FR2789593A1 - Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande - Google Patents

Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande Download PDF

Info

Publication number
FR2789593A1
FR2789593A1 FR9906515A FR9906515A FR2789593A1 FR 2789593 A1 FR2789593 A1 FR 2789593A1 FR 9906515 A FR9906515 A FR 9906515A FR 9906515 A FR9906515 A FR 9906515A FR 2789593 A1 FR2789593 A1 FR 2789593A1
Authority
FR
France
Prior art keywords
time
pressure
measured
predetermined
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9906515A
Other languages
English (en)
Other versions
FR2789593B1 (fr
Inventor
Pascal Nicolazzi
Lanoir Veronique Grillier
Hossein Nadjafizadeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mallinckrodt Developpement France SAS
Original Assignee
Mallinckrodt Developpement France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR9906515A priority Critical patent/FR2789593B1/fr
Application filed by Mallinckrodt Developpement France SAS filed Critical Mallinckrodt Developpement France SAS
Priority to EP00905108A priority patent/EP1150733A1/fr
Priority to CA002361631A priority patent/CA2361631C/fr
Priority to PCT/FR2000/000334 priority patent/WO2000047262A1/fr
Priority to JP2000598212A priority patent/JP4776077B2/ja
Priority to US09/913,237 priority patent/US6814074B1/en
Publication of FR2789593A1 publication Critical patent/FR2789593A1/fr
Priority to US10/968,403 priority patent/US7370650B2/en
Priority to US12/106,778 priority patent/US7992557B2/en
Application granted granted Critical
Publication of FR2789593B1 publication Critical patent/FR2789593B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site

Abstract

L'invention concerne des procédés de commande d'un appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil tels qu'apnées, le patient portant un masque (MVA) par lequel de l'air sous pression est fourni à ses voies aériennes supérieures par l'appareil, dans lesquels : - on mesure la pression d'air dans le masque (MVA) et le débit d'air fourni au masque (MVA);- on détermine à partir des variables mesurées, si des événements représentatifs de troubles du sommeil apparaissent ou non.

