JPS62124252A - Amorphous alloy for electric current-detecting device - Google Patents

Amorphous alloy for electric current-detecting device

Info

Publication number
JPS62124252A
JPS62124252A JP60262388A JP26238885A JPS62124252A JP S62124252 A JPS62124252 A JP S62124252A JP 60262388 A JP60262388 A JP 60262388A JP 26238885 A JP26238885 A JP 26238885A JP S62124252 A JPS62124252 A JP S62124252A
Authority
JP
Japan
Prior art keywords
amorphous alloy
current
magnetic core
output
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262388A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Kazumi Nakajima
中島 和美
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60262388A priority Critical patent/JPS62124252A/en
Publication of JPS62124252A publication Critical patent/JPS62124252A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve thermal stability of output and sensitivity as well as thermal stability of the titled alloy to be obtained and to obtain an electric current-detecting device having high sensitivity and high output by specifying a composition. CONSTITUTION:The following amorphous alloy is applied to a magnetic core 1 mentioned below of the above device detecting the electric current I flowing through a conductor 2 passing through the hole of an annular magnetic core 1: an alloy having a composition represented by (Co1-a-bFeaMb)100-x-ySixBy, where M is one or more kinds selected from Ti, Cr, Ni, Cu, Zr, Nb, Mn, V, Mo, Hf, Ta, W, and elements of platinum group, 0<=a<0.12, 0<=b<0.25, 0<=x<=25, 5<=y<=30, and 20<=x+y<=33.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電流検出装置に係り、特に環状磁心を用いて非
接触状態で電流を検出することのできる装置に適した非
晶質合金に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a current detection device, and particularly to an amorphous alloy suitable for a device capable of detecting current in a non-contact state using an annular magnetic core.

[発明の技術的背景とその間頂点] 従来磁性体を用いた電流検出装置としては、環状磁心を
用いて非接触状態で電流を検出する電流検出装置があり
、例えば直流電流の検出は特開昭60−173475号
、特開昭80−173478号などに開示されており、
交流電流に対しては零相変流器が漏電遮断器用として広
く用いられている。これらの電流検出装置の基本構成を
第1図に示す。すなわち、巻回あるいは積層した単孔の
環状磁心(1)の孔に、非測定電流が導通する導体(2
)を貫通した構成を取り、環状磁心に施された検出巻線
(3)に誘起される電圧により導線に流れる電流を検出
するのである。例えば導体(2)に正弦波電流を流した
時は第2図に示すようなパルス電圧が発生する。このパ
ルス電圧は環状磁心(1)の保磁力近傍での磁束の急激
な変化によって生じるものであり、導体(2)に流れる
電流によって変化する。得られたパルスを後段の適当な
処理回路により処理し導体(2)に流れる電流を検出す
る。
[Technical Background of the Invention and Topics] Conventional current detection devices using magnetic materials include current detection devices that detect current in a non-contact state using an annular magnetic core. It is disclosed in No. 60-173475, Japanese Patent Application Laid-open No. 80-173478, etc.
For alternating current, zero-phase current transformers are widely used as earth leakage circuit breakers. The basic configuration of these current detection devices is shown in FIG. In other words, a conductor (2) through which a non-measured current is conducted is inserted into the hole of a wound or laminated single-hole annular magnetic core (1).
), and the current flowing through the conductor is detected by the voltage induced in the detection winding (3) applied to the annular magnetic core. For example, when a sinusoidal current is passed through the conductor (2), a pulse voltage as shown in FIG. 2 is generated. This pulse voltage is generated by a sudden change in magnetic flux near the coercive force of the annular magnetic core (1), and changes depending on the current flowing through the conductor (2). The obtained pulses are processed by an appropriate processing circuit in the subsequent stage, and the current flowing through the conductor (2) is detected.

この様な電流検出装置においてはいまだ十分な検出感度
が得られておらず、この点を改良した装置の開発が望ま
れている。
Such current detection devices have not yet achieved sufficient detection sensitivity, and it is desired to develop a device that improves this point.

[発明の目的] 本発明は以上の点を考慮してなされたもので、高感度、
高出力の電流検出装置を提供することを目的とする。
[Object of the invention] The present invention has been made in consideration of the above points, and has high sensitivity,
The purpose of the present invention is to provide a high-output current detection device.

