EP0921540A1 - Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker - Google Patents

Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker Download PDF

Info

Publication number
EP0921540A1
EP0921540A1 EP98402803A EP98402803A EP0921540A1 EP 0921540 A1 EP0921540 A1 EP 0921540A1 EP 98402803 A EP98402803 A EP 98402803A EP 98402803 A EP98402803 A EP 98402803A EP 0921540 A1 EP0921540 A1 EP 0921540A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
alloy
temperature
heat treatment
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98402803A
Other languages
German (de)
French (fr)
Other versions
EP0921540B1 (en
Inventor
Georges Couderchon
Philippe Verin
Christian Caquard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0921540A1 publication Critical patent/EP0921540A1/en
Application granted granted Critical
Publication of EP0921540B1 publication Critical patent/EP0921540B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the present invention relates to a magnetic core of magnetic alloy soft nanocrystalline usable, in particular, for the manufacture of a circuit breaker AC class differential.
  • Class AC circuit breakers are circuit breakers differentials sensitive to sinusoidal fault currents. They include in particular a soft magnetic alloy magnetic core for which seeks both high ⁇ magnetic permeability and very good stability in temperature of this magnetic permeability. Magnetic core size given, the sensitivity of the RCD is all the better as the magnetic permeability is high; this permeability must be stable in the range operating temperature of the earth leakage circuit breaker (generally - 25 ° C at + 100 ° C) so as to obtain good operational safety.
  • the magnetic cores for RCD class AC circuit breakers are made of a soft magnetic alloy of the Fe-Ni 20-80 type, stabilized by annealing. This technique has the disadvantage of not making it possible to reliably obtain maximum magnetic permeabilities of impedance ⁇ z substantially greater than 300,000, which limits the possibilities of reducing the size of the magnetic cores, and therefore, the size of earth leakage circuit breakers.
  • Nanocrystalline soft magnetic alloys of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element chosen from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese have the advantage of making it possible to obtain maximum magnetic permeabilities of impedance ⁇ z greater than 300,000, which would make it possible to manufacture magnetic cores for differential circuit breakers of class AC of substantially reduced size .
  • These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon, which is wound to form a torus, then subjected to a thermal crystallization treatment intended to give the alloy a nanocrystalline structure.
  • magnetic cores of this type have insufficient temperature stability: at 100 ° C, the magnetic permeability is more than 40% lower than the magnetic permeability at 25 ° C; they cannot therefore be used for the manufacture of miniaturized residual current devices.
  • the object of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a Class AC circuit breaker with reduced dimensions.
  • the subject of the invention is a process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy whose chemical composition comprises more than 60 atoms% of iron, from 10 to 20 atoms% of silicon, from 0, 1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least one element chosen from titanium, niobium, zirconium, hafnium, vanadium, tantalum , chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the production; the sum of the silicon and boron contents being less than 30 atom%; the nanocrystalline alloy being obtained by a heat treatment of crystallization of the alloy in the amorphous state; the magnetic core having a maximum magnetic permeability of impedance ⁇ z at 50 Hertz, at 25 ° C, greater than 350,000, this maximum magnetic permeability of impedance ⁇ z varying by less than 25% over the temperature range between - 25
  • the heat treatment under transverse magnetic field is carried out at a temperature between 200 ° C and 350 ° C.
  • the chemical composition of the magnetic alloy soft nanocrystalline contains from 10 to 17 atoms% of silicon, from 0.5 to 1.5 atoms % copper, 5 to 14 atoms% boron and 2 to 4% of at least one element taken among titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • thermal relaxation treatment can consist of maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.
  • the magnetic core obtained by this process can advantageously be used for the manufacture of a class-current differential circuit breaker AC.
  • the sum of the silicon and boron contents should preferably remain less than 30 at% and, better still, remain less than 25 at%.
  • the crystallization annealing consists of maintaining at a temperature higher than the start of crystallization temperature and lower than the temperature from the onset of secondary phases which deteriorate the properties magnetic.
  • the crystallization annealing temperature is understood between 500 ° C and 600 ° C, but it can be optimized for each ribbon, by example, by determining by tests the temperature which leads to permeability maximum magnetic.
  • the heat treatment carried out under magnetic field is carried out at a temperature between 150 ° C and 400 ° C, and preferably between 200 ° C and 300 ° C.
  • the magnetic field is applied in the form of a succession of slots.
  • One slot corresponds to one period during which the applied magnetic field is maximum, followed by a period during which it is zero or very weak (less than 10% of the magnetic field reached during treatment).
  • the applied magnetic field can be continuous or alternating, in the latter case the intensity of the magnetic field is peak intensity (maximum intensity reached at each alternation).
  • the intensity of magnetic field can be constant throughout the period of application of the field (rectangular slots) or variable. All slots can be from same intensity or on the contrary of variable intensity from one niche to another.
  • the heat treatment can end at the end of the field application period magnetic of the last slot; the main thing is that the treatment involves minus two periods during which the magnetic field is applied separated by a period during which the magnetic field is not applied.
  • the inventors have in fact found that by doing so, the stability in temperature the magnetic properties of the magnetic core were very significantly improved.
  • a magnetic core whose maximum magnetic permeability of impedance ⁇ z at 50 Hertz, for an alternating magnetic excitation field of 8 mA / cm (peak value), at 25 ° C is greater than 350,000 , or even 400,000, this magnetic permeability varying by less than 25% between - 25 ° C and + 100 ° C.
  • Such a magnetic core can be used in a class AC circuit breaker. Due to its high magnetic permeability, at equal sensitivity of the circuit breaker, the section of the core can be significantly reduced compared to the section of a magnetic core made of Fe-Ni alloy according to the prior art.
  • the treatment temperature was 200 ° C
  • the treatment temperature was 300 ° C.
  • the maximum magnetic permeability of impedance ⁇ z measured at 50 Hz in a maximum excitation field of 8 mA / cm (peak value) at 25 ° C, at - 25 ° C , at + 80 ° C and at + 100 ° C, the ratio ⁇ / ⁇ representing the variations of ⁇ z with respect to its value at 25 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Production of a nanocrystalline soft magnetic iron-silicon-boron alloy magnetic core involves crystallization heat treatment of the amorphous alloy at 150-400 degrees C in a transverse magnetic field of rectangular waveform. Production of a magnetic core of nanocrystalline soft magnetic alloy, containing more than 60 at.% Fe, 10-20 at.% Si, 0.1-2 at.% Cu, 5-20 at.% B and 0.1-10 at.% of one or more of Ti, Nb, Zr, Hf, V, Ta, Cr, Mo, W and Mn, the sum of Si + B being less than 30 at.%, involves crystallization heat treatment of the amorphous alloy to obtain a core having a maximum impedance magnetic permeability ( mu z) with a value of 350000 at 50 Hz and 25 degrees C and with a variation of less than 25% over the -25 to +100 degrees C range. The novelty is that the core is heat treated at 150-400 degrees C in a transverse magnetic field of rectangular waveform.

