JP2952718B2 - Heat treatment method of magnetic core - Google Patents

Heat treatment method of magnetic core

Info

Publication number
JP2952718B2
JP2952718B2 JP3037645A JP3764591A JP2952718B2 JP 2952718 B2 JP2952718 B2 JP 2952718B2 JP 3037645 A JP3037645 A JP 3037645A JP 3764591 A JP3764591 A JP 3764591A JP 2952718 B2 JP2952718 B2 JP 2952718B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
magnetic
peak temperature
crystallization peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3037645A
Other languages
Japanese (ja)
Other versions
JPH04275411A (en
Inventor
雅人 竹内
好彦 廣田
浩 大森
勝 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3037645A priority Critical patent/JP2952718B2/en
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to EP92905956A priority patent/EP0527233B1/en
Priority to DE69220150T priority patent/DE69220150T2/en
Priority to AT92905956T priority patent/ATE154158T1/en
Priority to US07/941,113 priority patent/US5439534A/en
Priority to KR1019920702742A priority patent/KR970007511B1/en
Priority to PCT/JP1992/000256 priority patent/WO1992015997A1/en
Priority to CA002082061A priority patent/CA2082061C/en
Priority to CN92102499A priority patent/CN1048576C/en
Priority to TW081101775A priority patent/TW201844B/zh
Publication of JPH04275411A publication Critical patent/JPH04275411A/en
Application granted granted Critical
Publication of JP2952718B2 publication Critical patent/JP2952718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、直流上の重複リップル
の平滑やノーマルモード用ノイズフィルターのコア、高
周波トランス及びアクティブフィルター用コア等に用い
られる恒透磁性の優れた磁心の製造方法に適用して有効
な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a method of manufacturing a magnetic core having excellent magnetic permeability, which is used for a core of a noise filter for normal mode, a high frequency transformer, an active filter, etc. And effective technology.

【0002】[0002]

【従来の技術】従来技術では、非晶質合金からなる金属
薄帯(磁性リボン)をスリット状に加工してこれを所定
回数だけ巻回し、これを熱処理(焼鈍)した後、エポキ
シ樹脂等の接着剤を含浸、固化させ、次に磁路の一部を
切断するギャップ(空隙)を設けて前記恒透磁性を実現
していた。また、その他にギャップを設けずに熱処理の
みにより目標とする恒透磁性を得る手法が以前より知ら
れていた。
2. Description of the Related Art In the prior art, a thin metal ribbon (magnetic ribbon) made of an amorphous alloy is processed into a slit shape, wound a predetermined number of times, and heat-treated (annealed). An adhesive is impregnated and solidified, and then a gap (void) for cutting a part of a magnetic path is provided to realize the above-mentioned permeability. In addition, a method of obtaining a target constant magnetic permeability only by heat treatment without providing a gap has been known.

【0003】前記恒透磁性は、磁心の製造工程における
焼鈍、すなわち熱処理温度条件に大きく依存しており、
安定した恒透磁性を得るためには熱処理温度条件を厳密
に制御する必要があった。
[0003] The permanent magnetic permeability greatly depends on the annealing in the manufacturing process of the magnetic core, that is, the heat treatment temperature condition.
In order to obtain stable magnetic permeability, it was necessary to strictly control the heat treatment temperature conditions.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記熱処理条
件を厳格に制御したとしても、必ずしも目標の恒透磁性
を有する磁心が得られないことが知られていた。
However, it has been known that even if the heat treatment conditions are strictly controlled, it is not always possible to obtain a magnetic core having the desired constant magnetic permeability.

【0005】本発明者は、この原因が材料として提供さ
れる磁性リボンの特性のばらつき、すなわち組成のばら
つきに起因していることを見い出した。
The present inventor has found that this is caused by variations in the characteristics of the magnetic ribbon provided as a material, ie, variations in the composition.

【0006】図1は、磁性リボンの各素材ロットから任
意に抽出した14本(R1〜R14)のサンプルについ
て熱処理温度と透磁率との関係を示したものである。な
お同図における熱処理条件は大気中で、その熱処理時間
は2時間である。
FIG. 1 shows the relationship between the heat treatment temperature and the magnetic permeability for 14 samples (R1 to R14) arbitrarily extracted from each material lot of the magnetic ribbon. The heat treatment conditions in the figure are in the air, and the heat treatment time is 2 hours.

