JPS62124250A - Amorphous alloy for electric current-detecting device - Google Patents

Amorphous alloy for electric current-detecting device

Info

Publication number
JPS62124250A
JPS62124250A JP60262389A JP26238985A JPS62124250A JP S62124250 A JPS62124250 A JP S62124250A JP 60262389 A JP60262389 A JP 60262389A JP 26238985 A JP26238985 A JP 26238985A JP S62124250 A JPS62124250 A JP S62124250A
Authority
JP
Japan
Prior art keywords
amorphous alloy
current
magnetic core
current detection
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262389A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Kazumi Nakajima
中島 和美
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60262389A priority Critical patent/JPS62124250A/en
Publication of JPS62124250A publication Critical patent/JPS62124250A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve thermal stability of output and sensitivity as well as thermal stability of the titled alloy to be obtained and to obtain an electric current-detecting device having high sensitivity and high output by specifying a composition and by carrying out heat treatment in the magnetic field. CONSTITUTION:The following amorphous alloy is applied to a magnetic core 1 of above-mentioned device which detects the electric current I flowing through a conductor 2 passing through the hole of an annular magnetic core 1: an alloy which has a composition represented by (t1-aMa)100-xXx and is heat-treated in the magnetic field; where T is Fe and/or C o (which may be replaced by Ni by up to 60atomic%); M is one or more kinds selected from Ti, Cr, Cu, Zr, Nb, Mn, V, Mo, Hf, Ta, W, and elements of platinum proup; X is one or more elements among Si, B, P, and C; 0<=a<=0.25; and 15<=x<=30.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電流検出装置に係り、特に環状磁心を用いて非
接触状態で電流を検出することのできる装置に適した非
晶質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a current detection device, and particularly to an amorphous alloy suitable for a device capable of detecting current in a non-contact state using an annular magnetic core.

[発明の技術的背景とその問題点] 従来磁性体を用いた電流検出装置としては、環状磁心を
用いて非接触状態で電流を検出する電流検出装置があり
、例えば直流電流の検出は特開昭60−173475号
、特開昭60−173476号などに開示されており、
交流電流に対しては零相変流器が漏電遮断器用として広
く用いられている。これらの電流検出装置の基本構成を
第1図に示す。すなわち、巻回あるいは積層した単孔の
環状磁心(1)の孔に、非M1定電流が導通する導体(
2)を貫通した構成を取り、環状磁心に施された検出巻
線(3)に誘起される電圧により導線に流れる電流を検
出するのである。例えば導体(2)に正弦波電流を流し
た時は第2図に示すようなパルス電圧が発生する。この
パルス電圧は環状磁心(1)の保磁力近傍での磁束の急
激な変化によって生じるものであり、導体(2)に流れ
る電流によって変化する。得られたパルスを後段の適当
な処理回路により処理し導体(2)に流れる電流を検出
する。
[Technical background of the invention and its problems] Conventionally, as a current detection device using a magnetic material, there is a current detection device that detects current in a non-contact state using an annular magnetic core. It is disclosed in No. 60-173475, Japanese Patent Application Laid-Open No. 60-173476, etc.
For alternating current, zero-phase current transformers are widely used as earth leakage circuit breakers. The basic configuration of these current detection devices is shown in FIG. In other words, a non-M1 constant current conductor (
2), and the current flowing through the conductor is detected by the voltage induced in the detection winding (3) applied to the annular magnetic core. For example, when a sinusoidal current is passed through the conductor (2), a pulse voltage as shown in FIG. 2 is generated. This pulse voltage is generated by a sudden change in magnetic flux near the coercive force of the annular magnetic core (1), and changes depending on the current flowing through the conductor (2). The obtained pulses are processed by an appropriate processing circuit in the subsequent stage, and the current flowing through the conductor (2) is detected.

この様な電流検出装置においてはいまだ十分な検出感度
が得られておらず、この点を改良した装置の開発が望ま
れている。
Such current detection devices have not yet achieved sufficient detection sensitivity, and it is desired to develop a device that improves this point.

