FR2772181A1 - METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED - Google Patents

METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED Download PDF

Info

Publication number
FR2772181A1
FR2772181A1 FR9715273A FR9715273A FR2772181A1 FR 2772181 A1 FR2772181 A1 FR 2772181A1 FR 9715273 A FR9715273 A FR 9715273A FR 9715273 A FR9715273 A FR 9715273A FR 2772181 A1 FR2772181 A1 FR 2772181A1
Authority
FR
France
Prior art keywords
alloy
magnetic
atoms
magnetic core
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9715273A
Other languages
French (fr)
Other versions
FR2772181B1 (en
Inventor
Georges Couderchon
Philippe Verin
Christian Caquard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Priority to FR9715273A priority Critical patent/FR2772181B1/en
Priority to AT98402804T priority patent/ATE266245T1/en
Priority to DE69823621T priority patent/DE69823621T2/en
Priority to EP98402804A priority patent/EP0921541B1/en
Priority to PL98330101A priority patent/PL186806B1/en
Publication of FR2772181A1 publication Critical patent/FR2772181A1/en
Application granted granted Critical
Publication of FR2772181B1 publication Critical patent/FR2772181B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Production of a nanocrystalline soft magnetic iron-silicon-boron alloy magnetic core involves crystallization heat treatment of the amorphous alloy at 250-450 degrees C in a transverse magnetic field of rectangular waveform. Production of a magnetic core of nanocrystalline soft magnetic alloy, of composition more than 60 at.% Fe, 10-20 at.% Si, 0.1-2 at.% Cu, 5-20 at.% B and 0.1-10 at.% of one or more of Ti, Nb, Zr, Hf, V, Ta, Cr, Mo, W and Mn, the sum of Si + B being less than 30 at.%, involves crystallization heat treatment of the amorphous alloy at 250-450 degrees C in a transverse magnetic field of rectangular waveform. An Independent claim is also included for a magnetic core produced by the above process and exhibiting, for a 50 Hz alternating excitation magnetic field of 10 mA/cm maximum amplitude at 25 degrees C, an impedance magnetic permeability ( mu z) of greater than 200000, a remnant induction/saturation induction (Br/Bm) ratio of less than 0.2 and DELTA Bstat and DELTA Bdyn values of greater than 0.2 T.

Description

PROCEDE DE FABRICATION D'UN NOYAU MAGNETIQUE EN ALLIAGEMETHOD FOR MANUFACTURING A MAGNETIC ALLOY CORE

MAGNETIQUE DOUX NANOCRISTALLIN UTILISABLE DANS UN DISJONCTEUR  NANOCRYSTALLINE SOFT MAGNETIC FOR USE IN A CIRCUIT BREAKER

DIFFERENTIEL DE LA CLASSE A ET NOYAU MAGNETIQUE OBTENU.  CLASS A DIFFERENTIAL AND MAGNETIC CORE OBTAINED.

