EP0921540B1 - Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker - Google Patents

Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker Download PDF

Info

Publication number
EP0921540B1
EP0921540B1 EP98402803A EP98402803A EP0921540B1 EP 0921540 B1 EP0921540 B1 EP 0921540B1 EP 98402803 A EP98402803 A EP 98402803A EP 98402803 A EP98402803 A EP 98402803A EP 0921540 B1 EP0921540 B1 EP 0921540B1
Authority
EP
European Patent Office
Prior art keywords
alloy
magnetic
heat treatment
magnetic core
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402803A
Other languages
German (de)
French (fr)
Other versions
EP0921540A1 (en
Inventor
Georges Couderchon
Philippe Verin
Christian Caquard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0921540A1 publication Critical patent/EP0921540A1/en
Application granted granted Critical
Publication of EP0921540B1 publication Critical patent/EP0921540B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the present invention relates to a magnetic core made of nanocrystalline soft magnetic alloy that can be used, in particular, for the manufacture of a differential breaker of class AC.
  • AC class differential circuit breakers are differential circuit breakers sensitive to sinusoidal fault currents. They comprise in particular a magnetic core of soft magnetic alloy for which one seeks both a high magnetic permeability ⁇ and a very good temperature stability of this magnetic permeability. Given a given magnetic core size, the sensitivity of the differential circuit breaker is all the better as the magnetic permeability is high; this permeability must be stable in the operating temperature range of the GFCI (generally from -25 ° C to + 100 ° C) so as to obtain good operational safety.
  • the magnetic cores for AC class AC circuit breakers are made of a soft magnetic alloy of the type Fe-Ni 20-80, stabilized by annealing.
  • This technique has the disadvantage of not making it possible to reliably obtain magnetic maximum impedance permeabilities ⁇ z substantially greater than 300 000, which limits the possibilities of reducing the size of the magnetic cores, and therefore, of the dimension of the differential circuit breakers.
  • Nano-crystalline soft magnetic alloys of the type comprising more than 60% iron, copper, silicon, boron and one of titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, the molybdenum, tungsten and manganese have the advantage of allowing to obtain maximum impedance magnetic permeabilities ⁇ z greater than 300 OOC, which would make it possible to manufacture magnetic cores for circuit breakers of the AC class of substantially reduced size. .
  • These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon, which is wound to form a torus, and then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure.
  • magnetic cores of this type have insufficient temperature stability: at 100 ° C. permeability magnetic is less than 40% lower than the magnetic permeability at 25 ° C; they can not therefore be used for the manufacture of miniaturized differential circuit breakers.
  • EP 0563606 discloses a current transformer for differential circuit breaker of the kind comprising a magnetic core toroid can be made of a soft magnetic iron-based alloy composed more than 50% of fine crystal grains less than 100 nm in size and comprising, in addition to an iron content of greater than 60% (at), 0.5 to 2% of copper, at least 2% to 5% of one of the following metals niobium, tungsten, tantalum, zirconium, hafnium , titanium and / or molybdenum, 5 to 14% boron and 14 to 17% silicon
  • WO 96/33595 discloses an intensity transformer, in particular for a pulsed current sensitive fault current differential tripping device, of the type comprising a magnetic core toroid which can be made of a soft magnetic iron-based alloy composed of more than 50 % of fine-crystal grains less than 100 nm in size and comprising, in addition to an iron content of greater than 60% (at), 0.5 to 2% of copper, at least 2 to 5% of one of the following metals niobium, tungsten, tantalum, zirconium, hafnium, titanium and / or molybdenum, 5 to 14% boron and 14 to 17% silicon.
  • DE 4,019,636 describes a method for improving the magnetic properties of amorphous ferromagnetic materials by continuously subjecting them to an alternating magnetic field whose frequency is between 50 and 50 kHz, sinusoidal, at right angles or triangular and whose the current density is between 10 and 500 A / cm 2 .
  • the object of the present invention is to overcome this disadvantage by proposing a means for manufacturing a magnetic core used in a differential circuit breaker of the AC class of reduced dimensions.
  • the subject of the invention is a process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60% iron atoms, from 10 to 20% silicon atoms, and 1 to 2 atoms% copper, 5 to 20 atoms% boron, 0.1 to 10 atoms% of at least one element selected from titanium, niobium, zirconium, hafnium, vanadium, tantalum chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the elaboration; the sum of the silicon and boron contents being less than 30% atoms; the nanocrystalline alloy being obtained by a crystallization heat treatment of the alloy in the amorphous state; the magnetic core having a maximum impedance magnetic permeability ⁇ z at 50 Hertz, at 25 ° C, greater than 350,000, this maximum magnetic permeability impedance ⁇ z varying by less than 25% over the temperature range between - 25 ° C and