[発明の概要] 本発明は上記目的のため環状磁心に用いる磁性体につい
て研究を進めた。その結果下記の組成を有するCo基の
非晶質合金が優れていることを見出した。すなわち本発
明は、被測定電流が流れる導体が磁心の孔を貫通するよ
うに配置された環状磁心により前記導体に流れる電流を
検出する電流検出装置の環状磁心に用いられる (Co    FeM)     5iB1−a−b 
  a  bx  100−x−y   x  yM;
Ti、Cr、Ni、Cu、Zr、Nb。
[Summary of the Invention] For the above purpose, the present invention has advanced research on magnetic materials used in annular magnetic cores. As a result, it was found that a Co-based amorphous alloy having the following composition was superior. That is, the present invention is used for an annular magnetic core of a current detection device that detects a current flowing through a conductor with an annular magnetic core arranged such that a conductor through which a current to be measured passes through a hole in the magnetic core (Co FeM) 5iB1-a. -b
a bx 100-x-y x yM;
Ti, Cr, Ni, Cu, Zr, Nb.

Mn、V、Mo、Hf、Ta、W及び白金族元素から選
ばれた少なくとも一種 0≦a≦0.12 0≦b≦0.25 0≦b≦0.25 5≦y≦30 20≦x+y≦33 の組成を有することを特徴とする電流検出装置用非晶質
合金である。この様な非晶質合金を電流検出装置の環状
磁心として用いると高感度高出力を得ることができる。
At least one selected from Mn, V, Mo, Hf, Ta, W and platinum group elements 0≦a≦0.12 0≦b≦0.25 0≦b≦0.25 5≦y≦30 20≦x+y The present invention is an amorphous alloy for a current detection device, characterized by having a composition of ≦33. When such an amorphous alloy is used as the annular magnetic core of a current detection device, high sensitivity and high output can be obtained.

まず本発明合金の組成について説明する。First, the composition of the alloy of the present invention will be explained.

Bは非晶質合金を製造する際に必須であり、最低限5原
子%は必要であり、10原子%以上が好ましい。。30
原子%を越えてしまうと非晶質合金の磁気特性が低下し
てしまう。Siは非晶質合金を形成しやすくし、また、
結晶化温度を」二昇させ、非晶質合金の熱安定性を向上
する。この効果は25原子%以下で発揮される。さらに
Si、Bの合計量であるが33原子%を越えてしまうと
、キュリ一温度が低くなりの実用性がなく、20原子%
未満では非晶質合金の熱安定性が低下すると共に、電流
検出感度、出力の熱安定性が低下してしまう。特にSi
及びBの合計量が25〜29原子?6のとき最も良好と
なる。さらにSi、ElがBitより多いときのほうが
検出感度が高くなる。
B is essential when producing an amorphous alloy, and requires a minimum content of 5 atomic %, preferably 10 atomic % or more. . 30
If it exceeds atomic percent, the magnetic properties of the amorphous alloy will deteriorate. Si facilitates the formation of amorphous alloys, and
It increases the crystallization temperature by 2' and improves the thermal stability of amorphous alloys. This effect is exhibited at 25 atomic % or less. Furthermore, if the total amount of Si and B exceeds 33 atom%, the Curie temperature will become low and it will not be practical.
If it is less than this, the thermal stability of the amorphous alloy will decrease, as well as current detection sensitivity and output thermal stability. Especially Si
And the total amount of B is 25 to 29 atoms? 6 is the best. Furthermore, the detection sensitivity is higher when Si and El are more than Bit.

Feは必須成分ではないが、Feを少量含有させること
により電流検出感度、出力を大幅に上昇させることがで
きる。あまり多くの添加はかえって電流検出感度、出力
の低下をもたらすため、a≦0.12とする。好ましく
は、0.03≦a≦0.08である。
Although Fe is not an essential component, by including a small amount of Fe, current detection sensitivity and output can be significantly increased. Adding too much will actually cause a decrease in current detection sensitivity and output, so a≦0.12 is set. Preferably, 0.03≦a≦0.08.

M成分は非晶質合金の熱安定性を向上する成分であり、
また、電流検出感度、出力の熱安定性をも向上する。特
にZr、Nb、Mo、Hf、Ta。
The M component is a component that improves the thermal stability of the amorphous alloy,
It also improves current detection sensitivity and output thermal stability. Especially Zr, Nb, Mo, Hf, Ta.