Description

La présente invention concerne un noyau magnétique en alliage magnétique doux nanocristallin utilisable, notamment, pour la fabrication d'un disjoncteur différentiel de la classe AC.The present invention relates to a magnetic core of magnetic alloy soft nanocrystalline usable, in particular, for the manufacture of a circuit breaker AC class differential.

Les disjoncteurs différentiels de la classe AC sont des disjoncteurs différentiels sensibles à des courants de défaut sinusoïdaux. Ils comportent notamment un noyau magnétique en alliage magnétique doux pour lequel on recherche à la fois une perméabilité magnétique µ élevée et une très bonne stabilité en température de cette perméabilité magnétique. A taille de noyau magnétique donnée, la sensibilité du disjoncteur différentiel est d'autant meilleure que la perméabilité magnétique est élevée ; cette perméabilité doit être stable dans la plage de température de fonctionnement du disjoncteur différentiel (en général de - 25 °C à + 100 °C) de façon a obtenir une bonne sûreté de fonctionnement.Class AC circuit breakers are circuit breakers differentials sensitive to sinusoidal fault currents. They include in particular a soft magnetic alloy magnetic core for which seeks both high µ magnetic permeability and very good stability in temperature of this magnetic permeability. Magnetic core size given, the sensitivity of the RCD is all the better as the magnetic permeability is high; this permeability must be stable in the range operating temperature of the earth leakage circuit breaker (generally - 25 ° C at + 100 ° C) so as to obtain good operational safety.