Description

L'invention concerne un procédé de commande d'un appareil de fourniture de
pression d'air à un patient souffrant de troubles du sommeil.
L'invention concerne également un appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil. Ces troubles du sommeil sont respiratoires et tendent à réveiller
intempestivement le patient.
Ce sont par exemple les apnées, les hypopnées, les vibrations acoustiques ou ronflements, la limitation du flux respiratoire dues à un resserrement des voies
aériennes supérieures du patient.
Le document US-A-5 458 137 décrit un procédé et un dispositif pour contrôler la respiration en cas de troubles du sommeil, qui utilisent des niveaux de pression
multiples et variables.
Une source de pression fournit un gaz respirable comprimé à une pression
relativement basse aux voies aériennes de l'utilisateur.
Des capteurs de pression surveillent les pressions et les convertissent en
signaux électriques.
Les signaux électriques sont filtrés et traités pour extraire des caractéristiques
spécifiques telles que la durée et des niveaux d'énergie.
Si ces caractéristiques dépassent des seuils choisis de durée et de niveau d'énergie au-delà d'une période minimum de temps, le microprocesseur indique
la présence d'un trouble respiratoire du sommeil.
Si un nombre choisi de ces événements apparaît pendant une période de
temps choisie, le microprocesseur ajuste la pression fournie par la source.
Le document US-A-5 490 502 décrit un procédé et un appareil pour optimiser la pression positive commandée afin de minimiser le débit d'air provenant d'un générateur tout en assurant que la limitation de débit dans les voies aériennes
du patient ne se produit pas.
Il y est prévu de détecter la limitation de débit en analysant une onde de débit respiratoire. Dès que la présence d'une limitation de débit a été analysée, le système détermine une action à effectuer pour l'ajustement de la pression positive commandée. La pression est augmentée, diminuée ou maintenue selon que la limitation de débit a été détectée et en fonction des actions précédentes mises en oeuvre par
le système.
Citons également les documents US-A-5 335 654, EP-A-661 071 et EP-A-651 971. L'invention vise à améliorer les procédés et dispositifs de l'état de la technique, à adapter automatiquement et continûment la pression délivrée à l'état du
patient et à prévenir et empêcher l'apparition des troubles.
Un premier objet de l'invention est un procédé de commande d'un appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil tels qu'apnees. Un deuxième objet de l'invention est un appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil tels qu'apnée, mettant en ceuvre
le procédé de fourniture.
Le patient porte un masque par lequel de l'air sous pression est fourni à ses
voies aériennes supérieures par l'appareil.
Selon l'invention, il est prévu un algorithme de commande utilisant un signal de débit de sortie de l'appareil pour la détection d'apnée, d'hypopnée, d'événements de limitation de débit, de fuites, et utilsant l'analyse d'une information de pression pour déterminer la présence d'un ronflement,
également appelé vibrations acoustiques.
La pression fournie aux voies aériennes supérieures du patient par l'appareil peut être maintenue constante, être augmentée ou diminuée en fonction de la o détermination de l'événement qui a été effectuée par l'algorithme de commande. Ainsi, si aucune respiration n'est détectée par l'algorithme de commande en un temps minimum prédéterminé dépendant d'un temps de respiration moyen
calculé, on détermine la présence d'une apnée.
Ce temps minimum prédéterminé de détection d'apnée est par exemple égal à une constante de temps, par exemple 10 s, ajoutée à un facteur de proportionnalité multiplié par le temps de respiration moyen calculé, ce facteur
étant par exemple égal à 5/8.
Pour chaque apnée, le signal de débit de sortie est amplifié et filtré pour
déterminer la présence ou l'absence d'oscillations cardiaques.
Si des oscillations cardiaques ont été détectées pendant le dernier intervalle de temps écoulé, par exemple égal à 5 s, alors l'apnée est classée comme étant
centrale et aucune commande ne se produit dans l'algorithme.
Si aucune oscillation cardiaque n'a été détectée dans cet intervalle de temps, I'apnée est classée comme étant obstructive, et la pression est augmentée d'une valeur prédéterminée une première fois et, durant la même apnée, deux
autres fois régulièrement, par exemple toutes les 15 s.
L'algorithme de commande compare des variations de débit crête à crête durant la dernière respiration du patient par rapport à un nombre prédéterminé
de respirations précédentes, par exemple égal à 8.
Après chaque respiration, on effectue une classification en: - respiration normale, si la dernière valeur de débit crête à crête est comprise dans une fourchette déterminée par rapport à la valeur moyenne sur les 8 respirations précédentes, par exemple de 40 % à 150 % ou 140 % de celles-ci; - respiration hypopnéique, si la dernière valeur de débit est en-deçà de cette plage; - respiration hyperpnéique, si la dernière valeur de débit est au-delà de cette plage. Une détermination d'hypopnée est effectuée si la détection de respiration hypopnéique s'est produite pendant au moins un temps déterminé, par exemple s, et prend fin après un nombre déterminé de respirations normales ou
hyperpnéiques, par exemple égal à 2.
Une détermination d'hypopnée conduit à une augmentation de pression déterminée, par exemple de 1 cm H20 d'abord, puis, durant la même hypopnée, à une augmentation de pression d'une autre valeur déterminée et ce régulièrement, par exemple de 0,5 cm H20 toutes les deux respirations hypopnéiques. L'algorithme de commande analyse et compare, respiration par respiration, la forme d'onde du débit respiratoire avec une forme d'onde sinusoïdale de même
période et de même pente.
Après la comparaison basée sur deux critères de forme de débit, chaque respiration est d'abord classée en tant que normale, intermédiaire ou à débit limité. Une classification finale basée sur la combinaison de la classification de flux et de l'occurrence de ronflements, change le classement des respirations de normales en intermédiaires, respectivement d'intermédiaires en respiration à
débit limité.
Il est décidé d'un traitement lorsqu'un certain nombre, par exemple 2, respirations successives à débit limité ou un certain nombre, par exemple 5, de respirations successives intermédiaires ont lieu après par exemple deux
respirations normales.
Ce traitement provoque une augmentation de pression déterminée, répétée régulièrement un certain nombre de fois, par exemple de 0,3 cm H20 trois fois
toutes les deux respirations.
Pour chaque respiration, le signal de pression est amplifié et filtré pour détecter
la présence ou l'absence de vibrations acoustiques ou ronflement.
Une détermination d'un ronflement valide est effectuée par l'algorithme de commande, si la vibration acoustique détectée s'est produite au moins pendant un certain temps, par exemple 7 % de la durée moyenne des trois dernières respirations, et avec une période inférieure à un facteur proportionnel à ce
temps moyen, par exemple 120 % de celui-ci.
Dans le cas d'un ronflement valide, I'algorithme augmente la pression d'une valeur déterminée, par exemple de 1 cm H20, si la dernière commande due à un ronflement s'est produite depuis plus d'un temps déterminé, par exemple 1 minute. On détermine une fuite moyenne comme étant égale au débit moyen durant la
respiration.
L'algorithme de commande compare continûment la fuite actuelle à une limite
de fuite, laquelle limite peut être réglée à partir de la pression.
Si la fuite actuelle dépasse la limite, on bloque toutes les commandes
d'augmentation de pression générées à la suite de détections d'événements.
Après une détection d'une apnée ou d'un événement de ronflement ou une commande en hypopnée ou une décision de traitement, I'algorithme diminuera la pression d'une valeur déterminée, par exemple de 0,5 cm H20, dans une première étape après un temps déterminé, par exemple 5 minutes, et
régulièrement pour les diminutions suivantes, par exemple toutes les minutes.
Une pression de maintien déterminée, par exemple de 8 cm H20 est fournie par l'appareil si aucune respiration n'a été détectée pendant un temps déterminé, par exemple de deux minutes, ou si la pression fournie a été supérieure ou égale à une valeur déterminée pendant un temps déterminé, par
exemple à 17 cm H20 pendant 10 ou 30 minutes.
Un avantage du procédé est une adaptation automatique des critères de
détection aux caractéristiques respiratoires du patient.
Ainsi, toute modification du rythme respiratoire est prise en compte par
l'algorithme pour effectuer la détection.
Le fait de faire intervenir une valeur moyenne de temps de cycle respiratoire sur un certain nombre de cycles respiratoires précédents a comme effet le suivi régulier des variations du cycle et d'amplitude respiratoire et une meilleure détection.
L'invention sera mieux comprise à la lecture de la description qui va suivre, faite
en référence aux figures.
La figure 1 est un schéma montrant l'appareil de fourniture de pression d'air au patient. La figure 2 représente un algorithme de prise de décision en vue d'une
première commande d'augmentation de pression.
La figure 3 représente un algorithme d'indication d'apparitions de troubles.
La figure 4 représente un algorithme de qualification de respiration.