Wは非晶質合金の結晶化温度を上昇するのに有効である
。またCr、Cu、白金族元素は非晶質合金の耐蝕性も
改善する。さらにNi、Mnは他の元素に比較して飽和
磁束密度の減少が少ないため高飽和磁束密度が要求され
る場合に有効である。
W is effective in increasing the crystallization temperature of amorphous alloys. Cr, Cu, and platinum group elements also improve the corrosion resistance of amorphous alloys. Furthermore, Ni and Mn are effective in cases where a high saturation magnetic flux density is required because the saturation magnetic flux density decreases less than other elements.

M成分の添加は少量でその効果を発揮するが、b>0.
25の添加はキュリ一温度の低下をもたらし実用性を損
なう。好ましくは、0.01≦b≦0.15である。
Addition of the M component exhibits its effect in a small amount, but when b>0.
Addition of 25 lowers the Curie temperature and impairs practicality. Preferably, 0.01≦b≦0.15.

本発明の非晶質合金はその組成、製造条件等によりキュ
リ一温度(Tc)が異なるが、160≦Tc≦350℃
、さらには180≦Tc≦320℃が好ましい。あまり
キュリ一温度が高いと出力のエージング特性が低下し、
またキュリ一温度が低いと出力の温度特性が低下してし
まう。
The Curie temperature (Tc) of the amorphous alloy of the present invention varies depending on its composition, manufacturing conditions, etc., but is 160≦Tc≦350°C.
, and more preferably 180≦Tc≦320°C. If the Curie temperature is too high, the aging characteristics of the output will deteriorate,
Furthermore, if the Curie temperature is low, the temperature characteristics of the output will deteriorate.

また本発明の非晶質合金には必要に応じ結晶化温度以下
、キュリ一温度以上の熱処理を行うが、熱処理後の冷却
速度はOll deg/sin、程度の徐冷から、水中
冷却の速度で行えばよく、特に、1〜50 deg/w
in、が好ましい。また熱処理は一回に限らず、多段熱
処理を施しても良い。
In addition, the amorphous alloy of the present invention is heat-treated at a temperature below the crystallization temperature and above the Curie temperature, if necessary. In particular, 1 to 50 deg/w
In is preferred. Further, the heat treatment is not limited to one time, but may be performed in multiple stages.

本発明の非晶質合金は一般に用いられている単ロール法
等の105℃/秒程度以上の冷却速度で合金溶湯を急冷
する液体急冷法等により得ることができる。
The amorphous alloy of the present invention can be obtained by a commonly used liquid quenching method in which a molten alloy is quenched at a cooling rate of about 105° C./second or higher, such as a single roll method.

本発明非晶質合金の薄帯を巻回したもの、薄帯をエツチ
ングまたは金型等で打ち抜いたリング状試料を積層した
もの、あるいは非晶質合金細線を巻回したものを電流検
出装置の環状磁心として用いる。非晶質合金薄帯の板厚
、細線の径は被測定電流の周波数によって使い分けられ
る。通常10〜50μmの板厚、30〜150μmの径
のものを用い、1 kHz以上の高周波領域では、10
〜25μmの板厚、30〜100μの径を用いることが
好ましい。なお本発明にかかる電流検出装置の検出周波
数領域は10Hz程度からM Hz域程度である。
A current detection device can be used for a current detection device by winding a thin strip of the amorphous alloy of the present invention, stacking ring-shaped samples made by etching or punching the thin strip with a mold, or winding a thin amorphous alloy wire. Used as an annular magnetic core. The thickness of the amorphous alloy ribbon and the diameter of the thin wire are determined depending on the frequency of the current to be measured. Usually, a plate with a thickness of 10 to 50 μm and a diameter of 30 to 150 μm is used, and in the high frequency range of 1 kHz or more,
It is preferable to use a plate thickness of ~25 μm and a diameter of 30 to 100 μm. The detection frequency range of the current detection device according to the present invention is from about 10 Hz to about MHz.

またこの環状磁心は一個に限らず複数個組み合わせて用
いても良い。この場合特性の異なる磁心を組み合わせる
ことにより、例えば、測定電流レンジの拡大、出力の温
度補償等の効果を得ることができる。
Further, the annular magnetic core is not limited to one, but may be used in combination. In this case, by combining magnetic cores with different characteristics, effects such as expansion of the measurement current range and output temperature compensation can be obtained, for example.

