EP0844628B1 - Process for producing a magnetic core of nanocristalline soft magnetic material - Google Patents

Process for producing a magnetic core of nanocristalline soft magnetic material Download PDF

Info

Publication number
EP0844628B1
EP0844628B1 EP97402396A EP97402396A EP0844628B1 EP 0844628 B1 EP0844628 B1 EP 0844628B1 EP 97402396 A EP97402396 A EP 97402396A EP 97402396 A EP97402396 A EP 97402396A EP 0844628 B1 EP0844628 B1 EP 0844628B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
process according
soft magnetic
annealing
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97402396A
Other languages
German (de)
French (fr)
Other versions
EP0844628A1 (en
Inventor
Philippe Verin
Georges Couderchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0844628A1 publication Critical patent/EP0844628A1/en
Application granted granted Critical
Publication of EP0844628B1 publication Critical patent/EP0844628B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Heat Treatment Of Articles (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Production of a magnetic core of soft magnetic iron-based alloy having a nanocrystalline structure involves determining the annealing temperature (Tm) required, for an amorphous ribbon of the alloy, to achieve maximum magnetic permeability and subjecting a core blank, produced from an amorphous ribbon of the alloy, to annealing at 20-50 (preferably 20-40) degrees C above Tm for 0.1-10 (preferably 0.5-5) hrs. to cause nanocrystal formation. The alloy has the composition (in atomic %) ≥ 60% Fe, 0.1-3% (preferably 0.5-1.5) Cu, 0-25% B, 0-30% (preferably 12-17) Si, 0.1-30% (preferably 2-5) one or more of Nb, W, Ta, Zr, Hf, Ti and Mo, and balance impurities, the sum of Si and B being 5-30% (preferably 15-25).

Description

La présente invention concerne les matériaux magnétiques nanocristallins destinés, notamment, à la fabrication de circuits magnétiques pour appareils électriques.The present invention relates to nanocrystalline magnetic materials intended, in particular, for the manufacture of magnetic circuits for apparatus electric.

Les matériaux magnétiques nanocristallins sont bien connus et ont été décrits, en particulier, dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Ce sont des alliages à base de fer, contenant plus de 60 at % (atomes %) de fer, du cuivre, du silicium, du bore, et éventuellement au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane et le molybdène, coulés sous forme de rubans amorphes puis soumis à un traitement thermique qui provoque une cristallisation extrêmement fine (les cristaux ont moins de 100 nanomètres de diamètre). Ces matériaux ont des propriétés magnétiques particulièrement adaptées à la fabrication de noyaux magnétiques doux pour appareils électrotechniques tels que des disjoncteurs différentiels. En particulier, ils ont une excellente perméabilité magnétique et peuvent présenter soit un cycle d'hystérésis rond (Br/Bm ≥ 0,5), soit un cycle d'hystérésis couché (Br/Bm ≤ 0,3) ; Br/Bm étant le rapport de l'induction magnétique rémanente à l'induction magnétique maximale. Les cycles d'hystérésis ronds sont obtenus lorsque le traitement thermique est constitué d'un simple recuit à une température d'environ 500°C. Les cycles d'hystérésis couchés sont obtenus lorsque le traitement thermique comporte au moins un recuit sous champ magnétique, ce recuit pouvant être le recuit destiné à provoquer la formation de nanocristaux.Nanocrystalline magnetic materials are well known and have been described, in particular, in European patent applications EP 0 271 657 and EP 0 299 498. These are iron-based alloys, containing more than 60 at% (atoms%) of iron, copper, silicon, boron, and possibly at least one element taken among niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum, cast in the form of amorphous ribbons and then subjected to a treatment which causes extremely fine crystallization (the crystals have less 100 nanometers in diameter). These materials have magnetic properties particularly suitable for the manufacture of soft magnetic cores for electrotechnical devices such as earth leakage circuit breakers. In particular, they have excellent magnetic permeability and can exhibit either a cycle round hysteresis (Br / Bm ≥ 0.5), i.e. a coated hysteresis cycle (Br / Bm ≤ 0.3); Br / Bm being the ratio of remanent magnetic induction to magnetic induction maximum. Round hysteresis cycles are obtained when treatment thermal consists of a simple annealing at a temperature of about 500 ° C. The lying hysteresis cycles are obtained when the heat treatment involves at least one annealing under magnetic field, this annealing being able to be the annealing intended to cause the formation of nanocrystals.