Les noyau magnétiques pour disjoncteurs différentiels de la classe AC sont fabriqués en alliage magnétique doux du type Fe-Ni 20-80, stabilisé par un recuit. Cette technique présente l'inconvénient de ne pas permettre d'obtenir de façon fiable des perméabilités magnétiques maximales d'impédance µz sensiblement supérieures à 300 000, ce qui limite les possibilités de réduction de la dimension des noyaux magnétiques, et donc, de la dimension des disjoncteurs différentiels.The magnetic cores for RCD class AC circuit breakers are made of a soft magnetic alloy of the Fe-Ni 20-80 type, stabilized by annealing. This technique has the disadvantage of not making it possible to reliably obtain maximum magnetic permeabilities of impedance μ z substantially greater than 300,000, which limits the possibilities of reducing the size of the magnetic cores, and therefore, the size of earth leakage circuit breakers.

Les alliages magnétiques doux nanocristallins du type comprenant plus de 60 atomes % de fer, du cuivre, du silicium, du bore et un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse ont l'avantage de permettre d'obtenir des perméabilités magnétiques maximales d'impédance µz supérieures à 300 000, ce qui permettrait de fabriquer des noyaux magnétiques pour disjoncteurs différentiels de la classe AC de dimension sensiblement réduite. Ces noyaux magnétiques sont obtenus en coulant l'alliage sous forme d'un ruban amorphe, qui est enroulé pour former un tore, puis soumis à un traitement thermique de cristallisation destiné à conférer à l'alliage une structure nanocristalline. Mais, les noyaux magnétiques de ce type ont une stabilité en température insuffisante : à 100 °C, la perméabilité magnétique est inférieure de plus de 40 % à la perméabilité magnétique à 25 °C ; ils ne peuvent donc pas être utilisés pour la fabrication de disjoncteurs différentiels miniaturisés.Nanocrystalline soft magnetic alloys of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element chosen from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese have the advantage of making it possible to obtain maximum magnetic permeabilities of impedance μ z greater than 300,000, which would make it possible to manufacture magnetic cores for differential circuit breakers of class AC of substantially reduced size . These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon, which is wound to form a torus, then subjected to a thermal crystallization treatment intended to give the alloy a nanocrystalline structure. However, magnetic cores of this type have insufficient temperature stability: at 100 ° C, the magnetic permeability is more than 40% lower than the magnetic permeability at 25 ° C; they cannot therefore be used for the manufacture of miniaturized residual current devices.

Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer un noyau magnétique utilisable dans un disjoncteur différentiel de la classe AC de dimensions réduites.The object of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a Class AC circuit breaker with reduced dimensions.

A cet effet, l'invention a pour objet un procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration; la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %; l'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe; le noyau magnétique ayant une perméabilité magnétique maximale d'impédance µz à 50 Hertz, à 25 °C, supérieure à 350 000, cette perméabilité magnétique maximale d'impédance µz variant de moins de 25 % sur la plage de température comprise entre - 25 °C et + 100 °C. Selon ce procédé, on effectue sur le noyau magnétique un traitement thermique sous champ magnétique transverse à une température comprise entre 150 °C et 400 °C, le champ magnétique étant appliqué sous forme de créneaux.To this end, the subject of the invention is a process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy whose chemical composition comprises more than 60 atoms% of iron, from 10 to 20 atoms% of silicon, from 0, 1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least one element chosen from titanium, niobium, zirconium, hafnium, vanadium, tantalum , chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the production; the sum of the silicon and boron contents being less than 30 atom%; the nanocrystalline alloy being obtained by a heat treatment of crystallization of the alloy in the amorphous state; the magnetic core having a maximum magnetic permeability of impedance µ z at 50 Hertz, at 25 ° C, greater than 350,000, this maximum magnetic permeability of impedance µ z varying by less than 25% over the temperature range between - 25 ° C and + 100 ° C. According to this method, heat treatment is carried out on the magnetic core under a transverse magnetic field at a temperature between 150 ° C and 400 ° C, the magnetic field being applied in the form of slots.

De préférence, le traitement thermique sous champ magnétique transverse est effectué à une température comprise entre 200 °C et 350 °C.Preferably, the heat treatment under transverse magnetic field is carried out at a temperature between 200 ° C and 350 ° C.