[発明の目的] 本発明は以上の点を考慮してなされたもので、高感度、
高出力の電流検出装置を提供することを目的とする。
[Object of the invention] The present invention has been made in consideration of the above points, and has high sensitivity,
The purpose of the present invention is to provide a high-output current detection device.

[発明の概要] 本発明は上記目的のため環状磁心に用いる磁性体につい
て研究を進めた。その結果下記のごとく磁場中熱処理を
施した非晶質合金が優れていることを見出した。すなわ
ち本発明は、被測定電流が流れる導体が磁心の孔を貫通
するように配置された環状磁心により前記導体に流れる
電流を検出する電流検出装置の環状磁心に用いられる1
−a  a  1.00−X XX (TM) T;Fe、Coの少なくとも1種(60原子%までNi
で置換可) M;Ti、Cr、Cu、Zr、Nb、Mn。
[Summary of the Invention] For the above purpose, the present invention has advanced research on magnetic materials used in annular magnetic cores. As a result, we found that an amorphous alloy heat-treated in a magnetic field is superior as described below. That is, the present invention provides an annular magnetic core for use in a current detection device that detects a current flowing through a conductor that is arranged such that the conductor through which the current to be measured passes through a hole in the magnetic core.
-a a 1.00-X XX (TM) T; At least one of Fe and Co (up to 60 atomic% Ni
) M; Ti, Cr, Cu, Zr, Nb, Mn.

V、Mo、Hf、Ta、W及び白金族元素から選ばれた
少なくとも一種 X;Si、B、P、Cから選ばれた少なくとも一種 0≦a≦0. 2 15≦x≦30 の組成を有し、磁場中熱処理が施されたことを特徴とす
る電流検出装置用非晶質合金である。この様な非晶質合
金を電流検出装置の環状磁心として用いると高感度高出
力を得ることができる。
At least one type X selected from V, Mo, Hf, Ta, W, and platinum group elements; At least one type selected from Si, B, P, and C 0≦a≦0. This is an amorphous alloy for a current detection device, which has a composition of 2 15≦x≦30 and has been subjected to heat treatment in a magnetic field. When such an amorphous alloy is used as the annular magnetic core of a current detection device, high sensitivity and high output can be obtained.

まず本発明合金の組成について説明する。First, the composition of the alloy of the present invention will be explained.

Xは非晶質合金の製造に必須である。30原子%を越え
てしまうと非晶質合金の磁気特性が低下してしまう。S
i及びBの組み合わせは、非晶質合金を形成しやすくし
、また、結晶化温度を上昇させ、非晶質合金の熱安定性
を向上するため、最も好ましい。
X is essential for the production of amorphous alloys. If it exceeds 30 atomic %, the magnetic properties of the amorphous alloy will deteriorate. S
The combination of i and B is most preferred because it facilitates the formation of an amorphous alloy, increases the crystallization temperature, and improves the thermal stability of the amorphous alloy.

T成分は、高角型性を得るのに必須の元素であり、Co
及びFeの少なくとも一種である。必要に応じNiで置
換しても良いが大量の置換は磁気特性を低下してしまう
ため、60原子%までとする。
The T component is an essential element to obtain high squareness, and Co
and at least one of Fe. If necessary, Ni may be substituted, but since a large amount of substitution deteriorates the magnetic properties, the amount is limited to 60 at % or less.

特にFe、Ni及びCo、Feの組み合わせが好ましい
。例えばFe、Niのときは 1−b−c   b  e  1oo−x XX(Fe
    NiM) M;Ti、Cr、Cu、Z+t、Nb、Mn。
Particularly preferred is a combination of Fe, Ni, Co, and Fe. For example, in the case of Fe and Ni, 1-b-c b e 1oo-x XX (Fe
NiM) M; Ti, Cr, Cu, Z+t, Nb, Mn.

