JPH04275410A - Heat treatment of magnetic core - Google Patents

Heat treatment of magnetic core

Info

Publication number
JPH04275410A
JPH04275410A JP3037644A JP3764491A JPH04275410A JP H04275410 A JPH04275410 A JP H04275410A JP 3037644 A JP3037644 A JP 3037644A JP 3764491 A JP3764491 A JP 3764491A JP H04275410 A JPH04275410 A JP H04275410A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
magnetic
differential
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3037644A
Other languages
Japanese (ja)
Other versions
JP2952717B2 (en
Inventor
Masahito Takeuchi
雅人 竹内
Yoshihiko Hirota
好彦 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3037644A priority Critical patent/JP2952717B2/en
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to CN92102499A priority patent/CN1048576C/en
Priority to US07/941,113 priority patent/US5439534A/en
Priority to AT92905956T priority patent/ATE154158T1/en
Priority to PCT/JP1992/000256 priority patent/WO1992015997A1/en
Priority to DE69220150T priority patent/DE69220150T2/en
Priority to EP92905956A priority patent/EP0527233B1/en
Priority to CA002082061A priority patent/CA2082061C/en
Priority to KR1019920702742A priority patent/KR970007511B1/en
Priority to TW081101775A priority patent/TW201844B/zh
Publication of JPH04275410A publication Critical patent/JPH04275410A/en
Application granted granted Critical
Publication of JP2952717B2 publication Critical patent/JP2952717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a magnetic core stationarily being stable in product property even if dispersion occurs by noticing that there is dispersion in the property of magnetic ribbons being offered by lots. CONSTITUTION:When heat-treating a magnetic ribbon after winding it, the optimum heat treatment temperature is decided by measuring the differential crystalization temperature of the magnetic ribbon being sampled optionally from among the material lot, and comparing this measured temperature value with the differential crystallization temperature corresponding to the heat treatment temperature at the target permeability being made in advance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、直流上の重複リップル
の平滑やノーマルモード用ノイズフィルターのコア、高
周波トランス及びアクティブフィルター用コア等に用い
られる恒透磁性の優れた磁心の製造方法に適用して有効
な技術に関する。
[Industrial Application Field] The present invention is applicable to a method of manufacturing magnetic cores with excellent constant magnetic permeability used for smoothing overlapping ripples on DC, cores of normal mode noise filters, cores for high frequency transformers, active filters, etc. Regarding effective techniques.

【0002】0002

【従来の技術】従来技術では、非晶質合金からなる金属
薄帯(磁性リボン)をスリット状に加工してこれを所定
回数だけ巻回し、これを熱処理(焼鈍)した後、エポキ
シ樹脂等の接着剤を含浸、固化させ、次に磁路の一部を
切断するギャップ(空隙)を設けて前記恒透磁性を実現
していた。また、その他にギャップを設けることなく熱
処理のみにより目標とする恒透磁性を得る手法が以前よ
り知られていた。
[Prior Art] In the conventional technology, a metal ribbon (magnetic ribbon) made of an amorphous alloy is processed into a slit shape, wound a predetermined number of times, heat-treated (annealed), and then coated with epoxy resin, etc. The above-mentioned constant magnetic permeability was achieved by impregnating and solidifying an adhesive, and then providing a gap to cut a portion of the magnetic path. In addition, a method of obtaining the target constant magnetic permeability only by heat treatment without providing any other gap has been known for some time.

【0003】前記恒透磁性は、磁心の製造工程における
焼鈍、すなわち熱処理温度条件に大きく依存しており、
安定した恒透磁性を得るためには熱処理温度条件を厳密
に制御する必要があった。
The constant magnetic permeability greatly depends on the annealing, ie, heat treatment temperature conditions in the manufacturing process of the magnetic core.
In order to obtain stable magnetic permeability, it was necessary to strictly control the heat treatment temperature conditions.

【0004】0004

【発明が解決しようとする課題】しかし、前記熱処理条
件を厳格に制御したとしても、必ずしも目標の恒透磁性
を有する磁心が得られないことが知られていた。
[Problems to be Solved by the Invention] However, it has been known that even if the heat treatment conditions are strictly controlled, a magnetic core having the desired constant magnetic permeability cannot necessarily be obtained.

【0005】本発明者は、この原因が材料として提供さ
れる磁性リボンの特性のばらつき、すなわち組成のばら
つきに起因していることを見い出した。
[0005] The inventor of the present invention has discovered that the cause of this is due to variations in the properties of the magnetic ribbon provided as a material, that is, variations in composition.