La figure 5 représente un algorithme de détection d'apnée centrale et obstructive et de commande de pression en fonction du résultat de ces détections, ainsi qu'un algorithme de diminution de pression selon l'apparition
précédente ou non d'événements représentatifs de troubles du sommeil.
La figure 6 représente un algorithme de qualification de cycle de ventilation
normale, à hyperventilation ou à hypoventilation.
La figure 7 représente un algorithme de détection de respiration hypopnéique.
La figure 8 représente un algorithme de détection de respiration hyperpnéique.
La figure 9 représente un algorithme de détection de respiration normale.
La figure 10 représente un algorithme de détection de pression élevée.
La figure 11 représente un algorithme de détection de fuite du masque.
La figure 12 représente un algorithme de détection de vibrations acoustiques.
La figure 13 représente un algorithme de diminution de pression en cas de
détection de vibrations acoustiques.
A la figure 1, l'appareil de fourniture de pression d'air à un patient comporte une unité U centrale de traitement et de commande de pression, un module MPD commandé de fourniture de pression, un masque MVA pour les voies aériennes supérieures du patient, un conduit CF de fourniture de pression d'air
du module MPD au masque MVA.
On mesure le débit d'air fourni au patient et la pression d'air régnant dans le masque MVA, par un capteur CDAF de débit d'air fourni, relié à l'unité centrale U et par un capteur CPM de pression dans le masque MVA, relié à l'unité centrale U.
On détermine à partir des variables mesurées, si des événements représentatifs de troubles du sommeil apparaissent ou non.
Les algorithmes du procédé suivant l'invention sont mis en ceuvre par un logiciel intégré à l'unité centrale U. A la figure 2, on détermine à partir des variables mesurées si le cycle respiratoire actuel du patient correspond à un cycle respiratoire valide prédéterminé. On met dans un premier état ON d'apparition de troubles un indicateur BLN d'apparition de troubles, si l'apparition de l'un ou plusieurs des événements
représentatifs de troubles du sommeil est déterminée.
On met l'indicateur BLN dans un deuxième état OFF d'absence de troubles, si l'apparition des événements représentatifs de troubles du sommeil n'est pas
déterminée.
On compte un premier nombre CCAR de cycles respiratoires valides
déterminés depuis la dernière commande de pression.
On compte un deuxième nombre CCON de cycles respiratoires valides
déterminés depuis le dernier passage de l'indicateur BLN au premier état ON.
On compte un troisième nombre RC de passages successifs de l'indicateur
BLN du deuxième état OFF au premier état ON.
Lorsque l'indicateur BLN se trouve dans le premier état ON, on commande par la commande C1 une première augmentation déterminée de pression d'air fourni, lorsque, à la fois: À le cycle respiratoire actuel a été déterminé comme étant valide; À le premier nombre CCAR est supérieur à un premier nombre RP entier prédéterminé; a le deuxième nombre CCON correspond à un autre ou plusieurs deuxièmes nombres N entiers prédéterminés; À le troisième nombre RC est supérieur ou égal à un troisième nombre X
entier prédéterminé.
Lorsque l'indicateur BLN passe du deuxième état OFF au premier état ON, on commande par la commande C1 la première augmentation déterminée de pression d'air fourni, lorsque, seulement et à la fois À le cycle respiratoire actuel a été déterminé comme étant valide; À le premier nombre CCAR est supérieur à un premier nombre RP entier prédéterminé; À le troisième nombre RC est supérieur ou égal à un troisième nombre X
entier prédéterminé.
Dans une réalisation, les deuxièmes nombres entiers N sont compris entre 1 et
300.
Dans une autre réalisation, les deuxièmes nombres entiers N sont les trois
premiers multiples d'un entier No déterminé.
Dans une autre réalisation, les deuxièmes nombres entiers N sont
respectivement 2, 4 et 6, No étant égal à 2.
Dans une autre réalisation, le premier nombre entier RP prédéterminé est
compris entre 1 et 255.
Dans une autre réalisation, le premier nombre entier RP prédéterminé est égal
à 10.
Dans une autre réalisation, le troisième nombre entier X prédéterminé est
compris entre 1 et 100.
Dans une autre réalisation, le troisième nombre entier X prédéterminé est égal à 1. Dans une autre réalisation, la première commande C1 déterminee
d'augmentation de pression est inférieure à + 10 mbar.
Dans une autre réalisation, la première commande C1 déterminée
d'augmentation de pression est sensiblement égale à + 0,3 mbar.
On remet à 0 les premiers et troisièmes nombres CCAR; RC de cycles respiratoires valides comptés et de passages comptés, après que le deuxième nombre CCON compté de cycles valides a atteint le plus grand des deuxièmes
nombres N entiers prédéterminés.
On remet à 0 le deuxième nombre compté CCON lorsque l'indicateur BLN
passe du deuxième état OFF au premier état ON.
Le cycle respiratoire valide prédéterminé correspond à un maximum de débit respiratoire supérieur à une valeur de débit prédéterminée telle que 50 mls, à un volume inspiratoire supérieur à une valeur de volume prédéterminée telle
que 0,05 1 et à une absence de saturation lors de la détection de débit.
A la figure 3, pour donner l'état ON ou OFF à l'indicateur BLN d'apparition de troubles, Il - on initialise, lors de la mise en marche de l'appareil, une variable ER d'état à un troisième état d'absence NIR de traitement et l'indicateur BLN au
deuxième état OFF.
Puis, sequentiellement, - on qualifie, à partir des variables mesurées, les cycles respiratoires comme appartenant à différentes catégories telles que cycle à débit limité, cycle intermédiaire, cycle normal et cycle non valide, correspondant chacune respectivement à des pondérations RSV0, REV0; RSV1, REV1; RSV2, REV2
0,0;
- on affecte les pondérations de la catégorie du cycle actuellement qualifié à des premier et deuxième accumulateurs SV; EV de pondération; si le cycle qualifié appartient à la catégorie de cycle non valide, on remet la variable d'état ER au troisième état NIR et l'indicateur BLN au deuxième état
1 5 OFF et on initialise un premier compteur FLC à une valeur prédéterminée.
Si l'état de la variable d'état ER correspond au troisième état NIR À si la valeur d'un premier accumulateur SV est inférieure à une première valeur comparative, on réinitialise le compteur FLC à sa valeur prédéterminée; À si la valeur du premier accumulateur SV est sensiblement égale à sa première valeur comparative, on se dispense d'action et on passe au test suivant; À si la valeur du premier accumulateur SV est supérieure à sa première valeur comparative, on fait passer la variable d'état ER à un quatrième état PR de possibilité de traitement et on met l'indicateur BLN au
deuxième état OFF.
Si l'état de la variable ER d'état correspond au quatrième état PR et * si la valeur du premier accumulateur SV est inférieure à sa première valeur comparative, on réinitialise le premier compteur FLC à sa valeur prédéterminée, on remet la variable d'état ER et l'indicateur BLN respectivement aux troisième et deuxième états NIR; OFF; si la valeur du premier accumulateur SV est sensiblement égale à sa première valeur comparative, on se dispense d'action et on passe au test suivant; * si la valeur du premier accumulateur SV est supérieure à sa première valeur comparative, on fait prendre au premier compteur FLC sa valeur précédente additionnée de la valeur du premier accumulateur SV et si alors la valeur du premier compteur FLC est supérieure ou égale à une butée haute RMS prédéterminée: * on réinitialise un deuxième compteur NC à une valeur prédéterminée; 1o * on fait passer la variable d'état ER à un cinquième état IR de traitement; et
* on fait passer l'indicateur BLN au premier état ON.
Si l'état de la variable d'état ER correspond au cinquième état IR de traitement: * si la valeur du deuxième accumulateur EV est supérieure à une deuxième valeur comparative, on fait prendre au deuxième compteur NC sa valeur précédente additionnée de la valeur du deuxième accumulateur EV et * si alors la valeur du deuxième compteur NC est supérieure ou égale à une butée basse RME, on remet la variable d'état ER et l'indicateur BLN respectivement aux troisièmes et deuxièmes états NIR; OFF et on réinitialise les premier et deuxième compteurs FLC; NC à leurs valeurs respectives prédéterminées; * ou sinon, on fait passer l'indicateur BLN à son premier état ON si la valeur du deuxième accumulateur EV est inférieure à sa deuxième valeur comparative, on réinitialise le deuxième compteur NC à sa valeur respective prédéterminée et on fait passer l'indicateur BLN au premier état ON si la valeur du deuxième accumulateur EV est sensiblement égale à sa
deuxième valeur comparative, on se dispense d'action.
Dans une réalisation, les pondérations RSV2, REV2; RSV1, REV1; RSV0, REV0; 0,0 correspondant aux catégories de cycle normal, cycle intermédiaire, cycle à débit limité et cycle non valide, sont respectivement sensiblement égales à -1; 1; 5 et 0 pour le premier accumulateur SV et sont respectivement
sensiblement égales à 1; -1; -1 et 0 pour le deuxième accumulateur EV.
Les première et deuxième valeurs comparatives et les valeurs prédéterminées d'initialisation des premier et deuxième compteurs FLC; NC sont chacune
sensiblement égales à 0.
Les butées haute et basse RMS; RME sont respectivement sensiblement
égales à 10 et 2.