【0007】この透磁率はヒューレットパッカード株式
会社製、プレシジョンLCRメータHP4284Aおよ
び42841Aを用いて交流磁界100kHz、5mOe、
直流磁界0Oeの条件で測定を行ったものである。
The magnetic permeability was measured using a precision LCR meter HP4284A and 42841A, manufactured by Hewlett-Packard Co., Ltd., with an alternating magnetic field of 100 kHz and 5 mOe.
The measurement was performed under the condition of a DC magnetic field of 0 Oe.

【0008】この透磁率と恒透磁性との間には、図2で
示す様な関係があり、直流磁界0Oeにおける透磁率を測
定するだけで、直流磁界を重畳した場合の透磁率、すな
わち恒透磁性を推測することができる。
The relationship between the magnetic permeability and the constant magnetic permeability has a relationship as shown in FIG. 2. By measuring the magnetic permeability at a DC magnetic field of 0 Oe, the magnetic permeability when a DC magnetic field is superimposed, ie, the constant magnetic permeability, is measured. The permeability can be inferred.

【0009】したがって、必然的に、磁界を印加しない
状態(0Oe)における透磁率を下げることによって恒透
磁性を得ることができる。
Therefore, it is necessary to lower the magnetic permeability in a state where no magnetic field is applied (0 Oe) to obtain a constant permeability.

【0010】ところで、図1によれば、たとえば445
℃の温度条件で2時間の加熱処理を行った場合、透磁率
は250を中心に180〜380の範囲のものが同時に
生じてしまう。すなわち、温度条件を厳密に制御したと
しても、得られた磁心は、透磁率において最大200の
差が生じてしまう可能性があり、歩留まりが極めて悪く
なる可能性があった。
By the way, according to FIG.
When the heat treatment is performed at a temperature of 2 ° C. for 2 hours, a magnetic permeability in the range of 180 to 380 around 250 occurs simultaneously. That is, even if the temperature conditions are strictly controlled, the obtained magnetic core may have a difference of at most 200 in the magnetic permeability, and the yield may be extremely deteriorated.

【0011】本発明は前記課題に鑑みてなされたもので
あり、その目的は素材ロットで提供される磁性リボン中
に特性のばらつきのあることに着目して、このようなば
らつきが生じていても定常的に製品特性の安定した磁心
を得ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to focus on the fact that magnetic ribbons provided in a material lot have variations in characteristics. An object is to constantly obtain a magnetic core having stable product characteristics.

【0012】[0012]

【課題を解決するための手段】本発明は、磁心の熱処理
において、素材ロット中から任意にサンプリングした磁
性リボンの結晶化ピーク温度を測定し、この測定した結
晶化ピーク温度を、あらかじめ作成した目標透磁率にお
ける結晶化ピーク温度値と熱処理温度との関係に適用し
熱処理温度の補正値、すなわち最適値を決定すること
を要旨とする。
Means for Solving the Problems The present invention, in the heat treatment of the magnetic core is examined for crystallization peak temperature of the magnetic ribbon is optionally sampled from Filling lot was the measurement results
Apply the crystallization peak temperature to the relationship between the crystallization peak temperature value and the heat treatment temperature at the target permeability previously created.
In this case, the correction value of the heat treatment temperature , that is, the optimum value is determined.

【0013】この結晶化ピーク温度(結晶化温度)
は、日本工業規格(JIS−H7151)に記載されて
いるアモルファス金属の結晶化温度測定方法を用いて得
ることができる。この他にも電気抵抗の温度変化による
測定方法、熱膨張による温度変化、X線回析の温度変化
等による結晶化温度測定方法を挙げることができる。こ
れらの中でDSC(Differential Scanning Calorimetr
y:示差走査熱量測定)装置を用いて結晶化ピーク温度を
求める方法が簡便で精度良く、且つ再現性良く結晶化温
度を求めることができる。
The crystallization peak temperature (crystallization temperature) can be obtained by a method for measuring the crystallization temperature of an amorphous metal described in Japanese Industrial Standards (JIS-H7151). Other examples include a method of measuring the electric resistance by a temperature change, a method of measuring a crystallization temperature by a temperature change by thermal expansion, and a temperature change by X-ray diffraction. Among them, DSC (Differential Scanning Calorimetr)
y: Differential scanning calorimetry) The method of obtaining the crystallization peak temperature using an apparatus is simple, accurate, and reproducible.