【0006】図1は、磁性リボンの各素材ロットから任
意に抽出した14本(R1〜R14)のサンプルについ
て熱処理温度と透磁率との関係を示したものである。な
お同図における熱処理条件は大気中で、その熱処理時間
は2時間である。
FIG. 1 shows the relationship between heat treatment temperature and magnetic permeability for 14 samples (R1 to R14) arbitrarily extracted from each material lot of magnetic ribbons. Note that the heat treatment conditions in the figure are in the atmosphere, and the heat treatment time is 2 hours.

【0007】この透磁率はヒューレットパッカード株式
会社製、プレシジョンLCRメータHP4284Aおよ
び42841Aを用いて交流磁界100kHz、5mO
e、直流磁界0Oeの条件で測定を行ったものである。
This magnetic permeability was determined using precision LCR meters HP4284A and 42841A manufactured by Hewlett-Packard Co., Ltd. under an AC magnetic field of 100kHz and 5mO.
e, measurements were taken under the condition of a DC magnetic field of 0 Oe.

【0008】この透磁率と恒透磁性との間には、図2で
示す様な関係があり、直流磁界0Oeにおける透磁率を
測定するだけで、直流磁界を重畳した場合の透磁率、す
なわち恒透磁性を推測することができる。
There is a relationship between this magnetic permeability and constant magnetic permeability as shown in FIG. Magnetic permeability can be inferred.

【0009】したがって、必然的に、磁界を印加しない
状態(0Oe)における透磁率を下げることによって恒
透磁性を得ることができる。
[0009] Therefore, necessarily, constant magnetic permeability can be obtained by lowering the magnetic permeability in a state where no magnetic field is applied (0 Oe).

【0010】ところで、図1によれば、たとえば445
℃の温度条件で2時間の加熱処理を行った場合、透磁率
は250を中心に180〜380の範囲のものが同時に
生じてしまう。すなわち、温度条件を厳密に制御したと
しても、得られた磁心は、透磁率において最大200の
差が生じてしまう可能性があり、歩留まりが極めて悪く
なる可能性があった。
By the way, according to FIG. 1, for example, 445
When heat treatment is carried out for 2 hours at a temperature of 0.degree. C., magnetic permeability values of 180 to 380 occur at the same time, with the magnetic permeability being 250. That is, even if the temperature conditions are strictly controlled, there is a possibility that the obtained magnetic cores will have a maximum difference of 200 points in magnetic permeability, and the yield may be extremely poor.

【0011】本発明は前記課題に鑑みてなされたもので
あり、その目的は素材ロットで提供される磁性リボン中
に特性のばらつきのあることに着目して、このようなば
らつきが生じていても定常的に製品特性の安定した磁心
を得ることにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to focus on the fact that there are variations in characteristics among magnetic ribbons provided in different material lots, and to solve the problem even if such variations occur. The objective is to obtain a magnetic core with stable product characteristics on a regular basis.

【0012】0012

【課題を解決するための手段】本発明は、磁心の熱処理
において、素材ロット中から任意にサンプリングした磁
性リボンの微分結晶化温度を測定し、この測定温度値を
、あらかじめ作成した目標透磁率における熱処理温度に
対応する微分結晶化温度と比較して熱処理温度の補正値
を決定することを要旨とする。
[Means for Solving the Problems] The present invention measures the differential crystallization temperature of a magnetic ribbon arbitrarily sampled from a material lot during heat treatment of a magnetic core, and uses this measured temperature value at a predetermined target magnetic permeability. The gist is to determine a correction value for the heat treatment temperature by comparing it with the differential crystallization temperature corresponding to the heat treatment temperature.

【0013】[0013]

【作用】ここで、微分結晶化温度とはアモルファスの結
晶化時に正方向に差動熱量の変化が最大になる温度と定
義する。
[Operation] Here, the differential crystallization temperature is defined as the temperature at which the change in differential heat quantity in the positive direction is maximum during crystallization of amorphous.

【0014】すなわち、結晶化時において、DSC(D
ifferential Scanning Calo
rimetry)曲線を時間で微分した曲線により得る
ことができる。
That is, during crystallization, DSC (D
iferential Scanning Calo
rimetry) curve can be obtained by differentiating the curve with respect to time.