V、Mo、If、Ta、W及び白金族元素から選ばれた
少なくとも一種 0.1≦b≦0.6 0≦c≦0.25 15≦x≦30 の組成が好ましい。この範囲で高感度、高出力を得るこ
とができる。M成分は非晶質合金の熱安定性を向上する
成分であり、また、電流検出感度、出力の熱安定性をも
向上する。特にZr、Nb。
At least one member selected from V, Mo, If, Ta, W, and platinum group elements preferably has a composition of 0.1≦b≦0.6, 0≦c≦0.25, 15≦x≦30. High sensitivity and high output can be obtained within this range. The M component is a component that improves the thermal stability of the amorphous alloy, and also improves current detection sensitivity and output thermal stability. Especially Zr and Nb.

Mo、Hf、Ta、Wは非晶質合金の結晶化温度を上昇
させるのにq効である。またCr、Cu。
Mo, Hf, Ta, and W have a q effect in increasing the crystallization temperature of an amorphous alloy. Also Cr, Cu.

白金族元素は非晶質合金の耐蝕性を改澹するのにa効で
ある。M成分の添加は少量でその効果を発揮するがc>
Q、25の添加はキュリ一温度の低下をもたらし実用性
を損なってしまう。好ましくは0.01≦c≦0.15
である。
Platinum group elements are effective in improving the corrosion resistance of amorphous alloys. Although the addition of M component exhibits its effect in small amounts, c>
Addition of Q,25 causes a decrease in the Curie temperature, impairing practicality. Preferably 0.01≦c≦0.15
It is.

また、Co、Feの場合は (C01−d−e   d  e  100−x XX
Fe  M  ) M;Ti、Cr、Cu、Zr、Nb、Mn。
In addition, in the case of Co and Fe, (C01-de de 100-x XX
FeM) M; Ti, Cr, Cu, Zr, Nb, Mn.

Ni、V、Mo、Hf、Ta、W及び白金族元素から選
ばれた少なくとも一種 O≦d≦0.12 0 ≦ e ≦ 0.25 15≦x≦30 の組成が好ましい。Feを少量含有させることにより、
電流検出感度、出力を大幅に上昇させることができる。
The composition preferably includes at least one selected from Ni, V, Mo, Hf, Ta, W, and platinum group elements O≦d≦0.12 0≦e≦0.25 15≦x≦30. By containing a small amount of Fe,
Current detection sensitivity and output can be significantly increased.

あまり多くの添加はかえって特性低下をもたらすため、
d≦0.12とする。好ましくは、0.03≦d≦0.
08である。
Adding too much will actually lead to a decline in properties, so
d≦0.12. Preferably, 0.03≦d≦0.
It is 08.

M成分は前述の場合と同様であり、Ni、Mnは他の元
素に比較して飽和磁束密度の減少が少ないため高飽和磁
束密度が要求される場合に仔効である。
The M component is the same as in the above case, and Ni and Mn are effective when a high saturation magnetic flux density is required because the saturation magnetic flux density decreases less than other elements.

またX成分としてSi、Bを選択した場合に特に優れて
おり、下記のごとくに表わされる。
Further, it is particularly excellent when Si or B is selected as the X component, and is expressed as shown below.

(Fe    NiM)      5iB1−b−c
   b  c  100−y−z   y  z(C
o    FeM)      5iB1−d−e  
 d  c  100−y−z   y  zO≦y≦
25 7≦z<30 20≦y+z≦30 この範囲で電流検出感度、出力ともに良好となる。
(Fe NiM) 5iB1-b-c
b c 100-y-z y z(C
o FeM) 5iB1-de
d c 100-y-z y zO≦y≦
25 7≦z<30 20≦y+z≦30 In this range, both current detection sensitivity and output are good.