A la figure 4, on qualifie les cycles respiratoires mesurés.
Le cycle respiratoire valide prédéterminé correspond à un maximum de débit inspiratoire supérieur à une valeur de débit prédéterminée telle que 50 ml/s, à un volume inspiratoire supérieur à une valeur de volume prédéterminée telle que 0,05 I, à une absence de saturation lors de la détection de débit, à un temps inspiratoire mesuré compris dans un intervalle prédéterminé tel que de 0,5 s à 6 s et à une durée mesurée de cycles respiratoires comprise dans un
autre intervalle prédéterminé tel que de 1,5 s à 20 s.
Si le cycle respiratoire mesuré est déterminé comme étant valide, alors on calcule une courbe sinusoïdale équivalente respectant des caractéristiques prédéterminées par rapport à la courbe inspiratoire du cycle inspiratoire mesuré; - on calcule un critère de surface CS proportionnel au rapport de l'aire délimitée par la courbe inspiratoire sur l'aire délimitée par la courbe sinusoïdale équivalente, chacune étant prise sur un même intervalle de temps, compris dans la phase inspiratoire du cycle respiratoire mesuré; - on calcule un critère de corrélation CC entre la courbe inspiratoire du cycle inspiratoire mesuré et la courbe sinusoïdale équivalente; - si le critère CC de corrélation calculé est supérieur ou égal à une première limite normale prédéterminée LN, et si le critère de surface calculé CS est supérieur à une deuxième limite prédéterminée LS de surface, on qualifie le cycle respiratoire mesuré de normal et sinon, on le qualifie de cycle à débit limité. Si le cycle respiratoire mesuré a été qualifié de cycle à débit limité, * si le critère de surface CS calculé est supérieur à une troisième limite prédéterminée LE d'expert, on requalifie le cycle respiratoire mesuré de normal, ou sinon, * si le critère de surface CS calculé est supérieur à une quatrième limite prédéterminée LD de débit, on requalifie le cycle respiratoire mesuré d'intermédiaire,
* et dans le cas contraire, on le qualifie de cycle à débit limité.
La deuxième limite LS de surface, la quatrième limite LD de débit et la troisième
limite LE d'expert étant prédéterminées dans un ordre croissant.
Les caractéristiques prédéterminées de la courbe sinusoïdale équivalente à comprennent une demi-période sensiblement égale au temps inspiratoire mesuré et une pente à l'origine sensiblement égale à celle de la courbe
inspiratoire lorsqu'elle atteint sensiblement un tiers de son amplitude maximale.
Dans une réalisation, le critère de surface calculé CS est sensiblement égal à cent fois le rapport des aires prises chacune de sensiblement un quart à trois
quart de la durée de la phase inspiratoire du cycle respiratoire mesuré.
Le critère de corrélation calculé CC est sensiblement égal au maximum de cent fois les coefficients de corrélation entre la courbe inspiratoire et la courbe sinusoïdale équivalente prises respectivement sur la seconde moitié de la
phase inspiratoire et sur la totalité de celle-ci.
Les première, deuxième, quatrième et troisième limites LN; LS; LD; LE étant respectivement comprises entre 45 et 100; 0 et 100; 0 et 100; 0 et 100 et
étant par exemple sensiblement égales à 87; 40; 60 et 90 respectivement.
A la figure 5, on détecte les apnéées obstructives et les apnées centrales.
L'algorithme représenté à la figure 5 est effectué pendant chacun de plusieurs (NINT) intervalles de temps TAC(j) consécutifs prédéterminés. Les intervalles de temps TAC() consécutifs prédéterminés sont ceux compris
dans une période prédéterminée PDAC de détection d'apnée.
Dans cet algorithme, on détecte par exemple par des moyens matériels tels que filtres analogiques ou numériques les oscillations de la courbe de débit
mesurée, qui sont de fréquences comprises dans une plage P2 de fréquence.
Puis on détecte si l'amplitude des oscillations détectées de la courbe de débit mesurée passe successivement au-dessus puis au-dessous d'un premier seuil SAC prédéterminé d'apnée centrale ou si cette amplitude reste inférieure au premier seuil SAC d'apnee centrale, comme représenté schématiquement à droite de la figure 5 par: - I'allure d'une courbe de débit en apnée obstructive (courbe constamment en deçà du premier seuil SAC); - I'allure d'une courbe de débit en apnée centrale (courbe passant plusieurs
fois successivement au-dessus puis au-dessous du premier seuil SAC).
En présence d'au moins une détection d'un passage au-dessus puis au-
dessous du premier seuil SAC, on compte une détection CAC(D) d'apnée centrale. Puis, à chaque période PDAC de détection d'apnée, À on fait la somme SIG des nombres CAC(i) de détections d'apnée centrale comptées, successivement sur les (D+1) dernières périodes de détection d'apnée, À on commande C2 une deuxième augmentation prédéterminée de pression d'air délivré si la somme SIG des nombres CAC(i) de détections comptées est inférieure ou égale à un deuxième seuil SQAC prédéterminé de qualification d'apnee centrale; on commande un maintien de pression d'air délivré, si la somme SIG des nombres CAC(i) de détections comptées est supérieure au deuxième seuil
SQAC.
Dans une réalisation, le deuxième seuil SQAC de qualification d'apnée centrale
est compris entre 0 et 50, et est par exemple sensiblement égal à 10.
o0 Les intervalles de temps TAC() consécutifs prédéterminés correspondent à dix (NINT) intervalles de temps consécutifs de chacun sensiblement 100 ms, la
période PDAC de détection d'apnée correspondant sensiblement à 1 s.
La deuxième commande C2 d'augmentation de pression est comprise entre 1
et 10 mbar et est par exemple sensiblement égale à + 1 mbar.
Le nombre (D+1) de périodes PDAC de détection d'apnée, sur lesquelles on fait la somme des nombres CAC(i) comptés de détection d'apnee centrale est
sensiblement égal à 5.
La deuxième plage P2 de fréquence d'oscillations est comprise entre
sensiblement 2,5 et 47 Hz.
Les nombres CAC(i) comptés de détections d'apnee centrale sont remis à 0
lors de la mise en marche de l'appareil.
Il est également représenté à la figure 5 un algorithme de diminution de pression selon l'apparition précédente ou non d'événements représentatifs de
troubles du sommeil.
Selon cet algorithme, représenté au bas de la figure 5, on compare la pression
P mesurée à une valeur MPL prédéterminée de pression.
Après la détermination de l'apparition de l'un ou plusieurs des événements, À si la pression P mesurée est inférieure à la valeur MPL prédéterminée, on effectue une troisième commande C3 de diminution prédéterminée de pression, * si la pression P mesurée est supérieure ou égale à la valeur MPL prédéterminée, on effectue une quatrième commande C4 prédéterminée de diminution de pression, puis, si aucune apparition d'événement n'a été détectée après une ou plusieurs des commandes C3; C4 de diminution de pression, on effectue la
]0 quatrième commande C4 prédéterminée de diminution de pression.
La quatrième commande C4 de diminution de pression est telle qu'elle provoque une diminution de pression plus grande par unité de temps que celle
provoquée par la troisième commande C3.
Dans une réalisation, la quatrième commande C4 de diminution de pression est sensiblement de -0,5 mbar / 1 minute et la troisième commande C3 dediminution de pression est sensiblement de - 0,5 mbar / 5 minutes, la valeur MPL comparative de pression est comprise entre 4 et 19 mbar et est par
exemple sensiblement égale à 17 mbar.
Cet algorithme de diminution de pression en fonction de l'apparition ou non d'événements est mis en oeuvre après celui de détection d'apnees centrales et obstructives comme représenté à la figure 5 mais est également mis en oeuvre, dans des réalisations non représentées, après les autres algorithmes tels que: - celui de prise de décision de traitement, lorsque l'indicateur BLN est passé du premier état ON au deuxième état OFF; - celui de détection de respiration hypopnéique décrit ci-après;
- celui de détection de vibrations acoustiques décrit ci-après.
Aux figures 6 à 9, on qualifie les cycles respiratoires d'hyperventilés, d'hypoventilés ou de cycles à ventilation normale et on génère des commandes
de presssion en fonction des qualifications effectuées.
On calcule à chaque fin de cycle respiratoire mesuré, I'amplitude moyenne AM
sur un quatrième nombre prédéterminé Y4 de cycles respiratoires précédents.
Comme représenté à la figure 7, si l'amplitude mesurée du dernier cycle respiratoire est inférieure à l'amplitude moyenne AM calculée multipliée par un premier facteur d'hypopnee prédéterminé FHO, alors on ajoute à un compteur CTHO de temps en hypopnée la durée TC du dernier cycle respiratoire mesuré, si la valeur actuelle du compteur de temps en hypopnée CTHO est supérieure ou égale à un temps minimum d'hypopnée TMHO, on commande par une commande C5 une cinquième augmentation prédéterminée de pression, * après la fin d'un cinquième nombre prédéterminé Y5 de cycles respiratoires suivant la cinquième commande C5 d'augmentation de pression, on commande C6 une sixième augmentation prédéterminée de pression; après la fin d'un sixième nombre prédéterminé Y6 de cycles respiratoires, supérieur au cinquième nombre Y5, suivant la cinquième commande C5 d'augmentation de pression, on commande par une commande C7 une
septième augmentation de pression.
Le compteur de temps en hypopnée CTHO étant initialisé à 0 lors de la mise en
marche de l'appareil.
Dans une réalisation, le quatrième nombre déterminé Y4 de cycles respiratoires
de calcul d'amplitude moyenne est sensiblement égal à 8.
