cet ensemble, pour autant que cet ensemble s'inscrive dans un rectangle. Pour cela il faut utiliser un outil de presse comportant un ou plusieurs poinçons en forme de V destinés à chasser la poudre de chaque côté au moment de la compression (avant tassement les micropoudres se comportent comme un liquide).
Les panneaux finis pourront ensuite pivoter autour de la partie inférieure de la gorge en V qui sera constituée d'une faible épaisseur de poudre tassée sous vide, par exemple de 10 à 30% de l'épaisseur totale du panneau fini.
4. Le doublage complet de la caisse extérieure est réalisé simplement en fabrication. En s'appuyant sur les éléments exposés aux 1,2, et 3, il est possible de réaliser simultanément deux sous- ensembles de 3 panneaux au moyen d'une seule presse de grande dimension ou de deux presses plus petites.
5. L'emballage thermoisolant à haute performance complet est préparé à plat avant livraison. La caisse extérieure est supposée réalisée à plat et imprimée par les moyens de fabrication classiques. Les deux sous- ensembles de panneaux à haute performance sont réalisés selon le 4. La dernière étape de fabrication consiste à fixer à plat les sous-ensembles sur les parties correspondantes de la caisse extérieure du côté opposé au côté imprimé. Cette fixation se fera préférentiellement au moyen de quelques points de colle. --) On dispose alors d'un emballage terminé pour livraison. Le client utilisateur pourra monter le colis final en quelques instants sans risque d'erreur. Les ponts thermiques sont minimisés. Le coût de production est optimisé. Les dessins annexés illustrent l'invention La figure 1 représente deux panneaux (1) et (2) accolés par deux bords biseautés. La figure 2 représente un moyen de réalisation du panneau (1) par compression d'un sachet de poudre (4) par une presse hydraulique (3) à l'aide de brides ou plaques (5) en biseau constituant une sorte de moule sur le plateau inférieur de la presse. La figure 3 représente un moyen de réalisation d'un ensemble de deux panneaux (8) par une presse (3) munie d'un poinçon (6) en partie inférieure, ledit poinçon permettant de réaliser une gorge en V (7) à la liaison des deux panneaux ; le détail A de cette gorge montre aussi le sac extérieur (9) et le sac intérieur (10) des panneaux.
La figure 4 représente deux sous-ensembles de trois panneaux (11), (12) et (13) d'une part et (14), (15) et (16) d'autre part réalisés d'un seul coup de presse et accolés à plat pour constituer un emballage complet. La figure 5 représente une caisse (17) en cours de montage et la façon dont les panneaux (11) , (14), (15) et (16) préalablement fixés sur la caisse extérieure (18) peuvent pivoter autour de leurs jonctions réalisées selon l'invention. En référence à ces dessins, une méthode de fabrication industrielle plus détaillée des panneaux thermoisolants à haute performance est décrite ci-dessous # la poudre est d'abord versée dans un sac microporeux en matériau non tissé (10) laissant passer les gaz (air, vapeur d'eau,...) mais pas la poudre. L'ouverture de ce premier sac est fermée par thermosoudure.
# le premier sac contenant la poudre est introduit dans un second sac en matériau plastique (9) étanche au vide vis-à-vis de l'air et de la vapeur d'eau. Ce sac peut être réalisé en copolyn*es polyéthylène/polyamide ou en polymères simples tels que polychlorure de vinyle ou polyesters. Des sacs de ce type sont couramment utilisés dans l'industrie agroalimentaire pour conserver, par exemple, le café moulu sous vide.