Les matériaux dont le cycle d'hystérésis est rond peuvent présenter une perméabilité magnétique très élevée, supérieure même à celle des alliages du type Permalloys classiques. Cette perméabilité magnétique très élevée les rend, a priori, particulièrement adaptés à la fabrication de noyaux magnétiques pour disjoncteurs différentiels de la classe AC, c'est à dire, sensibles aux courants de défaut alternatifs. Cependant, pour qu'une telle utilisation soit possible, il est nécessaire que les propriétés magnétiques des noyaux soient suffisamment reproductibles pour qu'une fabrication en série soit satisfaisante.Materials with a round hysteresis cycle may exhibit very high magnetic permeability, even higher than that of alloys of the type Classic permalloys. This very high magnetic permeability makes them, a priori, particularly suitable for the manufacture of magnetic cores for circuit breakers AC class differentials, i.e. sensitive to fault currents alternative. However, for such use to be possible, it is necessary that the magnetic properties of the nuclei are sufficiently reproducible to that mass production is satisfactory.

Pour fabriquer en série des noyaux magnétiques pour disjoncteur différentiel de la classe AC, on utilise un ruban d'alliage magnétique amorphe susceptible d'acquérir une structure nanocristalline. On fabrique une série de tores de section sensiblement rectangulaire en enroulant une certaine longueur de ruban sur un mandrin et en effectuant un point de soudure. Les tores ainsi obtenus sont alors soumis à un recuit afin de provoquer la formation de nanocristaux et, de ce fait, leur conférer les propriétés magnétiques souhaitées. La température de recuit , qui se situe aux environs de 500°C, est choisie pour que la perméabilité magnétique de l'alliage soit maximale. Les noyaux magnétiques ainsi obtenus sont destinés à recevoir des bobinages qui engendrent des contraintes mécaniques qui détériorent les propriétés magnétiques des noyaux. Pour limiter les conséquences des contraintes de bobinage, les tores sont disposés dans des boítiers protecteurs à l'intérieur desquels ils sont calés par exemple par des rondelles de mousse. Cependant, ce calage des tores dans leur boítier induit, par lui même, de faibles contraintes qui sont préjudiciables aux excellentes propriétés magnétiques développées sur le noyau. L'utilisation d'un boítier protecteur bien qu'efficace n'est pas toujours suffisante, et, après bobinage, les propriétés des dispositifs obtenus par une fabrication industrielle sont dégradées et trop dispersées pour être encore acceptables pour l'utilisation envisagée.To mass produce magnetic cores for earth leakage circuit breakers of class AC, an amorphous magnetic alloy ribbon capable of being used to acquire a nanocrystalline structure. We make a series of section tori substantially rectangular by winding a certain length of ribbon on a mandrel and by making a solder point. The toroids thus obtained are then annealed in order to cause the formation of nanocrystals and, as a result, their confer the desired magnetic properties. The annealing temperature, which located around 500 ° C, is chosen so that the magnetic permeability of the alloy is maximum. The magnetic cores thus obtained are intended for receive windings which generate mechanical stresses which deteriorate the magnetic properties of the nuclei. To limit the consequences of winding stresses, the toroids are arranged in protective boxes with the interior of which they are wedged for example by foam rings. However, this wedging of the toroids in their casing induces, by itself, low stresses which are detrimental to the excellent magnetic properties developed on the nucleus. The use of a protective case although effective not always sufficient, and, after winding, the properties of the devices obtained by industrial production are degraded and too dispersed to be even acceptable for the intended use.

Le but de la présente invention est de remédier à ces inconvénients en proposant un moyen pour fabriquer en série des noyaux magnétiques en matériau nanocristallin, ayant à la fois une perméabilité magnétique (perméabilité relative d'impédance à 50 Hz maximale) supérieure à 400 000 et un cycle d'hystérésis rond, de telle sorte que la dispersion de leurs propriétés magnétiques soit compatible avec l'utilisation pour la fabrication en série de disjoncteurs différentiels de la classe AC.The object of the present invention is to remedy these drawbacks by proposing a means for mass production of magnetic cores of material nanocrystalline, having both magnetic permeability (relative permeability impedance at 50 Hz maximum) greater than 400,000 and a round hysteresis cycle, so that the dispersion of their magnetic properties is compatible with the use for mass production of class GFCIs AC.