Le premier facteur prédéterminé FHO d'hypopnée est compris entre 1 et 100 %
et est par exemple sensiblement égal à 40 %.
Le temps minimum d'hypopnée TMHO est compris entre 1 s et 25 s et est par
exemple sensiblement égal à 10 s.
Les cinquième et sixième nombres prédéterminés Y5; Y6 de cycles
respiratoires sont sensiblement égaux a respectivement 2 et 4.
La cinquième augmentation C5 prédéterminée de pression est comprise entre 0,1 mbar et 10 mbar et est par exemple sensiblement égale à + 1 mbar. Les sixième et septième augmentations C6; C7 prédéterminées de pression sont chacune inférieures à la cinquième commande C5 et sont par exemple
chacune sensiblement égales à la moitié de la cinquième augmentation C5 de pression.
Comme représenté aux figures 8 et 9, si l'amplitude mesurée du dernier cycle respiratoire est supérieure ou égale à l'amplitude moyenne AM calculée multipliée par la premier facteur d'hypopnée FHO, alors on calcule le temps TCM de cycles respiratoires moyen sur un septième nombre prédéterminé Y7
de cycles précédents.
Si la durée mesurée TC du dernier cycle est supérieure à un huitième nombre prédéterminé Y8 multiplié par le temps de cycle respiratoire moyen calculé TCM, on ajoute au compteur de temps en hypopnée CTHO la durée mesurée
TC du dernier cycle, multipliée par un deuxième facteur F2 d'hypopnée.
Si l'amplitude mesurée du dernier cycle respiratoire mesuré est supérieure à un troisième facteur F3 d'hyperventilation, supérieur au premier facteur FHO d'hypopnée, multiplié par l'amplitude moyenne calculée AM, on qualifie le dernier cycle d'hyperventilé, on incrémente d'une unité un compteur de cycles hyperventilés CCH, on remet à 0 un compteur CCN de cycles à ventilation normale et si la valeur du compteur CCH de cycles hyperventilés est supérieure ou égale à un neuvième nombre prédéterminé Y9, si la durée du dernier cycle TC est supérieure ou égale au huitième nombre Y8 multiplié par le temps de cycle moyen calculé TCM, on ajoute au compteur CTHO de temps en hypopnée le deuxième facteur F2 multiplié par la durée du dernier cycle respiratoire TO, et sinon, on remet à 0 le compteur CTHO de temps en hypopnée; puis on remet à 0 un compteur CCHO de cycles hypoventilés et on calcule lI'amplitude moyenne AM de cycle respiratoire sur le nombre prédéterminé Y4
de cycles respiratoires précédents.
Si l'amplitude mesurée du dernier cycle respiratoire mesuré est inférieure ou égale au troisième facteur F3 multiplié par l'amplitude moyenne calculée AM, on qualifie le dernier cycle de cycle à ventilation normale, on remet à 0 le compteur CCH de cycles hyperventilés et on incrémente d'une unité le compteur CON de cycles à ventilation normale, et * si la valeur du compteur CCN de cycles à ventilation normale est supérieure ou égale à un dixième nombre Y10 prédéterminé, * si la durée du dernier cycle TO est supérieure ou égale au huitième nombre Y8 multiplié par le temps de cycle moyen calculé TCM, on affecte au compteur CTHO de temps en hypopnée le deuxième facteur F2 multiplié par la durée du dernier cycle TC et on remet à 0 le compteur CCN de cycle à ventilation normale, * et sinon, on remet à 0 le compteur CTHO de temps en hypopnée; puis on remet à 0 le compteur CCHO de cycles hypoventilés et on calcule l'amplitude moyenne du cycle respiratoire sur le nombre prédéterminé Y4 de
cycles respiratoires.
Dans une réalisation, le deuxième facteur F2 est sensiblement égal à 5/8.
Le troisième facteur d'hyperventilation F3 est compris entre 100 % et 200 % et
est par exemple sensiblement égal à 140 %.
Les septième, huitième, neuvième et dixième nombres prédéterminés Y7; Y8;
Y9; Y1 0 sont respectivement sensiblement égaux à 3; 2; 2; et 2.
A la figure 10, on détecte si la pression est trop élevée.
Si la pression mesurée P est inférieure à une valeur de pression haute PH
prédéterminée, on remet à 0 un compteur de temps en pression haute TPH.
Si la valeur du compteur de temps en pression haute TPH est supérieure à un temps maximum de pression haute TMPH et À si la valeur maximale de pression réglée Pmaxi est inférieure à une valeur de pression de sécurité PSEC prédéterminée, on commande la pression P à cette valeur maximale de pression réglée Pmaxi; o si la valeur minimale de pression réglée Pmini est supérieure à une valeur de pression de sécurité PSEC prédéterminée, on commande la pression P à cette valeur minimale de pression réglée Pmini; À si les deux précédentes conditions ne sont pas réalisées, on commande la pression P à la valeur de pression de sécurité PSEC, puis
on remet à 0 le compteur de temps en pression haute TPH.
Dans une réalisation, la valeur de pression haute PH est comprise entre 10
mbar et 25 mbar et est par exemple sensiblement égale à 17 mbar.
Le temps maximum de pression haute TMPH est compris entre 1 et 100
minutes et est par exemple sensiblement égal à 10 minutes ou 30 minutes.
La valeur de pression de sécurité PSEC est sensiblement égale à 8 mbar.
A la figure 11, on mesure une fuite d'air, sensiblement égale au débit moyen
pendant la respiration du patient.
Si la fuite mesurée d'air est supérieure à un niveau prédéterminé de fuite NFM,
* on invalide les commandes d'augmentation de pression.
Dans une réalisation, NFM = A x Pfiltrée + B. Selon cette formule, le niveau prédéterminé de fuite NFM est sensiblement égal à un coefficient A de fuite multiplié par une pression d'air filtrée dans le masque, ajouté à un coefficient B additif de fuite, le coefficient A de fuite étant compris entre 0 et 10 I/minute.mbar et étant par exemple sensiblement égal à 2,5 I/minute.mbar. Le coefficient B additif de fuite est compris entre 0 et 100 I/mn et est par
exemple sensiblement égal à 50 I/mn.
A la figure 12, on détecte si la courbe de pression mesurée présente des oscillations, telles que de vibrations acoustiques, comprises dans une plage P1
de fréquence.
Cette détection est effectuée par exemple par des moyens matériels tels que
filtres analogiques ou numériques.
On mesure le temps RF1 de présence d'oscillations détectées entre deux absences successives d'oscillations détectées et leitemps RF0 d'absence d'oscillations détectées entre deux présences successives d'oscillations détectées; Si la somme des temps mesurés d'absence et de présence d'oscillations détectées RF0; RF1 est comprise dans une plage temporelle prescrite BIP BSP. Si le temps de présence d'oscillations RF1 mesuré est supérieur ou égal à un temps minimum d'oscillations TMRH et si la valeur d'un compteur CTAR de temps écoulé depuis l'avant-dernière fois que les conditions temporelles précédentes ont été réalisées, est supérieure à un temps d'attente prescrit TAR, on commande C8 une huitième augmentation prédéterminée de pression
et on remet le compteur de temps écoulé CTAR à 0.
Les algorithmes de détection de vibrations acoustiques et de commande en cas de vibrations acoustiques sont mis en ceuvre à intervalles de temps prescrits,
notamment régulièrement et par exemple toutes les 1 00ms.
Au début de l'algorithme de détection de vibrations acoustiques représenté à la figure 12, si la valeur du compteur CTAR de temps écoulé est inférieure au temps d'attente prescrit TAR, on incrémente ( INC CTAR) ce compteur de
l'intervalle de temps prescrit mentionné ci-dessus.
Si la somme des temps mesurés de présence et d'absence d'oscillations détectées RFO; RF1 est en deçà de la plage temporelle prescrite BIP; BSP ou si le temps de présence mesuré d'oscillations détectées RF1 est inférieur au temps minimum d'oscillations TMRH, * on remplace le temps mesuré RFO d'absence d'oscillations détectées par la somme des temps mesurés d'absence et de présence d'oscillations détectées RFO; RF1, puis
: on remet à O le temps mesuré de présence d'oscillations détectées RF1.
Si la somme des temps mesurés d'absence et de présence d'oscillations détectées RFO; RF1 est au-delà de la plage temporelle prédéterminée BIP; BSP ou d'un temps maximal prédéterminé TCMax, on remet à O chacun des
temps mesurés d'absence et de présence d'oscillations détectées RFO; RF1.
Si les deux conditions mentionnées ci-dessus sur la somme des temps de présence et d'absence RF1, RFO et sur le temps de présence RF1 ne sont pas réalisées, on remet à O chacun des temps mesurés d'absence et de présence
d'oscillations détectées RFO; RF1.
Dans une réalisation, le temps maximal prédéterminé TCMax est sensiblement égal à deux fois le temps TCM de cycle respiratoire moyen sur les trois derniers
cycles mesurés.
La plage temporelle prescrite BIP; BSP est sensiblement comprise entre 10 %
et 120 % du temps de cycle moyen calculé TCM.
Le temps minimum d'oscillation TMRH est sensiblement égal à 7 % du temps de cycle moyen calculé TCM. Le temps d'attente prescrit TAR est compris entre 1 et 30 minutes et est par
exemple sensiblement égal à 1 minute.
o0 La huitième commande C8 d'augmentation de pression est comprise entre 0,1
mbar et 10 mbar et est par exemple sensiblement égale à 1 mbar.
La plage P1 de fréquence de détection d'oscillations est comprise entre
sensiblement 30 et 300 Hz.
On mémorise la chronologie des événements détectés et on relève, par
exemple après une nuit, la chronologie mémorisée.
A cet effet, I'unité centrale U de l'appareil comporte une mémoire non représentée pouvant être écrite et lue avec la chronologie des évènements détectés. Cette chronologie peut être visualisée par exemple sur un moniteur en lisant le
contenu de la mémoire, par l'intermédiaire d'un ordinateur non représenté.