# le sac (9) est placé sous la presse hydraulique (3) munie du poinçon (6) l'ouverture dudit sac étant située à côté d'une machine à thermosouder équipée d'une pompe primaire, d'un manomètre à vide et de pipettes pouvant être introduites dans l'ouverture du sac ; des mâchoires en caoutchouc se referment et assurent l'étanchéité autour de l'ouverture du sac, lui-même autour des pipettes, pendant la mise sous vide et la compression ; quand le taux de compression et le niveau de vide sont atteints, les pipettes sont escamotées et simultanément la thermosoudure est effectuée. Une telle machine est appelée soudeuse à vide pipette par un constructeur qui la propose sur catalogue. C'est la raison pour laquelle cette machine n'a pas été représentée sur les dessins. Une variante de ce second procédé pourra aussi être utilisée : l'ouverture du sac comporte une valve à vide, ladite valve étant ouverte pendant la phase de mise sous vide et se fermant automatiquement dès que la pression remonte à l'extérieur du panneau.
# la ou les pipettes sont introduites dans l'ouverture du sac (9) et la pompe à vide évacue le sac jusqu'à atteindre une pression de l'ordre de 10000 Pascal (0,1 bar) à laquelle la presse (3) est activée et descend en comprimant la poudre jusqu'au volume final visé. Après avoir vérifié que la pression dans le sac (9) est toujours inférieure ou égale à 10000 Pascal, les pipettes sont rétractées et la thermosoudure effectuée et la fabrication de l'ensemble de deux panneaux (8) reliés par une gorge en V (7) est terminée.
# la description précédente a porté sur la fabrication de deux panneaux reliés entre eux par une gorge en V autour de laquelle ils peuvent pivoter pour l'assemblage de l'emballage objet de l'invention. Le principe d'une telle fabrication peut être aussi bien appliqué à des ensembles de trois panneaux tels que (11), (12), (13) ou (14), (15), (16) ou même à l'ensemble des six panneaux d'un emballage complet. Pour la facilité du montage de l'emballage, la pente des deux côtés de la gorge en V sera préférentiellement inclinée de 45 par rapport à la verticale.
La méthode de fabrication décrite ci-dessus est donnée à titre indicatif mais d'autres méthodes de fabrication pourront être utilisées pour autant qu'elles permettent de compacter la poudre dans le panneau thermoisolant et de réaliser simultanément le niveau de vide souhaité.
Le choix de la poudre constitutive des panneaux peut être décrit ci-dessous La nature, la granulométrie, le taux de compression de la poudre constitutive des panneaux ainsi que la valeur de la pression à l'intérieur des panneaux ont été déterminés par étude bibliographique : brevets dans le domaine public, publications, catalogues. Citons à titre d'exemple deux de ces documents # brevet N 76 23899 déjà cité.
# publication intitulée<B>:</B> Thermal properties of organic and inorganic aerogels par Lawrence W. Hrubesh et al. dans Journal of Material Research , Vo1.9, N 3, Mars 1994.
Les poudres suivantes seront préférentiellement utilisées, cette liste n'étant pas exhaustive.
Aérosil 380, Aérosil 200 de Degussa, Tixosil 33l, Tixosil 38AB de Rhodia ces poudres pouvant être utilisées seules, mélangées entre elles ou mélangées avec d'autres poudres non citées.
Le taux de compression sera préférentiellement compris entre 2 et 4.
La pression à l'intérieur des panneaux sera préférentiellement comprise entre 5000 et 50000 Pascal ou entre 0,05 et 0,5 bar. Cette gamme de pression est optimale car elle permet d'atteindre le niveau de performances visées tout en simplifiant la fabrication car aucun étuvage des poudres n'est alors nécessaire étant donné que la pression de vapeur saturante de l'eau est de 0,02 bar â 20 C : cette pression maximum n'est pas gênante dans notre cas mais n'est pas admissible dans le cas des panneaux à vide plus poussé. Les principales applications de l'invention sont # doublage de caisses imprimables utilisées pour le transport de produits biologiques, pharmaceutiques ou alimentaires.
<B>0</B> doublage de transports réfrigérés. # doublage de glacières, réfrigérateurs ou congélateurs domestiques ou professionnels.
# partie constitutive de matériel de stockage et de transport cryogéniques (pour carboglace et gaz liquéfiés).
# partie constitutive de matériel thermoisolant fonctionnant à température élevée (jusqu'à 120 C). ,