本発明においては磁場中熱処理を行う。この磁場中熱処
理はキュリ一温度(Tc)以下で効果的である。また結
晶化温度(Tx)以下の歪み取り熱処理を行った後にこ
の磁場中熱処理を行うことが好ましい。従って歪み取り
熱処理後冷却時に磁場を印加しても良いし、磁場を印加
した状態で歪み取り熱処理を行って、そのまま冷却して
も良いし、完全に独立した工程としても良い。また磁場
の印加方向は非晶質合金薄帯の幅方向でも長手方向でも
良い。印加する磁場は0.50e〜2kOe程度であり
、適宜条件は設定できる。 本発明の非晶質合金はその
組成、製造条件等によりキュリ一温度(Tc)が異なる
が、200℃以上、さらには230℃以上の場合に磁場
中熱処理が特に有効である。
In the present invention, heat treatment in a magnetic field is performed. This heat treatment in a magnetic field is effective at temperatures below the Curie temperature (Tc). Further, it is preferable to perform this heat treatment in a magnetic field after performing a heat treatment for removing strain at a temperature below the crystallization temperature (Tx). Therefore, a magnetic field may be applied during cooling after the strain relief heat treatment, or the strain relief heat treatment may be performed with the magnetic field applied and then cooled, or it may be a completely independent process. Further, the direction in which the magnetic field is applied may be either the width direction or the longitudinal direction of the amorphous alloy ribbon. The applied magnetic field is about 0.50e to 2kOe, and the conditions can be set as appropriate. Although the Curie temperature (Tc) of the amorphous alloy of the present invention varies depending on its composition, manufacturing conditions, etc., heat treatment in a magnetic field is particularly effective when the temperature is 200° C. or higher, particularly 230° C. or higher.

本発明の非晶質合金は一般に用いられている単ロール法
等の105℃/秒程度以上の冷却速度で合金溶湯を急冷
する液体急冷法等により得ることができる。
The amorphous alloy of the present invention can be obtained by a commonly used liquid quenching method in which a molten alloy is quenched at a cooling rate of about 105° C./second or higher, such as a single roll method.

本発明非晶質合金の薄帯を巻回したもの、薄帯をエツチ
ングまたは金型等で打ち抜いたリング状試料を積層した
もの、あるいは非晶質合金細線を巻回したものを電流検
出装置の環状磁心として用いる。非晶質合金薄帯の板厚
、細線径は被測定電流の周波数によって使い分けられる
。通常10〜50μmの板厚、30〜150μmの径の
ものを用い、l kHz以上の高周波領域では10〜2
5μmの板厚、30〜100μmの径を用いることが好
ましい。なお、本発明にかかる電流検出装置の検出周波
数領域は10Hz程度からMHz域程度である。
A current detection device can be used for a current detection device by winding a thin strip of the amorphous alloy of the present invention, stacking ring-shaped samples made by etching or punching the thin strip with a mold, or winding a thin amorphous alloy wire. Used as an annular magnetic core. The thickness of the amorphous alloy ribbon and the diameter of the thin wire are determined depending on the frequency of the current to be measured. Usually, a plate with a thickness of 10 to 50 μm and a diameter of 30 to 150 μm is used, and in the high frequency range of 1 kHz or higher,
It is preferable to use a plate thickness of 5 μm and a diameter of 30 to 100 μm. Note that the detection frequency range of the current detection device according to the present invention is from about 10 Hz to about MHz.

またこの環状磁心は一個に限らず複数個組み合わせて用
いても良い。この場合特性の異なる磁心を組み合わせる
ことにより、例えば、測定電流レンジの拡大、出力の温
度補償等の効果を得ることができる。
Further, the annular magnetic core is not limited to one, but may be used in combination. In this case, by combining magnetic cores with different characteristics, effects such as expansion of the measurement current range and output temperature compensation can be obtained, for example.

本発明非晶質合金は例えばインバータ回路の電流制御用
、零相変流器、パルス発生を利用したゼロ クロシング
 ディテクター等、電流によって生じるパルス電圧を利
用する装置に用いることができる。
The amorphous alloy of the present invention can be used, for example, in devices that utilize pulsed voltage generated by current, such as current control in inverter circuits, zero-phase current transformers, and zero-crossing detectors that utilize pulse generation.