【0014】[0014]

【作用】前記手段において、熱処理を行う磁心本体とし
ては、たとえばアモルファス金属性の磁性リボンをスリ
ット状に加工してこれを巻回したものを用いることがで
きる。
In the above means, the magnetic core body to be subjected to the heat treatment may be, for example, a magnetic ribbon made of an amorphous metal processed into a slit shape and wound.

【0015】本発明で使用するアモルファス金属として
は、合金中のFeの含有量が50原子%以上のFe基ア
モルファス合金(金属)であり、これらのFe基アモル
ファス合金としては、Fe−B,Fe−B−C,Fe−
B−Si,Fe−B−Si−C,Fe−B−Si−C
r,Fe−Co−B−Si,Fe−Ni−Mo−B等の
Fe系のものを例示できる。この中で特に好ましいFe
基アモルファス金属としては、FeXSiYZWが例示
できる。ここで、X=50〜85、Y=5〜15、Z=
5〜25(X,Y,Zはいずれも原子%を表す)、Mは
Co,Ni,Nb,Ta,Mo,W,Zr,Cu,C
r,Mn,Al,P等1種または2種以上の組み合わせ
からなる金属で、W=0〜5原子%のものである。
The amorphous metal used in the present invention is an Fe-based amorphous alloy (metal) having an Fe content of 50 atomic% or more in the alloy. -BC, Fe-
B-Si, Fe-B-Si-C, Fe-B-Si-C
Fe-based materials such as r, Fe-Co-B-Si and Fe-Ni-Mo-B can be exemplified. Among them, Fe is particularly preferable.
The base amorphous metal, Fe X Si Y B Z M W can be exemplified. Here, X = 50-85, Y = 5-15, Z =
5 to 25 (X, Y, and Z each represent atomic%), M is Co, Ni, Nb, Ta, Mo, W, Zr, Cu, C
A metal composed of one or a combination of two or more of r, Mn, Al, P, etc., wherein W = 0 to 5 atomic%.

【0016】なお、熱処理雰囲気としては、大気と同条
件であってもよいが、好ましくは窒素雰囲気等の不活性
雰囲気を用いることにより、アモルファスリボンの端部
止めに用いたカプトンテープの剥離等を防止することも
できる。
The atmosphere of the heat treatment may be the same as that of the air. Preferably, an inert atmosphere such as a nitrogen atmosphere is used to remove the Kapton tape used for stopping the end of the amorphous ribbon. It can also be prevented.

【0017】また、熱処理に際して処理条件として湿潤
雰囲気としてもよい。この場合、磁心本体を25℃換算
における単位水蒸気量が3〜600g/m3、特に好ましく
は20〜200g/m3の湿潤雰囲気中で熱処理することに
より、比較的低温領域で磁心の透磁率を抑制し、広い温
度範囲で安定的な恒透磁性を得ることができる。
In the heat treatment, a wet atmosphere may be used as a treatment condition. In this case, the magnetic core body is heat-treated in a humid atmosphere having a unit water vapor content of 3 to 600 g / m 3 , particularly preferably 20 to 200 g / m 3 in terms of 25 ° C., so as to reduce the magnetic permeability of the core in a relatively low temperature region. It is possible to obtain a stable constant magnetic permeability over a wide temperature range.

【0018】本発明では、まず熱処理前の素材ロットか
ら磁性リボンを任意に抽出し、この磁性リボンの一部を
切り取り、これを試料としてDSC装置を用いて結晶化
ピーク温度を測定する。
In the present invention, first, a magnetic ribbon is arbitrarily extracted from a material lot before heat treatment, a part of the magnetic ribbon is cut out, and a sample is used as a sample to measure a crystallization peak temperature using a DSC device.

【0019】図3は、磁性リボンを20mg試料として秤
量し、DSC装置を用いて測定した差動熱量の変化を示
しており、同図より結晶化ピーク温度(Tx)が判明す
る。
FIG. 3 shows the change in the differential calorie measured by weighing a magnetic ribbon as a 20 mg sample and using a DSC device. The figure shows the crystallization peak temperature (Tx).

【0020】次に、あらかじめ測定された目標透磁率に
おける熱処理温度と結晶化ピーク温度(Tx)との関係
式に前記DSC装置からの測定温度値を代入し、熱処理
温度を決定する。
Next, the heat treatment temperature is determined by substituting the measured temperature value from the DSC apparatus into the relational expression between the heat treatment temperature and the crystallization peak temperature (Tx) at the previously measured target magnetic permeability.