A cet effet, l'invention a pour objet un procédé de fabrication d'au moins un noyau magnétique en alliage magnétique doux à base de fer ayant une structure nanocristalline, selon lequel :

  • on fabrique avec l'alliage magnétique un ruban amorphe,
  • on détermine la température Tm de recuit qui, pour le ruban, conduit à la perméabilité magnétique maximale,
  • avec le ruban on fabrique au moins une ébauche de noyau,
  • et on soumet l'au moins une ébauche de noyau à au moins un recuit effectué à une température T comprise entre Tm + 10°C et Tm + 50°C, et de préférence, entre Tm + 20°C et Tm + 40°C, pendant un temps de maintien t compris entre 0,1 et 10 heures, et de préférence, entre 0,5 et 5 heures, afin de provoquer la formation de nanocristaux. Au moins un recuit peut être effectué sous champ magnétique.
To this end, the subject of the invention is a method of manufacturing at least one magnetic core of a soft magnetic alloy based on iron having a nanocrystalline structure, according to which:
  • an amorphous ribbon is made with the magnetic alloy,
  • the annealing temperature Tm is determined which, for the strip, leads to the maximum magnetic permeability,
  • with the ribbon at least one core blank is made,
  • and at least one core blank is subjected to at least one annealing carried out at a temperature T of between Tm + 10 ° C and Tm + 50 ° C, and preferably between Tm + 20 ° C and Tm + 40 ° C, for a holding time t of between 0.1 and 10 hours, and preferably between 0.5 and 5 hours, in order to cause the formation of nanocrystals. At least one annealing can be carried out under magnetic field.

Ce procédé s'applique à tous les alliages magnétiques doux à base de fer susceptibles de présenter une structure nanocristalline, et plus particulièrement aux alliages dont la composition chimique comprend, en atomes % : Fe ≥ 60 % 0,5 % ≤ Cu ≤ 1,5 % 5 % ≤ B ≤ 14 % 5 % ≤ Si + B ≤ 30 % 2 % ≤ Nb ≤ 4 % This process applies to all soft magnetic alloys based on iron capable of exhibiting a nanocrystalline structure, and more particularly to alloys whose chemical composition comprises, in% atoms: Fe ≥ 60% 0.5% ≤ Cu ≤ 1.5% 5% ≤ B ≤ 14% 5% ≤ Si + B ≤ 30% 2% ≤ Nb ≤ 4%

L'invention va maintenant être décrite plus en détails, mais de façon non limitative et illustrée par un exemple.The invention will now be described in more detail, but not in detail. limiting and illustrated by an example.

Pour fabriquer en série des noyaux magnétiques pour disjoncteur différentiel de la classe AC (sensible aux courants de défaut alternatifs), on utilise un ruban en alliage magnétique doux ayant une structure amorphe, susceptible d'acquérir une structure nanocristalline, constitué principalement de fer en une teneur supérieure à 60 atomes %, et contenant en outre :

  • de 0,1 à 3 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
  • de 0,1 à 30 at %, et, de préférence, de 2 à 5 at % d'au moins un élément pris parmi le niobium, le tungstène, le tantale, le zirconium, le hafnium, le titane, et le molybdène ; de préférence, la teneur en niobium est comprise entre 2 et 4 at % ;
  • du silicium et du bore, la somme des teneurs en ces éléments étant comprise entre 5 et 30 at %, et, de préférence, entre 15 et 25 at % ; la teneur en bore pouvant aller jusqu'à 25 at %, et, de préférence, étant comprise entre 5 et 14 at % ; la teneur en silicium pouvant atteindre 30 at %, et, de préférence, étant comprise entre 12 et 17 at %.
To manufacture in series magnetic cores for differential circuit breaker of class AC (sensitive to alternating fault currents), a ribbon of soft magnetic alloy having an amorphous structure is used, capable of acquiring a nanocrystalline structure, mainly consisting of iron in one content greater than 60 atom%, and also containing:
  • 0.1 to 3 at%, and preferably 0.5 to 1.5 at% copper;
  • from 0.1 to 30 at%, and preferably from 2 to 5 at% of at least one element chosen from niobium, tungsten, tantalum, zirconium, hafnium, titanium, and molybdenum; preferably, the niobium content is between 2 and 4 at%;
  • silicon and boron, the sum of the contents of these elements being between 5 and 30 at%, and preferably between 15 and 25 at%; the boron content which can range up to 25 at%, and preferably being between 5 and 14 at%; the silicon content being able to reach 30 at%, and preferably being between 12 and 17 at%.

La composition chimique de l'alliage peut également comporter de faibles teneurs en impuretés apportées par les matières premières ou résultant de l'élaboration.The chemical composition of the alloy may also include low contents of impurities provided by raw materials or resulting from development.