Claims (5)

REVENDICATIONS
1) Procédé d'emballage thermoisolant à très faible conductivité thermique (X compris entre 0,005 et 0,01,5 watt/m/ C) constitué de panneaux ou d'ensemble de panneaux contenant principalement des poudres de silice de très faible granulométrie (5 ranomètres à 20 micromètres) produites par pyrogénation ou par précipitation chimique, ou des aérogels de silice utilisés seuls, mélangés entre eux ou mélangés avec d'autres poudres ou aérogels, <I>caractérisé en ce qu'il</I> comprend les étapes suivantes # verser la quantité de poudre (4) nécessaire à la réalisation d'un panneau (1) dans un premier sac microporeux en matériau non tissé (10) laissant passer les gaz mais pas la poudre. # fermer ce premier sac (10) par thermosoudage. # introduire le sac (10) dans un second sac (9) étanche au vide et réalisé en copolymères ou en polymères simples , le sac (9) étant muni d'une ouverture. # placer le sac (9) sur le plateau inférieur d'une presse (3) à l'intérieur d'une sorte de moule constitué par des plaques (5) inclinées à 45 sur le plan du plateau. # raccorder l'ouverture du sac (9) à une machine à thermosouder équipée d'une pompe à vide primaire, d'un manomètre et de pipettes pouvant être introduites dans ladite ouverture. # faire le vide dans le sac (9) au moyen de la pompe primaire jusqu'à une pression comprise entre 5000 et 50000 Pascal. # comprimer le sac (9) au moyen de la presse (3), le sac (9) étant toujours relié à la pompe à vide, jusqu'à une masse volumique de poudre comprise entre 25 et 50% de la masse volumique avant compression. # remonter la presse (3) et vérifier que le niveau de vide est nominal. # rétracter les pipettes et thermosouder sous vide l'ouverture du sac (9). # coller à plat le panneau terminé sur une caisse extérieure préparée par ailleurs.
2) Procédé d'emballage selon la revendication<I>1 caractérisé en ce que</I> l'utilisation d'une presse (3) munie d'un poinçon (6) en forme de V pointe en bas produit simultanément deux panneaux adjacents (8), les deux côtés du poinçon (8) étant inclinés à 45 sur la verticale et l'empreinte (7) du poinçon (6) dans les panneaux (8) déterminant en fin de compression une épaisseur de poudre résiduelle comprise entre 10 et 30% de l'épaisseur nominale des panneaux.
3) Procédé d'emballage selon les revendications 1 et 2<I>caractérisé en ce que</I> l'utilisation d'une presse (3) munie de deux poinçons (6) parallèles en forme de V pointe en bas produit simultanément trois panneaux adjacents (11), (12) et (13), les deux poinçons (6) étant placés au-dessus des jonctions entre (11) et (12) et entre (11) et (13).
4) Procédé d'emballage selon les revendications 1 et 2<I>caractérisé en ce que</I> l'utilisation d'une presse (3) munie de cinq poinçons (6) en forme de V pointe en bas produit simultanément les six panneaux (11), (12), (13), (14), (15) et (16) constituant l'emballage complet, trois des cinq poinçons (6) étant parallèles entre eux et placés au-dessus des jonctions entre (11) et (14), entre (14) et (15) et entre (15) et (16), les deux autres poinçons (6) étant perpendiculaires aux précédents mais parallèles entre eux et placés au-dessus des jonctions entre (11) et (12) et entre (11) et (13).
5) Emballage thermoisolant à très faible conductivité thermique obtenu par la mise en aeuvre du procédé selon l'ensemble des revendications précédentes caractérisé <I>en ce</I> <I>qu'il</I> comporte au moins deux panneaux (8) reliés entre eux sans solution de continuité de matière constitutive, l'épaisseur de la jonction (7) étant comprise entre 10 et 30% de l'épaisseur nominale des panneaux (8) et les bords de la jonction (7) étant inclinés â 45 , les six autres bords libres des panneaux (8) étant biseautés à 45 .
FR9908420A 1999-06-28 1999-06-28 Procede et emballage a haute performance de thermo isolation Expired - Fee Related FR2795363B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR9908420A FR2795363B1 (fr) 1999-06-28 1999-06-28 Procede et emballage a haute performance de thermo isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9908420A FR2795363B1 (fr) 1999-06-28 1999-06-28 Procede et emballage a haute performance de thermo isolation

Publications (2)

Publication Number Publication Date
FR2795363A1 true FR2795363A1 (fr) 2000-12-29
FR2795363B1 FR2795363B1 (fr) 2001-08-17

Family

ID=9547535

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9908420A Expired - Fee Related FR2795363B1 (fr) 1999-06-28 1999-06-28 Procede et emballage a haute performance de thermo isolation

Country Status (1)