  • the heat treatment in a magnetic field parallel to the axis of the core is carried out at a temperature between 200 ° C and 350 ° C.
  • the chemical composition of the nanocrystalline soft magnetic alloy comprises from 10 to 17 atoms of silicon, from 0.5 to 1.5 atoms of copper, from 5 to 14 atoms of boron and from 2 to 4 % of at least one of titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • the relaxation heat treatment can consist in maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.
  • the magnetic core obtained by this method can advantageously be used for the manufacture of a current-class differential circuit breaker of the AC class.
  • the sum of the silicon and boron contents should preferably be less than 30 at% and more preferably less than 25 at%.
  • Crystallization annealing consists of maintaining at a temperature above the crystallization start temperature and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties.
  • the crystallization annealing temperature is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by testing the temperature that leads to the maximum magnetic permeability.
  • the heat treatment carried out under a magnetic field is carried out at a temperature of between 150 ° C. and 400 ° C., and preferably between 200 ° C. and 300 ° C.
  • the magnetic field is applied in the form of a succession of slots.
  • a slot corresponds to a period during which the applied magnetic field is maximal, followed by a period during which it is null or very weak (less than 10% of the maximum magnetic field reached during the treatment).
  • the magnetic field applies during a period may be continuous or alternating, in the latter case the intensity of the magnetic field is the peak intensity (maximum intensity reached at each alteremance).
  • the intensity of the magnetic field can be constant during the whole period of application of the field (rectangular crenels) or variable.
  • All the slots can be of the same intensity or on the contrary of variable intensity from one niche to another.
  • the heat treatment may end at the end of the period of application of the magnetic field of the last slot; the essential point being that the treatment comprises at least two periods during which the magnetic field is applied separated by a period during which the magnetic field is not applied. The inventors have indeed found that by doing so, the temperature stability of the magnetic properties of the magnetic core were very substantially improved.
  • a magnetic core whose maximum magnetic impedance permeability ⁇ z at 50 Hertz, for an alternating excitation magnetic field of 8 mA / cm (peak value), at 25 ° C is greater than 350 000 or 400,000, this magnetic permeability varying from less than 25% between -25 ° C and + 100 ° C.
  • a magnetic core can be used in a class AC differential circuit breaker. Because of its high magnetic permeability, at equal sensitivity of the circuit breaker, the core section can be substantially reduced with respect to the section of a Fe-Ni alloy magnetic core according to the prior art.
  • the other two series B and C were subjected to a heat treatment in a magnetic field parallel to the axis of the core applied in the form of slots: 3 periods of 5 minutes in a magnetic field separated from one of the other by periods of 15 minutes without magnetic field.
  • the treatment temperature was 200 ° C
  • the treatment temperature was 300 ° C.
  • the maximum impedance magnetic permeability ⁇ z measured at 50 Hz was measured in a maximum excitation field of 8 mA / cm (peak value) at 25 ° C, at -25 ° C , at + 80 ° C and + 100 ° C, the ratio ⁇ / ⁇ representing the variations of ⁇ z with respect to its value at 25 ° C.
  • Examples B and C show that if the series A has excellent magnetic permeability, its temperature stability is insufficient. By contrast, Examples B and C have lower permeability, but nevertheless very satisfactory, and exhibit good temperature stability of the magnetic permeability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Production of a nanocrystalline soft magnetic iron-silicon-boron alloy magnetic core involves crystallization heat treatment of the amorphous alloy at 150-400 degrees C in a transverse magnetic field of rectangular waveform. Production of a magnetic core of nanocrystalline soft magnetic alloy, containing more than 60 at.% Fe, 10-20 at.% Si, 0.1-2 at.% Cu, 5-20 at.% B and 0.1-10 at.% of one or more of Ti, Nb, Zr, Hf, V, Ta, Cr, Mo, W and Mn, the sum of Si + B being less than 30 at.%, involves crystallization heat treatment of the amorphous alloy to obtain a core having a maximum impedance magnetic permeability ( mu z) with a value of 350000 at 50 Hz and 25 degrees C and with a variation of less than 25% over the -25 to +100 degrees C range. The novelty is that the core is heat treated at 150-400 degrees C in a transverse magnetic field of rectangular waveform.