Claims (17)

REVENDICATIONS
1. Procédé de commande d'un appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil tels qu'apnée, le patient portant un masque par lequel de l'air sous pression est fourni à ses voies aériennes supérieures par l'appareil, dans lequel: - on mesure la pression d'air dans le masque et le débit d'air fourni au masque; - on détermine à partir des variables mesurées si des événements représentatifs de troubles du sommeil apparaissent ou non, caractérisé en ce que - on compare la pression (P) mesurée à une valeur (MPL) prédéterminée de pression; - après la détermination de l'apparition de l'un ou plusieurs des événements, si la pression (P) mesurée est inférieure à la valeur (MPL) prédéterminée, on effectue une troisième commande (C3) de diminution prédéterminée de pression, si la pression (P) mesurée est supérieure ou égale à la valeur (MPL) prédéterminée, on effectue une quatrième commande (C4) prédéterminée de diminution de pression, * puis, si aucune apparition d'événement n'a été détectée après une ou plusieurs des commandes (C3; C4) de diminution de pression, on effectue
la quatrième commande (C4) prédéterminée de diminution de pression.
2. Procédé selon la revendication 1, caractérisé en ce que la quatrième commande (C4) de diminution de pression est telle qu'elle provoque une diminution de pression plus grande par unité de temps que celle provoquée par
la troisième commande (C3).
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en
ce que la quatrième commande (C4) de diminution de pression est sensiblement de -0,5 mbar / 1 minute et la troisième commande (C3) de diminution de pression est sensiblement de - 0,5 mbar / 5 minutes, la valeur (MPL) comparative de pression est comprise entre 4 et 19 mbar et est par
exemple sensiblement égale à 17 mbar.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce
que: - on calcule à chaque fin de cycle respiratoire mesuré, I'amplitude moyenne (AM) sur un quatrième nombre prédéterminé (Y4) de cycles respiratoires précédents, - si l'amplitude mesurée du dernier cycle respiratoire est inférieure à l'amplitude io moyenne (AM) calculée multipliée par un premier facteur d'hypopnee prédéterminé (FHO), alors on ajoute à un compteur (CTHO) de temps en hypopnée la durée (TC) du dernier cycle respiratoire mesure, ò si la valeur actuelle du compteur de temps en hypopnee (CTHO) est supérieure ou égale à un temps minimum d'hypopnée (TMHO), on commande (C5) une cinquième augmentation prédéterminée de pression, après la fin d'un cinquième nombre prédéterminé (Y5) de cycles respiratoires suivant la cinquième commande (C5) d'augmentation de pression, on commande (C6) une sixième augmentation prédéterminée de pression;
20. après la fin d'un sixième nombre prédéterminé (Y6) de cycles respiratoires, supérieur au cinquième nombre (Y5), suivant la cinquième commande (C5) d'augmentation de pression, on commande (C7) une septième augmentation de pression, - le compteur de temps en hypopnée (CTHO) étant initialisé à 0 lors de la mise
en marche de l'appareil.
5. Procédé selon la revendication 4, caractérisé en ce que: - le quatrième nombre déterminé (Y4) de cycles respiratoires de calcul d'amplitude moyenne est sensiblement égal à 8, le premier facteur prédéterminé (FHO) d'hypopnee est compris entre 1 et 100 % et est par exemple sensiblement égal à 40 %, le temps minimum d'hypopnée (TMHO) est compris entre 1 s et 25 s et est par exemple sensiblement égal à 10 s, les cinquième et sixième nombres prédéterminés (Y5; Y6) de cycles respiratoires sont sensiblement égaux à respectivement 2 et 4, la cinquième augmentation (05) prédéterminée de pression est comprise entre 0,1 mbar et 10 mbar et est par exemple sensiblement égale à + 1 mbar, les sixième et septième augmentations (C6; C7) prédéterminées de pression étant chacune inférieures à la cinquième commande (05) et étant par exemple chacune sensiblement égales à la moitié de la cinquième augmentation (C5) de pression.
6. Procédé selon la revendication 5, caractérisé en ce que: - si l'amplitude mesurée du dernier cycle respiratoire est supérieure ou égale à l'amplitude moyenne (AM) calculée multipliée par la premier facteur d'hypopnée (FHO), alors on calcule le temps (TOM) de cycles respiratoires moyen sur un septième nombre prédéterminé (Y7) de cycles précédents; * si la duree mesurée (TC) du dernier cycle est supérieure à un huitième nombre prédéterminé (Y8) multiplié par le temps de cycle respiratoire moyen calculé (TCM), on ajoute au compteur de temps en hypopnée (CTHO) la durée (TC) mesurée du dernier cycle, multipliee par un deuxième facteur (F2) d'hypopnée, * si l'amplitude mesurée du dernier cycle respiratoire mesuré est supérieure à un troisième facteur (F3) d'hyperventilation, supérieur au premier facteur (FHO) d'hypopnée, multiplié par l'amplitude moyenne calculée (AM), on qualifie le dernier cycle d'hyperventilé, on incrémente d'une unité un compteur de cycles hyperventilés (CCH), on remet à 0 un compteur (CCN) de cycles à ventilation normale et si la valeur du compteur (CCH) de cycles hyperventilés est supérieure ou égale à un neuvième nombre prédéterminé (Y9), * si la durée du dernier cycle (TC) est supérieure ou égale au huitième nombre (Y8) multiplié par le temps de cycle moyen calculé (TCM), on ajoute au compteur (CTHO) de temps en hypopnée le deuxième facteur (F2) multiplié par la durée du dernier cycle respiratoire (TC), * et sinon, on remet à 0 le compteur (CTHO) de temps en hypopnée; puis on remet à 0 un compteur (CCHO) de cycles hypoventilés et on calcule l'amplitude moyenne (AM) de cycle respiratoire sur le nombre prédéterminé (Y4) de cycles respiratoires précédents, si l'amplitude mesurée du dernier cycle respiratoire mesuré est inférieure ou égale au troisième facteur (F3) multiplié par l'amplitude moyenne calculée (AM), on qualifie le dernier cycle de cycle à ventilation normale, on remet à 0' le compteur (CCH) de cycles hyperventilés et on incrémente d'une unité le compteur (CCN) de cycles à ventilation normale, et si la valeur du compteur (CCN) de cycles à ventilation normale est supérieure ou égale à un dixième nombre (Y10) prédéterminé, * si la durée du dernier cycle (TC) est supérieure ou égale au huitième nombre (Y8) multiplié par le temps de cycle moyen calculé (TCM), on affecte au compteur (CTHO) de temps en hypopnée le deuxième facteur (F2) multiplié par la durée du dernier cycle (TC) et on remet à 0 le compteur (CCN) de cycle à ventilation normale, * et sinon, on remet à 0 le compteur (CTHO) de temps en hypopnée; puis on remet à 0 le compteur (CCHO) de cycles hypoventilés et on calcule l'amplitude moyenne du cycle respiratoire sur le nombre prédéterminé (Y4) de
cycles respiratoires.
7. Procédé selon la revendication 6, caractérisé en ce que le deuxième facteur (F2) est sensiblement égal à 5/8, le troisième facteur d'hyperventilation (F3) est compris entre 100 % et 200 % et est par exemple sensiblement égal à 140 %, les septième, huitième, neuvième et dixième nombres prédéterminés (Y7; Y8;
Y9; Y10) sont respectivement sensiblement égaux à 3; 2; 2; et 2.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce
que: - si la pression mesurée (P) est inférieure à une valeur de pression haute (PH) prédéterminée, on remet à 0 un compteur de temps en pression haute (TPH); - si la valeur du compteur de temps en pression haute (TPH) est supérieure à un temps maximum de pression haute (TMPH) et * si la valeur maximale de pression réglée (Pmaxi) est inférieure à une valeur de pression de sécurité (PSEC) prédéterminee, on commande la pression (P) à cette valeur maximale de pression réglée (Pmaxi); À si la valeur minimale de pression réglée (Pmini) est supérieure à une valeur de pression de sécurité (PSEC) prédéterminée, on commande la pression (P) à cette valeur minimale de pression réglée (Pmini); À si les deux précédentes conditions ne sont pas réalisées, on commande la pression (P) à la valeur de pression de sécurité (PSEC) puis
* on remet à 0 le compteur de temps en pression haute (TPH).
9. Procédé selon la revendication 8, caractérisé en ce que la valeur de pression haute (PH) est comprise entre 10 mbar et 25 mbar et est par exemple sensiblement égale à 17 mbar, le temps maximum de pression haute (TMPH) est compris entre 1 et 100 minutes et est par exemple sensiblement égal à 10 minutes ou 30 minutes,
la valeur de pression de sécurité (PSEC) est sensiblement égale à 8 mbar.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce
que: on mesure une fuite d'air, sensiblement égale au débit moyen pendant la respiration du patient, - si la fuite mesurée d'air est supérieure à un niveau prédéterminé de fuite
(NFM), on invalide les commandes d'augmentation de pression.
11. Procédé selon la revendication 10, caractérisé en ce que le niveau prédéterminé de fuite (NFM) est sensiblement égal à un coefficient (A) de fuite multiplié par une pression d'air filtrée dans le masque, ajouté à un coefficient (B) additif de fuite, le coefficient (A) de fuite étant compris entre 0 et 10 I/minute.mbar et étant par exemple sensiblement égal à 2,5 I/minute.mbar, et le coefficient (B) additif de fuite est compris entre 0 et 100 I/mn et est par
exemple sensiblement égal à 50 I/mn.
12. Procédé selon l'une quelconque des revendications 1 à 11, caractérisé en
ce que: - on détecte si la courbe de pression mesurée présente des oscillations, telles que de vibrations acoustiques, comprises dans une plage (P1) de fréquence, - on mesure le temps (RF1) de présence d'oscillations détectées entre deux absences successives d'oscillations détectées et le temps (RFO) d'absence d'oscillations détectées entre deux présences successives d'oscillations détectées; - si la somme des temps mesurés d'absence et de présence d'oscillations détectées (RFO; RF1) est comprise dans une plage temporelle prescrite (BIP; BSP), - si le temps de présence d'oscillations (RF1) mesuré est supérieur ou égal à un temps minimum d'oscillations (TMRH) et - si la valeur d'un compteur (CTAR) de temps écoulé depuis l'avant-dernière fois que les conditions temporelles précédentes ont été réalisées, est supérieure à un temps d'attente prescrit (TAR), on commande (C8) une huitième augmentation prédéterminée de pression et on remet le compteur de
temps écoulé (CTAR) à 0.
13. Procédé suivant la revendication 12, caractérisé en ce que: - si la somme des temps mesurés de présence et d'absence d'oscillations détectées (RFO; RF1) est en deçà de la plage temporelle prescrite (BIP; BSP) ou si le temps de présence mesuré d'oscillations détectées (RF1) est inférieur au temps minimum d'oscillations (TMRH), * on remplace le temps mesuré (RFO) d'absence d'oscillations détectées par la somme des temps mesurés d'absence et de présence d'oscillations détectées (RFO; RF1), puis * on remet à O le temps mesuré de présence d'oscillations détectées (RF1), et si la somme des temps mesurés d'absence et de présence d'oscillations détectées (RFO; RF1) est au-delà de la plage temporelle prédéterminée (BIP; BSP) ou d'un temps maximal prédéterminé (TCMax), on remet à O chacun des temps mesurés d'absence et de présence d'oscillations détectées (RFO; RF1); et sinon - on remet à 0 chacun des temps mesurés d'absence et de présence
d'oscillations détectées (RF0; RF1).
14. Procédé selon l'une quelconque des revendications 12 et 13, caractérisé en
ce que: le temps maximal prédéterminé est sensiblement égal à deux fois le temps (TCM) de cycle respiratoire moyen sur les trois derniers cycles mesurés; - la plage temporelle prescrite (BIP; BSP) est sensiblement comprise entre 10 % et 120 % du temps de cycle moyen calculé (TCM); o - le temps minimum d'oscillation (TMRH) est sensiblement égal à 7 % du temps de cycle moyen calculé (TCM); - le temps d'attente prescrit (TAR) est compris entre 1 et 30 minutes et est par exemple sensiblement égal à 1 minute; la huitième commande (C8) d'augmentation de pression est comprise entre 0,1 mbar et 10 mbar et est par exemple sensiblement égale à 1 mbar; - la plage (P1) de fréquence de détection d'oscillations est comprise entre
sensiblement 30 et 300 Hz.
15. Procédé suivant l'une quelconque des revendications 1 à 14, caractérisé en
ce que l'on mémorise la chronologie des événements détectés et on relève, par
exemple après une nuit, la chronologie mémorisée.
16. Appareil de fourniture de pression d'air à un patient souffrant de troubles du sommeil tels qu'apnée, mettant en oeuvre un procédé selon l'une quelconque
des revendications 1 à 15, caractérisé en ce qu'il comporte une unité (U)
centrale de traitement et de commande de pression, un module (MPD) commandé de fourniture de pression, un masque (MVA) pour voies aériennes supérieures du patient, un conduit (CF) de fourniture de pression d'air du module (MPD) au masque (MVA), un capteur (CDAF) de débit d'air fourni, relié à l'unité centrale (U) et un capteur (CPM) de pression dans le masque (MVA),
relié à l'unité centrale (U).
17. Appareil selon la revendication 16, caractérisé en ce qu'il comporte une mémoire de la chronologie des événements détectés, dont le contenu est apte
à être relevé, par exemple après une nuit.
FR9906515A 1999-02-12 1999-05-21 Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande Expired - Fee Related FR2789593B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FR9906515A FR2789593B1 (fr) 1999-05-21 1999-05-21 Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
CA002361631A CA2361631C (fr) 1999-02-12 2000-02-10 Dispositif d'alimentation en gaz pour apnees du sommeil
PCT/FR2000/000334 WO2000047262A1 (fr) 1999-02-12 2000-02-10 Dispositif d'alimentation en gaz pour apnees du sommeil
JP2000598212A JP4776077B2 (ja) 1999-02-12 2000-02-10 睡眠中の無呼吸のためのガス供給装置
EP00905108A EP1150733A1 (fr) 1999-02-12 2000-02-10 Dispositif d'alimentation en gaz pour apnees du sommeil
US09/913,237 US6814074B1 (en) 1999-02-12 2000-02-10 Gas supply for sleep apnea
US10/968,403 US7370650B2 (en) 1999-05-21 2004-10-18 Gas supply device for sleep apnea
US12/106,778 US7992557B2 (en) 1999-02-12 2008-04-21 Gas supply device for sleep apnea