【0015】ここで、前記結晶化ピーク温度(Tx)と
しては、2箇所においてピーク温度が表れる場合がある
が、このとき第1結晶化温度の微分結晶化温度を第1微
分結晶化温度(TX1d)とし、第2結晶化温度の微分
結晶化温度を第2微分結晶化温度(TX2d)とする。
Here, as the crystallization peak temperature (Tx), peak temperatures may appear at two locations, but in this case, the differential crystallization temperature of the first crystallization temperature is defined as the first differential crystallization temperature (TX1d). ), and the differential crystallization temperature of the second crystallization temperature is defined as the second differential crystallization temperature (TX2d).

【0016】前記手段において、熱処理を行う磁心本体
としては、たとえばアモルファス金属性の磁性リボンを
スリット状に加工してこれを巻回したものを用いること
ができる。
[0016] In the above means, as the magnetic core body to be heat-treated, for example, an amorphous metal magnetic ribbon processed into a slit shape and wound around the ribbon can be used.

【0017】本発明で使用するアモルファス金属として
は、合金中のFeの含有量が50原子%以上のFe基ア
モルファス合金(金属)であり、これらのFe基アモル
ファス合金としては、Fe−B,Fe−B−C,Fe−
B−Si,Fe−B−Si−C,Fe−B−Si−Cr
,Fe−Co−B−Si,Fe−Ni−Mo−B等のF
e系のものを例示できる。この中で特に好ましいFe基
アモルファス金属としては、FeXSiYBZMWが例
示できる。ここで、X=50〜85、Y=5〜15、Z
=5〜25(X,Y,Zはいずれも原子%を表す)、M
はCo,Ni,Nb,Ta,Mo,W,Zr,Cu,C
r,Mn,Al,P等1種または2種以上の組み合わせ
からなる金属で、W=0〜5原子%のものである。
The amorphous metal used in the present invention is an Fe-based amorphous alloy (metal) in which the content of Fe in the alloy is 50 atomic % or more, and these Fe-based amorphous alloys include Fe-B, Fe -B-C,Fe-
B-Si, Fe-B-Si-C, Fe-B-Si-Cr
, Fe-Co-B-Si, Fe-Ni-Mo-B, etc.
Examples include those of the e type. Among these, FeXSiYBZMW can be exemplified as a particularly preferable Fe-based amorphous metal. Here, X=50~85, Y=5~15, Z
= 5 to 25 (X, Y, Z all represent atomic %), M
is Co, Ni, Nb, Ta, Mo, W, Zr, Cu, C
It is a metal consisting of one type or a combination of two or more types such as r, Mn, Al, P, etc., and W = 0 to 5 atomic %.

【0018】なお、熱処理雰囲気としては、大気と同条
件であってもよいが、好ましくは窒素雰囲気等の不活性
雰囲気を用いることにより、アモルファスリボンの端部
止めに用いたカプトンテープの剥離等を防止することも
できる。
The heat treatment atmosphere may be the same as the atmosphere, but preferably an inert atmosphere such as a nitrogen atmosphere is used to prevent peeling of the Kapton tape used to fasten the ends of the amorphous ribbon. It can also be prevented.

【0019】また、熱処理に際して処理条件として湿潤
雰囲気としてもよい。この場合、磁心本体を25℃換算
における単位水蒸気量が3〜600g/m3、特に好ま
しくは20〜200g/m3の湿潤雰囲気中で熱処理す
ることにより、比較的低温領域で磁心の透磁率を抑制し
、広い温度範囲で安定的な恒透磁性を得ることができる
[0019] Furthermore, a humid atmosphere may be used as the treatment condition during the heat treatment. In this case, the permeability of the magnetic core can be suppressed in a relatively low temperature region by heat treating the magnetic core body in a humid atmosphere with a unit water vapor amount of 3 to 600 g/m3, particularly preferably 20 to 200 g/m3, converted to 25°C. , it is possible to obtain stable constant magnetic permeability over a wide temperature range.

【0020】本発明では、まず熱処理前の素材ロットか
ら磁性リボンを任意に抽出し、この磁性リボンの一部を
切り取り、これを試料としてDSC(Differen
tial Scanning Calorimetry
:示差走査熱量測定)装置を用いて微分結晶化温度を測
定する。
[0020] In the present invention, first, a magnetic ribbon is arbitrarily extracted from a material lot before heat treatment, a part of this magnetic ribbon is cut out, and this is subjected to DSC (Different Scanning) as a sample.
tial Scanning Calorimetry
The differential crystallization temperature is measured using a differential scanning calorimetry (differential scanning calorimetry) device.