La présente invention concerne un noyau magnétique en alliage magnétique doux nanocristallin utilisable notamment pour la fabrication d'un disjoncteur différentiel de la classe A. Les disjoncteurs différentiels de la classe A sont des disjoncteurs différentiels à propre courant sensible non seulement aux courants de défaut sinusoïdaux, mais également aux courants de défauts pulsés. Ces disjoncteurs différentiels comportent 0o un noyau magnétique en alliage magnétique doux ayant une perméabilité magnétique maximale d'impédance pz à 50 Hertz élevée et un rapport Br/Bm de l'induction rémanente à l'induction à saturation inférieure à 0,2, et une bonne stabilité en température des propriétés magnétiques dans la plage de température de fonctionnement qui s'étend de - 25 C à + 100 C. La perméabilité magnétique s 5 maximale d'impédance pz doit être élevée, car, plus elle est élevé, plus il est possible de réduire les dimensions du noyau magnétique et donc de miniaturiser le disjoncteur différentiel; le rapport Br/Bm doit rester faible pour préserver la sensibilité du disjoncteur aux courants pulsés. De plus, la sensibilité du disjoncteur aux courants de défaut pulsés est d'autant meilleur que les grandeurs ABstat et ABdylyn sont plus élevés; ABstat et ABdyn étant les amplitudes de variation de l'induction magnétique engendrées par un champ d'excitation alternatif redressé demi- onde  The present invention relates to a magnetic core of nanocrystalline soft magnetic alloy which can be used in particular for the manufacture of a differential circuit breaker of class A. Differential circuit breakers of class A are differential circuit breakers with their own current sensitive not only to sinusoidal fault currents, but also to pulsed fault currents. These differential circuit breakers comprise 0o a magnetic core of soft magnetic alloy having a maximum magnetic permeability of impedance pz at 50 Hertz high and a Br / Bm ratio of the residual induction to the saturation induction of less than 0.2, and a good temperature stability of magnetic properties in the operating temperature range from - 25 C to + 100 C. The maximum magnetic permeability s 5 of impedance pz must be high, because the higher it is, the more it is possible to reduce the dimensions of the magnetic core and therefore to miniaturize the differential circuit breaker; the Br / Bm ratio must remain low to preserve the sensitivity of the circuit breaker to pulsed currents. In addition, the sensitivity of the circuit breaker to pulsed fault currents is all the better as the quantities ABstat and ABdylyn are higher; ABstat and ABdyn being the amplitudes of variation of the magnetic induction generated by a half wave rectified alternating excitation field

dans le premier cas et pleine onde dans le second.  in the first case and full wave in the second.

On peut fabriquer des noyaux magnétiques pour disjoncteurs différentiels de la classe A en utilisant un alliage magnétique doux du type comprenant plus de 60 atomes % de fer, du cuivre, du silicium, du bore et un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse. Ces noyaux magnétiques sont obtenus en coulant l'alliage sous forme d'un ruban amorphequi est enroulé pour former un tore, puis soumis à un traitement thermique de cristallisation destiné à conférer à l'alliage une structure nanocristalline, et, enfin, soumis à un traitement thermique sous champ magnétique transverse appliqué de façon continue tout au long du traitement thermique, le traitement thermique se faisant vers 400 C. Les noyaux magnétiques  Magnetic cores for class A residual current devices can be manufactured using a soft magnetic alloy of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element chosen from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese. These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon which is wound to form a torus, then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure, and, finally, subjected to a heat treatment under transverse magnetic field applied continuously throughout the heat treatment, the heat treatment being around 400 C. The magnetic cores

2 27721812 2772181

ainsi obtenus ont une stabilité en température satisfaisante et un rapport Br/Bm inférieur à 0,2. Mais ils ne permettent pas d'obtenir une perméabilité magnétique d'impédance pz mesurée à 50 Hz dans un champ d'excitation maximale de 10 mA/cm (valeur de crête) à 25 C supérieure à 170 000 ni des valeurs de ABstat et s ABdyn supérieures à 0,19 Tesla pour un champ d'excitation d'amplitude maximale de  thus obtained have a satisfactory temperature stability and a Br / Bm ratio of less than 0.2. However, they do not make it possible to obtain a magnetic permeability of impedance pz measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) at 25 C greater than 170,000 or values of ABstat and s ABdyn greater than 0.19 Tesla for an excitation field with a maximum amplitude of

mA/cm, ce qui limite les possibilités de miniaturisation.  mA / cm, which limits the possibilities of miniaturization.

Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer un noyau magnétique utilisable dans un disjoncteur différentiel de la classe A ayant à la fois une perméabilité magnétique 0o d'impédance pz mesurée à 50 Hz dans un champ d'excitation maximale de mA/cm (valeur de crête) supérieure à 200 000 et des valeurs de ABstat et ABdyn supérieures à 0,2 Tesla pour un champ d'excitation d'amplitude maximale de  The object of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a class A differential circuit breaker having both a magnetic permeability 0o of impedance pz measured at 50 Hz in a field d maximum excitation of mA / cm (peak value) greater than 200,000 and values of ABstat and ABdyn greater than 0.2 Tesla for an excitation field of maximum amplitude of

mA/cm.mA / cm.