Le ruban amorphe est obtenu de façon connue en elle même par solidification très rapide de l'alliage liquide. Les ébauches de noyau magnétique sont fabriquées également de façon connue en elle même en enroulant le ruban sur un mandrin, en le coupant et en fixant son extrémité par un point de soudure, afin d'obtenir des petits tores de section rectangulaire. Les ébauches doivent alors être soumises à un traitement de recuit pour faire précipiter dans la matrice amorphe des nanocristaux de taille inférieure à 100 nanomètres. Cette cristallisation très fine permet d'obtenir les propriétés magnétiques souhaitées, et, ainsi, de transformer l'ébauche de noyau magnétique en noyau magnétique.The amorphous ribbon is obtained in a manner known per se by solidification very fast liquid alloy. Magnetic core blanks are fabricated also in a manner known per se by winding the ribbon on a mandrel, cutting it and fixing its end with a welding point, in order to obtain small tori of rectangular section. The blanks must then be subjected to a annealing treatment to precipitate nanocrystals in the amorphous matrix of size less than 100 nanometers. This very fine crystallization makes it possible to obtain desired magnetic properties, and thus transforming the core blank magnetic in magnetic core.

Les inventeurs ayant constaté, de façon inattendue, que l'effet des conditions de recuit sur les propriétés magnétiques des noyaux dépendaient non seulement de la composition chimique de l'alliage, mais aussi, et de façon peu contrôlable, des conditions particulières de fabrication de chaque ruban pris individuellement, avant d'effectuer le recuit, on détermine la température Tm qui conduit, pour un recuit de durée donnée, à la perméabilité magnétique maximale qu'il est possible d'obtenir sur un tore fabriqué avec le ruban. Cette température Tm est propre à chaque ruban, elle est donc déterminée pour chaque ruban par des essais que l'Homme du Métier sait faire. The inventors having unexpectedly found that the effect of the conditions annealing on the magnetic properties of the nuclei depended not only on the chemical composition of the alloy, but also, and not very controllably, special manufacturing conditions for each ribbon taken individually, before to carry out the annealing, the temperature Tm which determines, for an annealing of given duration, at the maximum magnetic permeability that it is possible to obtain on a torus made with the ribbon. This temperature Tm is specific to each ribbon, it is therefore determined for each ribbon by tests that a person skilled in the art can do.

Après avoir déterminé la température Tm, on effectue le recuit à une température T comprise entre Tm + 10°C et Tm + 50°C, et, de préférence, entre Tm + 20°C et Tm + 40°C, pendant un temps compris entre 0,1 et 10 heures, et, de préférence, entre 0,5 et 5 heures.After determining the temperature Tm, the annealing is carried out at a temperature T between Tm + 10 ° C and Tm + 50 ° C, and preferably between Tm + 20 ° C and Tm + 40 ° C, for a time between 0.1 and 10 hours, and, from preferably between 0.5 and 5 hours.

La température et le temps sont deux paramètre de réglage du recuit partiellement équivalents. Mais, les variations de la température de recuit ont un effet beaucoup plus marqué que les variations de la durée du recuit, en particulier aux extrémités de la plage de température de recuit admissible. Aussi, la température est un paramètre d'ajustement relativement grossier des conditions de traitement, le temps est un paramètre d'ajustement fin.Temperature and time are two setting parameters for annealing partially equivalent. However, variations in the annealing temperature have a much stronger effect than variations in the duration of annealing, in particular at the ends of the admissible annealing temperature range. Also, the temperature is a relatively coarse adjustment parameter of the conditions of processing, time is a fine adjustment parameter.

Les conditions particulières du traitement sont déterminées en fonction de l'utilisation envisagée pour le noyau magnétique.The specific conditions of treatment are determined based on the intended use for the magnetic core.

Après le traitement thermique, chaque noyau est disposé dans un boítier protecteur, dans lequel il est calé, par exemple, avec des rondelles de mousse. Pour certaines applications, chaque noyau peut être enrobé dans une résine.After the heat treatment, each core is placed in a box protector, in which it is wedged, for example, with foam washers. For some applications, each core can be coated in a resin.

La température de recuit n'étant pas égale à Tm, la perméabilité magnétique des noyaux n'est pas maximale. Cependant, les inventeurs ont constaté qu'en procédant ainsi, on pouvait obtenir de façon suffisamment fiable une perméabilité magnétique supérieure à 400 000. Ils ont également constaté que les noyaux magnétiques obtenus étaient bien adapté à la fabrication en série de disjoncteurs différentiels, et, qu'en particulier, ils étaient moins sensibles à l'effet des contraintes de bobinage.The annealing temperature is not equal to Tm, the magnetic permeability of nuclei is not maximum. However, the inventors have found that in doing so, one could obtain a sufficiently reliable permeability magnetic greater than 400,000. They also found that the nuclei obtained magnets were well suited for mass production of circuit breakers differentials, and, in particular, they were less sensitive to the effect of constraints winding.