Description

La présente invention concerne un noyau magnétique en alliage magnétique doux nanocristallin utilisable, notamment, pour la fabrication d'un disjoncteur différentiel de la classe AC.The present invention relates to a magnetic core made of nanocrystalline soft magnetic alloy that can be used, in particular, for the manufacture of a differential breaker of class AC.

Les disjoncteurs différentiels de la classe AC sont des disjoncteurs différentiels sensibles à des courants de défaut sinusoïdaux. Ils comportent notamment un noyau magnétique en alliage magnétique doux pour lequel on recherche à la fois une perméabilité magnétique µ élevée et une très bonne stabilité en température de cette perméabilité magnétique. A taille de noyau magnétique donnée, la sensibilité du disjoncteur différentiel est d'autant meilleure que la perméabilité magnétique est élevée ; cette perméabilité doit être stable dans la plage de température de fonctionnement du disjoncteur différentiel (en général de - 25 °C à + 100 °C) de façon a obtenir une bonne sûreté de fonctionnement.AC class differential circuit breakers are differential circuit breakers sensitive to sinusoidal fault currents. They comprise in particular a magnetic core of soft magnetic alloy for which one seeks both a high magnetic permeability μ and a very good temperature stability of this magnetic permeability. Given a given magnetic core size, the sensitivity of the differential circuit breaker is all the better as the magnetic permeability is high; this permeability must be stable in the operating temperature range of the GFCI (generally from -25 ° C to + 100 ° C) so as to obtain good operational safety.

Les noyau magnétiques pour disjoncteurs différentiels de la classe AC sont fabriqués en alliage magnétique doux du type Fe-Ni 20-80, stabilisé par un recuit. Cette technique présente l'inconvénient de ne pas permettre d'obtenir de façon fiable des perméabilités magnétiques maximales d'impédance µz sensiblement supérieures à 300 000, ce qui limite les possibilités de réduction de la dimension des noyaux magnétiques, et donc, de la dimension des disjoncteurs différentiels.The magnetic cores for AC class AC circuit breakers are made of a soft magnetic alloy of the type Fe-Ni 20-80, stabilized by annealing. This technique has the disadvantage of not making it possible to reliably obtain magnetic maximum impedance permeabilities μ z substantially greater than 300 000, which limits the possibilities of reducing the size of the magnetic cores, and therefore, of the dimension of the differential circuit breakers.

Les alliages magnétiques doux nanocristallins du type comprenant plus de 60 atomes % de fer, du cuivre, du silicium, du bore et un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse ont l'avantage de permettre d'obtenir des perméabilités magnétiques maximales d'impédance µz supérieures à 300 OOC, ce qui permettrait de fabriquer des noyaux magnétiques pour disjoncteurs différentiels de la classe AC de dimension sensiblement réduite. Ces noyaux magnétiques sont obtenus en coulant l'alliage sous forme d'un ruban amorphe, qui est enroulé pour former un tore, puis soumis à un traitement thermique de cristallisation destiné à conférer à l'alliage une structure nanocristalline. Mais, les noyaux magnétiques de ce type ont une stabilité en température insuffisante : à 100 °C. la perméabilité magnétique est inférieure de plus de 40 % à la perméabilité magnétique à 25 °C ; ils ne peuvent donc pas être utilisés pour la fabrication de disjoncteurs différentiels miniaturisés.Nano-crystalline soft magnetic alloys of the type comprising more than 60% iron, copper, silicon, boron and one of titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, the molybdenum, tungsten and manganese have the advantage of allowing to obtain maximum impedance magnetic permeabilities μ z greater than 300 OOC, which would make it possible to manufacture magnetic cores for circuit breakers of the AC class of substantially reduced size. . These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon, which is wound to form a torus, and then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure. However, magnetic cores of this type have insufficient temperature stability: at 100 ° C. permeability magnetic is less than 40% lower than the magnetic permeability at 25 ° C; they can not therefore be used for the manufacture of miniaturized differential circuit breakers.

EP 0563606 décrit un transformateur de courant pour disjoncteur différentiel du genre comprenant un tore à noyau magnétique pouvant être réalisé en un alliage à base de fer magnétique doux, composé à plus de 50% de grains à cristaux fins d'une taille inférieure à 100 nm et comprenant, en plus d'une teneur en fer supérieure à 60% (at), 0,5 à 2% de cuivre, 2 à 5% au moins de l'un des métaux suivants niobium, tungstène, tantale, zirconium, hafnium, titane et/ou molybdène, 5 à 14% de bore et 14 à 17% de siliciumEP 0563606 discloses a current transformer for differential circuit breaker of the kind comprising a magnetic core toroid can be made of a soft magnetic iron-based alloy composed more than 50% of fine crystal grains less than 100 nm in size and comprising, in addition to an iron content of greater than 60% (at), 0.5 to 2% of copper, at least 2% to 5% of one of the following metals niobium, tungsten, tantalum, zirconium, hafnium , titanium and / or molybdenum, 5 to 14% boron and 14 to 17% silicon