A cet effet, l'invention a pour objet un procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration; la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %; I'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe. Selon ce procédé, on effectue sur le noyau magnétique un traitement thermique sous champ magnétique transverse à une température comprise entre 250 C et 450 C, le  To this end, the subject of the invention is a process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy whose chemical composition comprises more than 60 atoms% of iron, from 10 to 20 atoms% of silicon, from 0, 1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least one element chosen from niobium, titanium, zirconium, hafnium, vanadium, tantalum , chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the production; the sum of the silicon and boron contents being less than 30 atom%; The nanocrystalline alloy being obtained by a heat treatment of crystallization of the alloy in the amorphous state. According to this method, a thermal treatment is carried out on the magnetic core under a transverse magnetic field at a temperature between 250 ° C. and 450 ° C., the

champ magnétique étant appliqué sous forme de créneaux.  magnetic field being applied in the form of slots.

De préférence, le traitement thermique sous champ magnétique transverse  Preferably, the heat treatment under transverse magnetic field

est effectué à une température comprise entre 300 C et 400 C.  is carried out at a temperature between 300 C and 400 C.

Ce procédé s'applique plus particulièrement aux alliages magnétiques doux nanocristallins dont la composition chimique comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le  This process applies more particularly to soft nanocrystalline magnetic alloys, the chemical composition of which comprises from 10 to 17 atom% of silicon, from 0.5 to 1.5 atom% of copper, from 5 to 14 atom% of boron and of 2 at 4% of at least one element chosen from niobium, titanium, zirconium, hafnium,

vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse.  vanadium, tantalum, chromium, molybdenum, tungsten and manganese.

3 27721813 2772181

Avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on peut effectuer sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de l'alliage à l'état amorphe. De préférence, le traitement thermique de relaxation consiste en un maintien à une température comprise entre 250 C et 480 C pendant  Before carrying out the heat treatment for crystallization of the alloy in the amorphous state, it is possible to carry out on the alloy in the amorphous state a relaxation heat treatment at a temperature below the temperature at the start of crystallization of the alloy in an amorphous state. Preferably, the thermal relaxation treatment consists in maintaining a temperature of between 250 ° C. and 480 ° C. for

un temps compris entre 0,1 et 10 heures.  a time between 0.1 and 10 hours.

Le noyau magnétique obtenu par le procédé selon l'invention peut être utilisé avantageusement pour la fabrication d'un disjoncteur différentiel à propre courant de la classe A. io L'invention va maintenant être décrite plus en détails et illustrée par un  The magnetic core obtained by the method according to the invention can advantageously be used for the manufacture of a class A own current differential circuit breaker. The invention will now be described in more detail and illustrated by a

exemple.example.