[発明の効果] 以上説明したように本発明によれば高感度、高出力の電
流検出装置を得ることができる。従って微小電流の検出
、電流の微小変化の検出に有効であり、また従来と同程
度の感度を得るときの検出巻線数が少なくて済む。7 また非晶質合金の熱安定性と共に出力及び感度の熱安定
性にも優れ、さらに検出出力の直線性が良好であるため
広い電流レンジに亘って検出精度に優れ実用上非常に有
効である。
[Effects of the Invention] As explained above, according to the present invention, a current detection device with high sensitivity and high output can be obtained. Therefore, it is effective in detecting minute currents and minute changes in current, and the number of detection windings can be reduced to obtain the same level of sensitivity as the conventional method. 7 In addition to the thermal stability of amorphous alloys, it also has excellent thermal stability of output and sensitivity, and also has good linearity of detection output, so it has excellent detection accuracy over a wide current range and is very effective in practice. .

[発明の実施例] 以下に本発明の詳細な説明する。[Embodiments of the invention] The present invention will be explained in detail below.

(実施例 1) 0.5  0.5 )7BSi8 B14”組成0)I
F:(F e   N i 品質合金薄帯(幅IQmm、板厚20μm)を単ロール
法により製造した(Tc−350℃)。この非晶質合金
薄帯を、外径18mm、内径12mmの単孔磁心となる
ように巻回した。400℃。
(Example 1) 0.5 0.5 )7BSi8 B14" Composition 0) I
F: (F e Ni quality alloy ribbon (width IQ mm, plate thickness 20 μm) was produced by a single roll method (Tc - 350°C). This amorphous alloy ribbon was rolled into a single roll with an outer diameter of 18 mm and an inner diameter of 12 mm. It was wound to form a hole magnetic core at 400°C.

20m1n、の歪取り熱処理後、lh、200e。After strain relief heat treatment of 20m1n, lh, 200e.

320℃の磁場中熱処理を施した後徐冷し、第1図に示
したような電流検出装置を構成した。
After heat treatment in a magnetic field at 320° C., the mixture was slowly cooled, and a current detection device as shown in FIG. 1 was constructed.

次いで導体(2)に50Hzの交流電流を流したときの
検出巻線(3)間に発生するパルス電圧の波高値を測定
し、パルス電圧の単位断面積、検出巻線1ターンあたり
の値(ffl■/C112・T)を第3図に示した。比
較のため従来用いられているフェライトコアについても
同様の実験を行った。
Next, when a 50 Hz alternating current is passed through the conductor (2), the peak value of the pulse voltage generated between the detection windings (3) is measured, and the unit cross-sectional area of the pulse voltage and the value per turn of the detection winding ( ffl■/C112·T) is shown in FIG. For comparison, a similar experiment was conducted using a conventionally used ferrite core.

第3図から明らかなように本発明の方が高感度高出力で
あり、さらに出力の直線性にも優れていることが分かる
As is clear from FIG. 3, the present invention has higher sensitivity and higher output, and is also superior in output linearity.

フェライトコアでは実用レベルの出力を得るためには3
000タ一ン程度の非常に大きい検出巻線が必要である
が、本発明の非晶質合金を用いることにより、検出巻線
が大幅に低減される。
In order to obtain a practical level output with a ferrite core, 3
A very large sensing winding, on the order of 0.000 tan, is required, but by using the amorphous alloy of the present invention, the sensing winding is significantly reduced.

(実施例 2) 0.92  0.05  0.03) 75Si12B
13”(Co   F e   N b 組成の非晶質合金薄帯(幅10mm、板厚20μm)を
単ロール法により製造した(Tc−290℃)非晶質合
金薄帯を、外径18mm、内径12mmの単孔磁心とな
るように巻回した。460℃。
(Example 2) 0.92 0.05 0.03) 75Si12B
An amorphous alloy ribbon (width 10 mm, plate thickness 20 μm) having a composition of 13” (CoFeNb) was produced by a single roll method (Tc-290°C), and an amorphous alloy ribbon with an outer diameter of 18 mm and an inner diameter of It was wound to form a 12 mm single-hole magnetic core at 460°C.

30m1n、の歪取り熱処理後、lh、50e。After strain relief heat treatment of 30m1n, lh, 50e.