WO 96/33595 décrit un transformateur d'intensité, notamment pour déclencheur différentiel par courant de défaut sensible aux courants pulsés, du genre comprenant un tore à noyau magnétique pouvant être réalisé en un alliage à base de fer magnétique doux, composé à plus de 50% de grains à cristaux fins d'une taille inférieure à 100 nm et comprenant, en plus d'une teneur en fer supérieure à 60% (at), 0,5 à 2% de cuivre, 2 à 5% au moins de l'un des métaux suivants niobium, tungstène, tantale, zirconium, hafnium, titane et/ou molybdène, 5 à 14% de bore et 14 à 17% de silicium.WO 96/33595 discloses an intensity transformer, in particular for a pulsed current sensitive fault current differential tripping device, of the type comprising a magnetic core toroid which can be made of a soft magnetic iron-based alloy composed of more than 50 % of fine-crystal grains less than 100 nm in size and comprising, in addition to an iron content of greater than 60% (at), 0.5 to 2% of copper, at least 2 to 5% of one of the following metals niobium, tungsten, tantalum, zirconium, hafnium, titanium and / or molybdenum, 5 to 14% boron and 14 to 17% silicon.

DE 4 019 636 décrit un procédé d'amélioration des propriétés magnétiques de matériaux ferromagnétiques amorphes consistant à les soumettre de façon continue à un champ magnétique alternatif dont la fréquence est comprise entre 50 et 50kHz, à forme sinusoïdale, à angles droits ou triangulaire et dont la densité de courant est comprise entre 10 et 500 A/cm2.DE 4,019,636 describes a method for improving the magnetic properties of amorphous ferromagnetic materials by continuously subjecting them to an alternating magnetic field whose frequency is between 50 and 50 kHz, sinusoidal, at right angles or triangular and whose the current density is between 10 and 500 A / cm 2 .

Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer un noyau magnétique utilisable dans un disjoncteur différentiel de la classe AC de dimensions réduites.The object of the present invention is to overcome this disadvantage by proposing a means for manufacturing a magnetic core used in a differential circuit breaker of the AC class of reduced dimensions.

A cet effet, l'invention a pour objet un procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration; la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %; l'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe; le noyau magnétique ayant une perméabilité magnétique maximale d'impédance µz à 50 Hertz, à 25 °C, supérieure à 350 000, cette perméabilité magnétique maximale d'impédance µz variant de moins de 25 % sur la plage de température comprise entre - 25 °C et + 100 °C. Selon ce procédé, on effectue sur le noyau magnétique un traitement thermique sous champ magnétique parallèle à l'axe du noyau à une température comprise entre 150 °C et 400 °C, le champ magnétique étant appliqué sous forme de créneaux.To this end, the subject of the invention is a process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60% iron atoms, from 10 to 20% silicon atoms, and 1 to 2 atoms% copper, 5 to 20 atoms% boron, 0.1 to 10 atoms% of at least one element selected from titanium, niobium, zirconium, hafnium, vanadium, tantalum chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the elaboration; the sum of the silicon and boron contents being less than 30% atoms; the nanocrystalline alloy being obtained by a crystallization heat treatment of the alloy in the amorphous state; the magnetic core having a maximum impedance magnetic permeability μ z at 50 Hertz, at 25 ° C, greater than 350,000, this maximum magnetic permeability impedance μ z varying by less than 25% over the temperature range between - 25 ° C and + 100 ° C. According to this method, a magnetic heat treatment is carried out on the magnetic core in a magnetic field parallel to the axis of the core at a temperature of between 150 ° C. and 400 ° C., the magnetic field being applied in the form of crenellations.

De préférence, le traitement thermique sous champ magnétique parallèle à l'axe du noyau est effectué à une température comprise entre 200 °C et 350 °C.Preferably, the heat treatment in a magnetic field parallel to the axis of the core is carried out at a temperature between 200 ° C and 350 ° C.

De préférence également, la composition chimique de l'alliage magnétique doux nanocristallin comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse.Also preferably, the chemical composition of the nanocrystalline soft magnetic alloy comprises from 10 to 17 atoms of silicon, from 0.5 to 1.5 atoms of copper, from 5 to 14 atoms of boron and from 2 to 4 % of at least one of titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.

Avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on peut effectuer sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de l'alliage à l'état amorphe. Par exemple, le traitement thermique de relaxation peut consister en un maintien à une température comprise entre 250 °C et 480 °C pendant un temps compris entre 0,1 et 10 heures.Before carrying out the crystallization heat treatment of the alloy in the amorphous state, it is possible to carry out on the alloy in the amorphous state a relaxation heat treatment at a temperature below the crystallization start temperature of the alloy in the amorphous state. For example, the relaxation heat treatment can consist in maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.