Pour fabriquer un noyau magnétique en alliage magnétique doux nanocristallin, on coule l'alliage sous forme d'un ruban amorphe, puis on enroule un segment de ruban de longueur appropriée autour d'un mandrin de façon à former une bobine torique de section rectangulaire ou carrée. La bobine qui va constituer le noyau magnétique est alors soumise à un traitement thermique de cristallisation destiné à déstabiliser la structure amorphe et à provoquer la formation de cristaux dont la taille est inférieure à 100 nanomètres, voire inférieure à 20 nanomètres, et, ainsi, obtenir une structure appelée " nanocristalline ". Ce traitement est, ensuite, complété par un traitement thermique sous champ magnétique transverse, c'est à dire, sous un champ magnétique parallèle à l'axe du noyau. L'alliage est du type décrit notamment dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Il est constitué principalement de fer en une teneur supérieure à 60 atomes %, et contient en outre: - de 0,1 à 2 at %, et de préférence, de 0,5 à 1,5 at % de cuivre; - de 10 à 20 at %, et de préférence, moins de 17 at % de silicium; - de 5 à 20 at %, et de préférence, moins de 14 at % de bore; - de 0,1 à 10 at % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène  To make a magnetic core made of nanocrystalline soft magnetic alloy, the alloy is cast in the form of an amorphous ribbon, then a segment of ribbon of suitable length is wound around a mandrel so as to form a toric coil of rectangular section or square. The coil which will constitute the magnetic core is then subjected to a crystallization heat treatment intended to destabilize the amorphous structure and to cause the formation of crystals whose size is less than 100 nanometers, or even less than 20 nanometers, and, thus, obtain a structure called "nanocrystalline". This treatment is then supplemented by a heat treatment under a transverse magnetic field, that is to say, under a magnetic field parallel to the axis of the core. The alloy is of the type described in particular in European patent applications EP 0 271 657 and EP 0 299 498. It consists mainly of iron in a content greater than 60 atom%, and also contains: - from 0.1 to 2 at%, and preferably 0.5 to 1.5 at% copper; - from 10 to 20 at%, and preferably, less than 17 at% of silicon; - from 5 to 20 at%, and preferably, less than 14 at% of boron; - from 0.1 to 10 at% of at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten

et le manganèse; de préférence de 2 et 4 at % de niobium.  and manganese; preferably 2 and 4 at% niobium.

L'alliage contient également des impuretés résultant de l'élaboraton.  The alloy also contains impurities resulting from the production.

4 27721814 2772181

La somme des teneurs en silicium et en bore doit, de préférence, rester  The sum of the silicon and boron contents should preferably remain

inférieure à 30 at % et, mieux encore, rester inférieure à 25 at %.  less than 30 at% and, better still, remain less than 25 at%.

Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 C et 600 C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale. La température de recuit de cristallisation peut alors être  The crystallization annealing consists in maintaining at a temperature higher than the temperature at the start of crystallization and lower than the temperature at the start of the appearance of the secondary phases which deteriorate the magnetic properties. In general, the crystallization annealing temperature is between 500 C and 600 C, but it can be optimized for each strip, for example, by determining by tests the temperature which leads to maximum magnetic permeability. The crystallization annealing temperature can then be

io choisie égale à cette température.  io chosen equal to this temperature.

Le traitement thermique effectué sous champ magnétique est effectué à une température comprise entre 250 C et 450 C, et de préférence entre 300 C et 400 C. Pendant le maintien en température, le champ magnétique est appliqué sous forme d'une succession de créneaux. Un créneau correspond à une période pendant laquelle le champ magnétique appliqué est maximal, suivi d'une période pendant la quelle il est nul ou très faible (inférieur à 10 % du champ magnétique maximal atteint pendant le traitement). Le champ magnétique appliqué peut être continu ou alternatif, dans ce dernier cas, I'intensité du champ magnétique est l'intensité de crête (intensité maximale atteinte à chaque alternance). L'intensité du champ magnétique peut être constante pendant toute la période d'application du champ (créneaux rectangulaires) ou variable. Tous les créneaux peuvent être de même intensité ou au contraire d'intensité variable d'un créneau à l'autre. Le traitement thermique peut se terminer à la fin de la période d'application du champ magnétique du dernier créneau; l'essentiel étant que le traitement comporte au moins deux périodes pendant lesquelles le champ magnétique appliqué séparées par une période pendant laquelle le champ magnétique n'est pas appliqué. Les inventeurs ont, en effet, constaté qu'en procédant ainsi, la stabilité en température des propriétés magnétiques du noyau magnétique étaient très sensiblement améliorées. Par ce procédé on obtient un noyau magnétique dont la perméabilité magnétique d'impédance pz mesurée à 50 Hertz dans un champ magnétique d'excitation maximale de 10 mA/cm (valeur de crête) à 25 C est supérieur à  The heat treatment carried out under a magnetic field is carried out at a temperature between 250 C and 450 C, and preferably between 300 C and 400 C. During the temperature maintenance, the magnetic field is applied in the form of a succession of slots. A slot corresponds to a period during which the magnetic field applied is maximum, followed by a period during which it is zero or very weak (less than 10% of the maximum magnetic field reached during treatment). The magnetic field applied can be continuous or alternating, in the latter case, the intensity of the magnetic field is the peak intensity (maximum intensity reached at each half-wave). The intensity of the magnetic field can be constant during the entire period of application of the field (rectangular slots) or variable. All slots can be of the same intensity or, on the contrary, of varying intensity from one slot to another. The heat treatment can end at the end of the period of application of the magnetic field of the last slot; the main thing being that the treatment comprises at least two periods during which the magnetic field applied separated by a period during which the magnetic field is not applied. The inventors have in fact found that by doing so, the temperature stability of the magnetic properties of the magnetic core is very significantly improved. By this process, a magnetic core is obtained, the magnetic permeability of impedance pz measured at 50 Hertz in a magnetic field of maximum excitation of 10 mA / cm (peak value) at 25 C is greater than