De préférence également, la composition chimique de l'alliage magnétique doux nanocristallin comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse.Also preferably, the chemical composition of the magnetic alloy soft nanocrystalline contains from 10 to 17 atoms% of silicon, from 0.5 to 1.5 atoms % copper, 5 to 14 atoms% boron and 2 to 4% of at least one element taken among titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.

Avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on peut effectuer sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de l'alliage à l'état amorphe. Par exemple, le traitement thermique de relaxation peut consister en un maintien à une température comprise entre 250 °C et 480 °C pendant un temps compris entre 0,1 et 10 heures.Before carrying out the heat treatment of crystallization of the alloy in the state amorphous, one can carry out on the alloy in the amorphous state a heat treatment of relaxation at a temperature below the temperature at the start of crystallization of the alloy in the amorphous state. For example, thermal relaxation treatment can consist of maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.

Le noyau magnétique obtenu par ce procédé peut, avantageusement, être utilisé pour la fabrication d'un disjoncteur différentiel à propre courant de la classe AC.The magnetic core obtained by this process can advantageously be used for the manufacture of a class-current differential circuit breaker AC.

L'invention va maintenant être décrite de façon plus précise, mais non limitative, et illustrée par des exemples.The invention will now be described in more detail, but not limiting, and illustrated by examples.

Pour fabriquer un noyau magnétique en alliage magnétique doux nanocristallin, on coule l'alliage sous forme d'un ruban amorphe, puis on enroule un segment de ruban de longueur appropriée autour d'un mandrin de façon à former une bobine torique de section rectangulaire ou carrée. La bobine qui va constituer le noyau magnétique est alors soumise à un traitement thermique de cristallisation destiné à déstabiliser la structure amorphe et à provoquer la formation de cristaux dont la taille est inférieure à 100 nanomètres, voire inférieure à 20 nanomètres, et, ainsi, obtenir une structure appelée « nanocristalline ». Ce traitement est, ensuite, complété par un traitement thermique sous champ magnétique transverse, c'est à dire, sous un champ magnétique parallèle à l'axe du noyau. L'alliage est du type décrit notamment dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Il est constitué principalement de fer en une teneur supérieure à 60 atomes %, et contient en outre :

  • de 0,1 à 2 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
  • de 10 à 20 at %, et de préférence, moins de 17 at % de silicium ;
  • de 5 à 20 at %, et de préférence, moins de 14 at % de bore ;
  • de 0,1 à 10 at % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse ; de préférence de 2 et 4 at % de niobium .
To make a magnetic core made of nanocrystalline soft magnetic alloy, the alloy is cast in the form of an amorphous ribbon, then a segment of ribbon of suitable length is wound around a mandrel so as to form a toric coil of rectangular section or square. The coil which will constitute the magnetic core is then subjected to a crystallization heat treatment intended to destabilize the amorphous structure and to cause the formation of crystals whose size is less than 100 nanometers, or even less than 20 nanometers, and, thus, obtain a structure called "nanocrystalline". This treatment is then supplemented by a heat treatment under a transverse magnetic field, that is to say, under a magnetic field parallel to the axis of the core. The alloy is of the type described in particular in European patent applications EP 0 271 657 and EP 0 299 498. It consists mainly of iron in a content greater than 60 atom%, and also contains:
  • 0.1 to 2 at%, and preferably 0.5 to 1.5 at% copper;
  • from 10 to 20 at%, and preferably, less than 17 at% of silicon;
  • from 5 to 20 at%, and preferably less than 14 at% boron;
  • from 0.1 to 10 at% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese; preferably 2 and 4 at% niobium.

La somme des teneurs en silicium et en bore doit, de préférence, rester inférieure à 30 at % et, mieux encore, rester inférieure à 25 at %.The sum of the silicon and boron contents should preferably remain less than 30 at% and, better still, remain less than 25 at%.

Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 °C et 600 °C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale.The crystallization annealing consists of maintaining at a temperature higher than the start of crystallization temperature and lower than the temperature from the onset of secondary phases which deteriorate the properties magnetic. In general, the crystallization annealing temperature is understood between 500 ° C and 600 ° C, but it can be optimized for each ribbon, by example, by determining by tests the temperature which leads to permeability maximum magnetic.