Le noyau magnétique obtenu par ce procédé peut, avantageusement, être utilisé pour la fabrication d'un disjoncteur différentiel à propre courant de la classe AC.The magnetic core obtained by this method can advantageously be used for the manufacture of a current-class differential circuit breaker of the AC class.

L'invention va maintenant être décrite de façon plus précise, mais non limitative, et illustrée par des exemples.The invention will now be described more precisely, but not limitatively, and illustrated by examples.

Pour fabriquer un noyau magnétique en alliage magnétique doux nanocristallin, on coule l'alliage sous forme d'un ruban amorphe, puis on enroule un segment de ruban de longueur appropriée autour d'un mandrin de façon à former une bobine torique de section rectangulaire ou carrée. La bobine qui va constituer le noyau magnétique est alors soumise à un traitement thermique de cristallisation destiné à déstabiliser la structure amorphe et à provoquer la formation de cristaux dont la taille est inférieure à 100 nanomètres, voire inférieure à 20 nanomètres, et, ainsi, obtenir une structure appelée « nanocristalline ». Ce traitement est, ensuite, complété par un traitement thermique sous champ magnétique parallèle à l'axe du noyau. L'alliage est du type décrit notamment dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Il est constitué principalement de fer en une teneur supérieure à 60 atomes %, et contient en outre :

  • de 0,1 à 2 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
  • de 10 à 20 at %, et de préférence, moins de 17 at % de silicium ;
  • de 5 à 20 at %, et de préférence, moins de 14 at % de bore ;
  • de 0,1 à 10 at % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse ; de préférence de 2 et 4 at % de niobium.
To fabricate a nanocrystalline soft magnetic alloy magnetic core, the alloy is cast as an amorphous ribbon, and then a ribbon segment of appropriate length is wound around a mandrel to form a rectangular section toroidal coil or square. The coil that will constitute the magnetic core is then subjected to a crystallization heat treatment intended to destabilize the amorphous structure and to cause the formation of crystals whose size is less than 100 nanometers, or even less than 20 nanometers, and thus to obtain a structure called "nanocrystalline". This treatment is then supplemented by a heat treatment in a magnetic field parallel to the axis of the core. The alloy is of the type described in particular in the European patent applications EP 0 271 657 and EP 0 299 498. It consists mainly of iron in a content greater than 60 atoms%, and further contains:
  • from 0.1 to 2 at%, and preferably from 0.5 to 1.5 at% copper;
  • from 10 to 20 at%, and preferably less than 17 at% silicon;
  • from 5 to 20 at%, and preferably less than 14 at% boron;
  • from 0.1 to 10 at% of at least one of titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese; preferably 2 and 4 at% niobium.

La somme des teneurs en silicium et en bore doit, de préférence, rester inférieure à 30 at % et, mieux encore, rester inférieure à 25 at %.The sum of the silicon and boron contents should preferably be less than 30 at% and more preferably less than 25 at%.

Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 °C et 600 °C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale.Crystallization annealing consists of maintaining at a temperature above the crystallization start temperature and lower than the onset temperature of the secondary phases which deteriorate the magnetic properties. In general, the crystallization annealing temperature is between 500 ° C and 600 ° C, but it can be optimized for each ribbon, for example, by determining by testing the temperature that leads to the maximum magnetic permeability.