27721812772181

000, et dont la perméabilité magnétique varie de moins de 25 % sur la plage de température comprise entre - 25 C et + 100 C. De plus, le rapport Br/Bm de l'induction rémanente à l'induction à saturation est inférieure à 0,2, ABstat et ABdyn  000, and whose magnetic permeability varies by less than 25% over the temperature range between - 25 C and + 100 C. In addition, the Br / Bm ratio of the residual induction to the saturation induction is less than 0.2, ABstat and ABdyn

sont tous les deux supérieures à 0,2 Tesla, le rapport ABstat/ABdyn étant voisin de 1.  are both greater than 0.2 Tesla, the ABstat / ABdyn ratio being close to 1.

Un tel noyau magnétique peut être utilisé dans un disjoncteur différentiel de la classe A. Du fait de ses propriétés magnétiques, à sensibilité égale du disjoncteur, la section du noyau peut être réduite sensiblement par rapport à la section d'un noyau  Such a magnetic core can be used in a class A differential circuit breaker. Due to its magnetic properties, at equal sensitivity of the circuit breaker, the section of the core can be reduced significantly compared to the section of a core

magnétique selon l'art antérieur.magnetic according to the prior art.

En complément des traitements thermiques qui viennent d'être décrit, on peut, 0o avant le traitement thermique de cristallisation, effectuer sur le noyau un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence, comprise entre 250 C et 480 C. Ce recuit de relaxation a pour avantage de réduire encore la sensibilité des propriétés magnétiques des noyaux à la température, de réduire la dispersion des propriétés magnétiques de noyaux fabriqués en série et de réduire la sensibilité des  In addition to the heat treatments which have just been described, it is possible, 0 ° before the crystallization heat treatment, to carry out a relaxation heat treatment on the core at a temperature below the temperature at the start of crystallization of the amorphous band, and, preferably between 250 ° C. and 480 ° C. This relaxation annealing has the advantage of further reducing the sensitivity of the magnetic properties of the cores to temperature, of reducing the dispersion of the magnetic properties of cores produced in series and of reducing the sensitivity of the

propriétés magnétiques aux contraintes.  magnetic properties under stress.