本発明非晶質合金は例えばインバータ回路の電流制御用
、零相変流器、パルス発生を利用したゼロ りaレンジ
 ディテクター等、電流によって生じるパルス電圧を利
用する装置に用いることができる。
The amorphous alloy of the present invention can be used, for example, in devices that utilize pulsed voltage generated by current, such as current control in inverter circuits, zero-phase current transformers, and zero-a range detectors that utilize pulse generation.

[発明の効果] 以上説明したように本発明によれば高感度、高出力の電
流検出装置を得ることができる。従って微小電流の検出
、電流の微小変化の検出に有効であり、また従来と同程
度の感度を得るためには検出巻線が少なくて済む。
[Effects of the Invention] As explained above, according to the present invention, a current detection device with high sensitivity and high output can be obtained. Therefore, it is effective in detecting minute currents and minute changes in current, and requires fewer detection windings in order to obtain sensitivity comparable to conventional techniques.

また非晶質合金の熱安定性と共に出力及び感度の熱安定
性にも優れているため、実用上非常に有効である。
In addition, it has excellent thermal stability of output and sensitivity as well as the thermal stability of amorphous alloys, so it is very effective in practice.

[発明の実施例] 以下に本発明の詳細な説明する。[Embodiments of the invention] The present invention will be explained in detail below.

(実施例 1) (Co  Fe  Ni  ) Si Bの0.92 
 0.08  0.02 71  17 12組成を有
する非晶質合金薄帯(幅10mm、板厚20μm)を単
ロール法により製造した。この非晶質合金薄帯を外径1
8mm、内径12mmの単孔磁心となるように巻回し、
440℃で熱処理し、5 deg/1nln、の速度で
冷却した後、第1図に示したような電流検出装置を構成
した。なお非晶質合金のキュリ一温度は220℃であっ
た。
(Example 1) (CoFeNi)SiB0.92
An amorphous alloy ribbon (width 10 mm, plate thickness 20 μm) having a composition of 0.08 0.02 71 17 12 was produced by a single roll method. This amorphous alloy ribbon has an outer diameter of 1
Wound to form a single-hole magnetic core with a diameter of 8 mm and an inner diameter of 12 mm.
After heat treatment at 440° C. and cooling at a rate of 5 deg/1 nln, a current detection device as shown in FIG. 1 was constructed. The Curie temperature of the amorphous alloy was 220°C.

次いで導体(2)!、:50Hzの交流電流IAを流し
たときの検出巻線(3)間に発生するパルス電圧の波高
値を測定した。パルス電圧の単位断面積。
Next is the conductor (2)! , : The peak value of the pulse voltage generated between the detection windings (3) when an alternating current IA of 50 Hz was applied was measured. Unit cross section of pulse voltage.

検出巻線1ターンあたりの値(V)は、720(mv/
c[ll−A−T)であった。 比較のため従来用いら
れているフェライトコアについても同様の実験を行った
がV−3,24と極めて小さい値であった。フェライト
コアでは実用レベルの出力を得るためには3000タ一
ン程度の非常に太きい検出巻線が必要であるが、本発明
の非晶質合金を用いることにより検出巻線が大幅に低減
される。
The value (V) per turn of the detection winding is 720 (mv/
c[ll-A-T). For comparison, a similar experiment was conducted on a conventionally used ferrite core, but the value was V-3.24, which was extremely small. In order to obtain a practical level output with a ferrite core, a very thick detection winding of about 3,000 turns is required, but by using the amorphous alloy of the present invention, the detection winding can be significantly reduced. Ru.

(実施例 2) 第1表に示したCo基の非晶質合金を実施例1と同様に
して作製し、コア作製後最適熱処理を施し、電流センサ
を構成した。第1表には実施例1と同様のVの値と共に
、室温時のV。の値に対する100℃のVの変動ΔV 
(−Vo−V’)を相対値で示した。
(Example 2) Co-based amorphous alloys shown in Table 1 were produced in the same manner as in Example 1, and after core production, optimal heat treatment was performed to construct a current sensor. Table 1 shows the same V values as in Example 1, as well as V at room temperature. Variation ΔV of V at 100°C for the value of
(-Vo-V') is shown as a relative value.

第1表から明らかなように本発明によれば、高感度、高
出力で、かつ出力の温度特性にも優れた電流検出装置を
得ることができる。
As is clear from Table 1, according to the present invention, a current detection device with high sensitivity, high output, and excellent output temperature characteristics can be obtained.