【0021】前記関係式は、たとえば以下のように導く
ことができる。このような関係式は、たとえば目標透磁
率における熱処理温度と結晶化ピーク温度との関係をあ
らかじめ複数のロット素材でサンプリングしておくこと
により得られる。
The above relational expression can be derived, for example, as follows. Such a relational expression can be obtained, for example, by sampling the relationship between the heat treatment temperature and the crystallization peak temperature at the target magnetic permeability with a plurality of lot materials in advance.

【0022】図4は、透磁率250における結晶化ピー
ク温度に対する熱処理温度の変化を示しており、図5は
透磁率300における結晶化ピーク温度に対する熱処理
温度の変化を示している。
FIG. 4 shows the change of the heat treatment temperature with respect to the crystallization peak temperature at the magnetic permeability of 250, and FIG. 5 shows the change of the heat treatment temperature with respect to the crystallization peak temperature at the magnetic permeability of 300.

【0023】両図に示すように、結晶化ピーク温度と熱
処理温度との間には正の強い相関関係があることが見い
出され、これから最小自乗法により下記の数1さらに好
ましくは数2が導き出される。
As shown in both figures, it has been found that there is a strong positive correlation between the crystallization peak temperature and the heat treatment temperature, from which the following equation (1), more preferably, the following equation (2) is derived by the least square method. It is.

【0024】[0024]

【数1】 T(℃)=0.928Tx1−31.86## EQU1 ## T (° C.) = 0.928Tx1−31.86

【0025】[0025]

【数2】 T(℃)=0.766Tx1+49.06 前記数1および数2において、Tは目標透磁率が得られ
る熱処理制御温度であり、Tx1は図3における第1結
晶化ピーク温度である。いずれも相関係数は0.98以
上である。
T (° C.) = 0.766 Tx1 + 49.06 In the above equations (1) and (2), T is a heat treatment control temperature at which a target magnetic permeability is obtained, and Tx1 is a first crystallization peak temperature in FIG. In each case, the correlation coefficient is 0.98 or more.

【0026】電気炉における熱処理温度は、この熱処理
制御温度(T)に基づきこの電気炉を1℃ずつ制御す
る。
The heat treatment temperature in the electric furnace is controlled by 1 ° C. at a time based on the heat treatment control temperature (T).

【0027】このように、数1および数2より決定した
熱処理制御温度により電気炉を制御して熱処理を行う。
As described above, the electric furnace is controlled by the heat treatment control temperature determined from the equations (1) and (2) to perform the heat treatment.

【0028】[0028]

【実施例1】以下、本発明の実施例を説明する。Embodiment 1 An embodiment of the present invention will be described below.

【0029】アライド社のアモルファスリボン(製品
名:Metglas2605S−2:Fe7813Si9
(原子%),厚さ21μm,幅10mm)を巻回して、外
径25mm,内径15mmのトロイダル状の磁心本体を得
た。
Allied amorphous ribbon (product name: Metglas 2605S-2: Fe 78 B 13 Si 9)
(Atomic%), a thickness of 21 μm, and a width of 10 mm) to obtain a toroidal magnetic core body having an outer diameter of 25 mm and an inner diameter of 15 mm.

【0030】一方、前記アモルファスリボンの各製品ロ
ットより任意に抽出した試料についてDSC装置を用い
て結晶化ピーク温度(Tx)を測定した。
On the other hand, the crystallization peak temperature (Tx) of a sample arbitrarily extracted from each product lot of the amorphous ribbon was measured using a DSC device.

【0031】次に、この測定値を前述の数1または数2
に代入して熱処理温度(T)を決定し、これに基づいて
電気炉を制御した。
Next, this measured value is calculated by using the above equation (1) or (2).
And the heat treatment temperature (T) was determined, and the electric furnace was controlled based on the temperature.

【0032】このとき本実施例では、第1結晶化ピーク
温度(Tx1)が512.5℃についてその熱処理温度
(T)を444℃に制御した。その結果、目標透磁率2
50に対して245〜255の範囲のものが歩留り92
%で得られた。
At this time, in this embodiment, the heat treatment temperature (T) was controlled to 444 ° C. when the first crystallization peak temperature (Tx1) was 512.5 ° C. As a result, the target permeability 2
A yield of 92 is in the range of 245 to 255 with respect to 50.
%.

【0033】前記熱処理の完了後、この磁心本体にギャ
ップを設けることなく合成樹脂からなるケースに収容
し、磁心とした。
After the completion of the heat treatment, the magnetic core body was housed in a case made of synthetic resin without providing a gap to form a magnetic core.