A titre d'exemple, à partir d'un ruban en alliage Fe73,5Si13,5B9Cu1Nb3, (73,5 at % de fer, 13,5 at % de silicium, etc.), de 20 pm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, on a fabriqué deux séries A et B de noyaux magnétiques qui ont été soumises toutes les deux à un traitement de cristallisation de 1 heures à 530 C (sans traitement de relaxation). A titre de comparaison, la première série A de noyaux a été soumise à un traitement thermique de 1 heure à 350 C sous champ magnétique transverse appliqué de façon continue. Conformément à l'invention, I'autre série, B, a été soumise à un traitement thermique de 1 heure à 350 sous champ magnétique transverse appliqué sous forme de créneaux de 5 mn sous champ magnétique séparées par des périodes de 15 mn sans champ magnétique. Pour l'une des séries, on a mesuré à C les grandeurs pz, ABstat et ABdyn pour un champ magnétique d'excitation alternatif à 50 Hertz d'amplitude maximale de 10 mA/cm; on a également mesuré le rapport Br/Bm. Les résultats ont été les suivants:  For example, from a Fe73.5Si13.5B9Cu1Nb3 alloy ribbon (73.5 at% iron, 13.5 at% silicon, etc.), 20 μm thick and 10 mm in width obtained by direct quenching on a cooled wheel, two series A and B of magnetic cores were manufactured, which were both subjected to a 1 hour crystallization treatment at 530 ° C. (without relaxation treatment). By way of comparison, the first series A of cores was subjected to a 1 hour heat treatment at 350 ° C. under a transverse magnetic field applied continuously. In accordance with the invention, the other series, B, was subjected to a heat treatment of 1 hour at 350 under transverse magnetic field applied in the form of slots of 5 min under magnetic field separated by periods of 15 min without magnetic field . For one of the series, the quantities pz, ABstat and ABdyn were measured at C for a magnetic field of alternating excitation at 50 Hertz with a maximum amplitude of 10 mA / cm; the Br / Bm ratio was also measured. The results were as follows:

6 27721816 2772181

série ||p (10 mA/cm ABstat (T) ABdyn (T) [ ABstat / ABdyn Br/Bm A compar. 153 000 0,172 0,169 1,017 0,05 B invention 230 000 0,240 0,234 1,025 0,1 Ces exemples montrent bien l'amélioration de propriétés magnétiques apportées par le procédé selon l'invention: pz supérieur à 200 000, ABstat et ABdyn  series || p (10 mA / cm ABstat (T) ABdyn (T) [ABstat / ABdyn Br / Bm A compare 153,000 0.172 0.169 1.017 0.05 B invention 230,000 0.240 0.234 1.025 0.1 These examples clearly show l improvement of magnetic properties provided by the process according to the invention: pz greater than 200,000, ABstat and ABdyn

supérieurs à 0,2 Tesla, avec ABstat/ABdyn voisin de 1 et Br/Bm inférieur à 0,2.  greater than 0.2 Tesla, with ABstat / ABdyn close to 1 and Br / Bm less than 0.2.

7 27721817 2772181

Claims (7)