Le traitement thermique effectué sous champ magnétique est effectué à une température comprise entre 150 °C et 400 °C, et de préférence entre 200 °C et 300 °C. Pendant le maintien en température, le champ magnétique est appliqué sous forme d'une succession de créneaux. Un créneau correspond à une période pendant laquelle le champ magnétique appliqué est maximal, suivi d'une période pendant la quelle il est nul ou très faible (inférieur à 10 % du champ magnétique maximal atteint pendant le traitement). Le champ magnétique appliqué peut être continu ou alternatif, dans ce dernier cas, l'intensité du champ magnétique est l'intensité de crête (intensité maximale atteinte à chaque alternance). L'intensité du champ magnétique peut être constante pendant toute la période d'application du champ (créneaux rectangulaires) ou variable. Tous les créneaux peuvent être de même intensité ou au contraire d'intensité variable d'un créneau à l'autre. Le traitement thermique peut se terminer à la fin de la période d'application du champ magnétique du dernier créneau ; l'essentiel étant que le traitement comporte au moins deux périodes pendant lesquelles le champ magnétique est appliqué séparées par une période pendant laquelle le champ magnétique n'est pas appliqué. Les inventeurs ont, en effet, constaté qu'en procédant ainsi, la stabilité en température des propriétés magnétiques du noyau magnétique étaient très sensiblement améliorées.The heat treatment carried out under magnetic field is carried out at a temperature between 150 ° C and 400 ° C, and preferably between 200 ° C and 300 ° C. During temperature maintenance, the magnetic field is applied in the form of a succession of slots. One slot corresponds to one period during which the applied magnetic field is maximum, followed by a period during which it is zero or very weak (less than 10% of the magnetic field reached during treatment). The applied magnetic field can be continuous or alternating, in the latter case the intensity of the magnetic field is peak intensity (maximum intensity reached at each alternation). The intensity of magnetic field can be constant throughout the period of application of the field (rectangular slots) or variable. All slots can be from same intensity or on the contrary of variable intensity from one niche to another. The heat treatment can end at the end of the field application period magnetic of the last slot; the main thing is that the treatment involves minus two periods during which the magnetic field is applied separated by a period during which the magnetic field is not applied. The inventors have in fact found that by doing so, the stability in temperature the magnetic properties of the magnetic core were very significantly improved.

Par ce procédé on obtient un noyau magnétique dont la perméabilité magnétique maximale d'impédance µz à 50 Hertz, pour un champ magnétique d'excitation alternatif de 8 mA/cm (valeur de crête), à 25 °C est supérieur à 350 000, voire 400 000, cette perméabilité magnétique variant de moins de 25 % entre - 25 °C et + 100 °C. Un tel noyau magnétique peut être utilisé dans un disjoncteur différentiel de la classe AC. Du fait de sa forte perméabilité magnétique, à sensibilité égale du disjoncteur, la section du noyau peut être sensiblement réduite par rapport à la section d'un noyau magnétique en alliage Fe-Ni selon l'art antérieur.By this process we obtain a magnetic core whose maximum magnetic permeability of impedance µ z at 50 Hertz, for an alternating magnetic excitation field of 8 mA / cm (peak value), at 25 ° C is greater than 350,000 , or even 400,000, this magnetic permeability varying by less than 25% between - 25 ° C and + 100 ° C. Such a magnetic core can be used in a class AC circuit breaker. Due to its high magnetic permeability, at equal sensitivity of the circuit breaker, the section of the core can be significantly reduced compared to the section of a magnetic core made of Fe-Ni alloy according to the prior art.

En complément des traitements thermiques qui viennent d'être décrit, on peut, avant le traitement thermique de cristallisation, effectuer sur le noyau un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence, comprise entre 250°C et 480 °C. Ce recuit de relaxation a pour avantage de réduire encore la sensibilité des propriétés magnétiques des noyaux à la température, de réduire la dispersion des propriétés magnétiques de noyaux fabriqués en série et de réduire la sensibilité des propriétés magnétiques aux contraintes.In addition to the heat treatments which have just been described, it is possible, before the crystallization heat treatment, carry out a treatment on the core thermal relaxation at a temperature below the start temperature of crystallization of the amorphous band, and preferably between 250 ° C and 480 ° C. This relaxation annealing has the advantage of further reducing the sensitivity of magnetic properties of cores at temperature, reduce the dispersion of magnetic properties of mass-produced cores and reduce the sensitivity of magnetic properties under stress.