Le traitement thermique effectué sous champ magnétique est effectué à une température comprise entre 150 °C et 400 °C, et de préférence entre 200 °C et 300 °C. Pendant le maintien en température, le champ magnétique est appliqué sous forme d'une succession de créneaux. Un créneau correspond à une période pendant laquelle le champ magnétique appliqué est maximal, suivi d'une période pendant la quelle il est nul ou très faible (inférieur à 10 % du champ magnétique maximal atteint pendant le traitement). Le champ magnétique applique pendant une période peut être continu ou alternatif, dans ce dernier cas, l'intensité du champ magnétique est l'intensité de crête (intensité maximale atteinte à chaque altemance). L'intensité du champ magnétique peut être constante pendant toute la période d'application du champ (créneaux rectangulaires) ou variable. Tous les créneaux peuvent être de même intensité ou au contraire d'intensité variable d'un créneau à l'autre. Le traitement thermique peut se terminer à la fin de la période d'application du champ magnétique du dernier créneau ; l'essentiel étant que le traitement comporte au moins deux périodes pendant lesquelles le champ magnétique est appliqué séparées par une période pendant laquelle le champ magnétique n'est pas appliqué. Les inventeurs ont, en effet, constaté qu'en procédant ainsi, la stabilité en température des propriétés magnétiques du noyau magnétique étaient très sensiblement améliorées.The heat treatment carried out under a magnetic field is carried out at a temperature of between 150 ° C. and 400 ° C., and preferably between 200 ° C. and 300 ° C. During the maintenance of temperature, the magnetic field is applied in the form of a succession of slots. A slot corresponds to a period during which the applied magnetic field is maximal, followed by a period during which it is null or very weak (less than 10% of the maximum magnetic field reached during the treatment). The magnetic field applies during a period may be continuous or alternating, in the latter case the intensity of the magnetic field is the peak intensity (maximum intensity reached at each alteremance). The intensity of the magnetic field can be constant during the whole period of application of the field (rectangular crenels) or variable. All the slots can be of the same intensity or on the contrary of variable intensity from one niche to another. The heat treatment may end at the end of the period of application of the magnetic field of the last slot; the essential point being that the treatment comprises at least two periods during which the magnetic field is applied separated by a period during which the magnetic field is not applied. The inventors have indeed found that by doing so, the temperature stability of the magnetic properties of the magnetic core were very substantially improved.

Par ce procédé on obtient un noyau magnétique dont la perméabilité magnétique maximale d'impédance µz à 50 Hertz, pour un champ magnétique d'excitation alternatif de 8 mA/cm (valeur de crête), à 25 °C est supérieur à 350 000, voire 400 000, cette perméabilité magnétique variant de moins de 25 % entre - 25 °C et + 100 °C. Un tel noyau magnétique peut être utilisé dans un disjoncteur différentiel de la classe AC. Du fait de sa forte perméabilité magnétique, à sensibilité égale du disjoncteur, la section du noyau peut être sensiblement réduite par rapport à la section d'un noyau magnétique en alliage Fe-Ni selon l'art antérieur.By this method there is obtained a magnetic core whose maximum magnetic impedance permeability μ z at 50 Hertz, for an alternating excitation magnetic field of 8 mA / cm (peak value), at 25 ° C is greater than 350 000 or 400,000, this magnetic permeability varying from less than 25% between -25 ° C and + 100 ° C. Such a magnetic core can be used in a class AC differential circuit breaker. Because of its high magnetic permeability, at equal sensitivity of the circuit breaker, the core section can be substantially reduced with respect to the section of a Fe-Ni alloy magnetic core according to the prior art.

En complément des traitements thermiques qui viennent d'être décrit, on peut, avant le traitement thermique de cristallisation, effectuer sur le noyau un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence; comprise entre 250°C et 480 °C. Ce recuit de relaxation a pour avantage de réduire encore la sensibilité des propriétés magnétiques des noyaux à la température, de réduire la dispersion des propriétés magnétiques de noyaux fabriqués en série et de réduire la sensibilité des propriétés magnétiques aux contraintes.In addition to the thermal treatments which have just been described, it is possible, before the crystallization heat treatment, to carry out on the core a heat treatment for relaxation at a temperature below the crystallization start temperature of the amorphous strip, and preference; between 250 ° C and 480 ° C. This relaxation annealing has the advantage of further reducing the sensitivity of the magnetic properties of the cores to temperature, reducing the dispersion of the magnetic properties of series-produced cores and reducing the sensitivity of the cores. magnetic properties to constraints.