REVENDICATIONS 1 - Procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration, la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %, I'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe, caractérisé en ce que on effectue sur le noyau magnétique un traitement thermique sous champ magnétique transverse à une température comprise entre 250 C et 450 C, le champ magnétique étant  1 - Process for the manufacture of a magnetic core of soft nanocrystalline magnetic alloy whose chemical composition comprises more than 60 atoms% of iron, from 10 to 20 atoms% of silicon, from 0.1 to 2 atoms% of copper, 5 to 20 atom% of boron, from 0.1 to 10 atom% of at least one element chosen from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the production, the sum of the silicon and boron contents being less than 30 atom%, the nanocrystalline alloy being obtained by a heat treatment of crystallization of the alloy in the state amorphous, characterized in that a thermal treatment is carried out on the magnetic core under a transverse magnetic field at a temperature between 250 C and 450 C, the magnetic field being appliqué sous forme de créneaux.applied in the form of slots. 2 - Procédé selon la revendication 1 caractérisé en ce que le traitement thermique sous champ magnétique transverse est effectué à une température  2 - Method according to claim 1 characterized in that the heat treatment under transverse magnetic field is carried out at a temperature comprise entre 300 C et 400 C.between 300 C and 400 C. 3 - Procédé selon la revendication 1 ou la revendication 2 caractérisé en ce que la composition chimique de l'alliage magnétique doux nanocristallin comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène  3 - Process according to claim 1 or claim 2 characterized in that the chemical composition of the nanocrystalline soft magnetic alloy comprises from 10 to 17 atoms% of silicon, from 0.5 to 1.5 atoms% of copper, of 5 with 14 atom% boron and from 2 to 4% of at least one element chosen from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten et le manganèse.and manganese. 4 - Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce  4 - Method according to any one of claims 1 to 3 characterized in that que, avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on effectue sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation  that, before carrying out the thermal treatment for crystallization of the alloy in the amorphous state, a thermal relaxation treatment is carried out on the alloy in the amorphous state at a temperature below the temperature at the start of crystallization de l'alliage à l'état amorphe.of the alloy in the amorphous state. 5 - Procédé selon la revendication 4 caractérisé en ce que le traitement thermique de relaxation consiste en un maintien à une température comprise entre  5 - Method according to claim 4 characterized in that the thermal relaxation treatment consists of maintaining at a temperature between 250 C et 480 C pendant un temps compris entre 0,1 et 10 heures.  250 C and 480 C for a time between 0.1 and 10 hours. 8 27721818 2772181 6 - Noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à atomes % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration, la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %, I'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe, caractérisé en ce que, pour un champ magnétique d'excitation alternatif à 50 Hertz d'amplitude maximale de 10 mA/cm, à 25 C, la perméabilité magnétique d'impédance pz est supérieure à 200 000, le rapport Br/Bm de l'induction rémanente Br à l'induction à saturation Bm inférieur à 0,2 et les grandeurs ABstat et ABdyn sont  6 - Magnetic core made of nanocrystalline soft magnetic alloy whose chemical composition includes more than 60 atoms% of iron, 10 to 20 atoms% of silicon, 0.1 to 2 atoms% of copper, 5 to 20 atoms% of boron , from 0.1 to atom% of at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the preparation, the sum of the silicon and boron contents being less than 30 atom%, the nanocrystalline alloy being obtained by a heat treatment of crystallization of the alloy in the amorphous state, characterized in that, for an alternating excitation magnetic field at 50 Hertz with a maximum amplitude of 10 mA / cm, at 25 C, the magnetic permeability of impedance pz is greater than 200,000, the Br / Bm ratio of the remanent induction Br to l induction at saturation Bm less than 0.2 and the quantities ABstat and ABdyn s have supérieures à 0,2 Tesla.greater than 0.2 Tesla. 7 - Utilisation d'un noyau magnétique selon la revendication 6 pour la fabrication d'un disjoncteur différentiel à propre courant de la classe A.  7 - Use of a magnetic core according to claim 6 for the manufacture of a class A own current differential circuit breaker.
FR9715273A 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED Expired - Fee Related FR2772181B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR9715273A FR2772181B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED
AT98402804T ATE266245T1 (en) 1997-12-04 1998-11-13 PRODUCTION PROCESS FOR A NANOCRYSTALLINE SOFT MAGNETIC CORE FOR USE IN A DIFFERENTIAL PROTECTION SWITCH
DE69823621T DE69823621T2 (en) 1997-12-04 1998-11-13 Manufacturing process for a nanocrystalline soft magnetic core for use in a differential circuit breaker
EP98402804A EP0921541B1 (en) 1997-12-04 1998-11-13 Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
PL98330101A PL186806B1 (en) 1997-12-04 1998-12-04 Method of making magnetic cores of magnetically soft nanocrystalline alloy and magnetic core obtained thereby especially that for electromagnetic actuators of differential switches of ac class

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9715273A FR2772181B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED

Publications (2)

Publication Number Publication Date
FR2772181A1 true FR2772181A1 (en) 1999-06-11
FR2772181B1 FR2772181B1 (en) 2000-01-14

Family

ID=9514143

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9715273A Expired - Fee Related FR2772181B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED

Country Status (5)

Country Link
EP (1) EP0921541B1 (en)
AT (1) ATE266245T1 (en)
DE (1) DE69823621T2 (en)
FR (1) FR2772181B1 (en)
PL (1) PL186806B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948897A1 (en) * 1999-10-11 2001-04-19 Vacuumschmelze Gmbh Interface modules for local data networks
PL1710812T3 (en) * 2005-02-25 2008-12-31 Magnetec Gmbh Fault-current circuit breaker and magnetic core for a fault-current circuit breaker
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN107419200B (en) * 2017-06-30 2019-11-22 江苏理工学院 A kind of soft magnetic iron-based nanocrystalline and amorphous alloy and preparation method thereof containing manganese