A titre d'exemple d'une part, et de comparaison d'autre part, on a fabriqué trois lots A, B et C de 200 noyaux magnétiques toriques géométriquement identiques ( int = 11 mm,  ext = 15 mm, hauteur = 10 mm). Les trois lots ont été fabriqués avec l'alliage Fe73Cu1Nb3Si15B8 (en atomes %), coulé sous forme d'un ruban amorphe de 22 µm d'épaisseur. Après fabrication des ébauches de noyau magnétique, on a déterminé la température Tm qui était de 500°C pendant 1 heure. Le lot A a été recuit à 505°C (Tm + 5°C) pendant 1 heure, conformément à l'art antérieur, le lot B a été recuit à 530°C (Tm + 30°C) pendant 3 heures, conformément à l'invention, et le lot C a été recuit à 555°C (Tm + 55°C) pendant 3 heures, à titre de comparaison. La moyenne et l'écart type des valeurs de perméabilité magnétique ont été déterminées pour chacun des lots, d'une part pour les noyaux nus, et d'autre part pour les noyaux sous boítier, c'est à dire, soumis à de légères contraintes dues au calage du tore dans son boítier. Les résultats de l'ensemble des mesures étaient les suivants ( dans les trois cas, le rapport Br/Bm était de 0,5 environ) : Noyau nu Noyau sous boítier Moyenne Ecart type Moyenne Ecart type A 550 000 100 000 480 000 120 000 B 490 000 70 000 490 000 70 000 C 360 000 70 000 360 000 70 000 As an example on the one hand, and for comparison on the other hand, three batches A, B and C of 200 geometrically identical toric magnetic cores were manufactured ( int = 11 mm,  ext = 15 mm, height = 10 mm). The three batches were produced with the alloy Fe 73 Cu 1 Nb 3 Si 15 B 8 (in% atoms), cast in the form of an amorphous ribbon 22 µm thick. After manufacturing the blanks of magnetic core, the temperature Tm was determined which was 500 ° C for 1 hour. Lot A was annealed at 505 ° C (Tm + 5 ° C) for 1 hour, in accordance with the prior art, lot B was annealed at 530 ° C (Tm + 30 ° C) for 3 hours, in accordance with the prior art to the invention, and batch C was annealed at 555 ° C (Tm + 55 ° C) for 3 hours, for comparison. The mean and standard deviation of the magnetic permeability values were determined for each of the batches, on the one hand for the naked nuclei, and on the other hand for the cased nuclei, that is to say, subjected to light stresses due to the setting of the torus in its case. The results of the set of measurements were as follows (in the three cases, the Br / Bm ratio was approximately 0.5): Naked core Core in housing Average Standard deviation Average Standard deviation AT 550,000 100,000 480,000 120,000 B 490,000 70,000 490,000 70,000 VS 360,000 70,000 360,000 70,000

Ces résultats montrent que, contrairement à ce qu'on observe pour le lot A, la moyenne des valeurs de perméabilité magnétique des noyaux du lot B est peu affectée par la mise sous boítier et les contraintes qu'elle engendre. Il en est de même pour le lot C. Par contre, alors que la moyenne des valeurs de perméabilité magnétique des noyaux magnétiques sous boítier des lots A et B sont comparables, la moyenne des valeurs de perméabilité magnétique des noyaux magnétiques sous boítier du lot C est sensiblement plus faible.These results show that, contrary to what is observed for lot A, the average of the magnetic permeability values of the nuclei of lot B is little affected by the packaging and the constraints it generates. So is even for lot C. However, while the average permeability values magnetic magnetic cores in the housing of lots A and B are comparable, the mean of the magnetic permeability values of the magnetic cores under case of lot C is significantly lower.

On constate également que les écarts types des valeurs de perméabilité magnétique des noyaux magnétiques, sous boítier ou non, des lots B et C sont plus faibles que l'écart type des valeurs de perméabilité magnétique des noyaux magnétiques, sous boítier ou non, du lot A. La différence entre les lots A et B résulte de ce que les noyaux magnétiques du lot B sont moins sensibles aux contraintes mécaniques que les noyaux magnétiques du lot A. Les noyaux magnétiques du lot C sont, à priori moins sensibles aux contraintes mécaniques que les noyaux magnétiques du lot B, mais présentent des perméabilités incompatibles avec l'application.We also note that the standard deviations of the permeability values magnetic magnetic cores, in a case or not, lots B and C are more lower than the standard deviation of the magnetic permeability values of the nuclei magnetic, in case or not, of lot A. The difference between lots A and B results that the magnetic cores in lot B are less sensitive to stresses mechanical than the magnetic cores in lot A. The magnetic cores in lot C are a priori less sensitive to mechanical stresses than cores magnetic of batch B, but have permeabilities incompatible with the application.