【0021】図3は、磁性リボンを10mg試料として
秤量し、DSC装置を用いて測定した差動熱量の変化を
示しており、同図より第1微分結晶化温度(Tx1d)
が判明する。
[0021] Figure 3 shows the change in differential heat quantity measured using a DSC device by weighing a 10 mg sample of magnetic ribbon.
becomes clear.

【0022】次に、あらかじめ測定された目標透磁率に
おける熱処理温度と第1微分結晶化温度(TX1d)と
の関係式に前記DSC装置からの測定温度値を代入し、
熱処理温度を決定する。
Next, the measured temperature value from the DSC device is substituted into the relational expression between the heat treatment temperature and the first differential crystallization temperature (TX1d) at the target magnetic permeability measured in advance,
Determine the heat treatment temperature.

【0023】前記関係式は、たとえば以下のように導く
ことができる。このような関係式は、たとえば目標透磁
率における熱処理温度と第1微分結晶化温度(Tx1d
)との関係をあらかじめ複数のロット素材でサンプリン
グしておくことにより得られる。
The above relational expression can be derived, for example, as follows. Such a relational expression is, for example, the heat treatment temperature at the target permeability and the first differential crystallization temperature (Tx1d
) can be obtained by sampling multiple lot materials in advance.

【0024】図4は、透磁率250における微分結晶化
温度に対する熱処理温度の変化を示しており、図5は透
磁率300における微分結晶化温度に対する熱処理温度
の変化を示している。
FIG. 4 shows the change in heat treatment temperature with respect to the differential crystallization temperature at a magnetic permeability of 250, and FIG. 5 shows the change in the heat treatment temperature with respect to the differential crystallization temperature at a magnetic permeability of 300.

【0025】両図に示すように、微分結晶化温度と熱処
理温度との間には正の強い相関関係があることが見い出
され、これから最小自乗法により下記の数1および数2
が導き出される。数1は透磁率250の場合であり、数
2は透磁率300の場合である。
As shown in both figures, it has been found that there is a strong positive correlation between the differential crystallization temperature and the heat treatment temperature, and from this, the following Equations 1 and 2 can be calculated using the least squares method.
is derived. Equation 1 is for a magnetic permeability of 250, and Equation 2 is for a magnetic permeability of 300.

【0026】[0026]

【数1】 T(℃)=1.149Tx1d−138.43[Math 1] T (°C) = 1.149Tx1d-138.43

【002
7】
002
7]

【数2】 T(℃)=0.953Tx1d−41.49前記数1お
よび数2において、Tは目標透磁率が得られる熱処理制
御温度であり、Tx1dは第1微分結晶化温度である。 いずれも相関関数は0.98以上である。
[Formula 2] T (°C) = 0.953Tx1d - 41.49 In Equations 1 and 2 above, T is the heat treatment control temperature at which the target magnetic permeability is obtained, and Tx1d is the first differential crystallization temperature. In both cases, the correlation function is 0.98 or more.

【0028】電気炉における熱処理温度は、この熱処理
制御温度(T)に基づきこの電気炉を1℃ずつ制御する
The heat treatment temperature in the electric furnace is controlled by 1° C. based on the heat treatment control temperature (T).

【0029】このように、数1および数2より決定した
熱処理制御温度により電気炉を制御して熱処理を行う。
In this way, heat treatment is performed by controlling the electric furnace using the heat treatment control temperature determined from Equations 1 and 2.

【0030】[0030]

【実施例1】以下、本発明の実施例を説明する。[Embodiment 1] An embodiment of the present invention will be described below.

【0031】アライド社のアモルファスリボン(製品名
:Metglas2605S−2:Fe78B13Si
9(原子%),厚さ21μm,幅10mm)を巻回して
、外径25mm,内径15mmのトロイダル状の磁心本
体を得た。
[0031] Allied's amorphous ribbon (product name: Metglas2605S-2: Fe78B13Si
9 (at.

【0032】一方、前記アモルファスリボンの各製品ロ
ットより任意に抽出した試料についてDSC装置を用い
て微分結晶化温度(Tx1d)を測定した。
On the other hand, the differential crystallization temperature (Tx1d) of samples arbitrarily extracted from each product lot of the amorphous ribbon was measured using a DSC device.

【0033】次に、この測定値を前述の数1または数2
に代入して熱処理温度(T)を決定し、これに基づいて
電気炉を制御した。
Next, this measured value is calculated using the above-mentioned equation 1 or equation 2.
The heat treatment temperature (T) was determined by substituting , and the electric furnace was controlled based on this.