以下余白 第1表(1) 第1表(2) また第3図に出力のエージング特性を示す。実施例1の
非晶質合金と比較のため第1表中の試料16の特性を合
わせて示す。第3図から明らかなように本発明の方がエ
ージング特性に優れていることが分かる。
Table 1 (1) Table 1 (2) Figure 3 shows the aging characteristics of the output. For comparison with the amorphous alloy of Example 1, the properties of Sample 16 in Table 1 are also shown. As is clear from FIG. 3, it can be seen that the present invention has better aging characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電流検出装置の概略図、第2図は被測定電流と
パルス電圧の関係を示す図、第3図は出力のエージング
特性図。 1・・・環状磁心 2・・・導体 3・・・検出巻線 代理人弁理士  則 近 憲 佑 同        竹  花  喜久男第1図 第2図
FIG. 1 is a schematic diagram of the current detection device, FIG. 2 is a diagram showing the relationship between the current to be measured and pulse voltage, and FIG. 3 is a diagram of aging characteristics of the output. 1... Annular magnetic core 2... Conductor 3... Detection winding Representative patent attorney Noriyuki Noriyuki Yudo Takehana Kikuo Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)被測定電流が流れる導体が磁心の孔を貫通するよ
うに配置された環状磁心により前記導体に流れる電流を
検出する電流検出装置の環状磁心に用いられる (Co_1_−_a_−_bFe_aM_b)_1_0
_0_−_x_−_ySi_xB_yM;Ti、Cr、
Ni、Cu、Zr、Nb、Mn、V、Mo、Hf、Ta
、W及び白金 族元素から選ばれた少なくとも一種 0≦a≦0.12 0≦b≦0.25 0≦x≦25 5≦y≦30 20≦x+y≦33 の組成を有することを特徴とする電流検出装置用非晶質
合金。
(1) Used in the annular magnetic core of a current detection device that detects the current flowing through the conductor with an annular magnetic core arranged so that the conductor through which the current to be measured passes through the hole in the magnetic core (Co_1_-_a_-_bFe_aM_b)_1_0
_0_-_x_-_ySi_xB_yM; Ti, Cr,
Ni, Cu, Zr, Nb, Mn, V, Mo, Hf, Ta
, W, and at least one element selected from platinum group elements, having a composition of 0≦a≦0.12 0≦b≦0.25 0≦x≦25 5≦y≦30 20≦x+y≦33 Amorphous alloy for current detection devices.
JP60262388A 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device Pending JPS62124252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262388A JPS62124252A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262388A JPS62124252A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Publications (1)

Publication Number Publication Date
JPS62124252A true JPS62124252A (en) 1987-06-05

Family

ID=17375066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262388A Pending JPS62124252A (en) 1985-11-25 1985-11-25 Amorphous alloy for electric current-detecting device

Country Status (1)

Country Link
JP (1) JPS62124252A (en)

Similar Documents

Publication Publication Date Title
JP6729705B2 (en) Nano crystalline alloy magnetic core, magnetic core unit, and method for manufacturing nano crystalline alloy magnetic core
Egami et al. Amorphous alloys as soft magnetic materials
EP1840906B1 (en) Magnetic core for current transformer, current transformer and watthour meter
CA1200407A (en) Magnetic devices using amorphous alloys
JP2007299838A (en) Magnetic core for current transformer, current transformer using same, and electric power meter
KR870000064B1 (en) Non-crystal alloy
JPS6130016B2 (en)
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JP6491666B2 (en) Current transformer core, method of manufacturing the same, and apparatus including the core
JPH01235213A (en) Magnetic sensor, current sensor and apparatus using them
KR101058536B1 (en) Magnetic core with amorphous Fe-based core, inductor and current transformer comprising same
US5110378A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
Luborsky et al. The Fe-BC ternary amorphous alloys
EP0084138A2 (en) Near-zero magnetostrictive glassy metal alloys with high magnetic and thermal stability
JPS62124252A (en) Amorphous alloy for electric current-detecting device
JPS62124250A (en) Amorphous alloy for electric current-detecting device
JPH11186020A (en) Zero-phase current transformer
Luborsky et al. Engineering magnetic properties of Fe-Ni-B amorphous alloys
KR100904664B1 (en) Magnetic core for electric current sensors
JPH0257683B2 (en)
JPS59107501A (en) Heat sensor
JPH01308003A (en) Ac current detector
JPH04275411A (en) Heat treatment of magnetic core
RU2033649C1 (en) Strip-wound core made of iron-based magnetic alloy