Il résulte des différences entre les moyennes d'une part, et les écarts type d'autre part, que 23% environ des noyaux du lot A et 80% environ des noyaux du lot C ont une perméabilité magnétique inférieure à 400 000, alors que 13% seulement des noyaux du lot B ont une perméabilité magnétique inférieure à 400 000.It results from differences between the means on the one hand, and the standard deviations on the other hand, that about 23% of the nuclei of lot A and about 80% of the nuclei of lot C have a magnetic permeability of less than 400,000, while only 13% lot B cores have a magnetic permeability of less than 400,000.

Par ailleurs, parce que la dispersion des propriétés magnétiques des noyaux du lot B est plus faible que celle des noyaux du lot A, et parce que la sensibilité de ces propriétés aux contraintes mécaniques est plus faible pour le lot B que pour le lot A, après bobinage les noyaux magnétiques du lot B sont bien adaptés à l'utilisation dans des disjoncteurs différentiels de classe AC, alors que les noyaux du lot A ne le sont pas de façon fiable. Les noyaux magnétiques du lot C, bien qu'ayant une sensibilité aux contraintes mécaniques théoriquement plus faible que les noyaux du lot B, ne sont pas adaptés à l'utilisation dans des disjoncteurs différentiels, notamment parce qu'ils ont une perméabilité magnétique insuffisante.Furthermore, because the dispersion of the magnetic properties of the nuclei of batch B is lower than that of the nuclei of batch A, and because the sensitivity of these properties under mechanical stress is lower for lot B than for lot A, after winding the magnetic cores of lot B are well suited to use in class AC residual current devices, while the cores of the lot A are not reliably so. The magnetic cores of lot C, although having theoretically lower sensitivity to mechanical stresses than lot B cores, are not suitable for use in circuit breakers differentials, especially because they have insufficient magnetic permeability.

Pour certaines applications (par exemple les disjoncteurs différentiels de classe A), il est nécessaire d'utiliser des noyaux magnétiques ayant des cycles d'hystéresis couchés. De tels noyaux peuvent être fabriqués en effectuant au moins un recuit sous champ magnétique. Le recuit sous champ magnétique peut être soit le recuit qui vient d'être décrit et qui est destiné à provoquer la précipitation des nanocristaux, soit un recuit complémentaire effectué entre 350 et 550 °C. Les noyaux ainsi obtenus ont, de la même façon, une sensibilité aux contraintes mécaniques très réduite, ce qui augmente la fiabilité des fabrications en série.For certain applications (for example earth leakage circuit breakers class A), it is necessary to use magnetic cores with cycles lying hysteresis. Such cores can be made by performing at least annealing under magnetic field. Annealing under magnetic field can be either the annealing which has just been described and which is intended to cause the precipitation of nanocrystals, i.e. an additional annealing carried out between 350 and 550 ° C. The cores thus obtained have, in the same way, a sensitivity to the stresses very low mechanical properties, which increases the reliability of mass production.

Claims (10)

  1. Process for manufacturing at least one magnetic core made of an iron-based soft magnetic alloy having a nanocrystalline structure, characterized in that:
    an amorphous ribbon is manufactured from the magnetic alloy;
    the annealing temperature Tm which, in respect of the ribbon, leads to the maximum magnetic permeability is determined;
    at least one core blank is manufactured from the ribbon; and
    at least one core blank is subjected to at least one annealing operation, the said annealing being carried out at a temperature T of between Tm + 10°C and Tm + 50°C for a temperature hold time t of between 0.1 and 10 hours, so as to form nano-crystals.
  2. Process according to Claim 1, characterized in that the temperature hold time is between 0.5 and 5 hours.
  3. Process according to Claim 1, characterized in that the annealing temperature T is between Tm + 20°C and Tm + 40°C.
  4. Process according to any one of Claims 1 to 3, characterized in that the chemical composition of the iron-based soft magnetic alloy comprises, in at.%: Fe ≥ 60% 0.1% ≤ Cu ≤ 3% 0% ≤ B ≤ 25% 0% ≤ Si ≤ 30%
    at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum with contents of between 0.1% and 30%,
    the balance being impurities resulting from the smelting and the composition furthermore satisfying the relationship: 5% ≤ Si + B ≤ 30%
  5. Process according to Claim 4, characterized in that the chemical composition of the iron-based soft magnetic alloy is such that: 15% ≤ Si + B ≤ 25%
  6. Process according to Claim 4, characterized in that the chemical composition of the iron-based soft magnetic alloy is such that: 0.5% ≤ Cu ≤ 1.5%
  7. Process according to Claim 4, characterized in that the chemical composition of the iron-based soft magnetic alloy is such that it contains at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum with a content of between 2% and 5%.
  8. Process according to Claim 4, characterized in that the chemical composition of the iron-based soft magnetic alloy is such that: 12% ≤ Si ≤ 17%
  9. Process according to Claim 8, characterized in that the chemical composition of the iron-based soft magnetic alloy is such that: 0.5% ≤ Cu ≤ 1.5% 5% ≤ B ≤ 14% 15% ≤ Si + B ≤ 25% and the content of at least one element selected from niobium, tungsten, tantalum, zirconium, hafnium, titanium and molybdenum is between 2% and 4%.
  10. Process according to Claim 1, characterized in that at least one annealing operation is carried out under a magnetic field.
EP97402396A 1996-10-25 1997-10-13 Process for producing a magnetic core of nanocristalline soft magnetic material Expired - Lifetime EP0844628B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9612996 1996-10-25
FR9612996A FR2755292B1 (en) 1996-10-25 1996-10-25 PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL

Publications (2)

Publication Number Publication Date
EP0844628A1 EP0844628A1 (en) 1998-05-27
EP0844628B1 true EP0844628B1 (en) 2001-12-05

Family

ID=9496996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97402396A Expired - Lifetime EP0844628B1 (en) 1996-10-25 1997-10-13 Process for producing a magnetic core of nanocristalline soft magnetic material

Country Status (18)

Country Link
US (1) US5922143A (en)
EP (1) EP0844628B1 (en)
JP (1) JPH10130797A (en)
KR (1) KR19980032982A (en)
CN (1) CN1134033C (en)
AT (1) ATE210332T1 (en)
AU (1) AU715096B2 (en)
CZ (1) CZ293222B6 (en)
DE (1) DE69708828T2 (en)
ES (1) ES2166516T3 (en)
FR (1) FR2755292B1 (en)
HK (1) HK1011578A1 (en)
HU (1) HU221412B1 (en)
PL (1) PL184054B1 (en)
SK (1) SK284075B6 (en)
TR (1) TR199701235A2 (en)
TW (1) TW354842B (en)
ZA (1) ZA979359B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331883A1 (en) * 2003-07-14 2005-02-10 Vacuumschmelze Gmbh & Co. Kg Measuring method and measuring arrangement for measuring currents with a large dynamic range

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960860B1 (en) * 1998-06-18 2005-11-01 Metglas, Inc. Amorphous metal stator for a radial-flux electric motor
US6507262B1 (en) * 1998-11-13 2003-01-14 Vacuumschmelze Gmbh Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
US6580347B1 (en) * 1998-11-13 2003-06-17 Vacuumschmelze Gmbh Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
CN100372033C (en) * 2005-06-23 2008-02-27 安泰科技股份有限公司 Anti-DC-bias mutual inductor magnet-core for leakage protector and mfg. method thereof
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US20070273467A1 (en) * 2006-05-23 2007-11-29 Jorg Petzold Magnet Core, Methods For Its Production And Residual Current Device
US7909945B2 (en) * 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US8012270B2 (en) * 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) * 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
DE102010060740A1 (en) * 2010-11-23 2012-05-24 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN102496450B (en) * 2011-12-28 2017-03-15 天津三环奥纳科技有限公司 A kind of strong magnetic anneal technique of microcrystalline iron core and its special equipment
CN102875024A (en) * 2012-10-19 2013-01-16 张家港市清大星源微晶有限公司 Microcrystalline material with high magnetic inductivity
CN102912257A (en) * 2012-10-19 2013-02-06 张家港市清大星源微晶有限公司 Microcrystalline material
KR101470513B1 (en) * 2013-07-17 2014-12-08 주식회사 아모그린텍 Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
FR3017750B1 (en) * 2014-02-18 2016-03-04 Tronico TRANSMISSION LINE IMPLEMENTING WITHIN A PIPE OF THE TYPE COMPRISING A TUBE OF TANK AND A PRODUCTION TUBE, WITH USE OF ROLLS OF MAGNETIC MATERIAL.
KR102203689B1 (en) * 2014-07-29 2021-01-15 엘지이노텍 주식회사 Soft magnetic alloy, wireless power transmitting apparatus and wireless power receiving apparatus comprising the same
CN106521287A (en) * 2016-11-16 2017-03-22 黄忠波 Nanocrystalline soft magnetic alloy material and preparation method
CN111593273A (en) * 2020-05-29 2020-08-28 唐山先隆纳米金属制造股份有限公司 Novel soft magnetic alloy material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800182B1 (en) * 1989-09-01 2002-11-13 Masaaki Yagi Thin soft magnetic alloy strip
US5055144A (en) * 1989-10-02 1991-10-08 Allied-Signal Inc. Methods of monitoring precipitates in metallic materials
JP2952717B2 (en) * 1991-03-04 1999-09-27 日本ケミコン株式会社 Heat treatment method of magnetic core
US5439534A (en) * 1991-03-04 1995-08-08 Mitsui Petrochemical Industries, Ltd. Method of manufacturing and applying heat treatment to a magnetic core
JP2952718B2 (en) * 1991-03-04 1999-09-27 日本ケミコン株式会社 Heat treatment method of magnetic core
EP0637038B1 (en) * 1993-07-30 1998-03-11 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
US5611871A (en) * 1994-07-20 1997-03-18 Hitachi Metals, Ltd. Method of producing nanocrystalline alloy having high permeability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10331883A1 (en) * 2003-07-14 2005-02-10 Vacuumschmelze Gmbh & Co. Kg Measuring method and measuring arrangement for measuring currents with a large dynamic range
US7358716B2 (en) 2003-07-14 2008-04-15 Vacuumschmelze Gmbh & Co. Kg Measuring method and measuring arrangement for measuring currents with a large dynamic range
DE10331883B4 (en) * 2003-07-14 2018-01-18 Vacuumschmelze Gmbh & Co. Kg Measuring method and measuring arrangement for measuring currents with a large dynamic range