【0034】[0034]

【実施例2】前記実施例1と同様の、アライド社のアモ
ルファスリボン(製品名:Metglas2605S−
2:Fe7813Si9(原子%),厚さ21μm,幅1
0mm)を巻回して、外径25mm,内径15mmのトロイダ
ル状の磁心本体を得た。
Example 2 An amorphous ribbon manufactured by Allied (product name: Metglas 2605S-
2: Fe 78 B 13 Si 9 (atomic%), thickness 21 μm, width 1
0 mm) to obtain a toroidal magnetic core body having an outer diameter of 25 mm and an inner diameter of 15 mm.

【0035】一方、前記アモルファスリボンの各製品ロ
ットより任意に抽出した試料についてDSC装置を用い
て結晶化ピーク温度(Tx)を測定した。
On the other hand, the crystallization peak temperature (Tx) of a sample arbitrarily extracted from each product lot of the amorphous ribbon was measured using a DSC device.

【0036】次に、この測定値を前述の数1または数2
に代入して熱処理温度(T)を決定し、これに基づいて
電気炉を制御した。
Next, this measured value is calculated by using the above equation (1) or (2).
And the heat treatment temperature (T) was determined, and the electric furnace was controlled based on the temperature.

【0037】このとき本実施例では、第1結晶化ピーク
温度(Tx1)が516.5℃についてその熱処理温度
(T)を445℃に制御した。その結果、目標透磁率3
00に対して290〜300の範囲のものが歩留り90
%で得られた。
At this time, in this embodiment, the heat treatment temperature (T) was controlled to 445 ° C. when the first crystallization peak temperature (Tx1) was 516.5 ° C. As a result, the target permeability 3
The yield of 90 ranges from 290 to 300
%.

【0038】[0038]

【発明の効果】本発明によれば、素材として提供される
熱処理前の磁性リボンにばらつきが生じている場合であ
っても、定常的に製品特性の安定した磁心を得ることが
できる。
According to the present invention, a magnetic core having stable product characteristics can be constantly obtained even when the magnetic ribbon provided as a raw material before the heat treatment has a variation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性リボンのロット毎の熱処理温度と透磁率と
のばらつきを示すグラフ図
FIG. 1 is a graph showing a variation between a heat treatment temperature and a magnetic permeability for each lot of a magnetic ribbon.

【図2】磁性リボンにおける直流重畳磁界に対する透磁
率の変化を示すグラフ図
FIG. 2 is a graph showing a change in magnetic permeability of a magnetic ribbon with respect to a DC superimposed magnetic field.

【図3】実施例において、DSC装置を用いて測定され
た作動熱量の変化を示すグラフ図
FIG. 3 is a graph showing a change in working calorie measured using a DSC device in the example.

【図4】透磁率250における結晶化ピーク温度に対す
る熱処理温度の変化を示すグラフ図
FIG. 4 is a graph showing a change in heat treatment temperature with respect to a crystallization peak temperature at a magnetic permeability of 250.