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271657A2 (en) * 1986-12-15 1988-06-22 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
EP0299498A1 (en) * 1987-07-14 1989-01-18 Hitachi Metals, Ltd. Magnetic core and method of producing same
EP0392204A2 (en) * 1989-04-08 1990-10-17 Vacuumschmelze GmbH Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch
DE4019636A1 (en) * 1989-07-01 1991-02-28 James C M Li METHOD FOR IMPROVING THE MAGNETIC PROPERTIES BY APPLYING AC OR PULSED CURRENT
EP0563606A2 (en) * 1992-04-01 1993-10-06 Vacuumschmelze GmbH Current transformer for earth-leakage circuit breakers which are sensitive to current pulses
WO1996033505A1 (en) * 1995-04-18 1996-10-24 Schneider Electric S.A. Current transformer, in particular for a fault current tripping device sensitive to pulsating currents and tripping device equipped with such a transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271657A2 (en) * 1986-12-15 1988-06-22 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
EP0299498A1 (en) * 1987-07-14 1989-01-18 Hitachi Metals, Ltd. Magnetic core and method of producing same
EP0392204A2 (en) * 1989-04-08 1990-10-17 Vacuumschmelze GmbH Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch
DE4019636A1 (en) * 1989-07-01 1991-02-28 James C M Li METHOD FOR IMPROVING THE MAGNETIC PROPERTIES BY APPLYING AC OR PULSED CURRENT
EP0563606A2 (en) * 1992-04-01 1993-10-06 Vacuumschmelze GmbH Current transformer for earth-leakage circuit breakers which are sensitive to current pulses
WO1996033505A1 (en) * 1995-04-18 1996-10-24 Schneider Electric S.A. Current transformer, in particular for a fault current tripping device sensitive to pulsating currents and tripping device equipped with such a transformer

Also Published As

Publication number Publication date
PL186806B1 (en) 2004-02-27
DE69823621T2 (en) 2005-05-19
EP0921541B1 (en) 2004-05-06
EP0921541A1 (en) 1999-06-09
DE69823621D1 (en) 2004-06-09
PL330101A1 (en) 1999-06-07
FR2772181B1 (en) 2000-01-14
ATE266245T1 (en) 2004-05-15

Similar Documents

Publication Publication Date Title
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP3522186B1 (en) Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
JPH05192821A (en) Electric discharge working electrode and its manufacture
Lim et al. Effects of Al on the magnetic properties of nanocrystalline Fe73. 5Cu1Nb3Si13. 5B9 alloys
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
FR2772182A1 (en) METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE AND USE IN AN AC CLASS DIFFERENTIAL CIRCUIT BREAKER
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
Kojima et al. Soft magnetic properties of nanocrystalline Fe-Nb-BP alloys produced in the atmosphere by melt-spinning method
JPS62124250A (en) Amorphous alloy for electric current-detecting device
EP0132422A1 (en) Flux gate sensor, in particular for a magnetometer
EP0905263A1 (en) Process for manufacturing iron-nickel alloy strip from a continuously cast thin strip
JPS6130008A (en) Toroidal magnetic core
JPH04275410A (en) Heat treatment of magnetic core
JPH04275409A (en) Heat treatment of magnetic core
JPS5825433A (en) Directional property silicon steel band
JPH04275411A (en) Heat treatment of magnetic core
JPS6159815B2 (en)
JPH08273918A (en) Iron-based amorphous alloy thin belt for wound transformer
CH278120A (en) A method of manufacturing an anisotropic permanent magnet and magnet obtained by this method.
JP2000080413A (en) PRODUCTION OF Fe GROUP BASE AMORPHOUS METALLIC THIN STRIP
JPS61194117A (en) Manufacture of amorphous alloy having small loss

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20081020