Also Published As

Publication number Publication date
PL322808A1 (en) 1998-04-27
CZ293222B6 (en) 2004-03-17
KR19980032982A (en) 1998-07-25
AU4102997A (en) 1998-04-30
ATE210332T1 (en) 2001-12-15
HK1011578A1 (en) 1999-07-16
SK144597A3 (en) 1998-05-06
ES2166516T3 (en) 2002-04-16
ZA979359B (en) 1998-05-12
JPH10130797A (en) 1998-05-19
HU221412B1 (en) 2002-09-28
DE69708828D1 (en) 2002-01-17
TR199701235A3 (en) 1999-10-21
DE69708828T2 (en) 2002-06-20
AU715096B2 (en) 2000-01-13
CZ337297A3 (en) 1999-01-13
HUP9701672A3 (en) 2002-03-28
US5922143A (en) 1999-07-13
CN1188317A (en) 1998-07-22
FR2755292B1 (en) 1998-11-20
TW354842B (en) 1999-03-21
CN1134033C (en) 2004-01-07
PL184054B1 (en) 2002-08-30
HUP9701672A2 (en) 1999-06-28
TR199701235A2 (en) 1999-10-21
SK284075B6 (en) 2004-09-08
FR2755292A1 (en) 1998-04-30
EP0844628A1 (en) 1998-05-27
HU9701672D0 (en) 1997-12-29

Similar Documents

Publication Publication Date Title
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP2293308B1 (en) Electric measuring device comprising a nanocrystalline toroidal core
US6270591B2 (en) Amorphous and nanocrystalline glass-covered wires
EP1035236A1 (en) Silicon single crystal wafer, epitaxial silicon wafer, and method for producing them
TWI284685B (en) Silicon semiconductor substrate and preparation thereof
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
JP2005194565A (en) Method of producing soft magnetic alloy powder and soft magnetic alloy powder, soft magnetic alloy powder molding and wave absorber
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
EP0921540B1 (en) Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker
JP3433678B2 (en) Antimony-doped silicon single crystal wafer and epitaxial silicon wafer, and methods for producing them
JPH0768604B2 (en) Fe-based magnetic alloy
EP0157669B1 (en) Composite magnetic circuit and method for manufacturing such a circuit
EP0132422A1 (en) Flux gate sensor, in particular for a magnetometer
Chiriac et al. Comparative study of the magnetic behavior of Co-rich amorphous fibers and amorphous glass-covered wires
FR2491499A1 (en) ANISOTROPIC MAGNETIC ALLOY AND PROCESS FOR PRODUCING THE SAME
JPS5980905A (en) Transformer
JPS58224157A (en) Manufacture of soft magnetic co-fe alloy material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19981127

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011205

REF Corresponds to:

Ref document number: 210332

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69708828

Country of ref document: DE

Date of ref document: 20020117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020305

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166516

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20011205

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021013

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20041007

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041008

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20041011

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20041012

Year of fee payment: 8

Ref country code: FR

Payment date: 20041012

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041019

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20041117

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051013

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051014

BERE Be: lapsed

Owner name: *MECAGIS

Effective date: 20051031