【0034】このとき本実施例では、微分結晶化温度(
Tx1d)が505.7℃についてその熱処理温度(T
)を443℃に制御した。その結果、目標透磁率250
に対して245〜255の範囲のものが歩留り99%で
得られた。
At this time, in this example, the differential crystallization temperature (
The heat treatment temperature (Tx1d) is 505.7°C.
) was controlled at 443°C. As a result, the target permeability is 250
245 to 255 was obtained with a yield of 99%.

【0035】前記熱処理の完了後、この磁心本体にギャ
ップを設けることなく合成樹脂からなるケースに収容し
、磁心とした。
[0035] After the heat treatment was completed, the core body was housed in a case made of synthetic resin without providing a gap to form a magnetic core.

【0036】[0036]

【実施例2】前記実施例1と同様の、アライド社のアモ
ルファスリボン(製品名:Metglas2605S−
2:Fe78B13Si9(原子%),厚さ21μm,
幅10mm)を巻回して、外径25mm,内径15mm
のトロイダル状の磁心本体を得た。
[Example 2] Similar to Example 1, an amorphous ribbon (product name: Metglas 2605S-
2: Fe78B13Si9 (atomic %), thickness 21 μm,
Width: 10mm), outer diameter: 25mm, inner diameter: 15mm
A toroidal magnetic core body was obtained.

【0037】一方、前記アモルファスリボンの各製品ロ
ットより任意に抽出した試料についてDSC装置を用い
て微分結晶化温度(Tx1d)を測定した。
On the other hand, the differential crystallization temperature (Tx1d) of samples arbitrarily extracted from each product lot of the amorphous ribbon was measured using a DSC device.

【0038】次に、この測定値を前述の数1または数2
に代入して熱処理温度(T)を決定し、これに基づいて
電気炉を制御した。
Next, this measured value is calculated using the above-mentioned equation 1 or equation 2.
The heat treatment temperature (T) was determined by substituting , and the electric furnace was controlled based on this.

【0039】このとき本実施例では、微分結晶化温度(
Tx1d)が508.5℃についてその熱処理温度(T
)を443℃に制御した。その結果、目標透磁率300
0に対して290〜300の範囲のものが歩留り97%
で得られた。
At this time, in this example, the differential crystallization temperature (
The heat treatment temperature (Tx1d) is 508.5°C.
) was controlled at 443°C. As a result, the target permeability is 300
Those in the range of 290 to 300 compared to 0 have a yield of 97%.
Obtained with.

【0040】前記熱処理の完了後、この磁心本体にギャ
ップを設けることなく合成樹脂からなるケースに収容し
、磁心とした。
[0040] After the heat treatment was completed, the core body was housed in a case made of synthetic resin without providing a gap to form a magnetic core.

【0041】以上のように、各実施例によれば、素材ロ
ットのばらつきを、熱処理時においてその微分結晶化温
度を基準にして補正することにより、特に高い歩留まり
を得ることができた。
As described above, according to each of the examples, particularly high yields could be obtained by correcting variations in material lots based on the differential crystallization temperature during heat treatment.

【0042】[0042]

【発明の効果】本発明によれば、素材として提供される
熱処理前の磁性リボンにばらつきが生じている場合であ
っても、定常的に製品特性の安定した磁心を得ることが
できる。
According to the present invention, even if there are variations in the magnetic ribbon before heat treatment provided as a raw material, it is possible to constantly obtain a magnetic core with stable product characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】磁性リボンのロット毎の熱処理温度と透磁率と
のばらつきを示すグラフ図
[Figure 1] Graph showing variations in heat treatment temperature and magnetic permeability for each lot of magnetic ribbon

【図2】磁性リボンにおける直流重畳磁界に対する透磁
率の変化を示すグラフ図
[Figure 2] Graph diagram showing changes in magnetic permeability due to direct current superimposed magnetic field in a magnetic ribbon

【図3】実施例において、DSC装置を用いて測定され
た作動熱量の変化と微分結晶化温度の変化とを示すグラ
フ図
FIG. 3 is a graph diagram showing changes in operating heat amount and changes in differential crystallization temperature measured using a DSC device in Examples.