250℃の磁場中熱処理を施した後徐冷し、第1図に示
したような電流検出装置を構成した。
After heat treatment in a magnetic field at 250° C., the mixture was slowly cooled, and a current detection device as shown in FIG. 1 was constructed.

次いで導体(2)に50Hzの交流電流を流したときの
検出巻線(3)間に発生するパルス電圧の波高値を測定
し、パルス電圧の単位断面積、検出巻線1ターンあたり
の値(a+V/am2 ・T)を第3図に示した。
Next, when a 50 Hz alternating current is passed through the conductor (2), the peak value of the pulse voltage generated between the detection windings (3) is measured, and the unit cross-sectional area of the pulse voltage and the value per turn of the detection winding ( a+V/am2 ・T) is shown in FIG.

第3図から明らかなように本発明では高感度高出力であ
り、さらに出力の直線性にも優れていることが分かる。
As is clear from FIG. 3, the present invention has high sensitivity and high output, and also has excellent output linearity.

(実施例 3) 第1表に示した非晶質合金を実施例1と同様にして作製
し、電流センサを構成した。第1表には実施例1と同様
のVの値(IAあたり)を示した。
(Example 3) The amorphous alloy shown in Table 1 was produced in the same manner as in Example 1, and a current sensor was constructed. Table 1 shows the same V values (per IA) as in Example 1.

第1表から明らかなように本発明によれば、高感度、高
出力の電流検出装置を得ることができる。
As is clear from Table 1, according to the present invention, a current detection device with high sensitivity and high output can be obtained.

以下余白 第1表(1) 第1表(2)Margin below Table 1 (1) Table 1 (2)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電流検出装置の概略図、第2図は被測定電流と
パルス電圧の関係を示す図、第3図は電流−出力特性曲
線図。 1・・・環状磁心 2・・・導体 3・・・検出巻線 代理人弁理士  則 近 憲 佑 同        竹  花  喜久男第1図 第2図 第3図
FIG. 1 is a schematic diagram of the current detection device, FIG. 2 is a diagram showing the relationship between the current to be measured and pulse voltage, and FIG. 3 is a current-output characteristic curve diagram. 1... Annular magnetic core 2... Conductor 3... Detection winding Agent Patent attorney Nori Chika Ken Yudo Kikuo Takehana Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)被測定電流が流れる導体が磁心の孔を貫通するよ
うに配置された環状磁心により前記導体に流れる電流を
検出する電流検出装置の環状磁心に用いられる (T_1_−_aM_a)_1_0_0_−_xX_x
T;Fe、Coの少なくとも1種(60原子%までNi
で置換可) M;Ti、Cr、Cu、Zr、Nb、Mn、V、Mo、
Hf、Ta、W及び白金族元素 から選ばれた少なくとも一種 X;Si、B、P、Cから選ばれた少なくとも一種 0≦a≦0.25 15≦x≦30 の組成を有し、磁場中熱処理が施されたことを特徴とす
る電流検出装置用非晶質合金。 (2)特許請求の範囲第1項において、 (Fe_1_−_b_−_cNi_bM_c)_1_0
_0_−_xX_xM;Ti、Cr、Cu、Zr、Nb
、Mn、V、Mo、Hf、Ta、W及び白金族元素 から選ばれた少なくとも一種 0.1≦b≦0.6 0≦c≦0.25 15≦x≦30 の組成を有することを特徴とする電流検出装置用非晶質
合金。 (3)特許請求の範囲第1項において、 (Co_1_−_d_−_eFe_dM_e)_1_0
_0_−_xX_xM;Ti、Cr、Cu、Zr、Nb
、Mn、Ni、V、Mo、Hf、Ta、W及び白金 族元素から選ばれた少なくとも一種 0≦d≦0.12 0≦e≦0.25 15≦x≦30 の組成を有することを特徴とする電流検出装置用非晶質
合金。
[Scope of Claims] (1) Used in the annular magnetic core of a current detection device that detects the current flowing in the conductor by the annular magnetic core arranged so that the conductor through which the current to be measured passes through the hole in the magnetic core (T_1_- _aM_a)_1_0_0_-_xX_x
T; at least one of Fe, Co (up to 60 atomic% Ni
) M; Ti, Cr, Cu, Zr, Nb, Mn, V, Mo,
At least one selected from Hf, Ta, W, and platinum group elements An amorphous alloy for current detection devices characterized by being subjected to heat treatment. (2) In claim 1, (Fe_1_-_b_-_cNi_bM_c)_1_0
_0_-_xX_xM; Ti, Cr, Cu, Zr, Nb
, Mn, V, Mo, Hf, Ta, W, and at least one platinum group element having a composition of 0.1≦b≦0.6 0≦c≦0.25 15≦x≦30 Amorphous alloy for current detection device. (3) In claim 1, (Co_1_-_d_-_eFe_dM_e)_1_0
_0_-_xX_xM; Ti, Cr, Cu, Zr, Nb
, Mn, Ni, V, Mo, Hf, Ta, W, and at least one platinum group element having a composition of 0≦d≦0.12 0≦e≦0.25 15≦x≦30 Amorphous alloy for current detection device.
JP60262389A 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device Pending JPS62124250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262389A JPS62124250A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262389A JPS62124250A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Publications (1)