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9906515A FR2789593B1 (fr) 1999-05-21 1999-05-21 Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande

Publications (2)

Publication Number Publication Date
FR2789593A1 true FR2789593A1 (fr) 2000-08-18
FR2789593B1 FR2789593B1 (fr) 2008-08-22

Family

ID=9545899

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9906515A Expired - Fee Related FR2789593B1 (fr) 1999-02-12 1999-05-21 Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande

Country Status (6)

Country Link
US (3) US6814074B1 (fr)
EP (1) EP1150733A1 (fr)
JP (1) JP4776077B2 (fr)
CA (1) CA2361631C (fr)
FR (1) FR2789593B1 (fr)
WO (1) WO2000047262A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992557B2 (en) 1999-02-12 2011-08-09 Covidien Ag Gas supply device for sleep apnea

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490502A (en) * 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US7758503B2 (en) 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
US20050062609A9 (en) * 1992-08-19 2005-03-24 Lynn Lawrence A. Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
US6866040B1 (en) 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
US6463930B2 (en) * 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US9468378B2 (en) 1997-01-27 2016-10-18 Lawrence A. Lynn Airway instability detection system and method
US20060155207A1 (en) * 1997-01-27 2006-07-13 Lynn Lawrence A System and method for detection of incomplete reciprocation
US8932227B2 (en) 2000-07-28 2015-01-13 Lawrence A. Lynn System and method for CO2 and oximetry integration
US9042952B2 (en) 1997-01-27 2015-05-26 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US5915379A (en) 1997-03-14 1999-06-29 Nellcor Puritan Bennett Incorporated Graphic user interface for a patient ventilator
US9521971B2 (en) 1997-07-14 2016-12-20 Lawrence A. Lynn System and method for automatic detection of a plurality of SPO2 time series pattern types
US20070191697A1 (en) 2006-02-10 2007-08-16 Lynn Lawrence A System and method for SPO2 instability detection and quantification
US20090281838A1 (en) 2008-05-07 2009-11-12 Lawrence A. Lynn Medical failure pattern search engine
US20060195041A1 (en) 2002-05-17 2006-08-31 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US9053222B2 (en) 2002-05-17 2015-06-09 Lawrence A. Lynn Patient safety processor
US7938114B2 (en) * 2001-10-12 2011-05-10 Ric Investments Llc Auto-titration bi-level pressure support system and method of using same
US7168429B2 (en) * 2001-10-12 2007-01-30 Ric Investments, Llc Auto-titration pressure support system and method of using same
DE10248590B4 (de) * 2002-10-17 2016-10-27 Resmed R&D Germany Gmbh Verfahren und Vorrichtung zur Durchführung einer signalverarbeitenden Betrachtung eines mit der Atmungstätigkeit einer Person im Zusammenhang stehenden Messsignales
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
FR2858236B1 (fr) 2003-07-29 2006-04-28 Airox Dispositif et procede de fourniture de gaz respiratoire en pression ou en volume
JP2007506480A (ja) 2003-08-18 2007-03-22 ワンドカ,アンソニー・ディ 鼻用インターフェイスによる非侵襲的換気のための方法と器具
US8925545B2 (en) 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
US7913691B2 (en) * 2004-02-11 2011-03-29 Resmed Limited Session-by-session adjustments of a device for treating sleep disordered breathing
FR2875138B1 (fr) 2004-09-15 2008-07-11 Mallinckrodt Dev France Sa Procede de regulation pour un humidificateur chauffant
CN101454041B (zh) 2005-09-20 2012-12-12 呼吸科技公司 对患者进行呼吸支持的系统、方法和装置
US7706852B2 (en) 2006-01-30 2010-04-27 Nellcor Puritan Bennett Llc System and method for detection of unstable oxygen saturation
US7668579B2 (en) 2006-02-10 2010-02-23 Lynn Lawrence A System and method for the detection of physiologic response to stimulation
US7725195B2 (en) * 2006-02-16 2010-05-25 Imthera Medical, Inc. RFID-based apparatus, system, and method for therapeutic treatment of obstructive sleep apnea
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
EP2023987B1 (fr) 2006-05-18 2016-11-09 Breathe Technologies, Inc. Espaceur de trachéostome
EP2068992B1 (fr) 2006-08-03 2016-10-05 Breathe Technologies, Inc. Dispositifs de support respiratoire peu invasif
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8902568B2 (en) 2006-09-27 2014-12-02 Covidien Lp Power supply interface system for a breathing assistance system
FR2906474B3 (fr) * 2006-09-29 2009-01-09 Nellcor Puritan Bennett Incorp Systeme et procede de commande d'une therapie respiratoire sur la base d'evenements respiratoires detectes
US20080078390A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Providing predetermined groups of trending parameters for display in a breathing assistance system
FR2906450B3 (fr) 2006-09-29 2009-04-24 Nellcor Puritan Bennett Incorp Systeme et procede de detection d'evenements respiratoires
DE102007020038A1 (de) * 2007-04-27 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nachweis einer Apnoe mit blutdruckabhängig erfassten Signalen
WO2008144589A1 (fr) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Procédés et dispositifs pour détecter la respiration et fournir une thérapie de ventilation
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
CA2697822A1 (fr) 2007-10-09 2009-04-16 Imthera Medical, Inc. Appareil, systeme et procede de stimulation selective
US8275553B2 (en) 2008-02-19 2012-09-25 Nellcor Puritan Bennett Llc System and method for evaluating physiological parameter data
US20090205663A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Configuring the operation of an alternating pressure ventilation mode
US20090205661A1 (en) * 2008-02-20 2009-08-20 Nellcor Puritan Bennett Llc Systems and methods for extended volume range ventilation
US8365730B2 (en) 2008-03-24 2013-02-05 Covidien Lp Method and system for classification of photo-plethysmographically detected respiratory effort
US8640700B2 (en) 2008-03-27 2014-02-04 Covidien Lp Method for selecting target settings in a medical device
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
EP2313138B1 (fr) 2008-03-31 2018-09-12 Covidien LP Système et procédé pour déterminer une fuite de système de ventilation pendant des périodes stables lors d'une respiration
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US8272380B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated pressure triggering in medical ventilators
US8425428B2 (en) 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
US8792949B2 (en) 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
WO2009151791A2 (fr) 2008-04-18 2009-12-17 Breathe Technologies, Inc. Procédés et dispositifs pour détecter la respiration et réguler des fonctions respiratoires
US8251876B2 (en) 2008-04-22 2012-08-28 Hill-Rom Services, Inc. Breathing exercise apparatus
US8826907B2 (en) 2008-06-06 2014-09-09 Covidien Lp Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
CN102196837B (zh) 2008-08-22 2015-09-09 呼吸科技公司 利用开放的气道界面提供机械通气的方法和装置
US8528554B2 (en) 2008-09-04 2013-09-10 Covidien Lp Inverse sawtooth pressure wave train purging in medical ventilators
US8398555B2 (en) 2008-09-10 2013-03-19 Covidien Lp System and method for detecting ventilatory instability
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
EP2349420B1 (fr) 2008-09-25 2016-08-31 Covidien LP Compensation par action directe à base d'inversion d'une dynamique de déclencheur inspiratoire dans des ventilateurs médicaux
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8585412B2 (en) 2008-09-30 2013-11-19 Covidien Lp Configurable respiratory muscle pressure generator
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8439032B2 (en) 2008-09-30 2013-05-14 Covidien Lp Wireless communications for a breathing assistance system
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
CA2739435A1 (fr) 2008-10-01 2010-04-08 Breathe Technologies, Inc. Ventilateur avec surveillance et commande a retraction biologique pour l'amelioration de l'activite et de la sante d'un patient
BRPI0920548B8 (pt) 2008-10-09 2021-06-22 Imthera Medical Inc aparelho para controlar posição da língua de um paciente
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US9186075B2 (en) * 2009-03-24 2015-11-17 Covidien Lp Indicating the accuracy of a physiological parameter
JP5758875B2 (ja) 2009-04-02 2015-08-05 ブリーズ・テクノロジーズ・インコーポレーテッド 非侵襲性換気システム
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US8776790B2 (en) 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US20110023878A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver
US8789529B2 (en) 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
WO2011029074A1 (fr) 2009-09-03 2011-03-10 Breathe Technologies, Inc. Procédés, systèmes et dispositifs de ventilation non invasive comprenant une interface de ventilation non étanche avec orifice d'entraînement et/ou élément de pression
WO2011059531A1 (fr) 2009-11-10 2011-05-19 Imthera Medical, Inc. Système de stimulation d'un nerf hypoglosse pour commande de la position de la langue d'un patient
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434481B2 (en) 2009-12-03 2013-05-07 Covidien Lp Ventilator respiratory gas accumulator with dip tube
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US9814851B2 (en) 2009-12-04 2017-11-14 Covidien Lp Alarm indication system
US20110132369A1 (en) 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Ventilation System With System Status Display
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110146683A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Sensor Model
US20110146681A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US20110209702A1 (en) * 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US10328219B2 (en) * 2010-07-30 2019-06-25 RedMed Pty Ltd Methods and devices with leak detection
WO2012024342A1 (fr) 2010-08-16 2012-02-23 Breathe Technologies, Inc. Procédés, systèmes et dispositifs utilisant de l'oxygène liquide pour fournir une assistance ventilatoire
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9038633B2 (en) 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US9084859B2 (en) 2011-03-14 2015-07-21 Sleepnea Llc Energy-harvesting respiratory method and device
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US9180271B2 (en) 2012-03-05 2015-11-10 Hill-Rom Services Pte. Ltd. Respiratory therapy device having standard and oscillatory PEP with nebulizer
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
EP4257168A3 (fr) 2013-04-17 2023-11-29 Fisher & Paykel Healthcare Limited Distinction entre apnée centrale du sommeil et apnée obstructive du sommeil
US10064583B2 (en) 2013-08-07 2018-09-04 Covidien Lp Detection of expiratory airflow limitation in ventilated patient
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US9937309B2 (en) * 2014-07-22 2018-04-10 Devilbiss Healthcare Llc Method of optimizing therapy pressure in a breathing therapy machine having an auto-adjust feature
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
EP3552649B1 (fr) 2015-04-02 2023-08-23 Hill-Rom Services PTE. LTD. Commande de pression de dispositif respiratoire
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
WO2017062742A1 (fr) * 2015-10-09 2017-04-13 University Of Utah Research Foundation Dispositifs et systèmes de ventilation, et leurs procédés d'utilisation
US10765822B2 (en) 2016-04-18 2020-09-08 Covidien Lp Endotracheal tube extubation detection
WO2017194495A1 (fr) * 2016-05-10 2017-11-16 Koninklijke Philips N.V. Détermination d'une valeur de limitation de débit des voies respiratoires
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
US20220040428A1 (en) * 2017-10-07 2022-02-10 University Of Utah Research Foundation Ventilation Devices and Systems and Methods of Using Same
EP3525857B1 (fr) 2017-11-14 2020-01-29 Covidien LP Systèmes de ventilation spontanée par pression de commande
EP3870259A4 (fr) * 2018-10-23 2022-08-03 ResMed Pty Ltd Systèmes et procédés de réglage de systèmes de cpap
DE102021000317A1 (de) * 2020-02-14 2021-08-19 Löwenstein Medical Technology S.A. Überwachungssystem zur Erkennung von Leckagen während einer Beatmung und Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011054A1 (fr) * 1990-12-21 1992-07-09 Puritan-Bennett Corporation Systeme de pression inspiratoire des voies respiratoires
WO1994006499A1 (fr) * 1992-09-18 1994-03-31 Pierre Medical S.A. Dispositif d'aide a la respiration
WO1994023780A1 (fr) * 1993-04-15 1994-10-27 Respironics, Inc. Procede et dispositif permettant de maitriser la respiration propre aux troubles du sommeil
WO1997028838A1 (fr) * 1996-02-12 1997-08-14 New York University Procede et dispositif servant a optimiser la pression positive continue des voies respiratoires afin de traiter l'apnee du sommeil
US5823187A (en) * 1991-11-01 1998-10-20 Estes; Mark C. Sleep apnea treatment apparatus with a therapy delay circuit arrangement