Country Link
FR (1) FR2795363B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589898A (en) * 2019-12-11 2021-06-16 Green Light Packaging Ltd Thermally insulating packaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190582A2 (fr) * 1985-02-08 1986-08-13 General Electric Company Plaques isolantes destinées à des réfrigérateurs et à des congélateurs comprenant une enveloppe remplie de silice précipitée et comprimée, ainsi que le procédé de fabrication de celles-ci.
US4681788A (en) * 1986-07-31 1987-07-21 General Electric Company Insulation formed of precipitated silica and fly ash
US5236758A (en) 1990-03-16 1993-08-17 Degussa Ag Heat insulator and method of making same
US5331789A (en) * 1993-03-23 1994-07-26 Whirlpool Corporation Vacuum processing machine and method
US5480696A (en) * 1993-07-09 1996-01-02 The United States Of America As Represented By The United States Department Of Energy Silica powders for powder evacuated thermal insulating panel and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190582A2 (fr) * 1985-02-08 1986-08-13 General Electric Company Plaques isolantes destinées à des réfrigérateurs et à des congélateurs comprenant une enveloppe remplie de silice précipitée et comprimée, ainsi que le procédé de fabrication de celles-ci.
US4681788A (en) * 1986-07-31 1987-07-21 General Electric Company Insulation formed of precipitated silica and fly ash
US5236758A (en) 1990-03-16 1993-08-17 Degussa Ag Heat insulator and method of making same
US5331789A (en) * 1993-03-23 1994-07-26 Whirlpool Corporation Vacuum processing machine and method
US5480696A (en) * 1993-07-09 1996-01-02 The United States Of America As Represented By The United States Department Of Energy Silica powders for powder evacuated thermal insulating panel and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2589898A (en) * 2019-12-11 2021-06-16 Green Light Packaging Ltd Thermally insulating packaging
WO2021116680A1 (fr) * 2019-12-11 2021-06-17 Green Light Packaging Limited Emballage thermiquement isolant

Also Published As

Publication number Publication date
FR2795363B1 (fr) 2001-08-17

Similar Documents

Publication Publication Date Title
CH673018A5 (fr)
EP1825185B1 (fr) Procédé d&#39;isolation thermique de conduites coaxiales par un matériau isolant particulaire, installation pour la mise en ouvre du dit procédé, élément de conduites coaxiales et conduite
BE1007847A3 (fr) Concept d&#39;inertage comprenant un procede, une machine, des complexes souples etanches et des valves pour l&#39;inertage de produits sensibles a l&#39;humidite ou a l&#39;oxygene.
FR2727092A1 (fr) Boite a poche interieure et poche pour une telle boite
CA2422957A1 (fr) Conteneur scelle empli d&#39;eau destine a la fabrication de glacons et conditionnement le comportant
WO2008120115A2 (fr) Procédé de remplissage d&#39;un emballage rétractable
CA2189753C (fr) Recipient pour fluide avec pression interne
FR2948342A1 (fr) Caisse isotherme se presentant sous la forme d&#39;un kit
FR2821786A1 (fr) Procede de fabrication d&#39;emballage isotherme monobloc et emballage ainsi obtenu
FR2795363A1 (fr) Procede et emballage a haute performance de thermo isolation
EP0122864A1 (fr) Procédé de conditionnement parallélépipédique et conditionnement obtenu selon ce procédé
EP0199716B1 (fr) Emballage isothermique
WO2016110747A1 (fr) Procédé de conditionnement de bitume, emballage pour bitume conditionné et utilisation de cet emballage pour le stockage et le transport de bitume
FR2815013A1 (fr) Dispositif constitue d&#39;une plaque de soudure avec menbrane souple pour conditionner sous atmosphere protectrice un produit avec l&#39;aspect du film etirable traditionnel et son procede
FR2744699A1 (fr) Sac et procede pour fabriquer un tel sac
BE1023232B1 (fr) Procédé de fabrication d&#39;une plaque diffusante en liège, paroi diffusante en liège et conteneur isotherme comprenant une telle paroi.
EP3301040B1 (fr) Dispositif d&#39;isolation thermique
FR2922151A1 (fr) Procede de mise en pression de l&#39;interieur d&#39;un contenant a paroi mince, contenant sous pression obtenu
EP2014967B1 (fr) Emballage isotherme
EP1820410A1 (fr) Procédé de traitement thermique de produit alimentaire sous emballage comprenant du papier ou du carton
FR2566740A2 (fr) Perfectionnements au procede de conditionnement parallelepipedique et conditionnement obtenu selon ce procede
FR2491889A2 (fr) Lots de fardeaux de rouleaux de materiaux compressibles et procede de preparation de tels lots
EP0918707B1 (fr) Emballage pour le transport de matieres dangereuses
FR2900136A1 (fr) Emballage isotherme
FR3050182A1 (fr) Sac isotherme permettant une ouverture de grande amplitude

Legal Events

Date Code Title Description
TP Transmission of property
ST Notification of lapse

Effective date: 20100226