A titre d'exemple, à partir d'un ruban en alliage Fe73,5Si13,5BgCu1Nb3, (73,5 at % de fer, 13,5 at % de silicium, etc.), de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, on a fabriqué trois séries A, B, C de noyaux magnétiques qui ont été soumises toutes les trois à un traitement de cristallisation de 3 heures à 530 °C (sans traitement de relaxation). A titre de comparaison, la première série A de noyaux n'a pas été soumise à un traitement thermique sous champ magnétique parallèle à l'axe du noyau. Conformément à l'invention, les deux autres séries B et C ont été soumises à un traitement thermique sous champ magnétique parallèle à l'axe du noyau appliqué sous forme de créneaux : 3 périodes de 5 mn sous champ magnétique séparées l'une de l'autre par des périodes de 15 mn sans champ magnétique. Pour l'une des séries, B, la température de traitement était de 200 °C, et pour l'autre, C, la température de traitement était de 300 °C. Sur les trois séries de noyaux magnétiques on a mesuré la perméabilité magnétique maximale d'impédance µz mesurée à 50 Hz dans un champ d'excitation maximale de 8 mA/cm (valeur de crête) à 25 °C, à - 25 °C, à + 80 °C et à + 100 °C, le rapport Δµ/µ représentant les variations de µz par rapport à sa valeur à 25 °C. Les résultats ont été les suivants : série µ (25°C: 8 mA/cm) Δµ/µ -25 °C (%) Δµ/µ +80 °C (%) Δµ/µ +100 °C (%) A (comparaison) 700 000 - 20 % - 30 % - 45 % B 555 000 - 12 % - 8 % - 15 % C 380000 - 5 % - 5 % - 8 % By way of example, from a ribbon of Fe 73.5 Si 13.5 BgCu 1 Nb 3 alloy, (73.5 at% iron, 13.5 at% silicon, etc.), 20 Thickness and width of 10 mm obtained by direct quenching on a cooled wheel, three magnetic reactor series A, B, C were produced which were subjected to a 3-hour crystallization treatment at 530 ° C. (without relaxation treatment). By way of comparison, the first series A of cores was not subjected to heat treatment in a magnetic field parallel to the axis of the core. According to the invention, the other two series B and C were subjected to a heat treatment in a magnetic field parallel to the axis of the core applied in the form of slots: 3 periods of 5 minutes in a magnetic field separated from one of the other by periods of 15 minutes without magnetic field. For one series, B, the treatment temperature was 200 ° C, and for the other, C, the treatment temperature was 300 ° C. Of the three series of magnetic cores, the maximum impedance magnetic permeability μ z measured at 50 Hz was measured in a maximum excitation field of 8 mA / cm (peak value) at 25 ° C, at -25 ° C , at + 80 ° C and + 100 ° C, the ratio Δμ / μ representing the variations of μ z with respect to its value at 25 ° C. The results were as follows: series μ (25 ° C: 8 mA / cm) Δμ / μ -25 ° C (%) Δμ / μ +80 ° C (%) Δμ / μ +100 ° C (%) A (comparison) 700,000 - 20% - 30 % - 45% B 555,000 - 12% - 8% - 15% VS 380000 - 5% - 5% - 8%

Ces exemples montrent bien que si la série A a une perméabilité magnétique excellente, sa stabilité en température est insuffisante. Par contre, les exemples B et C ont des perméabilité plus faibles, mais néanmoins très satisfaisantes, et présentent une bonne stabilité en température de la perméabilité magnétique.These examples show that if the series A has excellent magnetic permeability, its temperature stability is insufficient. By contrast, Examples B and C have lower permeability, but nevertheless very satisfactory, and exhibit good temperature stability of the magnetic permeability.

Claims (7)

  1. Process for manufacturing a magnetic core made of a nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60 at% iron, 10 to 20 at% silicon, 0.1 to 2 at% copper, 5 to 20 at% boron and 0.1 to 10 at% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, and also impurities resulting from the smelting, the sum of the silicon and boron contents being less than 30 at%, the nanocrystalline alloy being obtained by a crystallization heat treatment of the alloy in the amorphous state, characterized in that the magnetic core has a maximum impedance permeability µz at 50 hertz, at 25°C, of greater than 350 000, this maximum impedance permeability µz varying by at least 25% over the temperature range between -25°C and +100°C, and in that a heat treatment in a magnetic field is carried out on the magnetic core at a temperature between 150°C and 400°C, the magnetic field being applied in the form of pulses.
  2. Process according to Claim 1, characterized in that the heat treatment in a magnetic field is carried out at a temperature between 200°C and 350°C.
  3. Process according to Claim 1 or Claim 2, characterized in that the chemical composition of the nanocrystalline soft magnetic alloy comprises 10 to 17 at% silicon, 0.5 to 1.5 at% copper, 5 to 14 at% boron and 2 to 4% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  4. Process according to any one of Claims 1 to 3, characterized in that, before the crystallization heat treatment of the alloy in the amorphous state is carried out, a relaxation heat treatment is carried out on the alloy in the amorphous state at a temperature below the crystallization onset temperature of the alloy in the amorphous state.
  5. Process according to Claim 4, characterized in that the relaxation heat treatment consists of a soak at a temperature between 250°C and 480°C for a time of between 0.1 and 10 hours.
  6. Magnetic core made of a nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60 at% iron, 10 to 20 at% silicon, 0.1 to 2 at% copper, 5 to 20 at% boron and 0.1 to 10 at% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, and also impurities resulting from the smelting, the sum of the silicon and boron contents being less than 30 at%, the nanocrystalline alloy being obtained by a crystallization heat treatment of the alloy in the amorphous state, characterized in that the magnetic core has a maximum impedance permeability µz at 50 hertz, at 25°C, of greater than 350 000, this permeability varying by at least 25% over the temperature range between -25°C and +100°C.
  7. Use of a magnetic core according to Claim 6 for the manufacture of a Class AC residual current circuit breaker.
EP98402803A 1997-12-04 1998-11-13 Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker Expired - Lifetime EP0921540B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715272A FR2772182B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE AND USE IN AN AC CLASS DIFFERENTIAL CIRCUIT BREAKER
FR9715272 1997-12-04