【図5】透磁率300における結晶化ピーク温度に対す
る熱処理温度の変化を示すグラフ図
FIG. 5 is a graph showing a change in heat treatment temperature with respect to a crystallization peak temperature at a magnetic permeability of 300.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉村 勝 千葉県君津郡袖ヶ浦町長浦字拓二号580 番32三井石油化学工業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01F 1/153,41/02 C21D 6/00,8/12 C22F 1/00,1/10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaru Yoshimura 580-32 Takuji, Nagaura, Sodegaura-cho, Kimitsu-gun, Chiba Pref. Mitsui Petrochemical Industries Co., Ltd. (58) Field surveyed (Int.Cl. 6 , DB name) ) H01F 1 / 153,41 / 02 C21D 6 / 00,8 / 12 C22F 1 / 00,1 / 10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性リボンを巻回した後に熱処理する際
に、素材ロット中から任意にサンプリングした磁性リボ
ンの結晶化ピーク温度を測定し、前記結晶化ピーク温度 を、あらかじめ作成した目標透磁
率における結晶化ピーク温度値と熱処理温度との関係に
適用して最適な熱処理温度を決定することを特徴とする
磁心の熱処理方法。
When a heat treatment is performed after winding a magnetic ribbon, a crystallization peak temperature of a magnetic ribbon arbitrarily sampled from a raw material lot is measured, and the crystallization peak temperature is determined based on a target magnetic permeability previously prepared. Relationship between crystallization peak temperature and heat treatment temperature
A heat treatment method for a magnetic core, wherein an optimum heat treatment temperature is determined by applying the heat treatment.
【請求項2】 前記結晶化ピーク温度が示差走査熱量測
定法を用いて求められる結晶化発熱ピーク温度とするこ
とを特徴とする請求項1記載の磁心の熱処理方法。
2. The method according to claim 1, wherein the crystallization peak temperature is a crystallization exothermic peak temperature determined by a differential scanning calorimetry.
JP3037645A 1991-03-04 1991-03-04 Heat treatment method of magnetic core Expired - Lifetime JP2952718B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP3037645A JP2952718B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core
CN92102499A CN1048576C (en) 1991-03-04 1992-03-04 Method of manufacturing and appolying heat treatment to magnetic core
AT92905956T ATE154158T1 (en) 1991-03-04 1992-03-04 METHOD FOR PRODUCING A MAGNETIC CORE BY HEAT TREATING THE SAME
US07/941,113 US5439534A (en) 1991-03-04 1992-03-04 Method of manufacturing and applying heat treatment to a magnetic core
KR1019920702742A KR970007511B1 (en) 1991-03-04 1992-03-04 Method of manufacturing & applying heat treatment to a agnetic core
PCT/JP1992/000256 WO1992015997A1 (en) 1991-03-04 1992-03-04 Method of manufacturing magnetic core and of heat-treating the same
EP92905956A EP0527233B1 (en) 1991-03-04 1992-03-04 Method of manufacturing magnetic core by heat-treating the same
DE69220150T DE69220150T2 (en) 1991-03-04 1992-03-04 METHOD FOR PRODUCING A MAGNETIC CORE BY HEAT TREATMENT THEREOF
CA002082061A CA2082061C (en) 1991-03-04 1992-03-04 Method of manufacturing and applying heat treatment to a magnetic core
TW081101775A TW201844B (en) 1991-03-04 1992-03-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037645A JP2952718B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core

Publications (2)

Publication Number Publication Date
JPH04275411A JPH04275411A (en) 1992-10-01
JP2952718B2 true JP2952718B2 (en) 1999-09-27

Family

ID=12503389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037645A Expired - Lifetime JP2952718B2 (en) 1991-03-04 1991-03-04 Heat treatment method of magnetic core

Country Status (1)

Country Link
JP (1) JP2952718B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755292B1 (en) * 1996-10-25 1998-11-20 Mecagis PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
EP3050977B1 (en) * 2013-09-27 2018-11-21 Hitachi Metals, Ltd. Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core

Also Published As

Publication number Publication date
JPH04275411A (en) 1992-10-01

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
US4187128A (en) Magnetic devices including amorphous alloys
CA1056180A (en) Magnetic devices including amorphous alloys
CN1134034C (en) Process for mfg. magnetic component made of iron-based soft magnetic alloy having nanocrys talline structure
EP0038957B1 (en) Rolled core
JPS6218620B2 (en)
Luborsky Kinetics of reorientation of magnetically induced anisotropy in amorphous Ni40Fe40P14B6
WO1993009549A1 (en) Heat treatment process and soft magnetic alloys produced thereby
JPS5934781B2 (en) Method for reducing magnetic hysteresis loss of soft magnetic amorphous alloy ribbon material
KR850000596B1 (en) Iron-boron-silicon ternary armorphous alloys
EP0527233B1 (en) Method of manufacturing magnetic core by heat-treating the same
EP3157021B1 (en) Method for producing fe-based nanocrystalline alloy core
EP3050977B1 (en) Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core
SK144597A3 (en) Method of producing a magnetic core made of nanocrystalline soft magnetic material
JP2952718B2 (en) Heat treatment method of magnetic core
JP2952716B2 (en) Heat treatment method of magnetic core
EP0035037A1 (en) Microcrystalline thin strip for magnetic material having high magnetic permeability
JP2952717B2 (en) Heat treatment method of magnetic core
EP2320436A1 (en) Amorphous magnetic alloys, associated articles and methods
Arnold Nickel-chromium-aluminium-copper resistance wire
Fujimori et al. On the magnetically induced anisotropy in amorphous ferromagnetic alloys
JP2588450B2 (en) Amorphous alloy ribbon with improved crystallization resistance of surface layer and method for producing the same
JPH0219442A (en) High saturated magnetic flux density ferrous alloy having superfine crystalline structure
EP3588518A1 (en) Magnetic core unit, current transformer, and method for manufacturing same
JPH0351081B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 11