A titre d'exemple, à partir d'un ruban en alliage Fe73,5Si13,5B9Cu1Nb3, (73,5 at % de fer, 13,5 at % de silicium, etc.), de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, on a fabriqué trois séries A, B, C de noyaux magnétiques qui ont été soumises toutes les trois à un traitement de cristallisation de 3 heures à 530 °C (sans traitement de relaxation). A titre de comparaison, la première série A de noyaux n'a pas été soumise à un traitement thermique sous champ magnétique transverse. Conformément à l'invention, les deux autres séries B et C ont été soumises à un traitement thermique sous champ magnétique transverse appliqué sous forme de créneaux : 3 périodes de 5 mn sous champ magnétique séparées l'une de l'autre par des périodes de 15 mn sans champ magnétique. Pour l'une des séries, B , la température de traitement était de 200 °C, et pour l'autre, C , la température de traitement était de 300 °C. Sur les trois séries de noyaux magnétiques on a mesuré la perméabilité magnétique maximale d'impédance µz mesurée à 50 Hz dans un champ d'excitation maximale de 8 mA/cm (valeur de crête) à 25 °C, à - 25 °C, à + 80 °C et à + 100 °C, le rapport Δµ/µ représentant les variations de µz par rapport à sa valeur à 25 °C. Les résultats ont été les suivants : série µ (25°C; 8 mA/cm) Δµ/µ -25 °C (%) Δµ/µ +80 °C (%) Δµ/µ +100 °C (%) A (comparaison) 700 000 - 20 % - 30 % - 45 % B 555 000 - 12 % - 8 % - 15 % C 380 000 - 5 % - 5 % - 8 % For example, from a strip of Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloy (73.5 at% iron, 13.5 at% silicon, etc.), 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, three series A, B, C of magnetic cores were produced, all three of which were subjected to a crystallization treatment of 3 hours at 530 ° C (without relaxation treatment). By way of comparison, the first series A of nuclei was not subjected to a heat treatment under a transverse magnetic field. In accordance with the invention, the other two series B and C were subjected to a heat treatment under transverse magnetic field applied in the form of slots: 3 periods of 5 min under magnetic field separated from each other by periods of 15 min without magnetic field. For one of the series, B, the treatment temperature was 200 ° C, and for the other, C, the treatment temperature was 300 ° C. On the three series of magnetic cores we measured the maximum magnetic permeability of impedance µ z measured at 50 Hz in a maximum excitation field of 8 mA / cm (peak value) at 25 ° C, at - 25 ° C , at + 80 ° C and at + 100 ° C, the ratio Δµ / µ representing the variations of µ z with respect to its value at 25 ° C. The results were as follows: series µ (25 ° C; 8 mA / cm) Δµ / µ -25 ° C (%) Δµ / µ +80 ° C (%) Δµ / µ +100 ° C (%) A (comparison) 700,000 - 20% - 30 % - 45% B 555,000 - 12% - 8% - 15% VS 380,000 - 5% - 5% - 8%

Ces exemples montrent bien que si la série A a une perméabilité magnétique excellente, sa stabilité en température est insuffisante. Par contre, les exemples B et C ont des perméabilité plus faibles, mais néanmoins très satisfaisantes, et présentent une bonne stabilité en température de la perméabilité magnétique.These examples clearly show that if the series A has magnetic permeability excellent, its temperature stability is insufficient. On the other hand, examples B and C have lower permeability, but nevertheless very satisfactory, and exhibit good temperature stability of magnetic permeability.

Claims (6)

Procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration, la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %, l'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe, le noyau magnétique ayant une perméabilité magnétique maximale d'impédance µz à 50 Hertz, à 25 °C, supérieure à 350 000, cette perméabilité magnétique maximale d'impédance µz variant de moins de 25 % sur la plage de température comprise entre - 25 °C et + 100 °C caractérisé en ce que on effectue sur le noyau magnétique un traitement thermique sous champ magnétique transverse à une température comprise entre 150 °C et 400 °C, le champ magnétique étant appliqué sous forme de créneaux.Process for the manufacture of a magnetic core made of nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60 atoms% of iron, from 10 to 20 atoms% of silicon, from 0.1 to 2 atoms% of copper, from 5 to 20 atom% of boron, from 0.1 to 10 atom% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well as impurities resulting from production, the sum of the silicon and boron contents being less than 30 atom%, the nanocrystalline alloy being obtained by a heat treatment for crystallization of the alloy in the amorphous state, the magnetic core having a maximum magnetic permeability of impedance µ z at 50 Hertz, at 25 ° C, greater than 350,000, this maximum magnetic permeability of impedance µ z varying by less than 25% over the temperature range between - 25 ° C and + 100 ° C characterized in what is carried out on the magnetic core a heat treatment under transverse magnetic field at a temperature between 150 ° C and 400 ° C, the magnetic field being applied in the form of slots. Procédé selon la revendication 1 caractérisé en ce que le traitement thermique sous champ magnétique transverse est effectué à une température comprise entre 200 °C et 350 °C.Method according to claim 1 characterized in that the treatment thermal under transverse magnetic field is carried out at a temperature between 200 ° C and 350 ° C. Procédé selon la revendication 1 ou la revendication 2 caractérisé en ce que la composition chimique de l'alliage magnétique doux nanocristallin comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le titane, le niobium, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse.Method according to claim 1 or claim 2 characterized in that the chemical composition of the nanocrystalline soft magnetic alloy includes from 10 to 17 atom% of silicon, from 0.5 to 1.5 atom% of copper, from 5 to 14 atoms % of boron and from 2 to 4% of at least one element taken from titanium, niobium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese. Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que, avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on effectue sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de l'alliage à l'état amorphe. Method according to any one of Claims 1 to 3, characterized in that before carrying out the crystallization heat treatment of the alloy in the state amorphous, a heat treatment is carried out on the alloy in the amorphous state relaxation at a temperature below the temperature at the start of crystallization of the alloy in the amorphous state. Procédé selon la revendication 4 caractérisé en ce que le traitement thermique de relaxation consiste en un maintien à une température comprise entre 250 °C et 480 °C pendant un temps compris entre 0,1 et 10 heures.Method according to claim 4 characterized in that the treatment thermal relaxation consists in maintaining a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours. Utilisation d'un noyau magnétique obtenu par le procédé selon l'une quelconque des revendications 1 à 5 pour la fabrication d'un disjoncteur différentiel à propre courant de la classe AC.Use of a magnetic core obtained by the process according to one any one of claims 1 to 5 for the manufacture of a differential circuit breaker own class AC current.
EP98402803A 1997-12-04 1998-11-13 Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker Expired - Lifetime EP0921540B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715272 1997-12-04
FR9715272A FR2772182B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE AND USE IN AN AC CLASS DIFFERENTIAL CIRCUIT BREAKER

Publications (2)

Publication Number Publication Date
EP0921540A1 true EP0921540A1 (en) 1999-06-09
EP0921540B1 EP0921540B1 (en) 2006-05-24

Family

ID=9514142

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402803A Expired - Lifetime EP0921540B1 (en) 1997-12-04 1998-11-13 Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker

Country Status (6)