Publications (2)

Publication Number Publication Date
EP0921540A1 EP0921540A1 (en) 1999-06-09
EP0921540B1 true EP0921540B1 (en) 2006-05-24

Family

ID=9514142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402803A Expired - Lifetime EP0921540B1 (en) 1997-12-04 1998-11-13 Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker

Country Status (6)

Country Link
EP (1) EP0921540B1 (en)
AT (1) ATE327562T1 (en)
DE (1) DE69834615T2 (en)
ES (1) ES2262215T3 (en)
FR (1) FR2772182B1 (en)
PL (1) PL186805B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
FR2982409B1 (en) * 2011-11-07 2023-03-10 Schneider Electric Ind Sas METHOD FOR MANUFACTURING A MAGNETIC TORUS FOR A DIRECT CURRENT SENSOR, AND TORUS MADE ACCORDING TO THIS METHOD
CN112553545B (en) * 2020-12-07 2022-03-01 国网河北省电力有限公司沧州供电分公司 High-toughness and short-burst-resistant iron-based amorphous soft magnetic alloy and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
EP0299498B1 (en) * 1987-07-14 1993-09-29 Hitachi Metals, Ltd. Magnetic core and method of producing same
DE3911480A1 (en) * 1989-04-08 1990-10-11 Vacuumschmelze Gmbh USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS
JPH0346205A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by ac or pulse currents
DE4210748C1 (en) * 1992-04-01 1993-12-16 Vacuumschmelze Gmbh Current transformers for pulse current sensitive residual current circuit breakers, residual current circuit breakers with such a current transformer, and method for heat treatment of the iron alloy strip for its magnetic core
FR2733376B1 (en) * 1995-04-18 1997-06-06 Schneider Electric Sa CURRENT TRANSFORMER ESPECIALLY FOR FAULT CURRENT TRIGGER SENSITIVE TO PULSED CURRENTS AND TRIGGER EQUIPPED WITH SUCH A TRANSFORMER

Also Published As

Publication number Publication date
DE69834615D1 (en) 2006-06-29
PL330100A1 (en) 1999-06-07
EP0921540A1 (en) 1999-06-09
PL186805B1 (en) 2004-02-27
FR2772182B1 (en) 2000-01-14
ATE327562T1 (en) 2006-06-15
ES2262215T3 (en) 2006-11-16
DE69834615T2 (en) 2007-04-26
FR2772182A1 (en) 1999-06-11

Similar Documents

Publication Publication Date Title
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
KR950013593B1 (en) Unidirectional silicon steel sheet having excellent film properties
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
EP0792943B1 (en) Iron-nickel alloy and cold-rolled strip with cubic texture
WO2013087997A1 (en) Method for producing a thin strip made from soft magnetic alloy, and resulting strip
JP2001508129A (en) Amorphous Fe-B-Si-C alloy with soft magnetic properties useful for low frequency applications
JPH05192821A (en) Electric discharge working electrode and its manufacture
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
EP0921540B1 (en) Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
JPS5834162A (en) Manufacture of amorphous alloy having high magnetic aging resistance and its thin strip
JPS6335688B2 (en)
JP4217038B2 (en) Soft magnetic alloy
EP0293286B1 (en) Method and device for manufacturing articles for magnetic use
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPS62124250A (en) Amorphous alloy for electric current-detecting device
EP1809780A2 (en) Iron-nickel alloy strip for the manufacture of support grids for integrated circuits
JP2002283012A (en) Iron-base amorphous alloy having good strip forming performance
BE371669A (en)
EP0905263A1 (en) Process for manufacturing iron-nickel alloy strip from a continuously cast thin strip
JP2000080413A (en) PRODUCTION OF Fe GROUP BASE AMORPHOUS METALLIC THIN STRIP
JPH04275411A (en) Heat treatment of magnetic core
JPH04275409A (en) Heat treatment of magnetic core
BE400980A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991209

AKX Designation fees paid

Free format text: AT DE ES FR IT NL

17Q First examination report despatched

Effective date: 20031209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CAQUARD, CHRISTIAN

Inventor name: VERIN, PHILIPPE

Inventor name: COUDERCHON, GEORGES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060524

REF Corresponds to:

Ref document number: 69834615

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061113

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262215

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171116

Year of fee payment: 20

Ref country code: FR

Payment date: 20171130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69834615

Country of ref document: DE