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675640A (en) * 1970-04-09 1972-07-11 Gatts J D Method and apparatus for dynamic health testing evaluation and treatment
US3991304A (en) * 1975-05-19 1976-11-09 Hillsman Dean Respiratory biofeedback and performance evaluation system
US4077404A (en) * 1975-09-17 1978-03-07 H. B. W. Medical Instruments Manufacturing Company, Inc. Breathing equipment such as resuscitators
US4440177A (en) * 1980-07-03 1984-04-03 Medical Graphics Corporation Respiratory analyzer system
JPS5948106B2 (ja) 1980-08-27 1984-11-24 株式会社東芝 呼吸監視装置
EP0088761B1 (fr) * 1981-04-24 1987-08-12 Somed Pty. Ltd. Dispositif de traitement de la maladie du ronfleur
US4365636A (en) * 1981-06-19 1982-12-28 Medicon, Inc. Method of monitoring patient respiration and predicting apnea therefrom
US4448192A (en) * 1982-03-05 1984-05-15 Hewlett Packard Company Medical ventilator device parametrically controlled for patient ventilation
US4602644A (en) * 1982-08-18 1986-07-29 Plasmedics, Inc. Physiological detector and monitor
US4723543A (en) * 1983-01-24 1988-02-09 Beran Anthony V Endotracheal tube connector
US4655213A (en) * 1983-10-06 1987-04-07 New York University Method and apparatus for the treatment of obstructive sleep apnea
JPS6294175A (ja) * 1985-10-18 1987-04-30 鳥取大学長 呼吸同調式ガス吹送装置および方法
US4803997A (en) * 1986-07-14 1989-02-14 Edentec Corporation Medical monitor
FR2608798B1 (fr) * 1986-12-19 1989-02-24 Air Liquide Procede pour controler le debit d'un gaz dans une vanne et generateur de debit mettant en oeuvre ce procede
US5522382A (en) * 1987-06-26 1996-06-04 Rescare Limited Device and method for treating obstructed breathing having a delay/ramp feature
US5199424A (en) * 1987-06-26 1993-04-06 Sullivan Colin E Device for monitoring breathing during sleep and control of CPAP treatment that is patient controlled
US4782832A (en) * 1987-07-30 1988-11-08 Puritan-Bennett Corporation Nasal puff with adjustable sealing means
US5065756A (en) * 1987-12-22 1991-11-19 New York University Method and apparatus for the treatment of obstructive sleep apnea
US4957107A (en) * 1988-05-10 1990-09-18 Sipin Anatole J Gas delivery means
US5259373A (en) * 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US5845636A (en) * 1989-05-19 1998-12-08 Puritan Bennett Corporation Method and apparatus for maintaining patient airway patency
US5107831A (en) * 1989-06-19 1992-04-28 Bear Medical Systems, Inc. Ventilator control system using sensed inspiratory flow rate
US5148802B1 (en) * 1989-09-22 1997-08-12 Respironics Inc Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders
JP2994699B2 (ja) * 1990-07-19 1999-12-27 東レ・ダウコーニング・シリコーン株式会社 皮膜形成性オルガノポリシロキサン組成物
US5135995A (en) 1990-10-11 1992-08-04 Paxon Polymer Company, L.P. Polyolefin catalysts and method of preparing an olefin polymer
DE4038871A1 (de) 1990-12-03 1992-06-04 Peter Dr Sc Techn Schaller Steuerung fuer ein beatmungsgeraet
US5161541A (en) * 1991-03-05 1992-11-10 Edentec Flow sensor system
US5146918A (en) * 1991-03-19 1992-09-15 Medtronic, Inc. Demand apnea control of central and obstructive sleep apnea
US5365922A (en) * 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
DE4138702A1 (de) 1991-03-22 1992-09-24 Madaus Medizin Elektronik Verfahren und vorrichtung zur diagnose und quantitativen analyse von apnoe und zur gleichzeitigen feststellung anderer erkrankungen
US5203343A (en) 1991-06-14 1993-04-20 Board Of Regents, The University Of Texas System Method and apparatus for controlling sleep disorder breathing
US5190048A (en) * 1991-09-17 1993-03-02 Healthdyne, Inc. Thermistor airflow sensor assembly
US5269296A (en) * 1991-10-29 1993-12-14 Landis Robert M Nasal continuous positive airway pressure apparatus and method
EP0612257B1 (fr) * 1991-11-14 2000-06-07 University Technologies International Inc. Systeme pour fournir automatiquement une pression positive continue aux voies respiratoires
US5231979A (en) * 1992-02-14 1993-08-03 Puritan-Bennett Corporation Humidifier for CPAP device
US5732696A (en) * 1992-03-17 1998-03-31 New York University Polysomnograph scoring
US5490502A (en) * 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US5335654A (en) 1992-05-07 1994-08-09 New York University Method and apparatus for continuous adjustment of positive airway pressure for treating obstructive sleep apnea
US5645054A (en) 1992-06-01 1997-07-08 Sleepnet Corp. Device and method for the treatment of sleep apnea syndrome
FR2692152B1 (fr) * 1992-06-15 1997-06-27 Pierre Medical Sa Appareil d'aide a la respiration, notamment pour traiter l'apnee du sommeil.
FR2695830B1 (fr) 1992-09-18 1994-12-30 Pierre Medical Sa Dispositif d'aide à la respiration.
US5353788A (en) * 1992-09-21 1994-10-11 Miles Laughton E Cardio-respiratory control and monitoring system for determining CPAP pressure for apnea treatment
US5438980A (en) * 1993-01-12 1995-08-08 Puritan-Bennett Corporation Inhalation/exhalation respiratory phase detection circuit
US5413111A (en) * 1993-08-24 1995-05-09 Healthdyne Technologies, Inc. Bead thermistor airflow sensor assembly
EP0927538B1 (fr) 1993-11-05 2004-04-07 Resmed Limited Determination de passage des voies respiratoires
DE69422900T2 (de) 1993-12-01 2000-06-08 Resmed Ltd Vorrichtung zur Erzeugung eines kontinuierlichen positiven Atemwegdruckes (CPAP)
US5456264A (en) * 1994-03-31 1995-10-10 Universite Laval Accuracy of breath-by-breath analysis of flow volume loop in identifying flow-limited breathing cycles in patients
FR2724322A1 (fr) 1994-09-12 1996-03-15 Pierre Medical Sa Dispositif d'aide respiratoire commande en pression
US6866040B1 (en) * 1994-09-12 2005-03-15 Nellcor Puritan Bennett France Developpement Pressure-controlled breathing aid
US5540733A (en) * 1994-09-21 1996-07-30 Medtronic, Inc. Method and apparatus for detecting and treating obstructive sleep apnea
US5598838A (en) * 1995-04-07 1997-02-04 Healthdyne Technologies, Inc. Pressure support ventilatory assist system
SE9502543D0 (sv) * 1995-07-10 1995-07-10 Lachmann Burkhardt Artificial ventilation system
US6135105A (en) 1995-10-20 2000-10-24 University Of Florida Lung classification scheme, a method of lung class identification and inspiratory waveform shapes
US6463930B2 (en) * 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US5931160A (en) 1995-12-08 1999-08-03 Cardiopulmonary Corporation Ventilator control system and method
US6158432A (en) * 1995-12-08 2000-12-12 Cardiopulmonary Corporation Ventilator control system and method
US5746697A (en) * 1996-02-09 1998-05-05 Nellcor Puritan Bennett Incorporated Medical diagnostic apparatus with sleep mode
US5746201A (en) * 1997-01-23 1998-05-05 Nellcor Puritan-Bennett CPAP nose mask
US5829441A (en) * 1997-06-24 1998-11-03 Nellcor Puritan Bennett Customizable dental device for snoring and sleep apnea treatment
US6032065A (en) * 1997-07-21 2000-02-29 Nellcor Puritan Bennett Sensor mask and method of making same
US6135106A (en) * 1997-08-22 2000-10-24 Nellcor Puritan-Bennett, Inc. CPAP pressure and flow transducer
FR2789594A1 (fr) 1999-05-21 2000-08-18 Nellcor Puritan Bennett France Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
FR2789592A1 (fr) 1999-02-12 2000-08-18 Mallinckrodt Dev France Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
FR2789593B1 (fr) 1999-05-21 2008-08-22 Mallinckrodt Dev France Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
US6347631B1 (en) * 1999-11-09 2002-02-19 Mallinckrodt, Inc. Cantilever device and method for breathing devices and the like
JP4834867B2 (ja) * 1999-03-26 2011-12-14 ネルコー ピューリタン ベネット エルエルシー 呼吸器具などのための片持ち装置
US6341606B1 (en) * 1999-05-19 2002-01-29 Mallinckrodt, Inc. Disposable respiratory mask with adhesive skin interface
US6505623B1 (en) * 1999-06-04 2003-01-14 Mallinckrodt Inc. Hat-held respiratory mask
US6644316B2 (en) * 1999-10-12 2003-11-11 Mallinckrodt Inc. Variable aperture venting for respiratory mask
US6668830B1 (en) * 1999-11-19 2003-12-30 Mallinckrodt Inc. Low noise exhalation port for a respiratory mask
US6530373B1 (en) * 2000-08-04 2003-03-11 Mallinckrodt Inc. Respirator mask
US6418928B1 (en) * 2000-09-25 2002-07-16 Mallinckrodt Inc. Multi-seal respirator mask
US6644310B1 (en) * 2000-09-29 2003-11-11 Mallinckrodt Inc. Apparatus and method for providing a breathing gas employing a bi-level flow generator with an AC synchronous motor
US6546930B1 (en) * 2000-09-29 2003-04-15 Mallinckrodt Inc. Bi-level flow generator with manual standard leak adjustment
US6718974B1 (en) * 2000-10-06 2004-04-13 Mallinckrodt, Inc. CPAP humidifier having sliding access door
US6431172B1 (en) * 2000-10-20 2002-08-13 Mallinckrodt Inc. Nasal cannula with inflatable plenum chamber
US6668839B2 (en) * 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
FR2832770B1 (fr) * 2001-11-27 2004-01-02 Mallinckrodt Dev France Turbine centrifuge pour dispositifs d'assistance respiratoire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992011054A1 (fr) * 1990-12-21 1992-07-09 Puritan-Bennett Corporation Systeme de pression inspiratoire des voies respiratoires
US5823187A (en) * 1991-11-01 1998-10-20 Estes; Mark C. Sleep apnea treatment apparatus with a therapy delay circuit arrangement
WO1994006499A1 (fr) * 1992-09-18 1994-03-31 Pierre Medical S.A. Dispositif d'aide a la respiration
WO1994023780A1 (fr) * 1993-04-15 1994-10-27 Respironics, Inc. Procede et dispositif permettant de maitriser la respiration propre aux troubles du sommeil
WO1997028838A1 (fr) * 1996-02-12 1997-08-14 New York University Procede et dispositif servant a optimiser la pression positive continue des voies respiratoires afin de traiter l'apnee du sommeil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992557B2 (en) 1999-02-12 2011-08-09 Covidien Ag Gas supply device for sleep apnea

Also Published As

Publication number Publication date
US7370650B2 (en) 2008-05-13
JP2002540820A (ja) 2002-12-03
JP4776077B2 (ja) 2011-09-21
US6814074B1 (en) 2004-11-09
US7992557B2 (en) 2011-08-09
FR2789593B1 (fr) 2008-08-22
US20080196724A1 (en) 2008-08-21
WO2000047262A1 (fr) 2000-08-17
US20050081854A1 (en) 2005-04-21
EP1150733A1 (fr) 2001-11-07
CA2361631C (fr) 2008-05-13
CA2361631A1 (fr) 2000-08-17

Similar Documents

Publication Publication Date Title
CA2361630C (fr) Dispositif d'alimentation en gaz pour apnees du sommeil
FR2789593A1 (fr) Appareil de fourniture de pression d'air a un patient souffrant de troubles du sommeil et ses procedes de commande
CA2361629C (fr) Dispositif d'alimentation en gaz pour apnees du sommeil
EP0699085B1 (fr) Dispositif permettant de maitriser les troubles de la respiration pendant le sommeil
EP0680350B1 (fr) Appareil d'aide a la respiration notamment pour traiter l'apnee du sommeil
US6213955B1 (en) Apparatus and method for breath monitoring
CA2533760A1 (fr) Systeme de detection de l'apnee/hypopnee et procede associe
EP0965306A1 (fr) Dispositif de détermination de phases respiratoires du sommeil d'un utilisateur
CN105147244B (zh) 鼾声检测控制设备及其检测控制方法
FR2905063A1 (fr) Procede et dispositif pour la detection d'evenements obstructifs
WO2007144626A1 (fr) Appareil moniteur de respiration
CA2159336C (fr) Methode et appareil servant a controler les troubles de respiration pendant le sommeil
FR2698274A1 (fr) Dispositif d'assistance respiratoire.
FR2971163A1 (fr) Dispositif de detection d'une limitation de debit inspiratoire chez un patient souffrant d'apnee obstructive du sommeil
WO2002037064A1 (fr) Procede et dispositif de mesure du debit d'un gaz sous pression delivre par une turbine

Legal Events

Date Code Title Description
CD Change of name or company name
TP Transmission of property
PLFP Fee payment

Year of fee payment: 18

ST Notification of lapse

Effective date: 20171031