Country Link
EP (1) EP0921540B1 (en)
AT (1) ATE327562T1 (en)
DE (1) DE69834615T2 (en)
ES (1) ES2262215T3 (en)
FR (1) FR2772182B1 (en)
PL (1) PL186805B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982409A1 (en) * 2011-11-07 2013-05-10 Schneider Electric Ind Sas Method for manufacturing magnetic core for direct current sensor in differential circuit breaker, involves fixing layers with each other to form band, and forming core from band, where section of core is formed based on number of layers
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN112553545A (en) * 2020-12-07 2021-03-26 国网河北省电力有限公司沧州供电分公司 High-toughness and short-burst-resistant iron-based amorphous soft magnetic alloy and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271657A2 (en) * 1986-12-15 1988-06-22 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
EP0299498A1 (en) * 1987-07-14 1989-01-18 Hitachi Metals, Ltd. Magnetic core and method of producing same
EP0392204A2 (en) * 1989-04-08 1990-10-17 Vacuumschmelze GmbH Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch
DE4019636A1 (en) * 1989-07-01 1991-02-28 James C M Li METHOD FOR IMPROVING THE MAGNETIC PROPERTIES BY APPLYING AC OR PULSED CURRENT
EP0563606A2 (en) * 1992-04-01 1993-10-06 Vacuumschmelze GmbH Current transformer for earth-leakage circuit breakers which are sensitive to current pulses
WO1996033505A1 (en) * 1995-04-18 1996-10-24 Schneider Electric S.A. Current transformer, in particular for a fault current tripping device sensitive to pulsating currents and tripping device equipped with such a transformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271657A2 (en) * 1986-12-15 1988-06-22 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
EP0299498A1 (en) * 1987-07-14 1989-01-18 Hitachi Metals, Ltd. Magnetic core and method of producing same
EP0392204A2 (en) * 1989-04-08 1990-10-17 Vacuumschmelze GmbH Use of a microcrystalline iron-based alloy as a magnetic material for a fault current-protective switch
DE4019636A1 (en) * 1989-07-01 1991-02-28 James C M Li METHOD FOR IMPROVING THE MAGNETIC PROPERTIES BY APPLYING AC OR PULSED CURRENT
EP0563606A2 (en) * 1992-04-01 1993-10-06 Vacuumschmelze GmbH Current transformer for earth-leakage circuit breakers which are sensitive to current pulses
WO1996033505A1 (en) * 1995-04-18 1996-10-24 Schneider Electric S.A. Current transformer, in particular for a fault current tripping device sensitive to pulsating currents and tripping device equipped with such a transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
FR2982409A1 (en) * 2011-11-07 2013-05-10 Schneider Electric Ind Sas Method for manufacturing magnetic core for direct current sensor in differential circuit breaker, involves fixing layers with each other to form band, and forming core from band, where section of core is formed based on number of layers
CN112553545A (en) * 2020-12-07 2021-03-26 国网河北省电力有限公司沧州供电分公司 High-toughness and short-burst-resistant iron-based amorphous soft magnetic alloy and preparation method and application thereof

Also Published As

Publication number Publication date
FR2772182A1 (en) 1999-06-11
ES2262215T3 (en) 2006-11-16
PL186805B1 (en) 2004-02-27
PL330100A1 (en) 1999-06-07
EP0921540B1 (en) 2006-05-24
DE69834615T2 (en) 2007-04-26
ATE327562T1 (en) 2006-06-15
DE69834615D1 (en) 2006-06-29
FR2772182B1 (en) 2000-01-14

Similar Documents

Publication Publication Date Title
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
WO2013087997A1 (en) Method for producing a thin strip made from soft magnetic alloy, and resulting strip
JPS6034620B2 (en) Amorphous alloy with extremely low iron loss and good thermal stability
JP2587890B2 (en) Electrode for electrical discharge machining and method of manufacturing the same
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
JP4268621B2 (en) Rapidly solidified ribbon with excellent soft magnetic properties
EP0921540A1 (en) Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
FR2757878A1 (en) STAINLESS STEEL TREFILE WIRE AND METHOD OF MANUFACTURE
JP2009007639A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP
EP0293286B1 (en) Method and device for manufacturing articles for magnetic use
EP0157669B1 (en) Composite magnetic circuit and method for manufacturing such a circuit
FR2767538A1 (en) Iron-nickel alloy strip production from continuously cast slab or strip
BE1007790A6 (en) Method for manufacturing a thin strip rolled mild steel for cold stamping.
WO2006051188A2 (en) Iron-nickel alloy strip for the manufacture of support grids for integrated circuits
EP0132422A1 (en) Flux gate sensor, in particular for a magnetometer
BE371669A (en)
JPS62124250A (en) Amorphous alloy for electric current-detecting device
JPH04275411A (en) Heat treatment of magnetic core
JPH04275410A (en) Heat treatment of magnetic core
JPH04275409A (en) Heat treatment of magnetic core
CH278120A (en) A method of manufacturing an anisotropic permanent magnet and magnet obtained by this method.
BE400980A (en)
JP2001329349A (en) Amorphous alloy ribbon for nano-crystalline soft magnetic alloy, and laminated magnetic core

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991209

AKX Designation fees paid

Free format text: AT DE ES FR IT NL

17Q First examination report despatched

Effective date: 20031209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CAQUARD, CHRISTIAN

Inventor name: VERIN, PHILIPPE

Inventor name: COUDERCHON, GEORGES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060524

REF Corresponds to:

Ref document number: 69834615

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20061110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061113

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2262215

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20061129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171116

Year of fee payment: 20

Ref country code: FR

Payment date: 20171130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69834615

Country of ref document: DE