【図4】透磁率250における微分結晶化温度に対する
熱処理温度の変化を示すグラフ図
[Figure 4] Graph diagram showing changes in heat treatment temperature with respect to differential crystallization temperature at magnetic permeability of 250

【図5】透磁率300における微分結晶化温度に対する
熱処理温度の変化を示すグラフ図
[Figure 5] Graph diagram showing changes in heat treatment temperature with respect to differential crystallization temperature at magnetic permeability of 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  磁性リボンを巻回した後に熱処理する
際に、素材ロット中から任意にサンプリングした磁性リ
ボンの微分結晶化温度を測定し、この測定温度値を、あ
らかじめ作成した目標透磁率における熱処理温度に対応
する微分結晶化温度値と比較して最適な熱処理温度を決
定することを特徴とする磁心の熱処理方法。
Claim 1: When heat treating the magnetic ribbon after winding, the differential crystallization temperature of the magnetic ribbon arbitrarily sampled from the material lot is measured, and this measured temperature value is used for heat treatment at a target magnetic permeability created in advance. A method for heat treatment of a magnetic core, characterized in that an optimal heat treatment temperature is determined by comparing with a differential crystallization temperature value corresponding to the temperature.
JP3037644A 1991-03-04 1991-03-04 Heat treatment method of magnetic core Expired - Lifetime JP2952717B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3037644A JP2952717B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core
KR1019920702742A KR970007511B1 (en) 1991-03-04 1992-03-04 Method of manufacturing & applying heat treatment to a agnetic core
AT92905956T ATE154158T1 (en) 1991-03-04 1992-03-04 METHOD FOR PRODUCING A MAGNETIC CORE BY HEAT TREATING THE SAME
PCT/JP1992/000256 WO1992015997A1 (en) 1991-03-04 1992-03-04 Method of manufacturing magnetic core and of heat-treating the same
DE69220150T DE69220150T2 (en) 1991-03-04 1992-03-04 METHOD FOR PRODUCING A MAGNETIC CORE BY HEAT TREATMENT THEREOF
EP92905956A EP0527233B1 (en) 1991-03-04 1992-03-04 Method of manufacturing magnetic core by heat-treating the same
CN92102499A CN1048576C (en) 1991-03-04 1992-03-04 Method of manufacturing and appolying heat treatment to magnetic core
US07/941,113 US5439534A (en) 1991-03-04 1992-03-04 Method of manufacturing and applying heat treatment to a magnetic core
CA002082061A CA2082061C (en) 1991-03-04 1992-03-04 Method of manufacturing and applying heat treatment to a magnetic core
TW081101775A TW201844B (en) 1991-03-04 1992-03-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037644A JP2952717B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core

Publications (2)

Publication Number Publication Date
JPH04275410A true JPH04275410A (en) 1992-10-01
JP2952717B2 JP2952717B2 (en) 1999-09-27

Family

ID=12503362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037644A Expired - Lifetime JP2952717B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core

Country Status (1)

Country Link
JP (1) JP2952717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755292A1 (en) * 1996-10-25 1998-04-30 Mecagis PROCESS FOR PRODUCING A MAGNETIC CORE OF NANOCRYSTALLINE SOFT MAGNETIC MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755292A1 (en) * 1996-10-25 1998-04-30 Mecagis PROCESS FOR PRODUCING A MAGNETIC CORE OF NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
EP0844628A1 (en) * 1996-10-25 1998-05-27 Mecagis Process for producing a magnetic core of nanocristalline soft magnetic material

Also Published As

Publication number Publication date
JP2952717B2 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
CN1185012A (en) Process for mfg. magnetic component made of iron-based soft magnetic alloy having nanocrys talline structure
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
KR101911569B1 (en) Alloy, magnetic core and process for the production of a tape from an alloy
EP3050977B1 (en) Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
EP0429022B1 (en) Magnetic alloy with ulrafine crystal grains and method of producing same
EP3157021B1 (en) Method for producing fe-based nanocrystalline alloy core
US5211767A (en) Soft magnetic alloy, method for making, and magnetic core
KR970007511B1 (en) Method of manufacturing & applying heat treatment to a agnetic core
JP3231149B2 (en) Noise filter
JPH0375341A (en) Soft magnetic alloy, its manufacture and magnetic core
JPH02236259A (en) Alloy excellent in iso-permeability and its production
JPH04275410A (en) Heat treatment of magnetic core
US2783170A (en) Magnetic material and process of making it
JPH04275411A (en) Heat treatment of magnetic core
JP3705446B2 (en) Nanocrystallization heat treatment method for nanocrystalline alloys
JPH04275409A (en) Heat treatment of magnetic core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH0570901A (en) Fe base soft magnetic alloy
JPH04307906A (en) Magnetic core and its manufacture
JPH03197651A (en) Fe-base high transmissible magnetic alloy
JP2002075718A (en) Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core
JPS59133351A (en) Amorphous magnetic material and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11