Publication Number Publication Date
JPS62124250A true JPS62124250A (en) 1987-06-05

Family

ID=17375082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262389A Pending JPS62124250A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Country Status (1)

Country Link
JP (1) JPS62124250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227070A (en) * 1988-03-08 1989-09-11 Toshiba Corp Current detector
JP2005522021A (en) * 2002-02-15 2005-07-21 アンフイ・アロイ Soft magnetic alloys for watchmaking
CN104575913A (en) * 2014-12-01 2015-04-29 横店集团东磁股份有限公司 Preparation method of low-loss amorphous magnetic powder core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227070A (en) * 1988-03-08 1989-09-11 Toshiba Corp Current detector
JP2005522021A (en) * 2002-02-15 2005-07-21 アンフイ・アロイ Soft magnetic alloys for watchmaking
CN104575913A (en) * 2014-12-01 2015-04-29 横店集团东磁股份有限公司 Preparation method of low-loss amorphous magnetic powder core
CN104575913B (en) * 2014-12-01 2017-05-03 横店集团东磁股份有限公司 Preparation method of low-loss amorphous magnetic powder core

Similar Documents

Publication Publication Date Title
JP6729705B2 (en) Nano crystalline alloy magnetic core, magnetic core unit, and method for manufacturing nano crystalline alloy magnetic core
CA1099406A (en) Reducing magnetic hysteresis losses in thin tapes of soft magnetic amorphous metal alloys
CA1200407A (en) Magnetic devices using amorphous alloys
JP2007299838A (en) Magnetic core for current transformer, current transformer using same, and electric power meter
US5338376A (en) Iron-nickel based high permeability amorphous alloy
SK284075B6 (en) Process for producing a magnetic core of nanocrystalline soft magnetic material
US6239594B1 (en) Mageto-impedance effect element
JPS6362579B2 (en)
CN106575567B (en) Core for current transformer, method for manufacturing same, and device provided with same
JPS62124250A (en) Amorphous alloy for electric current-detecting device
Narita et al. Recent researches on high silicon-iron alloys
KR101058536B1 (en) Magnetic core with amorphous Fe-based core, inductor and current transformer comprising same
KR100360762B1 (en) Iron Amorphous Alloy Strip for Winding Trans
JPH11186020A (en) Zero-phase current transformer
Makino et al. Low core losses of nanocrystalline Fe–Zr–Nb–B soft magnetic alloys with high magnetic flux density
JPS62124252A (en) Amorphous alloy for electric current-detecting device
Pfeifer et al. New soft magnetic alloys for applications in modern electrotechnics and electronics
JPS6052557A (en) Low-loss amorphous magnetic alloy
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JPH07151793A (en) Current sensor
JPS62199003A (en) Zero-phase current transformer
JP3602988B2 (en) Magnetic impedance effect element
RU2033649C1 (en) Strip-wound core made of iron-based magnetic alloy